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We investigate the recoil heating phenomenon experienced by a dielectric spherical particle when
it interacts with a linearly polarized plane wave within the Rayleigh regime. We derive the fluc-
tuating force acted upon the particle arising from the fluctuations of the electromagnetic fields.
Our derivations reveal that the spectral density of the fluctuating force along the propagation di-
rection is 7~ω0Pscat/5c

2. Meanwhile, along the direction of the electric and magnetic fields, it is
11~ω0Pscat/5c

2 and 2~ω0Pscat/5c
2, respectively. Here, Pscat denotes the power scattered by the

particle, ~ω0 represents the energy of a photon, and c is the speed of light. Recoil heating im-
poses fundamental limitations in levitated optomechanics, constraining the minimum temperatures
achievable in cooling processes, the coherence time of the system, and the sensitivity of force mea-
surements.

The quantum fluctuations of electromagnetic fields in-
duce a heating mechanism in particle motion, result-
ing from random momentum transfer during photon
scattering[1–4]. This phenomenon, referred to as photon
recoil heating, sets a fundamental limit on the achievable
final temperature in cooling processes[5, 6]. It also im-
poses constraints on the coherence time and force sensi-
tivity in levitated optomechanical systems[1, 7, 8]. In ad-
dition, when a particle interacts with an electromagnetic
field, it experiences damping of its motion, referred to as
radiation damping[9].The equilibrium energy of the par-
ticle is determined by the balance between recoil heating
and radiation damping, as dictated by the fluctuation-
dissipation theorem[1, 10].
Previous studies have estimated recoil heating by

drawing an analogy with shot noise[1, 11]. In this letter,
we present a rigorous derivation of recoil heating for a di-
electric particle interacting with linearly polarized plane
waves within the Rayleigh regime. We calculate the fluc-
tuating force induced to the particle motion due to the
quantum fluctuations of the electromagnetic fields. We
utilize the quantization of electromagnetic fields within
a dissipative medium, which is based on the principles of
polarization and magnetization quantum noises[12–14].
Consider a dielectric spherical particle illuminated by

a monochromatic plane wave. The plane wave is assumed
to be x-polarized and propagating along the z-direction.
The electromagnetic fields experienced by the particle
can be written as:

Ê(r, t) =
E0

2
exe

i(k0z−ω0t)+

∫ ∞

0

ÊN (r, ω)e−iωtdω+H.c.,

(1a)

B̂(r, t) =
E0

2c
eye

i(k0z−ω0t)

+

∫ ∞

0

1

iω
∇× ÊN (r, ω)e−iωtdω +H.c..

(1b)

The first terms in the above expressions represent the in-
cident plane wave, while the second terms are dedicated

to describing the quantum fluctuations of the electro-
magnetic fields. Here, ω0 and k0 represent the angular
frequency and wave number of the incident wave, respec-
tively, and c denotes the speed of light.
We assume that the incident wave is in the classical

limit, which implies that the fluctuations are identical
to those for vacuum. Consequently, the electromagnetic
noise is assumed to have a vanishing average and obeys
the following correlation relations[12–14]:

〈ÊN (r, ω)Ê†
N (r′, ω′)〉 =

~µ0ω
2

π
Im [G0(r, r

′, ω)] δ(ω−ω′),

(2a)

〈Ê†
N (r, ω)ÊN (r′, ω′)〉 = 〈ÊN (r, ω)ÊN (r′, ω′)〉

= 〈Ê†
N (r, ω)Ê†

N (r′, ω′)〉 = 0.
(2b)

Here, G0 represents the dyadic Green’s function of the
free space[15].
If the particle is much smaller than the wavelength

of the incident wave, it can be modeled as an electric
dipole[16–18]. This equivalent dipole moment p̂ can be
expressed by:

p̂ =
E0

2
α(ω0)exe

−iω0t+

∫ ∞

0

α(ω)ÊN (rp, ω)e
−iωtdω+H.c.,

(3)
where α(ω) represents the polarizability of the particle,
defined as:

α(ω) =
α0

1− iω3α0/6πǫ0c3
. (4)

Here, α0 = 4πǫ0R
3
p(ǫp − 1)/(ǫp + 2) is the quasi-static

polarizability of the particle, with Rp being the particle’s
radius and ǫp being its dielectric constant[18].
The force exerted upon the particle can be calculated

from[15, 16]:

F̂ = (p̂ · ∇) Ê+
∂p̂

∂t
× B̂. (5)
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This force can be decomposed to two parts: F̂ = F̄+ δF̂.
The first term, F̄, represents the deterministic part of the
force exerted by the incident wave on the particle. Since
the incident wave is a plane wave, F̄ is equivalent to the
radiation pressure, which is given by:

F̄ =
k0E

2
0

2
Im [α(ω0)] ez. (6)

The second term, δF̂ stands for the fluctuating force
acted upon the particle, which will be discussed in de-
tail in the following.
Fluctuating force along x-direction.— As indicated by

Eq. 5, the fluctuating force along the x-direction, which
aligns with the polarization direction of the incident
wave, is given by:

δF̂x = p̄x

∫ ∞

0

∂xÊNx
(rp, ω)e

−iωtdω

+ ∂zĒx

∫ ∞

0

α(ω)ÊNz
(rp, ω)e

−iωtdω

+ B̄y

∫ ∞

0

iωα(ω)ÊNz
(rp, ω)e

−iωtdω

+H.c.,

(7)

where

p̄x = Re
[

α(ω0)E0e
−iω0t

]

, (8a)

∂zĒx = Re

[

iω0

c
E0e

−iω0t

]

, (8b)

B̄y = Re

[

E0

c
e−iω0t

]

. (8c)

By utilizing the following relations regarding G0:

Im [G0(rp, rp, ω)] =
ω

6πc
I, (9a)

Im [∂iG0(rp, rp, ω)] = Im [∂′
iG0(rp, rp, ω)] = 0, (9b)

Im
[

∂i∂
′
jG0(rp, rp, ω)

]

=
ω3

15πc3
δijI−

ω3

60πc3
(eiej+ejei),

(9c)
it can be easily shown that the auto-correlation function
of δF̂x can be expressed as:

〈δF̂x(t)δF̂x(t+ τ)〉 =

~µ0

2π
Re

[

|α(ω0)|
2E2

0e
iω0τ

]

∫ ∞

0

ω5

30πc3
eiωτdω+

~µ0

2π
Re

[

ω2
0

c2
E2

0e
iω0τ

]
∫ ∞

0

ω3

6πc
|α(ω)|2eiωτdω+

~µ0

2π
Re

[

E2
0

c2
eiω0τ

]
∫ ∞

0

ω5

6πc
|α(ω)|2eiωτdω.

(10)

We can now determine the spectral density of δF̂x by tak-
ing the Fourier transform of its auto-correlation function,
defined as follows:

SFxFx
(Ω) =

∫ +∞

−∞

〈δF̂x(t)δF̂x(t+ τ)〉eiΩτdτ

=

∫ +∞

0

∫ +∞

−∞

~µ0

4π
α2
0E

2
0

(

ω5

5πc3
+

ω3ω2
0

6πc3

)

×

[

ei(ω+ω0+Ω)τ + ei(ω−ω0+Ω)τ

]

dτdω.

(11)

It is important to note that we employ the approximation
|α(ω)|2 ≃ α2

0 in deriving the above expression. Evaluat-
ing the integral over τ yields:

SFxFx
(Ω) =

∫ +∞

0

~µ0

2
α2
0E

2
0

(

ω5

5πc3
+

ω3ω2
0

6πc3

)

×

[

δ(ω + ω0 +Ω) + δ(ω − ω0 +Ω)

]

dω.

(12)

Since the mechanical frequencies are much smaller than
the optical frequencies, i.e. Ω ≪ ω0, the spectral density
of δF̂x can be simplified to:

SFxFx
(Ω) ≃

11~µ0α
2
0E

2
0ω

5
0

60πc3
=

11

5

~ω0

c2
Pscat, (13)

where Pscat = ω4
0α

2
0E

2
0/12πǫ0c

3 denotes the power scat-
tered by the particle.

Fluctuating force along y-direction.— We aim to deter-
mine the fluctuating force along the y-direction, which
corresponds to the direction of the incident magnetic
field. According to Eq. 5, the fluctuating force along
the y-direction is given by:

δF̂y = p̄x

∫ ∞

0

∂xÊNy
(rp, ω)e

−iωtdω

−
∂p̄x
∂t

∫ ∞

0

1

iω

[

∂xÊNy
(rp, ω)− ∂yÊNx

(rp, ω)
]

e−iωtdω

+H.c..

(14)

Upon utilizing the relations in Eq. 9, we can calculate
the auto-correlation function of δF̂y , resulting in

〈δF̂y(t)δF̂y(t+ τ)〉 =

~µ0

2π
Re

[

|α(ω0)|
2E2

0e
iω0τ

]

∫ ∞

0

ω5

15πc3
eiωτdω−

~µ0

π
Re

[

iω0|α(ω0)|
2E2

0e
iω0τ

]

∫ ∞

0

iω4

12πc3
eiωτdω+

~µ0

2π
Re

[

ω2
0 |α(ω0)|

2E2
0e

iω0τ
]

∫ ∞

0

ω3

6πc3
eiωτdω.

(15)
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Then, we can derive the spectral density of δF̂y , as fol-
lows:

SFyFy
(Ω) =

∫ +∞

0

∫ +∞

−∞

~µ0

4π
α2
0E

2
0×

[

( ω5

15πc3
+

ω4ω0

6πc3
+

ω3ω2
0

6πc3

)

ei(ω+ω0+Ω)τ+

( ω5

15πc3
−

ω4ω0

6πc3
+

ω3ω2
0

6πc3

)

ei(ω−ω0+Ω)τ

]

dτdω.

(16)

If we perform the integration over τ , one obtains:

SFyFy
(Ω) =

∫ +∞

0

~µ0

2
α2
0E

2
0×

[

( ω5

15πc3
+

ω4ω0

6πc3
+

ω3ω2
0

6πc3

)

δ(ω + ω0 +Ω)+

( ω5

15πc3
−

ω4ω0

6πc3
+

ω3ω2
0

6πc3

)

δ(ω − ω0 +Ω)

]

dω.

(17)

Eventually, we can simplify the spectral density of δF̂y

to

SFyFy
(Ω) ≃

~µ0α
2
0E

2
0ω

5
0

30πc3
=

2

5

~ω0

c2
Pscat, (18)

given that the mechanical frequencies are much smaller
than the optical frequency ω0.
Fluctuating force along z-direction.— We now aim to

derive the fluctuating force along the propagation direc-
tion. As indicated by Eq. 5, the fluctuating force along
the z-direction is given by:

δF̂z = p̄x

∫ ∞

0

∂xÊNz
(rp, ω)e

−iωtdω

+
∂p̄x
∂t

∫ ∞

0

1

iω

[

∂zÊNx
(rp, ω)− ∂xÊNz

(rp, ω)
]

e−iωtdω

− B̄y

∫ ∞

0

iωα(ω)ÊNx
(rp, ω)e

−iωtdω

+H.c..

(19)

Upon using the relations given in Eq. 9, the auto-
correlation function of δF̂z can be written as:

〈δF̂z(t)δF̂z(t+ τ)〉 =

~µ0

2π
Re

[

|α(ω0)|
2E2

0e
iω0τ

]

∫ ∞

0

ω5

15πc3
eiωτdω−

~µ0

π
Re

[

iω0|α(ω0)|
2E2

0e
iω0τ

]

∫ ∞

0

iω4

12πc3
eiωτdω+

~µ0

2π
Re

[

ω2
0 |α(ω0)|

2E2
0e

iω0τ
]

∫ ∞

0

ω3

6πc3
eiωτdω+

~µ0

2π
Re

[

E2
0

c2
eiω0τ

]
∫ ∞

0

|α(ω0)|
2 ω5

6πc
eiωτdω.

(20)

Subsequently, we can derive the spectral density of δF̂z

by taking the Fourier transform from its auto-correlation
function, resulting in

SFzFz
(Ω) =

∫ +∞

0

∫ +∞

−∞

~µ0

4π
α2
0E

2
0×

[

( 7ω5

30πc3
+

ω4ω0

6πc3
+

ω3ω2
0

6πc3

)

ei(ω+ω0+Ω)τ+

( 7ω5

30πc3
−

ω4ω0

6πc3
+

ω3ω2
0

6πc3

)

ei(ω−ω0+Ω)τ

]

dτdω.

(21)

Upon evaluating the integral over τ , one obtains

SFzFz
(Ω) =

∫ +∞

0

~µ0

2
α2
0E

2
0×

[

( 7ω5

30πc3
+

ω4ω0

6πc3
+

ω3ω2
0

6πc3

)

δ(ω + ω0 +Ω)+

( 7ω5

30πc3
−

ω4ω0

6πc3
+

ω3ω2
0

6πc3

)

δ(ω − ω0 +Ω)

]

dω,

(22)

which can be further simplified to

SFzFz
(Ω) ≃

7~µ0α
2
0E

2
0ω

5
0

60πc3
=

7

5

~ω0

c2
Pscat, (23)

since the mechanical frequencies are much smaller than
the optical frequency ω0.
Particle dynamics.— The interaction of the particle

with the incident wave gives rise to a drag force known
as radiation damping, along with a fluctuating force cor-
responding to recoil heating. Additionally, the presence
of a thermal bath induces mechanical damping and ther-
mal noise. Therefore, we can describe the particle motion
along the x-direction using the equation:

m
dv̂x
dt

= −m(Γm + Γx)v̂x + F̂x + ξ̂, (24)

where F̂x represents the fluctuating force, satisfying Eq.
13, and Γx = Pscat/mc2 is the radiation damping along x-
direction[9]. Furthermore, Γm represents the mechanical
damping rate, and ξ denotes the thermal noise, satisfy-
ing 〈ξ(t)ξ(t′)〉 = 2mΓmkBTδ(t − t′). Here, m denotes
the particle mass, kB is the Boltzmann constant, and T
represents the ambient temperature[12, 19]. We can now
derive the variance of vx, resulting in

〈v2x〉 =
2mΓmkBT + 11~ω0Pscat/5c

2

2m2(Γm + Pscat/mc2)
. (25)

When Γm is much smaller than Pscat/mc2, which neces-
sitates ultra-high vacuum, the variance of vx simplifies to
1.1~ω0/m. Under that condition, thermal decoherency is
surpassed by recoil heating and radiation damping. Sim-
ilarly, one can obtain the variance of vy and vz, that
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resulting in 0.2~ω0/m and 7~ω0/60m, respectively. It
should be noted that the radiation damping rate along
y and z-directions are given by Γy = Pscat/mc2, and
Γz = 6Pscat/mc2, respectively[9].
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