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Stochastic orbital techniques offer reduced computational scaling and memory requirements to describe ground
and excited states at the cost of introducing controlled statistical errors. Such techniques often rely on
two basic operations, stochastic trace estimation and stochastic resolution of identity, both of which lead to

statistical errors that scale with the number of stochastic realizations (Nξ) as
√

N−1
ξ . Reducing the statistical

errors without significantly increasing Nξ has been challenging and is central to the development of efficient
and accurate stochastic algorithms. In this work, we build upon recent progress made to improve stochastic
trace estimation based on the ubiquitous Hutchinson’s algorithm and propose a two-step approach for the
stochastic resolution of identity, in the spirit of the Hutch++ method. Our approach is based on employing a
randomized low-rank approximation followed by a residual calculation, resulting in statistical errors that scale

much better than
√

N−1
ξ . We implement the approach within the second-order Born approximation for the

self-energy in the computation of neutral excitations and discuss three different low-rank approximations for
the two-body Coulomb integrals. Tests on a series of hydrogen dimer chains with varying lengths demonstrate
that the Hutch++-like approximations are computationally more efficient than both deterministic and purely
stochastic (Hutchinson) approaches for low error thresholds and intermediate system sizes. Notably, for
arbitrarily large systems, the Hutchinson-like approximation outperforms both deterministic and Hutch++-
like methods.

I. INTRODUCTION

Studying the electronic structure of molecular systems
and materials is essential for understanding, predicting,
and controlling their properties. An especially intrigu-
ing aspect involves the calculation of excited electronic
states, as they play a crucial role in photo-chemical
transformations,1,2 energy storage and transfer,3–5 and
light harvesting.6 While exact many-body techniques like
full configuration interaction (FCI) and tensor network-
based methods offer accurate results for simplified prob-
lems, they are constrained by computational costs lim-
iting their use to small systems. In the realm of ex-
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tended systems, approximations such as mean-field time-
dependent density functional theory (TDDFT)7–10 or
time-dependent Hartree-Fock (TDHF),11–13 as well as
methods like coupled cluster within the equations of mo-
tion formalism (EOM-CC),14,15 are commonly used for
calculating excited states. Additionally, techniques based
on Green’s function (GF) methods, such as GW16–21 and
GF222,23 closures, have proven effective for computing
excited states in both extended materials and molecular
systems.

Within the family of GF techniques, we will explore a
method known as GF2 or the second-order Born approx-
imation that approximates electronic correlations by em-
ploying a second-order expansion of the self-energy with
bare Coulomb interactions.24,25 Previous evaluations of
the accuracy of GF2 have shown favorable comparisons
with other methods such as configuration interaction
with singles and perturbative doubles (CIS(d)), demon-
strating notably precise results for excited states, even
for those with charge transfer character.25 However, one
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drawback of the GF2 method is its computationally in-
tensive nature compared to mean-field-based techniques,
with a complexity of O(N5), where N represents the
number of basis functions used to describe the system.
To address this steep scaling, in Ref. 24, we utilized the
stochastic resolution of the identity (sRI)26,27 to decou-
ple the 4-index electron repulsion integrals (ERI) present
in the self-energy. This led to a stochastic real-time im-
plementation of GF2, referred to as stochastic TD-GF2
(or sTD-GF2), which offers a computational scaling of
O(N3) for computing excited states, similar to a mean-
field calculation.

The enhanced computational efficiency achieved through
the utilization of stochastic techniques is accompanied by
the introduction of a statistical error, which can be man-
aged by increasing the number of samples or stochastic
orbitals. Particularly, when employing the stochastic res-
olution of the identity to decouple the ERIs as in sTD-
GF2, the convergence of the statistical error is relatively
slow, scaling as O(N

−1/2
ξ ), where Nξ represents the num-

ber of stochastic orbitals utilized to approximate the sRI.
This convergence behavior resembles that of stochastic
trace estimators based on the Hutchinson algorithm.28,29

For the latter, enhancements can be achieved by combin-
ing low-rank approximations to the matrix whose trace is
calculated with the stochastic estimation of the residual.
This approach, termed Hutch++,30 has demonstrated
significant success in enhancing error convergence in the
stochastic estimation of the trace of positive semi-definite
matrices, particularly when they exhibit a mild low-rank
structure.

In this study, we present a method akin to Hutch++
for the stochastic resolution of identity and investigate
its efficacy in comparison to the traditional Hutchinson-
like approach for excited states of hydrogen dimer
chains. Drawing inspiration from Hutch++, our pro-
posed method entails decomposing the computation into
a low-rank component and a residual. To achieve this,
we employ a randomized singular value decomposition
(SVD) technique on the 4-index Electron Repulsion In-
tegrals (ERI) and subsequently select stochastic orbitals
to approximate the residuals. In Section II, we offer
an overview of the stochastic TD-GF2 method, elabo-
rating on its theoretical underpinnings, and extend the
Hutch++ approximation for the resolution of identity.
In Section III, we delve into various strategies for con-
structing a Hutch++-like approximation to the sRI and
rigorously evaluate the performance against determinis-
tic TD-GF2 and the Hutchinson-like approach. Finally,
in Section IV, we provide a summary of our findings, dis-
cussing the implications and potential avenues for future
research.

II. THEORY

This section provides an overview of the real-time second-
order Green’s function theory for computing neutral ex-
citations (TD-GF2) and its stochastic implementation
(sTD-GF2), along with the presentation of Hutch++-
like variants of the resolution of identity. For a detailed
derivation of TD-GF2 and sTD-GF2, readers are referred
to Ref. 25 and 24, respectively.

A. Deterministic Real-Time GF2 theory (TD-GF2)

In the TD-GF2 method, we consider a generic many-
body Hamiltonian coupled to an external electric field,
expressed in second quantization as:

Ĥ =
∑

ij

hij â
†
i âj+

1

2

∑

ijkl

(ij|kl)â†i â
†
kâlâj+

∑

ij

∆ij(t)â
†
i âj ,

(1)
where i, j, k, and l denote molecular orbital indexes, â†i
and âi represent creation and annihilation operators for
an electron in orbital χi, respectively, hij are the matrix
elements of the one-body interactions, (ij|kl) are the ma-
trix elements of the two-body interactions, corresponding
to 4-index electron repulsion integrals:

(ij|kl) =
∫∫

χi(r1)χj(r1)χk(r2)χl(r2)

|r1 − r2|
dr1dr2. (2)

The last term in Eq. (1) represents the external driving
force, ∆ij(t) = E(t) ·µij , where E(t) is a time-dependent
perturbation that couples the system with an external
electric field, through its transition dipole moment µij

defined by:

µij =

∫

χi(r)rχj(r)dr. (3)

Under the adiabatic approximation, where the system
responds instantaneously to external stimuli, the equa-
tion of motion for the electronic density matrix ρ(t) in
the basis of the eigenstates of the Fock operator is given
by:24,25

i
d

dt
ρ(t) = [F[ρ(t)], ρ(t)] + Σ̃ad(t)ρ(t)− ρ(t)Σ̃ad†(t) , (4)

where F[ρ(t)] is the Fock operator, with matrix elements
given by:

Fij [ρ(t)] = hij+
∑

kl

(ij|kl)ρkl(t)−
1

2

∑

kl

(ik|jl)ρkl(t)+∆ij(t) ,

(5)
and Σ̃ad is the adiabatic GF2 self-energy, with matrix
elements given by:

Σ̃ad
ij (t) = −

∑

mn

δW̃R
imjnρmn(t) +

1

2
ℜ
∑

mn

δW̃R
imjnδmn .

(6)
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In the above equation, δW̃R
imjn are matrix elements of

the GF2 retarded screened Coulomb interactions taken
in the zero-frequency limit:

δW̃R
imjn = lim

ω→0

{

− 1

2

∑

kq

f(εk)− f(εq)

εk − ω − εq − iη

× (im|qk)
[

2(jn|qk)− (jk|qn)
]

}

.

(7)

In the equation above, f(ε) is the Fermi function and {ε}
are GF2 quasiparticle energies obtained as in Ref. 31.
The dynamics of ρ(t), obtained by integrating Eq. (4),
is used to compute the frequency-dependent absorption
spectrum (photoabsorption cross-section) σ(ω) of the
system as:

σ(ω) ∝ 1

3γ

∑

d=x,y,z

ωℑ
∫

dte−iωtTr[(ρ(t)−ρ(t0))µd] . (8)

In the above equation, d = x, y, z are the spatial com-
ponents of the dipole moment and γ ≪ 1 is a small di-
mensionless parameter that scales the amplitude of the
external electric field. The computational cost of the
TD-GF2 method is primarily determined by the expense
of evaluating the self-energy (Eq. (6)), which scales as
O(N5) with the system size.

B. Stochastic Real-Time GF2 theory (sTD-GF2)

To reduce the scaling of the TD-GF2 method from O(N5)
to O(N3), the 4-index ERI appearing in the self-energy
(Eq. (6)) are decoupled using the stochastic resolution of
the identity (sRI), which corresponds to the average of
the outer product of Nξ stochastic orbitals θ, defined as
vectors with random elements ±1, in the limit of infinite
stochastic orbitals:

lim
Nξ→∞

〈θξ ⊗ θξ
T 〉ξ =











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











= I , (9)

where 〈· · · 〉ξ represents the average over the set {θξ} of
uncorrelated stochastic orbitals θξ, with ξ = 1, 2, . . . , Nξ.
Using the sRI, the 4-index ERI can be approximately
written as26

(ij|kl) ≈
Naux
∑

PQ

Naux
∑

AB

(ij|A)V −1/2
AP

〈

θξP ⊗ θξQ
T
〉

ξ
V

−1/2
QB (B|kl)

= 〈RijRkl〉ξ .
(10)

We use capital indexes A and B to refer to the aux-
iliary basis with Naux elements. In Eq. (10), Rij =

∑Naux

A (ij|A)
∑Naux

B V
−1/2
AB θB, and (ij|A) and VAB are

3-index and 2-index ERI, given by

(ij|A) =
∫

χi(r1)χj(r1)χA(r2)

|r1 − r2|
dr1dr2 (11)

and

VAB =

∫

χA(r1)χB(r2)

|r1 − r2|
dr1dr2 , (12)

respectively.

The sRI can be seen as applying the Hutchinson method
for estimating the trace of a certain matrix (defined
for each ERI). Specifically, for a matrix with elements
defined as DPQ =

∑

AB(ij|A)V
−1/2
AP V

−1/2
QB (B|kl), the

Hutchinson estimator of its trace is 〈RijRkl〉ξ.
To obtain the self-energy, we insert the 4-index ERI given
by Eq. (10) into Eq. (7) and use it to approximate the self-
energy in Eq. (6). This yields the following expression for
the self-energy:

Σad
ij (t) ≈− 1

2

〈

∑

kqmn

f(Ek)− f(Eq)

Ek − ω − Eq − iη

RimRqk(2R
′
jnR

′
qk −R′

jkR
′
qn)δρmn(t)

〉

ξ,ξ′

,

(13)

where the prime symbols over the R tensors indicate
that different sets of stochastic orbitals are employed
to avoid correlations. When using Eq. (13) to approx-
imate the self-energy, we will refer to the method as the
Hutchinson-like approximation of TD-GF2.

Note that the scaling of the self-energy in the Hutchinson-
like approximation (Eq. (13)) is O(N2

ξN
3). However, we

have observed that the error per electron in many quanti-
ties is independent of the system size, leading to an effec-
tive O(N3) scaling24 (this is further tested in Sec. III).
Such system size independent behavior of Nξ for a given
error has been observed in stochastic computations of
the ground state energy per electron26,27,32, charged ex-
citation energies31 in molecules and nanostructures, and
the photoabsorption cross-section per electron, which we
study further below.

C. Hutch++-like approximations for TD-GF2

Hutch++30 is a method for estimating the trace of pos-
itive semidefinite matrices with mild low-rank structure.
The method consists of building a stochastic low-rank ap-
proximation of the matrix by performing a randomized
SVD with a test matrix W (consisting of Nξ stochas-
tic vectors as columns) as it is shown in Algorithm 1.
Then, a deterministic trace is performed on the low-rank
Alow-rank, while the residual is estimated stochastically
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(Hutchinson algorithm28,29) using the residual stochas-
tic vectors, corresponding to the columns of G (see Al-
gorith 1). The advantage of the Hutch++ algorithm
over the direct use of the sRI (Hutchinson algorithm)
is that the convergence of the statistical error is faster

than O(
√

N−1
ξ ).

Algorithm 1 Randomized low-rank of A

1: W ≡ [θ1 · · · θξ] Matrix with stochastic column orbitals

2: Q = orth[AW] Orthogonalize using QR decomposition

3: Alow-rank = QQTA

4: G = (I − QQT )W′
≡ [G1

′

· · ·G
ξ′ ] Matrix with residual

stochastic column orbitals

Following the logic of the Hutch++ method to accelerate
the convergence of stochastic trace estimations, we have
developed three Hutch++-like variants of the sTD-GF2
approach. As before, we rewrite the 4-index ERI in terms
of 3-index and 2-index ERIs:

(ij|kl) ≈
Naux
∑

AB

(ij|A)V −1
AB(B|kl) . (14)

However, instead of using the stochastic resolution of
identity given by Eq. (9), we first perform a random-
ized low-rank approximation to V, V−1, or KQ

ij =
∑Naux

A (ij|A)V −1/2
AQ , and compute the residuals stochas-

tically. The latter is typically used to approximate the
ERIs deterministically (this approximation is called den-
sity fitting) as (ij|kl) = ∑Naux

Q KQ
ijK

Q
kl. We will refer to

these Hutch++-like variants of sTD-GF2 as H++ on V ,
H++ on V −1, and H++ on K, respectively.

Before we describe the different low-rank approxima-
tions, we provide in Fig. 1 analysis of the singular

values of the Coulomb matrix V, its inverse V−1,
and the reshaped tensor K for hydrogen dimer chains
of varying lengths (see below in Sec. III more detail
on the calculations). In all instances, the rank grows
like O(N), indicating that any truncation based on
low-rank approximation will inherently vary with system
size. This variability might result in an increase in the
method’s scaling with system size, compared to the
purely stochastic approach (such as the Hutchinson-like
sTD-GF2). Nevertheless, the reduction in computational
overhead due to accelerated error convergence might
offset the scaling increase within a specific parameter
range. This aspect will be investigated numerically in
Sec. III.

1. Low rank approximations based on V and V−1

For the H++ on V and H++ on V −1 variants, the 4-
index ERI can be expressed as a sum of low-rank and
residual terms:

(ij|kl) ≈
Nrank
∑

r

N r
ijM

r
kl +

〈

Rξ′

ijR
ξ′

kl

〉

ξ′
, (15)

where the tensors elements N r
ij , M

r
kl, and Rξ′

ij are defined
in Appendix A. The first term in Eq. (15) is a randomized
low-rank approximation of the ERI and the second term
corresponds to the residual, which is estimated stochas-
tically.

The scaling of computing the N r
ij and M r

kl tensors is
O(NrankN

3), where Nrank is the rank of the stochastic
low-rank approximation, which coincides with the num-
ber of stochastic orbitals used to build the test matrix
W (see Algorithm 1), i.e. Nrank = Nξ.

Using Eq. (15) to evaluate the ERIs, the self-energy given
by Eq. (6), can be expressed as:

δΣad
ij (t) =− 1

2

Nrank
∑

r,r′

∑

kqmn

f(εk)− f(εq)

εk − ω − εq − iη
N r

imM r
qk(2N

r′

jnM
r′

qk −N r′

jkM
r′

qn)δρmn(t)

− 1

2

〈

Nrank
∑

r

∑

kqmn

f(εk)− f(εq)

εk − ω − εq − iη
N r

imM r
qk(2R

′
jnR

′
qk −R′

jkR
′
qn)δρmn(t)

〉

ξ′

− 1

2

〈

Nrank
∑

r′

∑

kqmn

f(εk)− f(εq)

εk − ω − εq − iη
RimRqk(2N

r′

jnM
r′

qk −N r′

jkM
r′

qn)δρmn(t)

〉

ξ

− 1

2

〈

∑

kqmn

f(εk)− f(εq)

εk − ω − εq − iη
RimRqk(2R

′
jnR

′
qk −R′

jkR
′
qn)δρmn(t)

〉

ξ,ξ′

.

(16)

The first term on the right-hand side of Eq. (16) cor- responds to the randomized low-rank approximation of
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FIG. 1: Singular values of (a) the Coulomb matrix V, (b) its inverse V−1, and (c) the reshaped 3-index K-tensor K

for three representative hydrogen dimer chains. The Coulomb matrix and its inverse were computed using the
cc-PVDZ-RI auxiliary basis set, while the K-tensor utilized the minimal STO-3G basis as the main basis and
cc-PVDZ-RI as the auxiliary basis.

the self-energy, with a scaling of O(N2
rankN

3). The next
two terms are mixed stochastic and low-rank, with a
scaling of O(NrankN

3). The last term in Eq. (16) is
purely stochastic, scaling as O(N3). As shown above
in Fig. 1, the low-rank structure of the matrices becomes
less pronounced for larger systems, implying that Nrank

does depend on N . However, we expect Nrank < N , so
O(N3) < O(N2

rankN
3) < O(N5), corresponding to the

scaling of the Hutchinson-like, Hutch++-like, and deter-
ministic TD-GF2 approximations, respectively.

2. Low rank approximation based on K

The ERIs using the H++ on K variant are given
by

(ij|kl) =
rank
∑

r

N r
ijM

r
kl + 〈(Rξ

ij)
low-rankRξ

kl〉ξ

+ 〈Rξ
ij(R

ξ
kl)

low-rank〉ξ + 〈Rξ
ijR

ξ
kl〉ξ ,

(17)

where all tensor elements are defined in Appendix A. The
first term in Eq. (17) is a randomized low-rank approxi-
mation of the ERI, the second and third terms are mixed
stochastic and low-rank, and the last term corresponds
to the stochastic residual. Using Eq. (17) to approximate
the ERIs in the self-energy given by Eq. (6) results in the
H++ on K variant of sTD-GF2.

Despite the common ingredients with Hutch++, all of
the sTD-GF2 variants proposed here (H++ on V, H++
on V−1, and H++ on V) are substantially different from
the Hutch++ trace estimator since using the determinis-
tic subspace for computing the low-rank approximations
changes the scaling of the method. Therefore, the im-
plications for their performance must be tested. In the

next section, we numerically analyze the efficiency of the
proposed schemes.

III. RESULTS

To test the performance of the Hutch++-like variants of
sTD-GF2, we consider hydrogen dimer chains of varying
lengths as model systems. The hydrogen chains, con-
sisting of hydrogen molecules with a bond length of 0.74
Å and inter-molecular distance of 1.26 Å, were aligned
along the direction of the external electric field. To rep-
resent the electric field, we employed a Gaussian pulse
centered at t0 = 0.2 fs with an amplitude γE0 = 0.02
V/Å and variance of 0.005 fs. The regularization param-
eter in Eq.(7) was set to η = 0.01 and the inverse tem-
perature to β = 50. To perform the Fourier transform in
Eq.(8), we have added the damping function e−Γt, with
a decay rate Γ = 1/(0.1tmax), being tmax the total propa-
gation time. Throughout this work, we used the minimal
STO-3G basis set as the main basis and the cc-PVDZ-RI
as the auxiliary basis for decoupling the ERIs.

Firstly, we aim to illustrate the congruence between the
absorption spectra as described by Eq. (8), calculated
through the Hutchinson-like (sTD-GF2) and Hutch++-
like variants of sTD-GF2, with the deterministic outcome
(TD-GF2). To achieve this, we constrain the dynam-
ics generating σ(ω) to a duration of 6 fs, resulting in a
relatively broad spectral characteristic. Fig. 2 exhibits
the absorption spectra for two hydrogen dimer chains
of varying lengths, chosen as representative examples.
Within the stochastic outcomes’ margin of noise, all spec-
tra demonstrate a notable consistency with the determin-
istic TD-GF2 outcome. Note that the curves have been
shifted for clarity.
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FIG. 2: Absorption spectra of representative hydrogen
dimer chains, with (a) H20 and (b) H100, were analyzed
using deterministic (TD-GF2), Hutchinson-stochastic
(sDT-GF2), and mixed low-rank Hutch++-like
variations of sTD-GF2 applied to the Coulomb matrix
(H++ on V), its inverse (H++ on V−1), and the
3-index tensor K (H++ on K). In all cases, the
STO-3G basis set was utilized as the primary basis,
with cc-PVDZ-RI employed as the auxiliary basis. The
intensity average error per electron was set to 10−3,
with units consistent with the intensity. The curves
have been vertically shifted for clarity

Next, we shift our focus to examining the statistical error
and evaluating its correlation with the number of stochas-
tic orbitals and computational time. Fig. 3 presents
the average statistical error per hydrogen dimer across
three typical chains of differing lengths, employing the
Hutchinson sTD-GF2 method and its Hutch++-like vari-
ations over varying computational durations. The growth
in computational time within a specific method arises
from increasing Nξ. The error metric was determined as
the mean of the standard error –defined as the ratio be-
tween the standard deviation (STD) and the number of
independent stochastic runs (n)– of the photoabsorption

cross-section:

〈Error〉 =
〈

STD[σ(ω)]√
n

〉

ω

, (18)

where, 〈· · · 〉ω = 1
Nω

∑Nω

ω · · · is the average over
the Nω discretized frequencies, STD[σ(ω)] =
√
∑n

i (σi(ω)− 〈σ(ω)〉)2/n, and i = 1, . . . , n is the
index that labels the independent stochastic runs, taken
to be n = 6. We confine our analysis to the scientifically
significant interval of 10 − 30 eV, as this is the range
in which significant absorption peaks are observed for
hydrogen dimer chains (see Fig. 2).

We observe that across all instances, the convergence rate
of the statistical error remains roughly consistent with
that of the standard Hutchinson method when utilizing
a limited number of stochastic orbitals. However, it ac-
celerates as the contributions from the low-rank compo-
nent become more pronounced due to the escalation of
Nξ (remembering that Nξ governs the rank of this com-
ponent). Note that, although the singular values of the
K tensor exhibit the fastest decay among the matrices
analyzed in Fig. 1, the overhead added by the 16 terms
required to compute the square of the ERIs (see Eq. (17))
appearing in the self-energy (Eq. (6)-(7)) make the H++
on K slower than H++ on V and H++ on V−1, for
the range of parameters considered in Fig. 3. Notably,
among all Hutch++ variations, the most rapid conver-
gence occurs when employing randomized Singular Value
Decomposition (SVD) on the Coulomb matrix V. Con-
sequently, we will exclusively focus on this variant within
the sTD-GF2 method, alongside the standard Hutchin-
son and deterministic approaches, for the remainder of
the analysis.

Fig. 4 illustrates the computational scaling with the sys-
tem size for the deterministic TD-GF2, Hutchinson sTD-
GF2, and the H++ variant applied to V within sTD-
GF2 across low, moderate, and high error thresholds.
The deterministic approach scales formally as O(N5), the
Hutchinson sDT-GF2 scales as O(N3) for a fixed error,
and the Hutch++ sTD-GF2 as O(N2

rankN
3) for a fixed

error. Empirically it scales as O(N4) within the system
size range examined in Fig. 4. This is due to the depen-
dence of Nrank on N . These computational scalings result
in a crossover between the preferred method, contingent
upon the specified error threshold, and the system size.
Specifically, as depicted in Fig. 4a, the H++ variant on
V within sTD-GF2 demonstrates superior efficiency com-
pared to the Hutchinson version for systems containing
up to approximately ∼350 electrons for low error thresh-
old (1 × 10−4/Ne in the error per electron). Conversely,
as demonstrated in Fig. 4c, under a high error threshold
(1×10−3/Ne), the Hutchinson algorithm outperforms the
H++ variant on V for a broader spectrum of system sizes
(NH > 20). Fig. 4b depicts a scenario at intermediate
error thresholds.

Additionally, it is worth noting that as error thresholds
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FIG. 3: Error per electron in computing the absorption spectra of representative hydrogen dimer chains, namely (a)
H20, (b) H50, and (c) H100, as a function of computational effort (time) using various stochastic methods.
Computational time increases with decreasing error as a result of the increase in the number of stochastic orbitals,
Nξ. In all cases, the STO-3G basis set was utilized as the main basis, and cc-PVDZ-RI was employed as the
auxiliary basis.

decrease, both the Hutchinson and H++ variants ap-
plied to V within sTD-GF2 begin to show disadvantages
compared to purely deterministic approach (TD-GF2).
This underscores the nontrivial nature of balancing error
thresholds and system size when determining the opti-
mal parameter range for the most efficient utilization of
the H++ variant on V. In Fig. 4, the background color
signifies the combination of error threshold and system
size where each real-time GF2 method (green for TD-
GF2, red for sTD-GF2, and blue for the H++ variant on
V within sTD-GF2) exhibits the highest computational
efficiency.

Broadly speaking, the H++ variant applied to V within
sTD-GF2 proves to be more efficient than both purely de-
terministic and purely stochastic computations for inter-
mediate system sizes and low to moderate error thresh-
olds. For instance, this efficiency is evident within the
range of approximately ∼ 100 − 350 electrons (100-350
STO-3G basis functions and 1400-4900 cc-PVDZ-RI ba-
sis functions) under an error threshold of 10−4 per elec-
tron and ∼ 48−110 electrons (48-110 STO-3G basis func-
tions and 672-1540 cc-PVDZ-RI basis functions) under
an error threshold of 1

2 × 10−3 per electron, as calculated
according to Eq. 18.

IV. CONCLUSIONS

We have devised a series of Hutch++-inspired iterations
of the stochastic real-time GF2 approach tailored for
computing neutral excitations. The Hutch++ methodol-
ogy involves breaking down the computation of the self-
energy and the ERIs into a randomized low-rank seg-
ment and a stochastically estimated residual. Our work

has demonstrated that employing a randomized Singu-
lar Value Decomposition technique on the Coulomb ma-
trix V to obtain the low-rank approximation to the ERIs
(H++ on V ) yields the swiftest balance between statisti-
cal error and computational time. Nevertheless, the effi-
ciency of such an approximation diminishes for large sys-
tems due to its scaling of O(N2

rankN
3). However, this ef-

ficiency threshold shifts towards larger system sizes when
the predetermined statistical error threshold is set to be
small.

Generally, the H++ on V proves to be more efficient than
both deterministic and stochastic sTD-GF2 methods for
scenarios involving low error thresholds and intermediate
system sizes. However, the applicability of this parameter
range is limited. Consequently, for large system sizes, the
Hutchinson sTD-GF2 approach is poised to outperform
both the deterministic and Hutch++ variants, owing to
its O(N3) scaling.

The Hutch++-inspired variations of the sTD-GF2
method serve as valuable additions to the arsenal of
noise reduction strategies employed in electronic struc-
ture calculations. These variants synergize effectively
with other techniques, such as the range-separated sRI,27

which takes advantage of the sparsity of the ERIs by
partitioning them into distinct categories –large contri-
butions, calculated deterministically, and small contribu-
tions, computed stochastically– This partition provides
an alternative avenue for enhancing the rate of error con-
vergence in stochastic applications based on the resolu-
tion of identity.
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FIG. 4: Computational scaling with system size for the
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methods applied to the Coulomb matrix (H++ on V)
for (a) low (10−4), (b) moderate (12 × 10−3), and (c)
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hydrogen dimer chains. The green, blue, and red shaded
regions indicate the range of system sizes where
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Appendix A: Expressions for tensor elements

1. H++ on V and H++ on V
−1

The tensor elements for computing the low-rank terms in
Eq. (15) are given by

[

N r
ij

]H++ on V
=

Naux
∑

A

(ij|A)
(

∑

P

V −1
APQPr

)

[

N r
ij

]H++ on V −1

=

Naux
∑

A

(ij|A)QAr ,

(A1)

and

[M r
kl]

H++ on V =

Naux
∑

B

QT
rB(B|kl)

[M r
kl]

H++ on V −1

=

Naux
∑

B

(

Naux
∑

C

QT
rCV

−1
cB

)

(B|kl) ,
(A2)

for the H++ on V and H++ on V −1 methods. Here,
QPr is obtained following Algorithm 1, with A = V

or V−1. For both methods, the residual tensors in
Eq. (15) are given by Rξ′

ij =
∑Naux

A (ij|A)Lξ′

A with Lξ′

A =
∑Naux

P V
−1/2
AP Gξ′

P , where Gξ′

P is obtained following Algo-
rithm 1.

2. H++ on K

The tensor elements in eq. (17) are given by

[

N r
ij

]H++ on K
= Q(ij)r (A3)

and

[M r
kl]

H++ on K =

Nrank
∑

s

Naux
∑

P

CrPDPsQ
T
s(kl) . (A4)

In the above equations, Q is obtained as in Algo-
rithm 1, for A = K with reshaped elements KmnQ →
K(mn)Q, CrP =

∑N
mn Q

T
r(mn)K(mn)P , and DPs =

∑N
mn K

†

P (mn)Q(mn)s. The low-rank stochastic tensor,
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(Rξ
ij)

low-rank, appearing in Eq. (17), is given by

(Rξ
ij)

low-rank =

Naux
∑

Q

K low-rank
(ij)Q W ξ

Q , (A5)

with

K low-rank
(ij)Q =

Nrank
∑

r

Q(ij)r

(

∑

mn

QT
r(mn)K(mn)Q

)

, (A6)

where W is the stochastic test matrix, as in Algorithm 1.
The stochastic tensor, (Rξ

ij), appearing in the same equa-
tion, takes the form:

Rξ
ij =

Naux
∑

Q

Kres
(ij)QW

ξ
Q , (A7)

with Kres
(ij)Q = K(ij)Q −K low-rank

(ij)Q .
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