
A Generalized Expression for Accelerating
Beamlet Decomposition Simulations

JAREN N. ASHCRAFT1,* EWAN S. DOUGLAS2 , RAMYA ANCHE2 ,
BRANDON D. DUBE3 , KEVIN Z. DERBY1 , LARS FURENLID1,4 , MAGGIE
KAUTZ1 , DAEWOOK KIM2,5 , KIAN MILANI1 , A J ELDORADO RIGGS3

1James C. Wyant College of Optical Sciences, University of Arizona, Meinel Building 1630 E.
University Blvd., Tucson, AZ. 85721, USA
2Department of Astronomy and Steward Observatory, University of Arizona, 933 N. Cherry Ave.,
Tucson, AZ 85721, USA
3Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena,
CA 91109, USA
4College of Medicine, Department of Medical Imaging, P.O. Box 245067 Tucson, Arizona
85724-5067, United States
5Large Binocular Telescope Observatory, University Of Arizona, 933 N. Cherry Ave. Tucson,
AZ 85721, USA

*jashcraft@arizona.edu

Abstract: Paraxial diffraction modeling based on the Fourier transform has seen widespread
implementation for simulating the response of a diffraction-limited optical system. For systems
where the paraxial assumption is not sufficient, a class of algorithms has been developed that
employs hybrid propagation physics to compute the propagation of an elementary beamlet along
geometric ray paths. These “beamlet decomposition" algorithms include the well-known Gaussian
Beamlet Decomposition (GBD) algorithm, of which several variants have been created. To
increase the computational efficiency of the GBD algorithm, we derive an alternative expression
of the technique that utilizes the analytical propagation of beamlets to tilted planes. We then use
this accelerated algorithm to conduct a parameter-space search to find the optimal combination of
free parameters in GBD to construct the analytical Airy function. The experiment is conducted
on a consumer-grade CPU, and a high-performance GPU, where the new algorithm is 34 times
faster than the previously published algorithm on CPUs, and 67,513 times faster on GPUs.

1. Introduction

Physical optics models are integral to the design and tolerancing of diffraction-limited optical
systems. Traditional diffraction theory derived from the Huygens-Fresnel principle enforces the
assumption that the optical system is scalar and paraxial in order to express the propagated field
in terms of the Fourier Transform. To support plane-to-plane propagation, we approximate the
propagation of an optical field (𝐸 (𝑟)) as a projection onto a parabolic phase kernel, resulting in
the Fresnel diffraction integral given in Eq. 1,

𝐸2 (r2, 𝑧) =
𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
𝑒
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2𝑧 |r2 |2
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−𝑖2𝜋
𝜆𝑧

(r1 ·r2 )𝑑2r1. (1)

Here r2 is the radial coordinate at the plane of evaluation at distance 𝑧, r1 is the radial coordinate
at the plane 𝑧 = 0 where the propagation begins, 𝑑2r1 is the differential for the two dimensional
integration, 𝑘 is the wavenumber of light and 𝜆 is the wavelength. Eq. 1 is expressed such that
the Fourier kernel (rightmost exponential term in Eq. 1) is separated from the parabolic phase
term over the source coordinates r1. In the limit where 𝑧 ≫ |r1 |, the parabolic phasor in the
integrand disappears and we are left with the Fraunhofer diffraction integral in Eq. 2,
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which represents a simple Fourier transform of the field 𝐸1. Equations 1 and 2 form the
cornerstone of modern scalar diffraction modeling and have proven to be an excellent tool for the
modern era in open-source diffraction modeling packages [1–4]. However, these formulations
enforce that the optical system is paraxial and neglects “ray aberration" effects like wavefront and
pupil aberration. These effects are captured best by ray trace models of optical systems, which
ignore diffraction. To capture these effects simultaneously, one can employ a “hybrid" approach
to propagation physics where several models are linked to form a more physical simulation. This
can be done by computing the scalar wavefront error with a ray trace to the exit pupil and then
using the diffraction integrals above to propagate to the image plane. However, linking multiple
models simultaneously is error-prone, requiring considerable effort to ensure the propagation
physics are appropriately synched. Furthermore, the scalar and paraxial assumption is insufficient
to model some optical systems. One example is high-numerical aperture systems, like microscope
objectives [5] or highly aspheric mirrors [6].

A more elegant approach would be to perform the diffraction and ray trace simulations
simultaneously. To do so, we consider the Gaussian Beamlet Decomposition technique (GBD)
[7–12]. GBD is a method of physical optics propagation where the propagated field is simulated
as a finite summation of Gaussian beams (as shown in Eq. 3) propagated normal to the local
wavefront (as shown in Fig. 1)

𝐸2 (r2, 𝑧) =
𝑁∑︁
𝑗=0

𝐸𝑜, 𝑗

𝑞(𝑧) 𝑗
𝑒
(
−𝑖𝑘 |r2−r 𝑗 |2

2𝑞 (𝑧) 𝑗
)
, (3)

Where the argument of the sum shows the field for the 𝑗 − 𝑡ℎ Gaussian beam shifted by r 𝑗 in
the entrance pupil and whose complex beam parameter is 𝑞(𝑧) 𝑗 . The complex beam parameter is
related to the waist radius (𝑤(𝑧)) and wavefront radius of curvature (𝑅(𝑧)) of a Gaussian beam
by Eq. 4

𝑞(𝑧)−1 =
1

𝑅(𝑧) + 𝑖
𝜆

𝜋𝑤(𝑧)2 . (4)

The field propagation in Eq. 3 is valid as long as the beamlets that constructed it represent the
initial field well. Traditional GBD employs solely the fundamental Gaussian mode, which is
incapable of representing the sharp edges seen in conventional imaging systems well. However,
GBD has recently seen substantive development by Worku and Gross, which generalized the
propagation of a Gaussian Beam to include curved [10], truncated [13], polarized [11], and
spectrally chirped [12] Gaussian beamlets to use in decomposition to increase the accuracy of
the simulation. This modified GBD (MGBD) approach illustrates the flexibility of beamlet
decomposition for high-fidelity integrated modeling of ray aberration, diffraction, and polarization.
In a prior work [14], we derived an implementation of MGBD and implemented it in an open-
source propagation package [15] to determine if GBD was suitable for astronomical high-contrast
imaging simulations. That study found the runtime required to conduct highly-sampled simulations
was a major limitation. This was due to MGBD requiring the propagation of every Gaussian
beamlet to a single point in the plane where the propagated field would be evaluated. Furthermore,
since the decomposition of a wavefront into a discrete set of Gaussian beams does not have a
unique solution, we need to explore the free parameters available in MGBD simulations in order
to determine what combination delivers the most accurate result. This requires iterating on the
different parameters, which can take a considerable amount of time.

In this study, we derive an alternative expression for MGBD inspired by the work of Weber
configuring the general Collins integral for misaligned optical elements [16] that enables the



Fig. 1. Illustration of Gaussian Beamlet Decomposition. An input wavefront (left) is
decomposed into a sum of Gaussian beams. They are propagated through an optical
system, and the resultant aberrated wavefront is represented by a change in optical path
of each of the beamlets (right).

propagation of a Gaussian beam to a tilted plane instead of a single point. We then validate
the accuracy of the proposed “plane-evaluation" method against the “point-evaluation" method
we previously derived [14, 15], and perform a runtime comparison on CPUs and GPUs. In
Section 2, we review the point-evaluation method derived for solutions of the Collins integral. In
Section 3, we describe Weber’s expression of the Collins integral for misaligned elements and
our modification to their derivation to support efficient MGBD without loss of generality. In
Section 4, we perform self-consistency tests between the plane-evaluation algorithm, Fresnel
diffraction, and the point-evaluation algorithm to demonstrate the accuracy of the propagation
physics. In Section 5 we quantify the runtime gains achievable through using the plane-evaluation
algorithm over the point-evaluation algorithm. In Section 6, we use the new algorithm to perform
a parameter space search of the optimal sampling conditions for the various degrees of freedom
used in GBD, including overlap factor and number of beamlets used.

2. Methods

2.1. The General Collins Integral

The general Collins integral [17] is a reformulation of second-order diffraction theory that relates
the diffraction from one plane orthogonal to the propagation axis to another via a nonorthogonal
ray transfer matrix whose elements are matrices A,B,C,D. The rotationally symmetric version
is a direct analog to the Fresnel diffraction integral in Eq. 1 and is expressed as,

𝐸2 (r2) =
1
𝜆𝐵

𝑒𝐷 |r2 |2
∬ ∞

−∞
𝐸1 (r1)𝑒𝑥𝑝 [

𝑖𝜋

𝜆𝐵
(𝐴|r1 |2 − 2(r1 · r2) + 𝐷 |r2

2 |)𝑑
2r1, (5)

where 𝐴, 𝐵, and 𝐷 are elements of the paraxial 2×2 ray transfer matrix [18]. The general integral
for nonorthogonal optical systems is given by [13, 17] Eq. 6,



𝐸2 (r2) =
𝑖 𝑛1

𝜆 𝑑𝑒𝑡 (B)1/2 𝑒𝑥𝑝(−𝑖𝑘𝑙𝑜)
∬ ∞

−∞
𝐸 (r1)𝑒𝑥𝑝(−𝑖𝑘𝑙1)𝑑2r1, (6)

where 𝑛1, 𝑛2 are the refractive indices of the incident and exiting media, 𝑘 is the wave number,
𝑙𝑜 is the axial propagation distance, and 𝑙1 represents the transformation of the field by the ABCD
optical system, which is given by Eq. 7,

𝑙1 =
1
2
©­«
r1

r2

ª®¬
𝑇 ©­«

𝑛1B−1A −𝑛1B−1

𝑛2 (C − DB−1A) DB−1
ª®¬ ©­«

r1

r2

ª®¬ , (7)

where the superscript 𝑇 denotes the transpose and r1, r2 are the radial coordinates in the
transverse plane before and after propagation, respectively. In free space, the refractive indices of
the incident and exiting media are equal to unity 𝑛1 = 𝑛2 = 1. Furthermore, since the ray transfer
matrix is symplectic, it obeys the following relations:

BA𝑇 = AB𝑇 (8)

B𝑇D = D𝑇B (9)

DC𝑇 = CD𝑇 (10)

A𝑇C = C𝑇A (11)

AD𝑇 − BC𝑇 = I, (12)

where I is the identity matrix. Nazarathy showed that Eq. 6 can alternatively be expressed as
Eq. 13 [19].

𝐸2 (r2) = 𝐾
∬ ∞

−∞
𝐸 (r1)𝑒𝑥𝑝(

−𝑖𝑘
2

[⟨r2 | DB−1 |r2⟩+ ⟨r1 | B−1A |r1⟩−2 ⟨r1 | B−1 |r2⟩])𝑑2r1, (13)

Where 𝐾 are the constants in front of the integral in Eq. 6, and the "Bra-Ket" notation is chosen
to be consistent with Weber’s notation [16]. Since the vectors and matrices are real-valued, ⟨v| is
equivalent to |v⟩𝑇 . Equation 13 has been solved by several authors to determine the propagation
laws for Hermite [20], Laguerre [21], truncated [13], and pulsed [12] Gaussian beams. All of
these solutions can be employed in beamlet decomposition for diffraction simulation.

2.2. The Point-Evaluation Approach

To perform GBD for an optical system, we decompose the wavefront in the optical system’s
entrance pupil into a sum of Gaussian beams. The result of this decomposition is a set of beamlets
whose propagation are described by 5 parabasal rays for each beamlet [7, 9, 13]. This list of
rays in the entrance pupil are represented by R𝐸𝑃 . We use these rays in a GBD simulation by
carrying out the algorithm below for each point (r𝑒𝑣𝑎𝑙) for which the field is evaluated:

1. Propagate the rays R𝐸𝑃 to the plane where the diffracted field will be evaluated P𝑒𝑣𝑎𝑙

with ray tracing, resulting in a new collection of rays R𝑒𝑣𝑎𝑙 . A member of R𝐸𝑃 is shown
as a black arrow in Fig. 2.

2. Determine the propagation distance from the rays at the evaluation plane R𝑒𝑣𝑎𝑙 (shown in
red on Fig. 2) to the plane normal to the rays and intersecting the point at which the field
will be evaluated r𝑒𝑣𝑎𝑙 , called the transversal plane P𝑡𝑟𝑎𝑛𝑠 .

3. Propagate R𝑒𝑣𝑎𝑙 to P𝑡𝑟𝑎𝑛𝑠 and rotate them into the local coordinate system of the
transversal plane, resulting in a new collection of rays R𝑡𝑟𝑎𝑛𝑠 (shown in blue on Fig. 2).



Fig. 2. Schematic of the “traditional" GBD algorithm referred to in this work. The
decomposition is referred to at the entrance pupil of the optical system P𝐸𝑃 , where
rays that emanate normal to the center of a beamlet (R𝐸𝑃) are propagated through
an optical system to the plane where we desire to evaluate the field R𝑒𝑣𝑎𝑙 . In order
to perform the field evaluation, the rays must be transformed to the transversal plane
P𝑡𝑟𝑎𝑛𝑠 and the Gaussian field evaluated at r𝑒𝑣𝑎𝑙 expressed in the coordinates of the
transversal plane. The procedure to do so is described in [14].

4. Compute the differential ABCD matrix from the propagation of R𝐸𝑃 to R𝑡𝑟𝑎𝑛𝑠 using
differential ray tracing.

5. Using the ABCD matrix and R𝑡𝑟𝑎𝑛𝑠 , evaluate the Gaussian field at r𝑒𝑣𝑎𝑙 .

6. Repeat steps 1-5 for every beamlet used in the decomposition of the entrance pupil
wavefront, and coherently sum them at r𝑒𝑣𝑎𝑙 .

The precise mathematics of this procedure are illustrated in [14], but the simplification offered
above reveals the inefficiency we wish to address. A substantial amount of computation is done
in steps 2-4, where the traced rays are propagated from P𝑒𝑣𝑎𝑙 to P𝑡𝑟𝑎𝑛𝑠 for every r𝑒𝑣𝑎𝑙 . It would
be optimal to instead evaluate the contribution of a beamlet at the plane of points P𝑒𝑣𝑎𝑙 from
the outset since we are frequently interested in the distribution of fields aligned to a plane (e.g.,
a detector in an imaging system). However, recall from Section 2.1 that the use of the Collins
integral requires that the fields before and after propagation be defined on planes orthogonal to
propagation [17, 19]. To solve for the influence of a beamlet on a plane tilted with respect to the
propagation direction, we need an expression similar to the Collins integral to diffract to tilted
planes.

3. The Proposed Plane-Evaluation Approach

Weber [16] proposed an alternative expression of the general Collins integral to model wave
propagation between misaligned optical elements. Weber’s formulation generalizes the Collins
integral to fields that propagate along a "center of gravity" vector v𝐶𝐺 that is generally not
aligned to the optical axis v𝑂𝐴. A schematic of this propagation scheme is shown in Fig. 3.
The misalignment vector is given by the difference between the center of gravity vector and the
optical axis vector, as shown in Eq. 14.



v 𝑗𝑀 = v 𝑗𝐶𝐺 − v 𝑗𝑂𝐴 =
©­«
r 𝑗𝑀

𝜃 𝑗𝑀

ª®¬ ; 𝑗 = 1, 2 (14)

Fig. 3. Illustration of Weber’s misaligned optical system given by an arbitrary ray
transfer matrix. Nominally, the Collins integral relates the field at the object plane
(left side, dashed vertical line) to the evaluation plane (right side, dashed vertical line).
Weber’s formulation reconsiders the Collins integral propagation along the center of
gravity vector in object space v𝐶𝐺,𝑂 to the one in evaluation space v𝐶𝐺,𝐼 by adding a
misalignment vector in position (r1,2𝑀 ) and angle (𝜃1,2𝑀 ) and evaluating the integral
on the plane transverse to the centers of gravity r̃1,2.

To generalize the propagation through the Collins integral, Weber performs a change of
variables to integrate over the transversal plane in object space (r̃1) instead of the coordinates of
the object plane (r1). Since the coordinates of the transversal plane are just a shift of the object
plane coordinates by r1 and a rotation by 𝜃1, the transformed coordinates are given by Eq. 15

v1 = ṽ1 + v1𝑀 . (15)
Weber performs this substitution in Eq. 13 which results in the Collins integral that maps a

beam propagating along a center of gravity vector in object space (v𝐶𝐺,𝑂) to the coordinates of
the evaluation plane (r2), given by Eq. 16.

𝐸2 (r2) =𝐾
∬ ∞

−∞
𝐸 (r̃1)𝑒𝑥𝑝(

−𝑖𝑘
2

[⟨r2 | DB−1 |r2⟩

+ ⟨r̃1 + r1𝑀 | B−1A |r̃1 + r1𝑀⟩ (16)

− 2 ⟨r̃1 + r1𝑀 | B−1 |r2⟩])𝑑2r̃1

Weber moves on to make the same substitution for the radial coordinate on the transversal
plane in evaluation space. To see the proof for this, we direct the reader to their work [16]. The
result is rather elegant, and given in Eq. 17 (Eq. 10 in Weber’s paper). We have also reproduced
part of the derivation in Appendix A of this work.

𝐸2 (r̃2) = 𝐸2,𝑎𝑙𝑖𝑔𝑛𝑒𝑑 (r̃2)𝑒𝑥𝑝(
−𝑖𝑘
2

[⟨r1𝑀 |𝜃1𝑀⟩ − ⟨r2𝑀 |𝜃2𝑀⟩]), (17)



𝐸2,𝑎𝑙𝑖𝑔𝑛𝑒𝑑 (r̃2) is the solution to the original Collins integral given by Eq. 6. This relation
is robust because it generalizes the propagation of all solutions to the integral to be generally
misaligned with respect to the optical axis. However, for beamlet decomposition techniques it is
not immediately useful. Since the field in Eq. 17 is expressed in coordinates of the plane normal
to a beamlet’s propagation, all beamlets cannot be coherently summed at a common plane.

Thus, we desire an expression for the solution of the Collins integral where the field at all
points of a common evaluation plane can be computed simultaneously for a single beamlet. To
arrive at this expression, we return to Weber’s derivation starting at Eq. 16. We expand the terms
of Eq. 16 and follow Weber’s assertion that the terms linear in r̃1 vanish, so the resulting integral
is given by Eq. 18

𝐸2 (r2) = 𝐾
∬ ∞

−∞
𝐸 (r̃1)𝑒𝑥𝑝(

−𝑖𝑘
2

[ ⟨r2 | DB−1 |r2⟩

+ ⟨r̃1 | B−1A |r̃1⟩
−2 ⟨r̃1 | B−1 |r2⟩ (18)

+ ⟨r1𝑀 | B−1A |r1𝑀⟩
−2 ⟨r1𝑀 | B−1 |r2⟩])𝑑2r̃1.

Eq. 18 is identical to the original Collins integral (Eq. 13), with the addition of two phase
terms (shown in Eq. 19) that are not functions of the variable of integration (r̃1).

Φ𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛 = 𝑒𝑥𝑝(− 𝑖𝑘
2
[⟨r1𝑀 | B−1A |r1𝑀⟩ − 2 ⟨r1𝑀 | B−1 |r2⟩]]) (19)

Factoring these terms out of the integrand reveals that we have arrived at an expression similar
to Weber, where the field at the evaluation plane is proportional to the aligned Collins integral
solution. However, the result (shown in Eq. 20) is instead expressed in terms of the common
evaluation plane (r2) orthogonal to the optical axis.

𝐸2 (r2) = Φ𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑒𝑑 (𝐾
∬ ∞

−∞
𝐸 (r̃1)𝑒𝑥𝑝(

−𝑖𝑘
2

[⟨r2 | DB−1 |r2⟩ +

⟨r̃1 | B−1A |r̃1⟩ − (20)

2 ⟨r̃1 | B−1 |r2⟩])𝑑2r̃1.),

𝐸2 (r2) = Φ𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑒𝑑𝐸2,𝑎𝑙𝑖𝑔𝑛𝑒𝑑 (r2).

Using the relation in Eq. 20, a single beamlet can be propagated from a location in the entrance
pupil of an optical system to every point in the evaluation plane simultaneously. Compared
to the point-evaluation approach, this reduces the number of propagations done in beamlet
decomposition algorithms by a factor equal to the number of points simulated in the evaluation
plane and will result in favorable performance improvements. Eq. 20 illustrates that the standard
Collins integral is used to propagate the complex amplitude of the beamlet, and Φ𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑒𝑑

applies a phase factor that aligns the beamlet to the evaluation plane.

4. Validation of the Plane-evaluation Algorithm

The plane-evaluation algorithm described in Section 3 was implemented in Poke, an open-source
ray-based physical optics package for Python 3.8+ [15]. Poke was, in part, inspired by the desire
to develop an open-source platform to explore the limits of beamlet decomposition for use in



diffraction simulation. Poke is capable of saving ray data from commercial and open-source
ray tracers and compiling it into a writeable Rayfront object that serves as the interface for
conducting beamlet decomposition experiments.

4.1. Test against Fresnel Diffraction

Weber’s formulation of the Collins’ integral was originally for paraxial systems that could be
represented by a single ray transfer matrix. To validate our approach, we first test the proposed
formulation against a paraxial system composed of a single lens that focuses a decentered
Gaussian beam. This can be equivalently modeled by the Fresnel diffraction integral by invoking
Eq. 1 and setting𝑈1 (𝑟1) to be a vertically shifted Gaussian beam. The plane-evaluation algorithm
can model this by invoking the Gaussian solution to the Collins integral, given by Eq. 21

𝐸2 (r2) =
𝑒−𝑖𝑘𝑙𝑜√︃

|A + BQ−1
1 |

𝑒−
𝑖𝑘
2 ⟨r2 |Q−1

2 |r2 ⟩ (21)

Where Q−1
2 is given by the well-known propagation law of the complex curvature matrix [19].

Q−1
2 = (C + DQ−1

1 ) (A + BQ−1
1 )−1 (22)

The ray transfer matrix of interest is given by matrix multiplication of the ray transfer matrices
that describe the refraction of a ray by a paraxial lens of focal length 𝑓 and propagating a distance
equal to 𝑓 + 𝛿𝑥 and is given by Equation 23


A B

C D

 =


1 0 𝑓 + 𝛿 𝑓 0

0 1 0 𝑓 + 𝛿 𝑓

0 0 1 0

0 0 0 1





1 0 0 0

0 1 0 0

−1/ 𝑓 0 1 0

0 −1/ 𝑓 0 1


. (23)

Here, we set up our lens to have a 12.7mm radius (half of the clear aperture) and a focal length
of 100mm. The Gaussian beam is given a beam waist radius of 3mm, a wavelength of 1𝜇𝑚, and
shifted 10mm above the optical axis in the entrance pupil. We then propagate the Gaussian beam
at a distance of 101mm so that it is outside of the focal region.

Shown in Fig. 4 are the results of this simulation. Upon inspection, the Gaussian beams appear
to be identical. When we compare the RMS difference of the two irradiances as a function of the
oversampling factor (how much the Fresnel simulation was zero-padded), we observe that the
difference asymptotically approaches zero. This is a strong indicator that we have derived the
physics describing the propagation of a decentered Gaussian beam and can move forward to test
their use in beamlet decomposition simulations.

4.2. Test against Point-evaluation Algorithm

In a prior study, we published the point-evaluation method of GBD to evaluate its suitability in
simulations for astronomical high-contrast imaging. The methods are published in their entirety
in Ashcraft et al. 2023 [14] but are also a part of the Poke Python package in which we developed
the plane-evaluation algorithm for this work. Using Poke as a simulation platform, we are able to
easily compare the two implementations of GBD. We begin by testing both the point-evaluation
and plane-evaluation algorithms against an analytical solution to the far-field diffraction pattern
from a circular aperture: the Airy disk. We perform this simulation on a Ritchey-Chretien
telescope with a 2.4m primary mirror modeled after the Hubble Space Telescope (HST) but



Fig. 4. Consistency test of traditional Fresnel diffraction (left) and the proposed plane-
evaluation algorithm (middle) for the case of a decentered Gaussian beam propagating
to 1mm outside of focus. The Fresnel diffraction simulation on the left is plotted with
an oversampling of 2. The results show that the irradiance profiles are nearly identical.
Shown on the right is the RMS difference of the plots on the left and middle as a
function of the oversampling of the Fresnel simulation. We see that we asymptotically
approach zero as a function of oversampling, indicating that our proposed algorithm
can correctly propagate a shifted Gaussian beam through an ABCD optical system.

remove the obscuration by the spiders and secondary mirror so that we can compare against the
analytical solution. The prescription for this observatory is given in Appendix B.

The analytical Airy pattern was simulated using the POPPY (Physical Optics Propagation in
Python) optical propagation package [22] using the poppy.misc.airy_2D function. Shown
in Fig. 5 are the results of computing the difference of the GBD PSFs with the analytical
Airy function. The residuals shown in the right column are very similar, but note that the
plane-evaluation algorithm actually reconstructs the core of the PSF slightly better and has a lower
RMS error to the Airy function. We suspect that the decrease in RMS error is due to the fewer
propagations required by the plane-evaluation approach. GBD is very sensitive to the differential
computation of the ray transfer matrix, and the point-evaluation method computes a different
ray transfer matrix for every evaluated point. The cumulative error from using differential ray
tracing to propagate to each evaluated point likely results in a less accurate simulation. This is
a strong indicator of the proposed algorithm’s suitability to be used in beamlet decomposition
simulations, but the biggest improvement occurs in the runtime of the simulations. The proposed
algorithm was computed 11.5 times faster than the point-evaluation method, meaning that we’ve
gained an order of magnitude reduction in computation time in a PSF simulation that achieves
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Fig. 5. Comparison of the GBD PSFs (left) with their absolute differences with the
analytical Airy function (right). The plane-evaluation algorithm produced the result
in (a), and its absolute difference is in (b). The point-evaluation algorithm developed
in [14] is shown in (c), and its absolute difference is in (d). All data are 𝐿𝑜𝑔10
scaled to highlight the faint structure in the PSF. The high-frequency PSF residuals are
very similar and of low magnitude, but the plane-evaluation algorithm shows smaller
residuals, particularly in the PSF core, than the point-evaluation result. The RMS (𝜎) of
the differences are given in the titles on the right, where the plane-evaluation algorithm
has a lower RMS difference by about a factor of 2. The runtimes of the plane-evaluation
and point-evaluation simulations were 113.78s and 1309.11s, respectively, using a
computer with a 3GHz CPU and 16GB of RAM.



twice the accuracy.

4.3. Aberrating the PSF

For a final test of the functionality of the proposed algorithm, we simulated the aberration of
the GBD PSF through surface errors on the primary mirror of the Hubble Space Telescope. We
added an aperture with secondary support spiders and an aspheric sag to the primary mirror to
aberrate the PSF and compare the plane-evaluation algorithm with that produced by Zemax’s
Huygens PSF simulation. The results are shown in Fig. 6.
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Fig. 6. Comparison of the plane-evaluation algorithm’s response to an aberrated optical
system (a) to the Zemax OpticStudio Huygens PSF simulation (b) and their difference
(c). (a) and (b) are plotted on a log scale to better resolve the PSF structure. We apply
an aspheric sag to the primary mirror of the HST model described by Noll Zernike
polynomials (Φ = 𝛼𝑍7 + 𝛼𝑍10, where 𝛼 = 10−7) to maintain the best focus position
of the PSFs. Upon inspection, the fields in (a) and (b) are nearly identical, with an
RMS difference of 𝜎 = 2.7𝑒−5. The largest features in (c) are on the order of 0.3%
difference. They can be explained by the discrepancies between GBD and more exact
scalar diffraction methods rather than inherent inaccuracies in the proposed algorithm.

This tests the plane-evaluation algorithm’s ability to recreate the diffraction effects from both
sharp-edges and scalar aberration, indicating that, indeed, the proposed algorithm is suitable for
imaging simulations while being much faster than the point-evaluation algorithm. We can now
move forward to compare the speed of the plane-evaluation algorithm versus the point-evaluation
algorithm to empirically examine how the proposed algorithm’s efficiency scales on Central
Processing Units (CPUs) and Graphical Processing Units (GPUs).

5. Runtime Comparison

Developing propagation routines with widely-used languages like Python enables us to easily
scale up our computational power by using GPUs and high-performance computing resources.
This is particularly useful in optical system modeling for rapid optimization and tolerancing. In
this Section we report the key result of this study, the decrease in runtime achievable through
use of the plane-evaluation algorithm we derived in Section 3. In Table 1, we report on the two
machines used to test the runtime of the beamlet decomposition algorithms.

The Apple M1 processor is a consumer-grade CPU that is representative of what a typical
researcher is likely to have available to them. The NVIDIA V100S GPU better represents how
the proposed algorithm can scale to more expensive computational architectures. To best take
advantage of these processing architectures, we construct the new beamlet decomposition method
using two open-source Python packages.

numexpr is a Python package that allows for efficient multi-threading of elementary operations



TFLOPS Cores RAM

Apple M1 0.154 8 16GB

NVIDIA V100S 8.2 5,120 32GB

Table 1. Description of the computational resources used in this investigation. The
CPU results represent what an “average" machine can do since it is performed on
a consumer-grade laptop. The GPU results represent how the algorithms can scale
to supercomputers. TFLOPS is teraFLOPS, or floating point operations per second,
assuming double-precision floats.

Fig. 7. Runtime comparison of the point-evaluation (blue) and plane-evaluation (red)
beamlet decomposition algorithms and their runtimes on the CPU (left) and GPU
(right) listed in Table 1. Each point represents a simulation where we compute the
PSF of a telescope with a circular aperture with an entrance pupil diameter of 2.4m,
a 𝜆 = 551𝑛𝑚, and a focal length of 57.6m on a grid of 256 x 256 pixels with a pixel
scale of 2.8mas. The points are located at the runtime given a number of beamlets
across the pupil. On the CPU, the mean runtime of the plane-evaluation algorithm is
34 times faster. On the GPU, the point-evaluation algorithm is 39 times faster, and the
plane-evaluation algorithm is 1,760 times faster. The advancement made by this study
is given by the relative runtime of the plane-evaluation algorithm on the GPU, which is
67,513 times faster than the point-evaluation algorithm on CPUs.

in Python and allows us to accelerate the remainder of the algorithm using CPUs. This package
was used as the “accelerated math" option for the POPPY optical propagation package [23]
before GPUs were formally supported. On GPUs we anticipate even greater accelerations due to
the parallelizability of the GBD algorithm. The problem can be broken up along each beamlet
and each pixel, and distributed over the thousands of cores implemented in GPUs. The cupy
Python package is a numpy-compatible library for scientific computing on NVIDIA GPUs. We
integrated the interchangeable backend system of prysm (see Section 4A of Dube et al. [2]) into
Poke for easy migration of our calculations onto GPUs.

The resulting algorithms are available on the Poke repository [15], which are vectorized to
maximize computational efficiency. In Appendix C, we also review the accelerations that were
made to the elementary linear algebra functions that improved the runtime by 100x on CPUs.
The results of our runtime comparison study are shown in Fig. 7.



Across all cases studied, the plane-evaluation algorithm is at least one order of magnitude
faster than the point-evaluation method. This is in part due to the analytical propagation of
each beamlet to every point on the evaluation plane. A large portion of the computational
resources of the point-evaluation method is spent determining the propagation of a beamlet to
each point on the evaluation plane. Representing this information as a phasor instead allows for
the rapid propagation of Gaussian beams. This also improves the memory efficiency because
less information needs to be held by the RAM per beamlet. Less RAM per beamlet means that
more can be processed at any given time, which is advantageous for our vectorized approach to
GBD. The total runtime improvement contributed by this study using the data from Fig. 7 is
the relative runtime decrease between the point-evaluation algorithm on CPUs (left blue) and
the plane-evaluation algorithm on GPUs (right red). The mean runtime improvement per point
comes out to about 67,513 times faster (not including the accelerations discussed in Appendix C).
Another interesting result is that the runtime of the plane-evaluation algorithm on commercial
CPUs is very close to the point-evaluation algorithm on a high-performance computing center
GPU. This comparison highlights the contributions of this study: we’ve constructed an expression
of GBD that is more accessible to the average researcher. These algorithmic advances in an
open-source environment make GBD an accessible physical optics propagation technique, which
we can use to learn more about degrees of freedom in a GBD simulation.

6. Optimal Beamlet Parameter Search

One area of research that is not formally addressed in the literature is the best spatial distribution
to decompose a circular aperture with Gaussian Beams. Fundamental Gaussian modes do not
represent a complete set, so an analytical decomposition of a plane wave truncated by a circular
aperture is not derivable. Harvey et al. [7] introduced the Overlap Factor (OF) as a parameter for
adjusting the width of evenly-spaced Gaussian beams. The OF is given in Eq. 24

𝑂𝐹 =
𝑁𝑔2𝜔𝑜

𝑊
, (24)

where 𝑁𝑔 is the number of beamlets across an aperture, and𝑊 is the width of the aperture.
The goal is to determine the beamlet waist 𝜔𝑜, which is a function of the number of beamlets and
the overlap factor. The optimal solution of these combinations is notionally suggested in Harvey
et al. to be 1.5 (see Section 5 of [7]), but an investigation into the tradeoffs between the number
of beamlets and overlap factor was not explored for imaging systems. The proposed algorithm’s
efficiency simplifies this task, which we present in Fig. 8.

In this experiment we evaluate the RMS difference of the analytical Airy function and a GBD
simulation that aims to construct the Airy function. We evaluate this for overlap factors between
1 and 2 to explore the cases where adjacent beamlets are capable of smoothly reconstructing an
aperture function. Note that extreme cases (e.g. 𝑂𝐹 < 1), beamlets do not meaningfully overlap
and would have a much larger bearing on the accuracy of this simulation. Note also that the
actual values of the RMS difference strongly depend on the pixel scale of the array computed and
the array size, so we are principally interested in finding the lowest relative value in this trade
space. The parameters used for the simulations in this section are given in Appendix D.

For imaging applications, it is clear that the overlap factors in this range do not have the largest
bearing on the accuracy of the simulation. More critical is the number of beamlets used in the
simulation. The RMS of the difference also more heavily weighs GBD’s ability to capture the
structure of the PSF core. Another way of saying this is that the result in Fig. 8 shows off the best
combination of 𝑂𝐹 and number of beamlets to simulate a radiometrically correct PSF. To better
understand how a number of beamlets and overlap factors affect different spatial frequencies, we
can compute the RMS difference of different annular zones in the result.

In Fig. 9, we compute the RMS difference of the simulated PSF with the analytical Airy
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Fig. 8. The 𝐿𝑜𝑔10 RMS difference to the analytical Airy function for a circular aperture
as a function of the number of beamlets traced across the pupil and the overlap factor
used. The white circle indicates the minimum error case for this parameter space. The
total runtime to compute these PSFs on GPUs is 24 seconds.

function considering only certain regions in the PSF. We simulate the Airy function from 0 to 15
𝜆/𝐷 for the model observatory and break it into three annular regions (0-5, 5-10, 10-15𝜆/𝐷).

Fig. 9 illustrates a peculiarity of the degrees of freedom available in GBD. The overlap
factor and number of beamlets impact different structures in the PSF differently. Low-spatial
frequency information generally favors lower overlap factors, with a minimum of around 1.2.
High-frequency information generally favors larger overlap factors, likely due to the mitigation of
the amplitude ripple that is left from the beamlet decomposition [7]. This example illustrates the
necessity of more efficient algorithms for beamlet decomposition. We are able to rapidly explore
the free parameters in the decomposition and determine that the optimal set of parameters is
generally dependent on what structure in the PSF is critical in simulation. Of interest is that for
the higher-frequency information, we’ve recovered the recommended overlap factor of 1.5 from
Harvey et al [7].

7. Discussion

We present a new perspective on Weber’s formulation of the general Collins integral that enables
the expeditious computing of beamlet decomposition algorithms. The plane-evaluation method
is tested against numerical and analytical results to verify its accuracy and is shown to outperform
the point-evaluation method in both speed and accuracy. Moreover, our solution to the Collins
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Fig. 9. Comparison of the RMS difference between the simulated GBD PSFs and
the analytical Airy function while varying overlap factor and number of beamlets
across the pupil. (Left) The RMS difference of the PSFs from 0-5 𝜆/𝐷. (Middle)
The RMS difference of the PSFs from 5-10 𝜆/𝐷. (Right) The RMS difference of the
PSFs from 10-15 𝜆/𝐷. The leftmost simulation follows the contour from Figure 8, but
the higher-frequency information follows a different curve entirely. Generally, a PSF
simulation is more accurate when more rays are used. However, in under-sampled cases,
small overlap factors are better for low frequencies but worse for high frequencies. A
white circle shows the minimum error case for a given parameter space.

integral maintains Weber’s generality. The accelerated algorithm can be applied to the beamlet
decomposition problem using any known solution to the Collins integral, including higher-order
Gaussian beams and Worku and Gross’ truncated and pulsed beam solutions. The algorithm
is developed in the open-source Python package Poke, making it accessible to all investigators
interested in developing beamlet decomposition as a viable physical optics propagation technique.

For the case of GBD, we determined that in general, more beamlets are critical to the accuracy
of simulations and that the overlap factor has little bearing on the results once a sufficient number
of beamlets are traced. However, this is solely for the case of propagating from a circular aperture
to focus. Other applications, such as in non-imaging or illumination systems, may consider
different figures of merit and degrees of freedom to optimize their beamlet distribution for
maximum simulation accuracy.

The acceleration granted by the plane-evaluation algorithm enables the rapid computation of
fields produced by GBD that is nearly as general as prior published methods. The only additional
assumption imposed is that the points where we are evaluating the field fall on a plane (r2 in Fig.
3) that is orthogonal to the optical axis. Using the rapid evaluations enabled by this algorithm, we
can use GBD propagation in optimization problems. We can also generate more highly sampled
simulations in a shorter amount of time, which was one of the limitations of our prior study [14].
The critical result of this study is that our derived propagation technique makes highly-sampled
GBD practical. A reasonably highly-sampled simulation can be conducted in under a minute.
Should the user have access to a GPU, they can take advantage of the parallelizability of GBD for
even more accelerated simulations. We develop this algorithm in the Poke open-source Python
package [15] so that it is freely available to all interested in pursuing the development of GBD as
a propagation technique.

7.1. Future Work

We present a preliminary exploration into the “optimal” combination of a number of beamlets
and overlap factor for simulating the PSF of a circular aperture. However, Worku and Gross
have already proven that the accuracy of a simulation can be increased by employing truncated
Gaussian beams to simulate aperture edges [13]. Performing a study similar to that of Section 4



that considers the distribution and number of truncated beams would be an optimal next step for
using this algorithm in imaging simulations.

Non-imaging systems can also benefit from the proposed propagation method. High-energy
laser systems, for example, require a precise understanding of the irradiance distribution of a
given laser beam. With the proposed propagation technique, we can conduct highly sampled and
rapid simulations of a higher-order Gaussian beam through an optical system without imposing
the paraxial assumption on the system.

8. Appendix A: Summary of Weber’s Formulation of the Collins Integral for
Misaligned Optical Elements

In this work, we depart from Weber’s reformulation of the Collins Integral to arrive at the
expression of the field common to several beamlets propagating through a given optical system.
For a review of Weber’s initial derivation, we briefly reproduce the results of Section 2 of their
paper [16] to illustrate the differences.

Weber continues from where we left off in Eq. 16 by also substituting the coordinate r2 with
the sum of the coordinate on the transversal plane r̃2 and the misalignment vector r2M. The result
of the fully-expanded Collins integral for misaligned elements is given by Equation 25.

𝐸2 (r̃2) =𝐾
∬ ∞

−∞
𝐸 (r̃1)𝑒𝑥𝑝(

−𝑖𝑘
2

[⟨r̃2 + r2M | DB−1 |r̃2 + r2M⟩

+ ⟨r̃1 + r1𝑀 | B−1A |r̃1 + r1𝑀⟩ (25)

− 2 ⟨r̃1 + r1𝑀 | B−1 |r̃2 + r2M⟩])𝑑2r̃1

Expanding the phasor in Eq. 25 permits the separation of the terms that are linear in r̃1 and r̃2,
as shown in Eq. 26,

𝐸2 (r̃2) = 𝐾
∬ ∞

−∞
𝐸 (r̃1)𝑒𝑥𝑝(−

𝑖𝑘

2
[

⟨r̃2 | DB−1 |r̃2⟩ + 2 ⟨r̃2 | B−1 |r̃1⟩ + ⟨r̃1 | B−1A |r̃1⟩ +
⟨r1𝑀 | B−1A |r1𝑀⟩ + ⟨r2𝑀 | DB−1 |r2𝑀⟩ + 2 ⟨r2𝑀 | B−1 |r1𝑀⟩ + (26)

⟨r̃2 | DB−1 |r2𝑀⟩ + ⟨r2𝑀 | DB−1 |r̃2⟩ + ⟨r̃1 | B−1A |r1𝑀⟩ +
⟨r1𝑀 | B−1A |r̃1⟩ + 2 ⟨r̃1 | B−1 |r2𝑀⟩ + 2 ⟨r1𝑀 | B−1 |r̃2⟩])𝑑2r̃1,

Where the top two rows of the phasor are the terms that aren’t linear in r̃1 and r̃2 and the bottom
two rows are the terms that are. Using the relation ⟨r1𝑀 | B−1A |r̃1⟩ = ⟨r̃1 | (AB−1)𝑇 |r1𝑀⟩ and
the relations for symplectic matrices in Equation 8-12, Weber shows that the terms linear in r̃1
and r̃2 vanish. What remains are the top two rows of the phasor in Equation 26. The first row
corresponds to the phasor of the aligned Collins integral (Eq. 13), and the phasor in the second
row that isn’t a function of the variable of integration. Consequently it can be factored out of the
equation, resulting in the propagation law defined by Eq. 27

𝐸2 (r̃2) = 𝐸2 (r̃2)𝑎𝑙𝑖𝑔𝑛𝑒𝑥𝑝(
−𝑖𝑘
2

[⟨r1𝑀 | B−1A |r1𝑀⟩ + ⟨r2𝑀 | DB−1 |r2𝑀⟩ − 2 ⟨r1𝑀 | B−1 |r2𝑀⟩]),
(27)

where 𝐸2 (r̃2)𝑎𝑙𝑖𝑔𝑛 is the aligned solution to the Collins integral in Eq. 13. Applying the
propagation formulas given in Eqs. 28 and 29, this can be simplified to Weber’s original solution
(Eq. 17), which is the Collins integral expressed along the center of gravity vector that the beam
propagates along.



r2𝑀 = Ar1𝑀 + B𝜃1𝑀 , (28)

𝜃2𝑀 = Cr1𝑀 + D𝜃1𝑀 . (29)

9. Appendix B: Hubble Space Telescope Model

Surface RoC [m] Conic Constant Distance [m] Diameter [m]

M1 -11.0400 -1.00230 -4.90607 2.40000

M2 1.35800 -1.49686 6.40620 0.28112

Table 2. Optical system prescription for the RC telescope based on the HST used in this
investigation. All distances are given in meters. RoC stands for Radius of Curvature,
and the sign convention is chosen such that negative values are concave and positive
values are convex.

10. Appendix C: Notes on Elementary Function Computation

GBD requires the evaluation of a determinant to compute the amplitude factor, a matrix inverse
to compute the propagated Q−1

2 , and the determination of eigenvalues to compute the Gouy phase
𝚽𝑔𝑜𝑢𝑦 [13]. In Python, one would typically call the numpy.linalg library to compute these
values. But after profiling our algorithm using the Viztracer [24] Python profiler, we found that
the largest contributors to our runtime were these functions.

Fig. 10. Runtime comparison of elementary functions used in the GBD algorithm. Error
bars represent the standard deviation of 25 trials on arrays of size 𝑁𝑝𝑖𝑥 × 𝑁𝑝𝑖𝑥 × 2 × 2.
numpy’s linear algebra library can operate on arrays of arbitrary shape, but the GBD
algorithm only requires these operations on 2 × 2 matrices. For large arrays, our
approach is ≈50 times faster for computing the determinant and 150-250 times faster
for the inverse and eigenvalue computation on an M1 CPU.

Shown in Figure 10 are the results of a runtime comparison between these functions calling
numpy.linalg and our implementation of the same functions for 2x2 matrices, which can



be found in college-level linear algebra textbooks. We only need these operations for 2x2
matrices, so they were trivial to implement in our algorithm. This shows that for large arrays (e.g.
500x500x2x2 complex-valued matrices), we can improve the determinant calculation by a factor
of 50x and the inverse and eigenvalue calculations by a factor of 100-200x. These data were
generated using numpy version 1.23.5.

11. Appendix D: PSF Simulation Parameters for the Optimal Beamlet Parameter
Search

Parameter Value

Wavelength 551nm

EPD 2.4m

EFL 57.6m

npix 512 × 512

pixelscale 2.8mas

Table 3. Parameters used in the optimal beamlet parameter search. These data were
used with the Ansys Zemax OpticStudio ray tracing engine and the Poke open-source
physical optics package. They can be found in the experiments/weber directory of the
Poke GitHub repository.
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