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ABSTRACT

Physics-Informed Neural Networks (PINNs) integrate physical principles - typically mathematical
models expressed as differential equations - into the machine learning (ML) processes to guarantee
the physical validity of ML model solutions. This approach has gained traction in science and
engineering for modeling a wide range of physical phenomena, such as wave propagation, fluid
dynamics, and turbulence. Nonetheless, the effectiveness of PINNs in solving nonlinear hyperbolic
partial differential equations (PDEs), is found challenging due to discontinuities inherent in such
PDE solutions. While previous research has focused on advancing training algorithms, our study
highlights that encoding precise physical laws into PINN framework suffices to address the challenge.
By coupling well-constructed governing equations into the most basic, simply structured PINNs, this
research tackles both data-independent solution and data-driven discovery of the Buckley-Leverett
equation, a typical hyperbolic PDE central to modeling multi-phase fluid flow in porous media.
Our results reveal that vanilla PINNs are adequate to solve the Buckley-Leverett equation with
superior precision and even handling more complex scenarios including variations in fluid mobility
ratios, the addition of a gravity term to the original governing equation, and the presence of multiple
discontinuities in the solution. This capability of PINNs enables accurate, efficient modeling and
prediction of practical engineering problems, such as water flooding, polymer flooding, inclined
flooding, and CO2 injection into saline aquifers. Furthermore, the forward PINN framework with
slight modifications can be adapted for inverse problems, allowing the estimation of PDE parameters
in the Buckley-Leverett equation from observed data. Sensitivity analysis demonstrate that PINNs
remain effective under conditions of slight data scarcity and up to a 5% data impurity. Remarkably,
vanilla PINNs can learn more than one parameters of the Buckley-Leverett concurrently: both the
mobility ratio and the gravity term.

This research demonstrates the versatility and robustness of PINNs in their most elemental form for
solving and discovering nonlinear hyperbolic PDE models that exhibit intricate solution behaviors,
focusing on their applications on real-world engineering challenges. We provide insights into the
construction of governing equations for PINNs to integrate which is generally applicable for other
physical processes governed by nonlinear hyperbolic PDEs.
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1 Introduction

For the past decades, machine learning (ML) has undergone a transformative evolution, extending its influence beyond
domains such as computer vision [Krizhevsky et al., 2012], natural language processing [Vaswani et al., 2017], and
pattern recognition [Braga-Neto, 2020]. ML has emerged as a powerful complement or an alternative to traditional
analytical and numerical simulation tools in the fields of science and engineering. ML algorithms automatically
decipher solutions by analyzing extensive input data, providing swift and direct outcomes. However, they are not
without limitations. ML methods rely on extensive datasets, which can be scarce in scientific and engineering fields.
Furthermore, ML models struggle when making predictions outside their training data range, and the modeled results
may lack physical realism due to the purely data-driven nature.

In addressing these limitations, Physics-Informed Machine Learning (PIML) methods have emerged as a powerful
bridge between data-driven and physics-based approaches. PIML integrates fundamental physical principles into ML
training through five primary approaches: 1) feeding physically plausible synthetic data as inputs; 2) postprocessing to
filter out non-physical solutions; 3) initializing model parameters via transfer learning from simpler, physics-compliant
tasks; 4) customizing neural network architectures to adhere to specific physical constraints; and 5) encoding governing
physical laws into the model’s loss function [Latrach et al., 2023]. PIML has found applications in subsurface energy,
particularly in the oil and gas sector, such as geoscience data interpretation, autonomous directional drilling, production
forecasting, reservoir characterization, and Carbon Capture, Utilization, and Storage (CCUS) simulations [Wang and
Chen, 2023, Latrach et al., 2023, Kesireddy et al., 2023].

Among the array of PIML methodologies, Physics-Informed Neural Network (PINN), introduced by Raissi et al.
in 2019, stands out for the most explicit integration of physics, thereby gaining widespread adoption. This method
preserves the physical integrity by incorporating governing equations into the neural network’s training loss function.
These equations act as informative priors, steering the model towards physically plausible solutions. PINNs excel in
both data-independent solving and data-driven discovery of governing equations. In forward or inference problems,
neural networks solve the governing equations by minimizing the loss on governing PDE residues, as well as losses on
initial and boundary conditions. In inverse or identification problems, PINNs employ observed data to unearth unknown
parameters within the governing equations, all while adhering to the constraints imposed by PDE residues[Raissi et al.,
2019, Fraces et al., 2020].

This paper focuses on the application of PINNs to address a two-phase fluid transport problem mathematically
represented by a nonlinear hyperbolic PDE, known as the Buckley-Leverett equation [1942]. This equation models
the mass conservation of two-phase displacement processes, such as water displacing oil and CO2 displacing brine,
playing a pivotal role in subsurface hydrocarbon reservoirs and carbon sequestration studies. Its solution involves a
shock wave and a rarefaction wave connected by a sharp transition. This inherent complexity and nonlinearity of the
Buckley-Leverett equation make analytical or numerical solutions, using methods like finite difference or finite element,
challenging. Prior efforts have been made to apply PINNs to solve the Buckley-Leverett problems and encountered
difficulties, with Fuks and Tchelepi [2020] pointing to the solution’s discontinuity as a key challenge for vanilla (basic
form) PINNs. As a response, enhancement methods have been proposed including the introduction of artificial viscosity
terms to the equation, attention-based mechanisms, and convex hull construction on the flux function to aid the problem.
Adding an artificial viscosity or diffusion term transforms the Buckley-Leverett equation from hyperbolic to parabolic,
approximating the exact solution as the viscosity coefficient nears zero [Fuks and Tchelepi, 2020, Fraces et al., 2020,
Coutinho et al., 2023]. However, this approach can lead to a smoothed shock front that mimics the diffused shock
front seen with traditional numerical methods’ truncation or discretization errors, thereby diminishing the strength of
PINNs. Attention-based mechanisms offer a way for neural networks to focus on specific data segments, adjusting the
’attention’ level to different elements in the sequence Rodriguez-Torrado et al. [2022], Diab et al. [2022]. Nevertheless,
attention-based PINNs may complicate both the implementation and computational demands of PINNs. Alternatively,
Welge’s construction imposes the Rankine–Hugoniot condition and Oleinik entropy condition to avoid the non-physical,
multi-valued solutions caused by the original flux function. By constructing a convex hull for the flux function, it
establishes a criterion for shock propagation, resulting in a sharp, physically plausible shock front Welge [1952], Fraces
and Tchelepi [2021], Latrach et al. [2023].

This study emphasizes the necessity of providing an accurate and physically meaningful governing equation for PINNs
to achieve solutions that align with physical reality. We underscore the essential role of construction of governing
equations, positioning it not merely as an auxiliary tool but as an indispensable element in tackling hyperbolic PDEs,
such as the Buckley-Leverett equation. In this study, we first replicate Fraces’ work by training the Buckley-Leverett
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equation with the constructed flux function using a vanilla PINN. We then extend the investigation by introducing the
gravity term into the equation, which poses a more complex PDE to solve. Next, we evaluate the sensitivity of PINNs’
performance to varying parameters within the Buckely-Leverett equation including the mobility ratio and dip angle, and
further solve a more challenging situation where two discontinuities exist in the solution due to the mutual solubility of
the displacing and displaced phases. Our results show the proficiency of standard PINNs in managing a diverse array of
situations, from water flooding and polymer flooding to inclined flooding and CO2 injection into saline aquifers. On the
other hand, this work delves into the application of PINNs to the inverse problems, aiming to estimate the parameters of
the Buckley-Leverett PDE from observed data. Starting with the mobility ratio as a learnable parameter, we examine
the impact of variations in the volume and quality of observed data on PINNs’ effectiveness. Furthermore, we conduct
a two-parameter training exercise, identifying both the mobility ratio and gravity term. Throughout these endeavors,
vanilla PINNs demonstrate great performance, showing their robustness and versatility in data-drive discovery of the
Buckley-Leverett equation.

The remainder of this paper is organized as follows: Section two provides an introduction to the training algorithm of
PINNs, including basic concepts and overall workflow; Section three details the physical law, including the derivation
of Buckley-Leverett equation, derivation of the flux function, construction of convex hull, and the variant for modeling
CO2 -brine displacement; Section four presents the results of the implementation of forward and inverse PINN training.
Finally, we summarize the key findings and discuss their implications for future research.

2 Physics-informed neural networks

Physics-Informed Neural Networks (PINNs) rely on a structured and systematic workflow, as illustrated in Fig. 1, to
model the evolution of systems with spatio-temporal dynamics. This workflow involves a sequence of key steps aimed
at approximating the solution u(x, t). Initially, an Artificial Neural Network (ANN) processes input data sampled across
spatial and temporal domains, providing a preliminary solution estimate. Following this, the automatic differentiation
(AD) algorithm is utilized to compute the derivatives of the NN output with respect to its input coordinates and
model hyperparameters, which are critical in calculating the loss function and in updating the model parameters,
respectively. Through this iterative process of minimizing the composite loss, the model’s weights and biases are
continually optimized, progressively refining the NN’s solution û, and gradually converging towards the exact solution
u. The criteria for stopping the training process can be based on reaching a user-defined loss threshold or a maximum
number of iterations. The upcoming subsections will provide a detailed examination of each element within the PINN
framework, dissecting the workflow and its key components for a comprehensive understanding.

Figure 1: Forward physics-informed neural network workflow.

2.1 Neural network (NN)

The neural network, inspired by the structure and functioning of the human brain’s neural networks, consists of input
layers, multiple hidden layers, and output layers. These layers are composed of interconnected processing units, known
as neurons, which execute computations and pass information by summing the weighted inputs they receive and then
applying an activation function to the result. Neural networks have been shown to be universal function approximators
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[Hornik et al., 1989], capable of representing a wide range of complex relationships between inputs and outputs. A
neural network with L layers and nl neurons in the i-th layer is defined as

yli = σ

nl−1∑
j=0

wl
ijy

l−1
j + bli

 , i = 1, . . . , nl (1)

for l = 1, 2 . . . , L, α is the activation function, wl
ij and bli are weights and biases, respectively, yl−1

j are the outputs of
the previous layer. For the first hidden layer yl−1

j is a vector as a function of temporal and spatial inputs. The outputs
of the last layer are the solution approximated by NN. The training process consists of finding the minimum of a loss
function by optimizing a along with the weights and biases.

Neural networks are primarily classified into three categories: Aritificial Neural Networks (ANNs), Convolutional
Neural Networks (CNNs), and Recurrent Neural Networks (RNNs). For the purposes of PINNs, fully-connected ANNs
are typically favored due to their straightforward architecture, efficacy, and adaptability in mimicking complex functions.
A variety of tools and frameworks support the construction of such models, including TensorFlow’s Keras API, TFLearn
API, and PyTorch’s FastAI. In our research, we employ the keras.models.Sequential() method from TensorFlow’s Keras
API to develop the PINN model.

2.2 Automation Differentiation(AD)

Automatic Differentiation (AD) is a vital technique in various machine learning and scientific computing applications
as it enables the computation of numerical derivatives for arbitrarily complex functions or programs. AD achieves this
by systematically applying the chain rule of calculus to break down the derivative of a composite function into the
derivatives of its constituent functions [Baydin et al., 2018]. This approach allows for the calculation of derivatives with
machine precision and minimal computational overhead, offering excellent asymptotic efficiency. While derivatives
can be computed to high orders as needed, the focus is primarily on gradients or Hessians, as demonstrated in Fig.
1 with first-order derivatives, ∂û

∂x and ∂û
∂t , serving as examples. By employing the AD algorithm, PINNs gain the

ability to accurately compute exact derivatives. This capability proves valuable as it enables PINNs to bypass common
issues associated with traditional numerical methods, such as truncation errors and discretization errors, leading to an
enhancement in performance.

Several open-source machine learning frameworks have developed readily accessible tools for the implementation of
AD. These tools include the ’tf.GradientTape()’ function of TensorFlow (2.x), the ’autograd’ package of PyTorch, and
the JAX library. In the course of this study, the ’tf.GradientTape()’ is employed to compute gradients of the solution
with respect to time and space for PDE residues, as well as gradients of the loss concerning model hyperparameters
(weights and biases) for PINN training.

2.3 Integration of physical laws

Physical phenomena are characterized by mathematical expressions frequently in the form of PDEs. These equations
involve unknown functions and their partial derivatives concerning independent variables like time and space. Certain
PDEs present unique challenges for numerical solutions, attributed to factors such as pronounced nonlinearity, the
prevalence of convection effects, or the presence of shocks.

A generalized form of a PDE can be written as follows:

ut +N [u] = 0, where x ∈ Ω ⊂ Rd, t ∈ [0, T ] (2)

In this equation, N [·] is a nonlinear differential operator, Ω is a subset of Rd, and u(x, t) represents the exact solution
to be determined. During the machine learning process, this solution can be approximated by the NN modeled value
û(x, t), achieved through the minimization of a composite loss function defined as follows:

Loss function = LPDE + LIC + LBC (3)

It comprises three essential components: the loss associated with the governing PDE residual LPDE , the loss related to
initial conditions LIC , and the loss concerning boundary conditions LBC . LPDE serves as a regularization mechanism
penalizing deviations from the governing equation, as given by

LPDE =
1

Nr

Nr∑
i=1

∣∣ût

(
xr

i, tr
i
)
+N

[
û
(
xr

i, tr
i
)]∣∣2 (4)
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Here,
{
xi
r, t

i
r

}Nr

i=1
are data points sampled within the domain of time and space, referred to as collocation points. LIC

and LBC regulate the solution to adhere to the initial condition u (x0, 0) and boundary conditions u (xb, xb), as given
by Eq.5 and Eq.6, respectively.

LIC =
1

N0

N0∑
i=1

∣∣û (x0
i, 0

)
− u

(
x0

i, 0
)∣∣2 (5)

LBC =
1

Nb

o∑
i=1

∣∣û (xb
i, tb

i
)
− u

(
xb

i, tb
i
)∣∣2 (6)

in which
{
x0

i, t0
i
}N0

i=1
denote the initial condition data points and

{
xb

i, tb
i
}Nb

i=1
represent the boundary condition data

points. Typically, the number of collocation points greatly exceeds the number of initial or boundary condition points.
The composite loss function effectively quantifies the disparity between the exact solution and the approximation
provided by the NN. It serves as a guiding metric for adjusting the weights and biases of the NN through specific
optimization algorithms.

PDEs like Eq.6 can be categorized into three types: parabolic, elliptic, or hyperbolic, each modeling different physical
phenomena. Elliptic PDEs typically describe steady-state scenarios, whereas parabolic PDEs are used to model
diffusive processes that exhibit gradual solution gradients. Hyperbolic PDEs, like the Buckley-Leverett equation, are
characterized by their ability to simulate wave propagation at finite speeds, often resulting in the formation of shocks or
discontinuities. These discontinuities present challenges for solving the equations. A more detailed exploration of their
characteristics and methods of solution will be undertaken in Section 3.

2.4 Forward and inverse problems

Fig. 1 and our discussion so far introduce the idea of solving PDEs to predict future behaviors without using any labeled
data, known as forward problems. Actually PINNs offer a versatile framework for addressing both forward and inverse
problems with minimal modification in code [Fraces et al., 2020, Cuomo et al., 2022]. The inverse problems shift the
focus towards learning the underlying solution map and identifying uncertain parameters of governing equations, such
as rock and fluid properties in this study. The training for inverse problems involves iterative refinement of both model
hyperparameters and specific PDE parameters to align the model outputs with observed data. This iterative process
distinguishes forward problems as a form of unsupervised learning, whereas inverse problems align more closely with
supervised learning paradigms. The loss function for inverse PINNs comprised of two components: the mean square
error associated with PDE residues and observed data Ldata, as demonstrated in Eq. 7.

Loss function = LPDE + Ldata (7)

Ldata quantifies the difference between the model-predicted solutions and the observed data as, Eq. 8 describes.

Ldata =
1

Ns

Ns∑
i=1

∣∣û (xs
i, ts

i
)
− u

(
xs

i, ts
i
)∣∣2 (8)

{
xi
s, t

i
s

}Ns

i=1
are observed or labeled data points. Ideally, the number of labeled data points is comparably large as the

number of collocation points.

3 Multi-phase fluid flow model

This study focuses on multi-phase fluid flow dynamics, particularly focusing on processes where water displaces oil and
CO2 displaces brine. In water flooding, water injection into a reservoir displaces the oil left unrecovered by primary
depletion and thus improves oil recovery. By adding a polymer to the water, the viscosity of the displacing phase is
increased, thereby boosting displacement efficiency and recovery rates in what is known as polymer flooding. Given
that water and oil are almost immiscible, these two processes are aptly described by the original Buckley-Leverett
equation. However, for processes that feature mutual solubility between the displacing and displaced phases, like CO2

displacing brine, the Buckley-Leverett model requires modification. This process, injecting CO2 in its supercritical state
into subsurface saline aquifers, can reduce greenhouse gas emissions and combat climate change [Green et al., 1998].

To deepen the understanding of the physical principles involved, this section starts with the derivation of the original
Buckley-Leverett equation and its flux function for water flooding modeling. We will then expound on the reasons why
these equations are inadequate as governing equations and consequently introduce Welge’s method to construct more
precise governing equations for PINN training. Following this, we will detail the modified Buckley-Leverett equation
for CO2 injection modeling.
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3.1 Derivation of the Buckley-Leverett model

In 1942, Buckley and Leverett formulated a fundamental equation to characterize the transport of two immiscible fluids
in the porous medium based on mass conservation and Darcy’s law. The mass conservation equation states that the
difference in water mass entering and exiting a control volume is equal to the accumulated change in water mass within
the control volume of length ∆x over a specific time period ∆t, as Fig.2 displays. It is mathematically described by
Eq.9.

Figure 2: Mass Conservation in a finite volume.

ρwqw,x∆t− ρwqw,x+∆x∆t︸ ︷︷ ︸
in - out

= (ρwϕSw∆V )t+∆t − (ρwϕSw∆V )t︸ ︷︷ ︸
accumulation

(9)

where qw is the volumetric water rate, Sw denotes the water saturation, and α represents the angle of flow deviation from
the horizontal plane. Positive α indicates up dip flow while negative α indicates down dip flow. Under the assumption
of incompressibility for both fluids and rocks (constant water density ρw and rock porosity ϕ), the equation simplifies
to:

qw,x − qw,x+∆x

∆x
= Aϕ

Sw,t+∆t − Sw,t

∆t
(10)

in which A is the cross-sectional area perpendicular to the flow direction. As ∆x and ∆t approach zero, the conservation
law takes the form of a partial differential equation:

Aϕ
∂Sw

∂t
+

∂qw
∂x

= 0 (11)

Introducing fw, the fractional flow or flux function, which is the ratio of the water flow rate to the total flow rate
(qt = qw + qo), yields:

fw =
qw
qt

=
qw

qw + qo
(12)

Incorporating qw from this fractional flow into Eq.11 results in:

Aϕ
∂Sw

∂t
+ qt

∂fw
∂x

= 0 (13)

To further simplify, we introduce dimensionless time tD and length xD:

∂Sw

∂tD
+

∂fw
∂xD

= 0 (14)

where,

xD =
x

L
, tD =

qtt

ALϕ
=

volume injected
pore volume

(15)

And L is the total length in the direction of fluid flow. The initial and boundary conditions of Eq.14 are as follows:

Sw (xD, tD = 0) = Swc

Sw (xD = 0, tD) = 1− Sor
(16)

3.2 Derivation of the flux function

In Eq. 14, the flux function or fractional flow fw is a function of water saturation Sw. As Darcy’s law states, the fluid
flow rate in porous media is directly proportional to the pressure gradient and the medium’s permeability, and inversely
proportional to fluid viscosity. Accordingly, the flow rates of water and oil phases can be described by Eq.17 and Eq.18.

qw = −kkrwA

µw

(
dpw
dx

+ ρwg sinα

)
(17)
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qo = −kkroA

µo

(
dpo
dx

+ ρog sinα

)
(18)

in which µw and µo are the viscosities of water and oil, respectively. k is the absolute permeability of rock. g is the
gravitational constant. The pressure difference between the oil and water phase is defined by a capillary pressure pc
(pc = po − pw) and the density difference of two phases is written as ∆ρ = ρw − ρo. With these definitions and by
subtracting Eq.18 from Eq.17, we derive:

kro
µo

fwqt −
krw
µw

(1− fw) qt =
kkrokrwA

µoµw

(
dpc
dx

−∆ρg sinα

)
(19)

Rearranging this equation yields the full expression for fractional flow:

fw =
1 + kkroA

qtµo

(
dpc

dx −∆ρg sinα
)

1 + kroµw

krwµo

(20)

Usually pc is sufficiently small to be ignored, so Eq.20 becomes

fw =
1− kkroA

qtµo
∆ρg sinα

1 + kroµw

krwµo

(21)

The relative permeabilities for water (krw) and oil (kro) describe the effective permeability of the medium to each fluid
in the presence of both. They are typically modeled using the Corey-Brook equation [Brooks and Corey, 1966], with S
being the effective water saturation:

S =
Sw − Swc

1− Swc − Sor
(22)

krw = k0rwS
nw

kro = k0ro(1− S)n0
(23)

k0rw is the maximum value of krw occurring at the lower endpoint of the water saturation profile (connate water
saturation (Swc) and k0ro is the maximum value of kro occurring at the upper endpoint of water saturation profile
(residual oil saturation 1− Sor ). Fig.3 illustrates an example of krw and kro profiles as functions of water saturation.
The mobility ratio M , as defined by Eq.24, quantifies the relative mobility of two phases. Typically, the displacing

Figure 3: Relative permeability profiles for water and oil .

phase (water) is much more mobile than the displaced phase (oil), resulting in a value of M lower than 1. In the case of
polymer flooding, where the viscosity of the displacing phase is increased through polymer addition, the value of M
can approach 1.

M =
λw

λo
=

kk0rw/µw

kk0ro/µo
=

k0rwµo

k0roµw
(24)

Additionally, a gravity number N is introduced to quantify the effect of gravity on fluid flow velocity, expressed as the
ratio of gravity to viscous forces, as Eq. 25 shows.

N =
kk0roA∆ρg

qtµo
(25)
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With these definitions, fw is ultimately expressed as:

fw =
1− (1− S)noN sinα

1 + (1−S)no

MSnw

(26)

3.3 Construction of convex hull

For enhanced clarity and understanding, Eq.14 is hereafter simplified as follows:
∂u

∂t
+

df(u)

du

∂u

∂x
= 0, tϵ[0,∞], x ∈ [0, 1] (27)

Here, u(x, t) symbolizes water saturation in the water flooding scenario or gas saturation in the CO2 injection scenario.
A typical flux function f(u) curve is depicted with a dashed line in Fig.4a. The derivative df(u)

du represents the
propagation velocity for a specific saturation level u. Using this velocity to determine how far a certain saturation level
travels over time enables the construction of a saturation profile, as plotted by the dashed curve in Fig. 4b. However,
this profile is physically implausible because the water saturation is triple-valued at a single location. This irrationality
originates from the non-convex nature of the flux function, where the velocity df(u)

du initially increases with increasing
saturation, peaks, and subsequently decreases, causing higher saturation levels to overtake lower ones and forming a
shock front [Dake, 1983]. Because of the shock, the mathematical expression of the Buckley-Leverett problem in Eq.26,
assuming continuity and differentiability of u, fails to accurately represent the dynamics ahead the shock, rendering it
inadequate for integration in PINNs as the governing equation. Nonetheless, behind the shock, in the saturation range
of [uf , ul], Eq.26 remains valid. Here, uf represents the front saturation, while ul and ur represent the initial states
on the left and right sides of the shock front, respectively. To develop a fully valid solution for the Buckley-Leverett

Figure 4: Flux function (left) and resultant saturation profile (right).

problem, we introduce the concept of Riemann problems, which are hyperbolic conservation laws accompanied by
piecewise initial conditions such as Eq. 28.

u(x, 0) =

{
ul, x ≤ 0

ur, x > 0
(28)

The Buckley-Leverett model with its non-convex flux function is a classic example of a Riemann problem, where the
left state is ul = 1− Sor and the right state is ur = Swc. In numerical analysis, the impose of Rankine-Hugoniot jump
condition and the E-condition of Oleinik on the flux function help to select the unique and proper solution for Riemann
problems: [LeVeque and Leveque, 1992]. The E-condition of Oleinik, as shown in Eq.29, ensures that the rarefaction
wave trailing the shock does not surpass it, thereby adhering to the second law of thermodynamics, which mandates that
entropy in an isolated system should not decrease:

f(u)− f (ur)

u− ur
≤ df (uf )

duf
≤ f(u)− f (ul)

u− ul
(29)

The Rankine-Hugoniot jump condition equates the flow rates of the displacing fluid on either side of the shock, ensuring
the conservation of mass across the shock front. It helps determine the speed at which a shock wave moves through the
medium, as shown in Eq.30.

df (uf )

duf
=

f (ul)− f (ur)

ul − ur
(30)

8
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From points at(ur, 0) to (uf , f (uf )), the original f(u) curve is replaced by a straight line segment to represents a
shock jumping from u = ur to u = uf , forming a convex hull [Welge, 1952]. These two constraints ensure that the
solutions are not only mathematically consistent with the conservation laws but also physically realistic. With these
constraints, the flux function can be constructed as solid lines in Fig.4a, which can be mathematically expressed as:

f(u) =

(u− ur)× f(ul)
ul−ur

, if ur ≤ u ≤ uf

1−(ul−u)2N sinα

1+
(ul−u)2

M(u−ur)2
,

, if uf < u ≤ ul
(31)

In this equation, n0 = nw = 2. The solution can be can be obtained accordingly, as shown by the solid line in Fig.
4b. This construction correctly presents that when pure water is pumped into a 1D oil reservoir, at a production well
(x = 1), one obtains pure oil until the water front arrives, followed by a mixture of oil and water with increasing water
cut as time goes on [Araujo et al., 2020].

3.4 Two-shock BL model for CO2 injection

Beyond the assumptions of incompressibility of rock and fluids, steady flow, and negligible capillary pressure, the
original Buckley-Leverett model is based on the premise of strict immiscibility between two phases. Modifications by
Noh et al. 2007, Burton et al. 2009, and Azizi et al.2013 have adapted the BL model to include a retardation factor,
capturing the partial solubility between CO2 and brine during displacement. This adjustment accounts for a two-phase,
two-component system where phase properties remain constant, regardless of composition. The H2O-saturated gas is
subject to hydrodynamic trapping while the CO2-saturated aqueous phase represents the solubility trapping.

The displacement of CO2 injection involves three flow regions: pure CO2 region (I), fresh brine region (II), and
two-phase region (J) where CO2 component can dissolve in each other’s phases. As illustrated in Fig.5, these regions
are separated by the leading shock and the trailing shock, with the saturation being Sg1 and Sg2 , respectively. The

Figure 5: Schematic of a miscible gas-water displacement. Two saturation shocks divide the medium into three
regions.

velocities of two shocks can be determined by constructing the fractional flow curve and calculated by Eq.32 and Eq.
33 [Noh et al., 2007]. Specifically, the tangent line representing leading front speed spans from point (DI→II,DI→II) to
(f (Sg1) , Sg1), as shown in Fig.6. Its slope depends on CO2’s solubility in the aqueous phase. Similarly, the tangent
line representing trailing front speed extends from (DII→J,DII→J) to (f (Sg2) , Sg21). The slope depends on water’s
solubility in the gaseous phase. The disappearance of the trailing shock, represented by a zero slope, occurs when water
solubility in gas is zero, with sg2 = 1− swr. The different speeds of these two shocks, indicated by the slope values,
reveal that the leading shock advances faster than the trailing one.

vleading =
df(u)

du

∣∣∣∣
Sg1

=
f (Sg1)−DI→II

Sg1 −DI→II
(32)

vtrailing =
df(u)

du

∣∣∣∣
Sg2

=
f (Sg2)−DII→J

Sg2 −DII→J
(33)

The retardation factors D, defined by the phase concentrations in the different regions as Eq.34 and Eq.35 formulated,
represent interphase mass transfer (mutual solubility) of CO2. The concentration of a component in each phase, and
consequently the retardation factors, are affected by temperature, pressure, and salinity. DI→II and DII→J, located on
the line with a unit slope through the origin, correspond to conditions in pure brine (initial) and pure CO2 (injection),
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Figure 6: Construction of the flux function for miscible gas-water displacement.

respectively. Usually, the solubility of CO2 in water is markedly higher than that of H2O in the gas phase.

DI→II =
CII

CO2,a

CII
CO2,a

− CII
CO2,g

(34)

DII→J =
CII

CO2,a
− CJ

CO2,g

CII
CO2,a

− CII
CO2,g

(35)

This approach allows for a comprehensive flux function representation: for gas saturation below sg1 and greater than
sg2, leading and trailing tangent lines indicative of mutual solubility substitute the original f(u). Within the saturation
range of [Sg1, Sg2], the original flux function remain valid.

4 Implementation and training results

This section presents the results of applying the PINN framework to address both forward and inverse problems. The
neural network structure utilized here is simple and straightforward, featuring an input layer with two neurons (for
spatial and temporal inputs), eight hidden layers with 20 neurons each, and a single-neuron output layer (for the
solution). Model hyperparameters are initialized using the Xavier method and optimized with the Adam optimizer
[Kingma and Ba, 2014]. The entire implementation was carried out with TensorFlow 2.x.

4.1 Forward problems

The objective of forward training is to solve the Buckley-Leverett equation by minimizing a composite loss function
that includes residual loss, initial condition loss, and boundary condition loss. The training dataset consisted of 10,000
collocation points within the solution domain, along with 300 data points to enforce the initial condition and another
300 data points to enforce the boundary condition, all generated using the Latin Hypercube Sampling (LHS) method.
No labeled data is used for this process. The maximum iteration number is set at 20,000.

Initially, the hyperbolic tangent (tanh) function was chosen as the activation function across all layers. This setup,
however, led to unphysical results where the solution values fell below zero at the shock front—contrary to the
expectation that water saturation levels should remain within the [0, 1] interval. To remedy this, we transitioned to
using the sigmoid function for the output layer’s activation, ensuring the solution values were constrained within the
appropriate range. This change led to a more accurate solution map as displayed in Fig.7.

Subsequent subsections will explore the results from forward training for the base scenario, examine the sensitivity
of PINN performance to various fluid mobility, incorporate gravity into the governing equation, and finally tackle a
two-shock Buckley-Leverett model.

4.1.1 Base case

For the base case, we exclude the influence of gravity and use a unit mobility ratio (M ). Osher’s method is utilized to
compute analytical solutions, serving as benchmarks for evaluating the PINN predictions[Ketcheson et al., 2020]. The
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Figure 7: 3D visualization of Buckley-Leverett solutions: comparing tanh (left) and Sigmoid (right) activation
functions for the output layer.

progression of the training is illustrated in Fig.8, displaying how the solution’s profile changes over distance at specific
time intervals (0.1, 0.4, and 0.9) through various stages of iteration (200, 1000, 5000, and 20000). By the approximately
5000th iteration, the trained solution closely aligns with the exact solution. The ultimate L2-norm error of the PINN
solution is 4.55% and an L2-norm loss is calculated at 1.36E-6, according to Eq.3.

Figure 8: Evolution of solution profiles during forward PINN training for the base case.

To assess the flexibility of standard PINNs in different scenarios, we explored four additional cases. The details of these
cases, including their specific parameters, losses, and errors, are compiled in Table 1. They were categorized into two
groups for a detailed sensitivity analysis.

4.1.2 Sensitivity analysis on fluid mobility

The first set of cases (base, M1, M2) investigates the impact of mobility ratio. M influences the speed that water front
travels and how sharp the front is. The base case uses a unity M to reflect equal mobility between the displacing (water)
and displaced (oil) phases. Yet, real-world scenarios, such as water and polymer flooding, often present varied mobility
ratios of two fluids. We examine this by setting M = 0.1 for the M1 case and M = 10 for the M2 case.
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Table 1: Summary of Forward PINN Training Cases.
Case M Gravity Term Error Loss
base 1 0 0.04546 1.36E-06
M1 0.1 0 0.01408 7.18E-06
M2 10 0 0.02164 4.86E-06
N1 1 -3 0.01229 1.19E-06
N2 1 3 0.01243 2.59E-06

As summarized in Table 1, cases M1 and M2 yields errors and losses comparable to the base case, indicating the
proficiency of standard PINNs in resolving Buckley-Leverett models across different $M$ values. This is further
evidenced by a side-by-side 2D comparison of analytical and PINN solutions in Fig. 9, where the difference between
left (analytical solution) and (PINN solution) right figures is not noticeable. The figure uses color gradations to depict
saturation changes over time and space, with cooler hues for higher water saturation and warmer ones for higher
oil saturation. The shock front is marked by the transition between these color zones. It can be observed that a
smaller M leads to a higher front saturation uf and a delayed breakthrough time of water tbt (the value of t when
x = 1). The influence of M on the front saturation and breakthrough time can also be observed in Fig.10. On the flux

Figure 9: Analytical vs. PINN solution profiles: comparative 2D views for cases with M=0.1(first row), M=1
(second row), and M=10 (third row).

function profile, the point where the dashed line (original fractional flow) intersects with the solid line (constructed
fractional flow) signifies the front saturation, with values of 0.30, 0.71, and 0.95 for the three cases, respectively.
Additionally, Fig.10b calculates oil recovery factors by integrating the oil rate (1 − u) over time at the producer’s
location (x = 1). Its slope represents oil production rate. Oil is produced at a constant rate across all cases until the
water breakthrough occurs at different times: 0.463 for the low-mobility-ratio case, 0.828 for the base case, and 0.976
for the high-mobility-ratio case. Upon breakthrough, the water cut at the producer jumps from 0 to uf and continues
to rise as flooding advances through the reservoir. A high mobility ratio leads to an early breakthrough, resulting in
considerable oil being left unrecovered—an unfavorable scenario. A Moderate mobility ratio delays the breakthrough
and improves sweep efficiency. A low mobility ratio causes a late breakthrough, enabling nearly complete oil recovery,
marking it as the most advantageous scenario. Another thing to notice in Fig.10b is that oil recovery is predicted until a
dimensionless time of 1.2, extending beyond the training data’s range of [0,1]. The prediction is visually represented
by the blue region in the figure, demonstrating the remarkable ability of PINNs to extrapolate or forecast once the
underlying physics is well-learned by the model.
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Figure 10: (a) Fractional flow curves and (b) oil recoveries of cases with M=0.1, 1, and 10.

4.1.3 Sensitivity analysis on gravity

The second set of cases (base, N1, N2) incorporates the gravity term (N sinα) into the Buckley-Leverett equation,
adding complexity to the flux function. This gravity term influences the shock front’s propagation speed and its
definition. The value of the gravity term, as Eq.25 defines, is mainly subject to reservoir’s inclination angle of the
reservoir (α), rock permeability, the density difference between water and oil, and the flow rate. A positive α indicates
upward flooding, whereas a negative α suggests downward flooding. We explore N sinα values ranging from -3 to 3.

Results from the N1 and N2 cases, detailed in Table 1, indicate small errors and losses of PINN training, demonstrating
PINNs’ effectiveness in solving gravity-incorporated Buckley-Leverett models. Fig. 11 reinforces this point through a
two-dimensional comparison, affirming PINNs’ precision in reflecting the comprehensive solution landscape for these
scenarios. A negative gravity term results in faster water breakthrough and reduced front saturation, compared to a
positive one.

Moreover, the negative gravity effect alters the initial condition of the displacement process. Due to the phase density
difference of oil and water, the saturation distribution undergoes changes immediately after water injection starts. As
a result, the modeling of down dip flooding cases requires careful adjustment of new boundary conditions from the
original value of 1− Sor. Fig.12 examines closer into gravity’s impact on the shape of the fractional flow curve and
oil recovery. In scenarios with steeply downward-dipping reservoirs, the value of f(u) may exceed one, indicating
a counter-current flow where oil moves upward and water moves downward. This condition promotes water flow
but restricts oil production. Conversely, up dip flooding impairs water flow, resulting in a high front saturation uf

and low moving speed. Therefore, we see that positive gravity term leads to more oil displacement at breakthrough,
albeit occurring later in Fig.12b. Late tbt is more favorable because displacement efficiency tends to be poor after
breakthrough. The system’s future solution behaviors are predicted until t=1.2 .

4.1.4 Two-shock Buckley-Leverett model

Until now, vanilla PINNs have managed to model the Buckley-Leverett equation featuring a single shock in the solution.
Yet, if PINNs are capable of tackling scenarios with two discontinuities in the governing equation remains unknown. To
explore this, the adapted Buckley-Leverett equation that models a gas-displacing-water process is additionally trained
by PINNs. The data we use is referred from Noh et al. 2007, including retardation factors at -0.45 (DI→II ) and 1.05
(DII→J) to account for the solubility of CO2 in aqueous phase and H2O component in gaseous phase. The viscosities
for reservoir brine and injected CO2 were set at 0.548 cp and 0.189 cp, respectively, with connate water saturation at
0.25 and residual gas saturation at 0. The reservoir conditions are 50 ◦C and 5000 kPa. The flux function is constructed
in the same way as 6.

The training process is displayed in Fig.13. We see that PINN handles two discontinuities very well and the leading
shock travels much faster than the trailing shock. The final training loss is achieved at 3.28E-7 and the error margin
is 3.90%. The PINN trained solution map is compared with the analytical solution in Fig. 14 and warmer colors
indicate areas of high gas saturation, whereas cooler colors signify zones of high water saturation for this case. The gas
saturation at the leading (Sg1) and training shocks (Sg2) are identified as 0.37 and 0.56, respectively. By calculating the
derivative of flux function at Sg1 and Sg2, we can obtain the traveling velocities of two gas fronts. Assuming CO2 is
injected into a reservoir as Fig.15 shows for 30 years at a rate of 4 cubic meter per day (reservoir condition), we can
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Figure 11: Analytical vs. PINN solution profiles: 2D comparison for cases with N sinα=-3 (first row), N sinα=0
(second row), and N sinα=3 (third row).

Figure 12: (a) Fractional flow curves and (b) oil recoveries of cases with M=-3, 0, and 3.

project the expansion of the CO2 plume. The distance the leading shock spreads is:

x|Sg2
=

df(u)

du

∣∣∣∣
Sg2

× tD × L = 985.4 m (36)

The distance the trailing shock reaches is:

x|Sg2
=

df(u)

du

∣∣∣∣
Sg2

× tD × L = 69.7 m (37)

4.2 Inverse problems

Inverse problems leverage observed (labeled) data to unravel the properties and dynamics of physical systems. Within the
framework of PINNs, inverse training is designed to determine the hidden parameters in the governing equations, thereby
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Figure 13: Evolution of solution profiles during forward PINN training for the two-shock case.

Figure 14: Analytical vs. PINN solution profiles: 2D comparison for the two-shock case.

enabling the comprehensive prediction of the system’s behavior over space and time, u(x, t). The training procedure
and setups for inverse PINNs mirror those of forward PINNs, including neural network architecture, initialization
method, and optimization strategies. However, a key difference lies in the composition of the loss function, which
includes only the observed data error and PDE residual error, as defined by Eq. 7 for inverse problems. Initial and
boundary conditions are unknown in these scenarios. In addition to L2-norm error and loss, a parameter error is used to
evaluate the inverse PINN training performance, which is quantified as:

parameter error =
| param ture − param estimated |2

| param ture |2
(38)

It is noteworthy that the constructed fractional flow is not predefined before inverse training begins. Instead, f(u) is
dynamically constructed during each iteration using Eq. 31, with the front saturation calculated by Eq.30. The iterative
refinement ensures that the PDE parameters and their corresponding constructions are updated to align with observed
data.

The following subsections will delve into the outcomes of inverse training within the base scenario that focuses on a
singular learnable parameter. We will scrutinize how variations in the quantity and quality of the sampling data impact
PINN performance. Subsequently, we will address the complexities of learning with two parameters in the context of
the Buckley-Leverett model.
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Figure 15: Schematic of a rectangular 1D flow field (Modified from Noh et al., 2007).

4.2.1 Base case

For the base case, the focus is on learning the mobility ratio (M ) , with gravity effects momentarily set aside. We
assembled a dataset consisting of 10,000 collocation points alongside 10,000 labeled data points, gathered through
Latin Hypercube Sampling (LHS). This method ensures broad coverage across both time and spatial domains, aiming
for thorough characterization of the system’s dynamics.

The progression of loss, error, and parameter error throughout the training process of the base case is recorded in Fig.
16. We save the best model at an iteration wherein both the parameter error and solution error exhibit reductions in
comparison to their preceding values. Eventually, at iteration 11416, the model precisely predicts M to be 1.000000119
(true M=1), achieving an L2-norm error of 1.18% and a loss of 6.17E-05. Expanding our analysis, we adjust M values

Figure 16: Inverse training of base case: evolution of loss, error, and parameter error.

for training and compiled the results in Table 2. For instance, the MM1 case yields an estimated M value of 0.9999997
(true M = 0.1) and for case MM2, the NN model estimates M to be 9.99998665 (true M = 10). The inverse PINN
training undertaken in these cases consistently produces commendable results regarding parameter error, solution error,
and the loss function.

To facilitate a more in-depth investigation on PINNs’ performance with various sampling strategies of labeled data, six
more cases are performed. The outcomes of these experiments, detailed in Table 2, are categorized into two groups for
analysis.

4.2.2 Sensitivity analysis on sampling size

In scenarios with abundant input data, such as the base, MM1, and MM2 cases, PINNs demonstrate exceptional training
performance. However, considering the frequent scarcity of data in scientific and engineering contexts, it’s crucial to
explore how PINN effectiveness fluctuates with varying sizes of labeled data. For this purpose, we experiment PINN
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Table 2: Summary of Inverse PINN Training Cases (One Learnable Parameter).
Case Labeled Data M Param Error Error Loss
base 10000 1 1.42E-14 0.01182 6.17E-05

MM1 10000 0.1 3.56E-15 0.01428 9.08E-05
MM2 10000 10 1.78E-12 0.01846 8.66E-05

D1 1000 1 6.96E-13 0.02306 2.23E-06
D2 100 1 1.42E-14 0.03730 6.67E-06
D3 10 1 3.55e-15 0.11830 4.73E-07
C1 1% noise 1 8.88E-14 0.00997 1.41E-04
C2 3% noise 1 1.28E-13 0.01333 9.63E-04
C3 5% noise 1 4.30E-13 0.02476 2.74E-03

performance using smaller datasets in the D1, D2, and D3 cases, which utilize 1,000, 100, and 10 labeled data points,
respectively. An illustration of the model’s learning from 100 labeled data points is shown in Fig. 17. The results from

Figure 17: PINN solution map learnt from 100 labeled data.

these cases, as presented in Table 2, validate that our method for selecting the optimal model consistently facilitates
reliable parameter estimation across various datasets. Furthermore, the loss values recorded for these PINN models
remain modest.. Nonetheless, as depicted in Fig. 18, the clarity in distinguishing between high and low saturation
regions diminishes with smaller sample sizes, indicating that solution prediction accuracy degrades as the number of
sampling points decreases. Training with as few as 10 data points leads to a significant decline in predictive performance,
with the loss rate jumping to 11.8% - an increase by an order of magnitude when compared to the base case’s loss.

4.2.3 Sensitivity analysis on sampling purity

Except the impact of sampling size, we also consider data purity as a potential determinant in the performance of
inverse PINN training. Given that real-world data collection frequently encounters the challenge of noise or impurities,
we assess the resilience of PINNs against such imperfections by introducing Gaussian noise at varying intensities of 1%
(C1 case), 3% (C2 case), and 5% (C3 case) to the pristine base case data The corresponding training outcomes detailed
in Table 2.

It can be seen that PINNs successfully estimate the unknown parameter M despite slight data corruption. For better
visualization, errors and losses of four cases in this group are plotted in Fig. 19. In the noise-free base case, the error
and loss stand at 1.18% and 6.17E-05, respectively. The introduction of 1% noise slightly alters the results to an error
of 1.00% (lower than that of the base case, attributable to sampling variability) and a loss of 1.41E-04. At a 3% noise
level, the error and loss are 1.33% and 9.63E-4, respectively. The 5% noise level, the most corrupted, results in an error
of 2.48% and a loss of 2.74E-03. Although the overall trend does indicate that increasing corruption impairs PINN
solution accuracy, the error and loss values, even at 5% noise, remain relatively modest. The tolerance of PINN training
to minor noise interference enhances their applicability in real-world scenarios where data often comes with inherent
inaccuracies.
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Figure 18: Analytical vs. PINN solution profiles: 2D comparison for various data sampling sizes.

Figure 19: PINN prediction accuracy relative to data purity level.

4.2.4 Two learnable parameters

While vanilla PINNs shows promising performance for one-parameter inverse problems, this subsection further examines
their capability to address Buckley-Leverett model with two unknown parameters in the PDE: the mobility ratio and the
gravity term. Similar to the one-parameter case, 10000 labeled data and 10000 collocation points are used as inputs.

The journey of training with two parameters proved to be considerably more complex, marked by fluctuations in losses
and errors. Three individual optimizers for the model hyperparameters as well as two parameters and careful adjustment
of the learning rate for each of them are required. The training duration doubles compared to the one-parameter case.

Through careful adjustments, we achieve a stable convergence with the final error and loss being 1.43% and 2.79E-6,
respectively. The training process is displayed in Fig.20. PINN estimates M to be 0.999979854 (true value = 1) and the
gravity term to be -1.00098896 ((true value = -1) ).
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Figure 20: Evolution of solution profiles during inverse PINN training for the two-parameter case.

5 Discussion and conclusion

This research leverages the state-of-the-art Physics-Informed Neural Network (PINN) techniques to tackle petroleum
engineering problems, demonstrating several advantages PINNs offer over traditional approaches. For example,
PINNs operate independently of labeled data for forward problems and excel in extrapolation or prediction capabilities,
suppressing other machine learning methods. In addition, compared to numerical methods, the meshless characteristic of
PINNs eliminates the necessity for fine grid blocks to track shock front movements, thereby avoiding the discretization
errors associated with numerical simulation. However, it is essential to recognize that PINNs are not designed to replace
but to augment traditional simulation methods. Currently, PINN techniques are in the early stages of development and
face challenges in modeling physics in non-uniform spatial domains (e.g., reservoir heterogeneity). Future endeavors
will aim to address these challenges and extend PINN applications to two-dimensional and even three-dimensional
models, broadening their impact in engineering and scientific research fields. With these in mind, we conclude the key
findings of this study as follows:

1. The success of PINN training the Buckley-Leverett model critically depends on the proper construction
of a convex hull for the original flux function. Such construction imposes precise physical constraints to
the solutions, eliminating the issue of multiple saturation values at a single location related to the original
fractional flow. This strategy is generally applicable for addressing other nonlinear hyperbolic PDEs that
exhibit discontinuities in their solutions. With the incorporation of accurate governing equations, the PINN
training framework is very straightforward, utilizing lightweight neural networks, basic activation functions,
and simple optimization methods, with solution accuracy guaranteed.

2. Vanilla PINNs efficiently solve the Buckley-Leverett equation across varying fluid mobility ratios and gravity
terms without relying on labeled data, identifying that lower mobility ratios and up-inclined reservoirs are
favorable for a delayed water breakthrough and thus higher oil recoveries in water-displacing-oil processes.

3. Vanilla PINNs demonstrate the ability to resolve not only a single saturation shock for a water-displacing-oil
process, but also manage two shocks for a semi-miscible gas-displacing-water process. TThe presence of an
additional discontinuity, stemming from the mutual solubility between the displacing and displaced phases,
does not detract from the PINNs’ effectiveness. PINNs provide a valuable tool to gauge the spread of a CO2

plume, which is critical for the energy industry’s efforts towards achieving net-zero emissions.
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4. With the utilization of observed data, inverse PINNs are able to precisely identify the hidden parameter in the
governing equation (mobility ratio only). The constraints from governing equations reduce the dependence
of inverse PINNs on labeled data. Our sensitivity analysis reveals that PINNs demonstrate resilience to data
impurities of up to 5% and cope well with moderate data shortages.

5. Inverse PINNs have the capability to identify multiple parameters within the Buckley-Leverett equation (both
mobility ratio and gravity term), enabling the comprehensive mapping of the entire solution space. This
is achieved through meticulous adjustments of learning rates for individual optimizers concerning model
hyperparameters and two learnable parameters.

6 Abbreviations

ML Machine Learning

PIML Physics-Informed Machine Learning

CCUS Carbon Capture, Utilization, and Storage

PINN Physics-Informed Neural Network

PDE Partial Differential Equation

BL Buckley-Leverett

NN Neural Network

ANN Aritificial Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Networks

AD Automation Differentiation

LHS Latin Hypercube Sampling
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