On 3-colourability of (bull, H)-free graphs

Nadzieja Hodur ${ }^{1}$, Monika Pilśniak ${ }^{1}$, Magdalena Prorok ${ }^{1}$, and Ingo Schiermeyer ${ }^{2}$
${ }^{1}$ AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland ${ }^{2}$ TU Bergakademie Freiberg, 09596 Freiberg, Germany

April 22, 2024

Abstract

The 3-colourability problem is a well-known NP-complete problem and it remains NP-complete for bull-free graphs, where bull is the graph consisting of K_{3} with two pendant edges attached to two of its vertices. In this paper we study 3 -colourability of (bull, H)-free graphs for several graphs H. We show that these graphs are 3colourable or contain an induced odd wheel $W_{2 p+1}$ for some $p \geq 2$ or a spindle graph $M_{3 p+1}$ for some $p \geq 1$. Moreover, for all our results we can provide certifying algorithms that run in polynomial time.

Keywords: 3-colourable graphs, forbidden induced subgraphs, perfect graphs, complexity Math. Subj. Class.: 05C15, 05C17, 68Q25, 68W40.

1 Introduction

We consider finite, simple, and undirected graphs. For terminology and notations not defined here, we refer to [1].

An induced subgraph of a graph G is a graph on a vertex set $S \subseteq V(G)$ for which two vertices are adjacent if and only if they are adjacent in G. In particular, we say that the subgraph is induced by S. We also say that a graph H is an induced subgraph of G if H is isomorphic to an induced subgraph of G.

Given a family \mathcal{H} of graphs and a graph G, we say that G is \mathcal{H}-free if G contains no graph from \mathcal{H} as an induced subgraph. In this context, the graphs of \mathcal{H} are referred to as forbidden induced subgraphs.

A graph is k-colourable if each of its vertices can be coloured with one of k colours so that adjacent vertices obtain distinct colours. The smallest integer k such that a given graph G is k-colourable is called the chromatic number of G, denoted by $\chi(G)$. Clearly, $\chi(G) \geq \omega(G)$ for every graph G, where $\omega(G)$ denotes the clique number of G, that is,
the order of a maximum complete subgraph of G. Furthermore, a graph G is perfect if $\chi\left(G^{\prime}\right)=\omega\left(G^{\prime}\right)$ for every induced subgraph G^{\prime} of G. For a subgraph H and a vertex v, let $d_{H}(v)=|N(v) \cap V(H)|$.

The graph on five vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ and with the edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}$, $v_{2} v_{4}$ is called the bull. Let $S_{i, j, k}$ be the graph consisting of three induced paths of lengths i, j and k, with a common initial vertex. The graph $S_{1,1,1}$ is called claw, $S_{1,1,2}$ is called chair and $S_{1,2,2}$ is called E.

The 3-colourability problem is a well-known NP-complete problem and it remains NPcomplete for claw-free and bull-free graphs. In the last two decades, a large number of results of colourings of graphs with forbidden subgraphs have been shown (cf. [2], [3], [4], [10], [12], [14], [15] and cf. [9], [11], [13] for three surveys).

Following [5], an algorithm is certifying, if it returns with each input a simple and easily verifiable certificate that the particular input is correct. For example, a certifying algorithm for the bipartite graph recognition would return either a 2 -colouring of the input graph proving that it is bipartite, or an odd cycle proving that it is not bipartite. In this paper we study 3 -colourability of (bull, H)-free graphs for several graphs H. For all of our results we will provide certifying algorithms that run in polynomial time.

Our research has been motivated by [4] and we use some definitions and notations from it. A graph G of order $3 p+1, p \geq 1$ is called a spindle graph $M_{3 p+1}$ if it contains a cycle $C: u_{0} u_{1} \ldots u_{3 p} u_{0}$, where $\left\{u_{3 i-2}, u_{3 i-1}, u_{3 i+1}, u_{3 i+2}\right\}=N_{G}\left(u_{3 i}\right)$ and $\left\{u_{3 i-3}, u_{3 i}\right\}=$ $N_{G}\left(u_{3 i-1}\right) \cap N_{G}\left(u_{3 i-2}\right)$ for each $i \in[p]$, where $[p]:=\{1,2, \ldots, p\}$.

Observe that $M_{4} \cong K_{4}$ and M_{7} is known as the Moser spindle.

Figure 1: The spindle graph $M_{3 p+1}$.
Proposition 1 ([4]). The graph $M_{3 p+1}$ is not 3-colourable for every $p \geq 1$.
Since the 3-colourability problem is NP-complete for claw-free graphs and K_{3}-free graphs (cf. [9]), it is also NP-complete for bull-free graphs. The following theorem in [4] has motivated our research.

Theorem 2 ([4]). Let G be (bull, claw)-free graph. Then one of the following holds
(i) G contains W_{5} or
(ii) G contains a (not necessarily induced) spindle graph $M_{3 i+1}$ for some $i \geq 1$ or
(iii) G is 3 -colourable.

The goal of this paper is to consider 3-colourability of $($ bull, $H)$-free graphs, where H is a supergraph of the claw.

Theorem 3. Let G be a connected (bull, chair)-free graph. Then
(i) G contains an odd wheel or
(ii) G contains a (not necessarily induced) spindle graph $M_{3 i+1}$ for some $i \geq 1$ or
(iii) G is 3 -colourable.

In fact Theorem 3 can be extended to the larger class of (bull, E)-free graphs. However, for this proof, we will show and make use of several additional graph properties.

Theorem 4. Let G be a connected (bull, E)-free graph. Then
(i) G contains an odd wheel or
(ii) G contains a (not necessarily induced) spindle graph $M_{3 i+1}$ for some $i \geq 1$ or
(iii) G is 3 -colourable.

If we forbid in addition induced 5 -cycles, then Theorem 4 can be extended as follows.
Theorem 5. Let G be a connected (bull, C_{5}, H)-free graph with $H \in\left\{S_{1,1,3}, S_{1,2,3}\right\}$. Then
(i) G contains an odd wheel or
(ii) G contains a (not necessarily induced) spindle graph $M_{3 i+1}$ for some $i \geq 1$ or
(iii) G is 3 -colourable.

The 3 -colourability problem has been also studied for P_{k}-free graphs for $k \geq 5$. Let G_{1}, G_{2}, G_{3} be graphs on 7,10 and 13 vertices, respectively (see Figure 2). In [5] the following theorem was shown.

G_{1}

G_{2}

G_{3}

Figure 2: The graphs G_{1}, G_{2} and G_{3} from Theorem 6.

Theorem 6 ([5]). A P_{5}-free graph is 3 -colourable if and only if it does not contain K_{4}, $W_{5}, M_{7}, G_{1}, G_{2}$ or G_{3} as a subgraph.

Note that G_{1}, G_{2} and G_{3} are not bull-free. This leads to the following corollary from Theorem 5.

Corollary 7. Let G be a (bull, P_{5})-free graph. Then
(i) G contains W_{5} or
(ii) G contains a (not necessarily induced) spindle graph M_{4} or M_{7} or
(iii) G is 3-colourable.

Moreover, for P_{6}-free graphs we can recall that in [6] the following theorem was shown.
Theorem 8 ([6]). A P_{6}-free graph is 3-colourable if and only if it does not contain $F_{1} \cong K_{4}, F_{2} \cong W_{5}, F_{3} \cong M_{7}, F_{4}, \ldots, F_{24}$ as a subgraph, defined in [6].

It is easy to check that $F_{2} \cong W_{5}, F_{3} \cong M_{7}, F_{12}, F_{15}$ and F_{18} (see Figure 3) are the only (K_{4}, bull)-free graphs. Note that F_{18} is well known as the Mycielski graph. This leads to another corollary from Theorem 5.

Figure 3: The graphs F_{12}, F_{15} and F_{18} from Theorem 8.

Corollary 9. Let G be a (bull, P_{6})-free graph. Then
(i) G contains W_{5} or
(ii) G contains a (not necessarily induced) spindle graph M_{4} or M_{7} or
(iii) G contains F_{12}, F_{15} or F_{18} or
(iv) G is 3-colourable.

The organization of the paper is the following. In Section 2 we provide preliminary results and properties for bull-free graphs. Next, in Section 3 we prove Theorem 3 and in Section 4 we prove Theorem 4. Finally, in Section 5 we show that the proofs of Theorem 3 and Theorem 4 provide polynomial time certifying algorithms for 3-colourability in the class of (bull, H)-free graphs for $H \in\left\{S_{1,1,2}, S_{1,2,2}\right\}$.

2 Preliminary results

We recall that a hole in a graph G is an induced cycle of length at least 4 , and an antihole in G is an induced subgraph whose complement is a cycle of length at least 4. A hole (antihole) is odd if it has an odd number of vertices. As the main tool for proving Theorems 3 and 4, we will use the well-known Strong Perfect Graph Theorem shown by Chudnovsky et al. [8].

Theorem 10 (Chudnovsky et al. [8]). A graph is perfect if and only if it contains neither an odd hole nor an odd antihole as an induced subgraph.

In the following we will consider 3-colourability in subclasses of bull-free graphs. Here are some useful reductions:

- If $\Delta(G) \leq 3$, then G is 3 -colourable by Brook's Theorem.
- If G has a vertex w of degree at most 2 , then G is 3 -colourable if and only if $G-w$ is 3 -colourable. So we can reduce G to $G-w$.
- If G contains $K_{4}=M_{4}$, then G is not 3-colourable.
- If a graph G contains an odd antihole $\overline{C_{2 t+1}}$ with $t \geq 4$, then G contains K_{4}. If $t=3$, then G contains the spindle graph M_{7}, and finally, if $t=2$, we have an antihole $\overline{C_{5}}$, which is isomorphic to the hole C_{5}.
- If G is not connected, then we can check 3-colourability for each component of G seperately. Moreover, if G has a cut-vertex w, let $G_{1}, G_{2}, \ldots, G_{t}$ be the components of $G-w$. Now we check whether each induced subgraph $G_{i}^{\prime}=G\left[G_{i} \cup\{w\}\right]$ is 3-colourable. If all of $G_{1}^{\prime}, \ldots, G_{t}^{\prime}$ are 3-colourable, then we can combine their 3colourings to obtain a 3 -colouring of G.
These reductions show that we can restrict our 3 -colourability test to the class of bull-free graphs that are 2-connected, K_{4}-free, and where $\delta(G) \geq 3$. Furthemore, we can assume without losing generality that the graph G contains an odd hole $C_{2 p+1}$.

2.1 Properties for bull-free graphs

Let $Q=v_{1} v_{2} \ldots v_{p} v_{1}$ be the smallest induced odd hole in the graph G and $w \in V(G) \backslash Q$. We define $q(w)$ as the largest i such that w has i consecutive neighbours on the cycle Q. Thus, there is $1 \leq j \leq p$ satisfying $\left\{v_{j}, v_{j+1}, \ldots, v_{j+i-1}\right\} \subset N_{Q}(w)$. All indices are taken modulo p.

We will prove some useful facts about this value.
Fact 11. If $p>5$, then $q(w) \in\{1,3\}$. If $p=5$, then $q(w) \in\{1,3,4\}$.
Proof. Firstly, note that if $q(w)=2$, then the set of vertices $\left\{v_{j-1}, v_{j}, v_{j+1}, v_{j+2}, w\right\}$ induces bull. If $4 \leq q(w)<p$ and $p \geq 7$, then the set of vertices $\left\{v_{j-1}, v_{j}, v_{j+1}, v_{j+3}, w\right\}$ induces bull. If $q(w)=p$, then the graph G contains an odd wheel W_{p}.

Fact 12. If $q(w)=3$, then $d_{Q}(w)=3$.

Proof. Suppose $q(w)=3$ and there is $v_{k} \in N_{Q}(w)$ with $v_{k} \notin\left\{v_{j}, v_{j+1}, v_{j+2}\right\}$. Hence, we have $p \geq 7$. Then one of the sets $\left\{v_{j-1}, v_{j}, v_{j+1}, v_{k}, w\right\}$ or $\left\{v_{j+1}, v_{j+2}, v_{j+3}, v_{k}, w\right\}$ induces bull.

Fact 13. If $q(w)=1$, then $d_{Q}(w) \in\{1,2\}$. Moreover, if $q(w)=1$ and $d_{Q}(w)=2$, then there is i such that $N_{Q}(w)=\left\{v_{i}, v_{i+2}\right\}$.

Proof. Suppose w has two neighbours v_{i}, v_{j} in Q, satisfying $|i-j| \geq 3$, where $i>j$. Then either the cycle $w v_{i} v_{i+1} \ldots v_{j}$ or the cycle $w v_{j} v_{j+1} \ldots v_{i}$ is odd. This cycle must contain an induced odd cycle Q^{\prime}, which is shorter than Q. Since w has no consecutive neighbours on Q, the cycle Q^{\prime} is not K_{3}.

2.2 Properties for (bull, E)-free graphs

We can now define the following sets:

- $A_{i}=\left\{v \in V \backslash Q: N_{Q}(v)=\left\{v_{i}\right\}\right\}$.
- $B_{i}=\left\{v \in V \backslash Q: N_{Q}(v)=\left\{v_{i}, v_{i+2}\right\}\right\}$.
- $C_{i}=\left\{v \in V \backslash Q: N_{Q}(v)=\left\{v_{i}, v_{i+1}, v_{i+2}\right\}\right\}$.
- $D_{i}=\left\{v \in V \backslash Q: N_{Q}(v)=\left\{v_{i}, v_{i+1}, v_{i+2}, v_{i+3}\right\}\right\}$.

Let $A_{i}^{\prime}=\left\{v \in A_{i}: \exists v^{\prime} \in A_{i}, v v^{\prime} \in E(G)\right\}$ and $B_{i}^{\prime}=\left\{v \in B_{i}: \exists v^{\prime} \in B_{i} \cup C_{i}, v v^{\prime} \in\right.$ $E(G)\}$. Then let $A_{i}^{*}=A_{i} \backslash A_{i}^{\prime}$ and $B_{i}^{*}=B_{i} \backslash B_{i}^{\prime}$.

Let also $A=\bigcup_{i=1}^{p} A_{i}, B=\bigcup_{i=1}^{p} B_{i}, B^{\prime}=\bigcup_{i=1}^{p} B_{i}^{\prime}, C=\bigcup_{i=1}^{p} C_{i}$ and $D=\bigcup_{i=1}^{p} D_{i}$.
We want to prove that $V(G)=Q \cup A \cup B \cup C \cup D$. This is true due to the facts above and to the following lemma.

Lemma 14. Q is a dominating set in G.
Proof. Suppose there exists a vertex $v \in V(G)$ for which $\operatorname{dist}(v, Q)=2$. Hence, there exist $v^{\prime} \notin Q$ and $v_{i} \in Q$ such that $v^{\prime} v_{i}, v v^{\prime} \in E(G)$. If $v^{\prime} v_{j} \in E(G)$ for every j, then the set of vertices $\left\{v^{\prime}, v_{1}, \ldots, v_{p}\right\}$ induces odd wheel. If there exists $k \in[p]$ such that $v^{\prime} v_{k}, v^{\prime} v_{k-1} \in E(G)$ and $v^{\prime} v_{k+1} \notin E(G)$, then the set $\left\{v, v^{\prime}, v_{k-1}, v_{k}, v_{k+1}\right\}$ induces bull.

If none of these two cases occur, then $q\left(v^{\prime}\right)=1$. Since Q is an odd cycle, there exists $j \in[p]$ such that $v^{\prime} v_{j-1}, v^{\prime} v_{j+1}, v^{\prime} v_{j+2} \notin E(G)$ and $v^{\prime} v_{j} \in E(G)$. Then the set of vertices $\left\{v, v^{\prime}, v_{j}, v_{j+1}, v_{j+2}, v_{j-1}\right\}$ induces E (so it also induces chair).

Fact 15. Let $w \in B_{i} \cup C_{i}$ and $w^{\prime} \in B_{j} \cup C_{j}$. If $|i-j| \geq 2$, then $w w^{\prime} \notin E(G)$.
Proof. We can assume without losing generality that $2 \leq j-i<p-(j-i)$. Suppose $w w^{\prime} \in E(G)$. Let us consider possible cases.

If $j-i \geq 3$, then one of the sets $\left\{v_{i+2}, v_{i+3}, \ldots, v_{j}, w^{\prime}, w\right\}$ or $\left\{v_{j+2}, v_{j+3}, \ldots, v_{i}, w, w^{\prime}\right\}$ induces smaller odd cycle in G.

If $j-i=2$ and $p>5$, then the set of vertices $\left\{v_{i}, w, v_{j}, w^{\prime}, v_{j+2}\right\}$ induces bull.
If $j-i=2, p=5$ and $w^{\prime} \in B$, then the set of vertices $\left\{v_{i}, w, w^{\prime}, v_{j}, v_{j+1}\right\}$ induces bull. Analogously if $w \in B$.

If $j-i=2, p=5$ and $w, w^{\prime} \in C$, then the graph G contains the spindle graph M_{7}.

Fact 16. If $C_{i} \neq \emptyset$, then $C_{i+1}, C_{i-1}=\emptyset$.
Proof. Suppose that $w \in C_{i}$ and $w^{\prime} \in C_{i+1}$. If $w w^{\prime} \in E(G)$, then the induced graph $G\left[\left\{w, v_{i+1}, v_{i+2}, w^{\prime}\right\}\right]$ is complete. If $w w^{\prime} \notin E(G)$, then the set of vertices $\left\{v_{i-1}, v_{i}, w, v_{i+1}\right.$, $\left.w^{\prime}\right\}$ induces bull.

Fact 17. If $w \in B_{i} \cup C_{i}, w^{\prime} \in B_{i+1} \cup C_{i+1}$ and $w w^{\prime} \in E(G)$, then $w \in B_{i}^{*}$ or $w^{\prime} \in B_{i+1}^{*}$.
Proof. Assume $w w^{\prime} \in E(G)$. Let us consider possible cases.
If $w \in C_{i}$, then $w^{\prime} \notin C_{i+1}$ by Fact 16 .
If $w \in C_{i}$ and $w^{\prime} \in B_{i+1}^{\prime}$, then there exists $w^{\prime \prime} \in B_{i+1}^{\prime}$ such that $w^{\prime} w^{\prime \prime} \in E(G)$ and either the set of vertices $\left\{v_{i-1}, v_{i}, w, v_{i+1}, w^{\prime \prime}\right\}$ induces bull (if $w w^{\prime \prime} \notin E(G)$) or the set $\left\{w, v_{i+1}, w^{\prime}, w^{\prime \prime}\right\}$ induces K_{4} (otherwise).
If $w \in B_{i}^{\prime}$ and $w^{\prime} \in B_{i+1}^{\prime}$, then there exist $w^{\prime \prime} \in B_{i}^{\prime} \cup B_{i}$ and $w^{\prime \prime \prime} \in B_{i+1}^{\prime} \cup C_{i+1}$ such that $w w^{\prime \prime}, w^{\prime} w^{\prime \prime \prime} \in E(G)$. Then the set of vertices $\left\{v_{i-1}, v_{i}, w^{\prime}, w, w^{\prime \prime}\right\}$ induces bull (if $w^{\prime} w^{\prime \prime} \notin E(G)$), or the set $\left\{v_{i+4}, v_{i+3}, w^{\prime \prime \prime}, w^{\prime}, w\right\}$ induces bull (if $w w^{\prime \prime \prime} \notin E(G)$), or the set $\left\{v_{i+4}, v_{i+3}, w^{\prime \prime \prime}, w^{\prime}, w^{\prime \prime}\right\}$ induces bull (if $w^{\prime} w^{\prime \prime} \in E(G)$, but $w^{\prime \prime} w^{\prime \prime \prime} \notin E(G)$), or the set $\left\{w, w^{\prime}, w^{\prime \prime}, w^{\prime \prime \prime}\right\}$ induces K_{4} (otherwise).

3 Proof of Theorem 3

Note that if G is a (bull, chair)-free graph, then the sets A and B are empty. It is true, because if $q(w)=1$, then (since Q is an odd cycle) there exists $i \in[p]$ such that $w v_{i-1}, w v_{i+1}, w v_{i+2} \notin E(G)$ and $w v_{i} \in E(G)$. Then the set of vertices $\left\{v_{i-1}, v_{i}, v_{i+1}, v_{i+2}, w\right\}$ induces chair.

Moreover, we can point out that for every $i \in[p]$ we have $\left|C_{i}\right| \leq 1$. It is true, because if we have two distinct vertices $w, w^{\prime} \in C_{i}$, then either the graph $G\left[\left\{v_{i}, v_{i+1}, w, w^{\prime}\right\}\right]$ is complete (if $w w^{\prime} \in E(G)$) or the set of vertices $\left\{v_{i-2}, v_{i-1}, v_{i}, w, w^{\prime}\right\}$ induces chair (if $\left.w w^{\prime} \notin E(G)\right)$.

Consider the case with $p=5$. We know that $V(G)=Q \cup C \cup D$. Our assumption is that $\delta(G) \geq 3$, so every vertex from Q must have at least one neighbour in the set $C \cup D$. Since $p=5$, the graph G always contains M_{7}.

Now, we will describe the structure of the graph G for $p>5$. By Fact 11 we have $V(G)=C \cup Q$. Moreover, by Fact $16,\left|N_{Q}(w) \cap N_{Q}\left(w^{\prime}\right)\right| \leq 1$ for every $w, w^{\prime} \in C$. Then $|C| \leq \frac{p-1}{2}$. Let us recall that C is an isolated set of vertices (by Fact 15).

This graph is either 3 -colourable or contains the spindle graph. If $|C|=\frac{p-1}{2}$, then it is easy to see that G is the spindle graph of order $\frac{3(p-1)}{2}+1$. Otherwise, there either exists vertex $v \in Q$ such that $d_{C}(v)=0$ or there exist two vertices $v_{i}, v_{j} \in Q$ such that $C_{i}, C_{j-2} \neq \emptyset, C_{i-2}, C_{j}=\emptyset$ and $j=i+2 k$, where $0<k<\frac{p-1}{2}$. The first case is impossible due to our assumption that $\delta(G)>2$. In second case we colour vertices $v_{i}, v_{i+1}, \ldots, v_{j}$ alternately with colours blue and red (starting with blue), and the rest of Q alternately with colours red and green. Finally, we colour vertices from C with
remaining colours. Note that for every vertex $w \in C$ we have at least one free colour the colouring method provides us that for every i such that $C_{i} \neq \emptyset$, vertices v_{i} and v_{i+2} get the same colour. Therefore, the obtained colouring is proper.

4 Proof of Theorem 4

The proof of Theorem 4 will be split into two cases.

4.1 Case $p>5$

Notice that in this case, if $w \in A_{i}$, then the set of vertices $\left\{v_{i-2}, v_{i-1}, v_{i}, v_{i+1}, v_{i+2}, w\right\}$ induces E. Then (because $D=\emptyset$ due to Fact 11), we have $V(G)=Q \cup B \cup C$.

Let us recall that due to Fact 15 edges $w w^{\prime}$ non-incident to the cycle Q can exist only for $w \in B_{i} \cup C_{i}$ and $w^{\prime} \in B_{i} \cup C_{i} \cup B_{i+1} \cup C_{i+1}$.

To shorten our considerations, we will call an $w w^{\prime}$ a "1-type edge" if $w, w^{\prime} \in B_{i} \cup C_{i}$, and a "2-type edge" if $w \in B_{i} \cup C_{i}, w^{\prime} \in B_{i+1} \cup C_{i+1}$. Of course, every edge non-incident to Q is either 1 -type or 2 -type. Fact 17 tells us that if $w w^{\prime}$ is an 2-type edge, then $w \in B^{*}$ or $w^{\prime} \in B^{*}$. It is obvious, that no 1 -type edge is incident to the set B^{*}. Therefore, the graph $G^{\prime}=G\left[V(G) \backslash\left(B^{*}\right)\right]$ does not contain any 2-type edge and does contain all 1-type edges.

Note that if there exists a proper 3 -colouring c^{\prime} of the graph G^{\prime}, then there also exists a proper colouring c of the graph G.

Assume that c^{\prime} is a proper 3 -colouring of the graph G^{\prime}. Let us precolour with c^{\prime} all vertices outside the set B^{*}. By Fact 15, every neighbour of non-precoloured vertex $w \in B_{i}^{*}$ is v_{i}, or v_{i+2}, or belongs to the set $C_{i-1} \cup B_{i-1} \cup C_{i+1} \cup B_{i+1}$. That means every neighbour of w is also incident to the vertex v_{i+1}. Thus, the vertex w can get the colour $c^{\prime}\left(v_{i+1}\right)$.

How can we decide whether a proper 3-colouring of G^{\prime} exists or not? We want to show that c^{\prime} exists if and only if there exists a proper colouring $c^{\prime \prime}$ of the cycle Q satisfying the following property:

$$
\begin{equation*}
\forall i \in[p]: C_{i} \cup B_{i}^{\prime} \neq \emptyset \Rightarrow c^{\prime \prime}\left(v_{i}\right)=c^{\prime \prime}\left(v_{i+2}\right) \tag{1}
\end{equation*}
$$

Of course, if $C_{i} \cup B_{i}^{\prime} \neq \emptyset$, then any proper colouring must assign the same colour to the vertices v_{i} and v_{i+2}. The inverse implication is true due to the fact that the graph G^{\prime} does not contain any 2-type edge and to the following observation.

Fact 18. The graph $G\left[B_{i} \cup C_{i}\right]$ is bipartite for any i.
Proof. Suppose $G\left[B_{i} \cup C_{i}\right]$ contains an odd cycle. Then it contains the induced odd cycle $w_{1} w_{2} \ldots w_{s}$, where $s \geq 3$, and the set of vertices $\left\{v_{i}, w_{1}, w_{2}, \ldots, w_{s} w_{1}\right\}$ induces either K_{4} or an odd wheel.

Thus, having $c^{\prime \prime}$, we can construct c^{\prime} in a very simple way, assigning every vertex the first available colour.

To find the colouring $c^{\prime \prime}$ satisfying the property (1), we proceed according to the following algorithm:

1. Colour vertex v_{1} with red.
2. Colour with red all those vertices whose colouring is enforced by the property (1).
3. If there occurres a colour conflict, stop. The graph G contains the spindle graph.
4. Let k be an index such that v_{k-2} is non-coloured and v_{k} is red. Colour v_{k-1} with green.
5. Colour with green all those vertices whose colouring is enforced by the property (1).
6. If there there occurred colour conflict, stop. The graph G contains the spindle graph.
7. Colour vertex v_{k-2} with blue.
8. Colour with blue every non-coloured vertex $v_{k-2 l}$, where $l \in \mathbb{N}$.
9. Colour with red all the remaining vertices.

Steps 8 and 9 are possible, since Q is an odd cycle. Using this procedure we obtain a proper colouring of the cycle Q.

4.2 Case $p=5$

Since G is (bull, E)-free graph, and C_{5} is a dominating cycle (by Lemma 14), it follows that $V(G)=Q \cup A \cup B \cup C \cup D$. Assuming G does not contain W_{5}, K_{4} and M_{7}, we will prove a number of properties of these subsets.

Fact 19. The graphs $G\left[C_{i} \cup B_{i}\right]$ and $G\left[A_{i}\right]$ are bipartite for any i.
Proof. The proof is analogous to the proof of Fact 18.
Fact 20. If $w \in A_{i}$ and $w^{\prime} \in A_{i+1} \cup A_{i-1} \cup B_{i-1}$, then $w w^{\prime} \in E(G)$.
Proof. Suppose $w^{\prime} \in A_{i+1} \cup B_{i-1}$ and $w w^{\prime} \notin E(G)$. Then the set of vertices $\left\{w, v_{i}, v_{i+1}\right.$, $\left.v_{i+2}, v_{i+3}, w^{\prime}\right\}$ induces E. Analogously for A_{i-1}.

Fact 21. If $w \in A_{i}$ and $w^{\prime} \in A_{i+2} \cup A_{i+3} \cup B_{i} \cup B_{i+3} \cup C_{i} \cup C_{i+1} \cup C_{i+2} \cup C_{i+3}$, then $w w^{\prime} \notin E(G)$.

Proof. Suppose $w w^{\prime} \in E(G)$.
If $w^{\prime} \in A_{i+2}$, then the set of vertices $\left\{v_{i+3}, v_{i+4}, v_{i}, v_{i+1}, w, w^{\prime}\right\}$ induces E. Analogously for A_{i+3}.

If $w^{\prime} \in B_{i} \cup C_{i}$, then the set of vertices $\left\{v_{i-1}, v_{i}, w, w^{\prime}, v_{i+2}\right\}$ induces bull. Analogously for $B_{i+3} \cup C_{i+3}$.

If $w^{\prime} \in C_{i+1}$, then the set of vertices $\left\{w, w^{\prime}, v_{i+2}, v_{i+3}, v_{i+4}\right\}$ induces bull. Analogously for C_{i+2}.

Fact 22. There are at most two i, j such that A_{i}^{\prime} and A_{j}^{\prime} are nonempty. Moreover $|i-j|>1$.

Proof. Suppose $w, w^{\prime} \in A_{i}^{\prime}$ and $u, u^{\prime} \in A_{i+1}^{\prime}$, where $w w^{\prime}, u u^{\prime} \in E(G)$. Then by Fact 20 the set of vertices $\left\{w, w^{\prime}, u, u^{\prime}\right\}$ induces K_{4}. Thus $|j-i|>1$. Since Q consists of five vertices, the conclusion holds.

Fact 23. If $w \in A_{i}, w^{\prime} \in A_{i+1}$ and $w^{\prime \prime} \in B_{i+2}$, then $w w^{\prime \prime} \notin E(G)$ or $w^{\prime} w^{\prime \prime} \notin E(G)$.
Proof. Suppose $w w^{\prime \prime}, w^{\prime} w^{\prime \prime} \in E(G)$. By Fact $20 w w^{\prime} \in E(G)$. Then the set of vertices $\left\{v_{i}, w, w^{\prime}, w^{\prime \prime}, v_{i+2}\right\}$ induces bull.

Fact 24. If $w \in C_{i}$ and $w^{\prime} \in A_{i+1} \cup B_{i-1} \cup B_{i+1}$, then $w w^{\prime} \in E(G)$.
Proof. Suppose $w w^{\prime} \notin E(G)$. If $w^{\prime} \in A_{i+1} \cup B_{i+1}$, then the set of vertices $\left\{v_{i-1}, v_{i}, v_{i+1}, w, w^{\prime}\right\}$ induces bull. Analogously for $w^{\prime} \in B_{i-1}$

Fact 25. If $w \in C_{i}$ and $w^{\prime} \in A_{i} \cup A_{i+2} \cup A_{i+3} \cup A_{i+4}$, then $w w^{\prime} \notin E(G)$.
Proof. Suppose $w w^{\prime} \in E(G)$.
If $w^{\prime} \in A_{i}$, then the set of vertices $\left\{v_{i+3}, v_{i+2}, v_{i+1}, w, w^{\prime}\right\}$ induces bull. Analogously for $w^{\prime} \in A_{i+2}$

If $w^{\prime} \in A_{i+3}$, then the set of vertices $\left\{v_{i-1}, v_{i}, v_{i+1}, w, w^{\prime}\right\}$ induces bull. Analogously for $w^{\prime} \in A_{i+4}$.

Fact 26. If $w, w^{\prime} \in A_{i}^{\prime}$, ww $w^{\prime} \in E(G)$ and there exists $w^{\prime \prime} \in V(G) \backslash\left(A_{i} \cup D\right)$ such that $w w^{\prime \prime} \in E(G)$, then $w^{\prime} w^{\prime \prime} \in E(G)$.

Proof. Suppose $w w^{\prime}, w w^{\prime \prime} \in E(G)$ and $w^{\prime} w^{\prime \prime} \notin E(G)$.
By Fact $21 w^{\prime \prime} \notin A_{i+2} \cup A_{i+3} \cup B_{i} \cup B_{i+3} \cup C_{i} \cup C_{i+1} \cup C_{i+2} \cup C_{i+3}$. Let us consider possible cases.

If $w^{\prime \prime} \in A_{i+1} \cup B_{i+1}$, then the set of vertices $\left\{v_{i-1}, v_{i}, w, w^{\prime}, w^{\prime \prime}\right\}$ induces bull. Analogously for A_{i-1} and B_{i+2}.

If $w^{\prime \prime} \in B_{i-1}$, then by Fact 20 we have $w^{\prime} w^{\prime \prime} \in E(G)$.
If $w^{\prime \prime} \in C_{i-1}$, then by Fact 24 the set of vertices $\left\{v_{i}, w, w^{\prime}, w^{\prime \prime}\right\}$ induces K_{4}.

Fact 27. There is only one i such that $C_{i} \neq \emptyset$. Moreover, if $C_{i} \neq \emptyset$ then $A_{i+1}^{\prime} \cup B_{i+1}^{\prime} \cup$ $B_{i+2}^{\prime} \cup B_{i+3}^{\prime} \cup B_{i+4}^{\prime}=\emptyset$ 。

Proof. Let $w \in C_{i}$. We consider possible cases.
If $w^{\prime}, w^{\prime \prime} \in A_{i+1}^{\prime}$ and $w w^{\prime} \in E(G)$, then by Fact 24 the set of vertices $\left\{v_{i+1}, w, w^{\prime}, w^{\prime \prime}\right\}$ induces K_{4}.

If $w^{\prime} \in C_{i+1}$, then either the set of vertices $\left\{v_{i-1}, v_{i}, w, v_{i+1}, w^{\prime}\right\}$ induces bull (if $w w^{\prime} \notin$ $E(G))$ or the set of vertices $\left\{v_{i}, v_{i+1}, w, w^{\prime}\right\}$ induces K_{4} (otherwise). Analogously for $w^{\prime} \in C_{i-1}$.
If $w^{\prime} \in C_{i+2}$, then G contains the spindle graph M_{7}. Analogously for $w^{\prime} \in C_{i+3}$.
If $w^{\prime}, w^{\prime \prime} \in B_{i+1}^{\prime}$, then the set of vertices $\left\{v_{i-1}, v_{i}, w, v_{i+1}, w^{\prime}\right\}$ induces bull (if $w w^{\prime} \notin$ $E(G)$), or the set of vertices $\left\{v_{i+4}, v_{i+3}, w^{\prime \prime}, w^{\prime}, w\right\}$ induces bull (if $w w^{\prime} \in E(G)$ but $\left.w w^{\prime \prime} \notin E(G)\right)$, or the set of vertices $\left\{v_{i}, w, w^{\prime}, w^{\prime \prime}\right\}$ induces K_{4}. Analogously for $w^{\prime}, w^{\prime \prime} \in$ B_{i-1}.

If $w^{\prime}, w^{\prime \prime} \in B_{i+2}^{\prime}$, then G contains the spindle graph M_{7}. Analogously for $w^{\prime}, w^{\prime \prime} \in$ B_{i+3}^{\prime}.

Fact 28. If $w, w^{\prime} \in B_{i}^{\prime}$, ww $w^{\prime} \in E(G)$ and there exists $w^{\prime \prime} \in V(G) \backslash\left(B_{i} \cup C_{i} \cup D\right)$ such that $w w^{\prime \prime} \in E(G)$, then $w^{\prime} w^{\prime \prime} \in E(G)$.

Proof. By Facts 15, 21 we have $w^{\prime \prime} \notin B_{i+2} \cup B_{i+3} \cup A_{i+2} \cup A_{i}$.
By Fact 27 we know that $C \backslash C_{i}=\emptyset$. Then $w^{\prime \prime} \notin C$. If $w^{\prime \prime} \in A_{i+1}$, then $w^{\prime} w^{\prime \prime}$ exists by Fact 20 .

Suppose now $w^{\prime \prime} \in B_{i+1} \cup A_{i+3}$ and $w w^{\prime \prime} \in E(G), w^{\prime} w^{\prime \prime} \notin E(G)$. Then the set of vertices $\left\{v_{i-1}, v_{i}, w^{\prime}, w, w^{\prime \prime}\right\}$ induces bull. Analogously if $w^{\prime \prime} \in B_{i-1} \cup A_{i+4}$.

Fact 29. Let $w \in D_{i}$. If $w^{\prime} \in A_{i+1} \cup A_{i+2} \cup B_{i-1} \cup B_{i} \cup B_{i+1} \cup B_{i+2}$, then $w w^{\prime} \in E(G)$.
Proof. Suppose $w w^{\prime} \notin E(G)$.
If $w^{\prime} \in A_{i+1}$, then the set of vertices $\left\{v_{i-1}, v_{i}, w, v_{i+1}, w^{\prime}\right\}$ induces bull. Analogously for $w^{\prime} \in A_{i+2}$.

If $w^{\prime} \in B_{i} \cup B_{i+1}$, then the set of vertices $\left\{w^{\prime}, v_{i}, v_{i+1}, w, v_{i+4}\right\}$ induces bull.
If $w^{\prime} \in B_{i+2}$, then the set of vertices $\left\{v_{i}, w, v_{i+3}, v_{i+2}, w^{\prime}\right\}$ induces bull.
Fact 30. Let $D \neq \emptyset$. Then $D=D_{i}^{*}$ for some i and $A_{i} \cup A_{i+3} \cup A_{i+1}^{\prime} \cup A_{i+2}^{\prime} \cup B^{\prime} \cup C=\emptyset$.
Proof. Suppose $w \in D_{i}$. If $w^{\prime} \in D \backslash D_{i}$, then G contains the spindle graph M_{7}.
If $w^{\prime} \in D_{i}$ and $w w^{\prime} \in E(G)$, then the set of vertices $\left\{v_{i}, v_{i+1}, w, w^{\prime}\right\}$ induces K_{4}.
If $w^{\prime} \in A_{i}$, then either the set of vertices $\left\{w^{\prime}, w, v_{i}, v_{i+1}, v_{i+3}\right\}$ induces bull (if $w w^{\prime} \notin$ $E(G)$) or the set of vertices $\left\{v_{i-1}, v_{i}, w^{\prime}, w, v_{i+2}\right\}$ induces bull (otherwise). Analogously for A_{i+3}.

Suppose $w^{\prime}, w^{\prime \prime} \in A_{i+1}^{\prime}$ and $w^{\prime} w^{\prime \prime} \in E(G)$. By Fact 29 the set of vertices $\left\{w, w^{\prime}, w^{\prime \prime}, v_{i+1}\right\}$ induces K_{4}. Analogously for A_{i+2}^{\prime}.

If $w^{\prime} \in C_{i}$, then the set of vertices $\left\{v_{i+4}, v_{i+3}, w, v_{i+2}, w^{\prime}\right\}$ induces bull if and $w w^{\prime} \notin$ $E(G)$ or the set of vertices $\left\{v_{i}, v_{i+1}, w, w^{\prime}\right\}$ induces K_{4} if $w w^{\prime} \in E(G)$. Analogously for $w^{\prime} \in C_{i+1}$.

If $w^{\prime} \in C_{i+2} \cup C_{i+3} \cup C_{i+4}$, then the graph G contains the spindle graph M_{7}.
Finally, suppose $w^{\prime} w^{\prime \prime} \in E(G)$.
If $w^{\prime}, w^{\prime \prime} \in B_{i}^{\prime}$, then by Fact 29 the set of vertices $\left\{v_{i}, w, w^{\prime}, w^{\prime \prime}\right\}$ induces K_{4}. Analogously for $w^{\prime}, w^{\prime \prime} \in B_{i+1}^{\prime}$.

If $w^{\prime}, w^{\prime \prime} \in B_{i+2}^{\prime} \cup B_{i+3}^{\prime} \cup B_{i+4}^{\prime}$, then the graph G contains the spindle graph M_{7}.
Due to all the facts above, we can distinguish following types of possible edges:

- Type 0: edges incident to the cycle Q.
- Type 1: edges $w w^{\prime}$ such that $w, w^{\prime} \in B_{i} \cup C_{i}$.
- Type 2: edges $w w^{\prime}$ such that $w \in B_{i} \cup C_{i}$ and $w^{\prime} \in B_{i+1} \cup C_{i+1}$.
- Type 3: edges $w w^{\prime}$ such that $w \in A_{i}$ and $w^{\prime} \in B_{i-1} \cup C_{i-1}$.
- Type 4: edges $w w^{\prime}$ such that $w, w^{\prime} \in A_{i}$.
- Type 5: edges $w w^{\prime}$ such that $w \in A_{i}$ and $w^{\prime} \in A_{i+1}$.
- Type 6: edges $w w^{\prime}$ such that $w \in A_{i}$ and $w^{\prime} \in B_{i+1} \cup B_{i+2}$.
- Type 7: edges non-incident to Q and incident to the set D.

Let us recall that by Fact 20 edges of types 3 and 5 are obligatory, that is, if respective sets are nonempty, every edge between them exists.

(a) Case $1 / 2$.

(b) Case 3.

Algorithm.

Let us colour the graph G as follows.

1. We colour with red vertices v_{1} and v_{3}, with green vertices v_{2} and v_{4}, and with blue vertex v_{3}.
2. For $i \neq 1$ and $w \in B_{i}^{*}$ we colour $c(w)=c\left(v_{i+1}\right)$.
3. For $i \neq 4,5$ and $w \in A_{i}^{*}$ we colour $c(w)=c\left(v_{i-1}\right)$.
4. We colour C_{1} with blue and $A_{1}^{\prime}, A_{3}^{\prime}, A_{4}^{\prime}, B_{1}^{\prime}$ with remaining colours.
5. If $D=\emptyset$, we colour A_{5}^{*} with green. Then we colour with red every $w \in A_{4}^{*}$ adjacent to $A_{3}^{\prime} \cup B_{1}^{\prime}$. The rest of A_{4} we colour with blue. We colour with blue every $w \in B_{1}^{*}$ adjacent to A_{5}^{*}. The rest of B_{1}^{*} we colour with green.
6. If $D \neq \emptyset$, we colour D_{1} with blue. Then we colour B_{1}^{*} with green and A_{5}^{\prime} with red and green. Every $w \in A_{5}^{*}$ adjacent to B_{1}^{*} we colour with red. The rest of A_{5}^{*} we colour with green.

Proposition 31. The algorithm colours all vertices of G and this colouring is proper.
Proof. We want to prove that our algorithm colours all vertices of G and this gives a proper colouring. Of course, it is easy to see that there will not occur any colour conflict on edges of types 0,2 and 3 . By Fact 19 there is no colour conflict also on edges of types 1 and 4 (we have two free colours, and the respective subgraphs are bipartite). The further proof will be split into three subcases.

Case 1. $C \neq \emptyset$.
Of course in this case $D=\emptyset$ (by Fact 30). Note that we can assume without loss of generality that $C=C_{1}, B^{\prime}=B_{1}^{\prime}$ (by Fact 27) and $A_{5}^{\prime}=\emptyset$ (by Fact 22). Let us also recall that in this case $A_{2}^{\prime}=\emptyset$ (by Fact 27).

We start with checking the possible colour conflicts on the edges of type 5 . Of course, one of the sets $A_{3}^{\prime}, A_{4}^{\prime}$ is empty (by Fact 22), so there is no colour conflict on the edges of type 5 between sets A_{3} and A_{4}. Suppose A_{1}^{\prime} and A_{5}^{*} are both nonempty. If $A_{4}^{\prime} \neq \emptyset$, then the graph $G\left[\left\{v_{4}\right\} \cup A_{4}^{\prime} \cup A_{5}^{*} \cup A_{1}^{\prime} \cup\left\{v_{1}, v_{2}, v_{3}\right\} \cup C_{1}\right]$ contains M_{10}. If $A_{3}^{\prime} \neq \emptyset$ and $A_{4}^{*} \neq \emptyset$ then the graph $G\left[A_{5}^{*} \cup A_{1}^{\prime} \cup\left\{v_{1}, v_{2}, v_{3}\right\} \cup C_{1} \cup A_{3}^{\prime} \cup A_{4}\right]$ contains M_{10}. Thus, at least one of the sets $A_{3}^{\prime}, A_{4}^{*}$ is empty. Hence, we can consider the symmetry of the graph such that it swaps v_{4} and v_{5}. Then one of the sets A_{1}^{\prime} or A_{5}^{*} is empty.

Now we want to exclude colour conflicts on the edges of type 6. If A_{1}^{\prime} is adjacent to B_{3}^{*}, then the graph $G\left[B_{3}^{*} \cup A_{1}^{\prime} \cup\left\{v_{1}, v_{2}, v_{3}\right\} \cup C\right]$ contains M_{7} (by Facts 24, 26). Analogously for A_{3}^{\prime} incident to B_{4}^{*}. If A_{4}^{\prime} is incident to B_{5}^{*}, then the graph $G\left[\left\{v_{4}\right\} \cup A_{4}^{\prime} \cup B_{5}^{*} \cup\left\{v_{2}, v_{3}\right\} \cup C\right]$ contains M_{7} (by Fact 24, 26). The colour conflict between A_{4}^{\prime} and B_{1}^{*} may occur only if B_{1} is blue. By definition of the colouring, B_{1} is blue only if it is incident to A_{5}^{*}. By Fact 23 this is impossible.

If there is a colour conflict between A_{4}^{*} and B_{5}^{*}, then there must be two adjacent vertices $w \in A_{4}^{*}$ and $w^{\prime} \in B_{5}^{*}$, both coloured with red. But w can be red only when it is adjacent to B_{1}^{\prime} (by Fact 24 the graph $G\left[\left\{v_{1}, v_{2}\right\} \cup C \cup B_{1}^{\prime} \cup\left\{w, w^{\prime}\right\}\right]$ contains M_{7}) or when A_{3}^{\prime} is nonempty (and the graph $G\left[w, w^{\prime}, v_{2}, v_{3} \cup C \cup A_{3}^{\prime}\right]$ contains M_{7}).

The colour conflict between A_{4}^{*} and B_{1}^{*} can occur only if there are two vertices $w \in A_{5}^{*}$ and $w^{\prime} \in B_{1}$, both coloured with blue. But if w^{\prime} is coloured with blue, by definition of the colouring, there is $w^{\prime \prime} \in A_{5}^{*}$ such that $w^{\prime} w^{\prime \prime} \in E(G)$. It contradicts Fact 23 , so this colour conflict is also impossible.

If $w \in A_{5}^{*}$ is adjacent to $w^{\prime}, w^{\prime \prime} \in B_{1}^{\prime}$, then $u \in A_{4}$ and w^{\prime} cannot be adjacent (otherwise the graph $G\left[\left\{w, w^{\prime}, w^{\prime \prime}, u\right\}\right]$ contains K_{4} or $G\left[\left\{w, w^{\prime}, w^{\prime \prime}, v_{1}\right\} \cup A_{4}\right]$ contains M_{7}, by Fact 28). Thus, we can consider the symmetry of the graph such that it swaps v_{4} and v_{5}. Note that this operation does not change our previous assumption. Indeed, before the reflection, if $A_{4}^{\prime} \neq \emptyset$, then the graph $G\left[\left\{v_{4}\right\} \cup A_{4}^{\prime} \cup A_{5} \cup B_{1}^{\prime} \cup\left\{v_{3}\right\}\right]$ contains M_{7}, and if $A_{3}^{\prime} \neq \emptyset$ and $A_{4}^{*} \neq \emptyset$, then the graph $G\left[A_{5}^{*} \cup B_{1}^{\prime} \cup\left\{v_{3}\right\} \cup A_{3}^{\prime} \cup A_{4}^{*}\right]$ contains M_{7}.

By definition of the colouring, there is no colour conflict between A_{5}^{*} and B_{1}^{*}.

Case 2. $C \cup D=\emptyset$
In case $C \cup D=\emptyset$ we can also assume $B^{\prime}=\emptyset$ (because otherwise we can find another 5 -cycle Q^{\prime} and a vertex incident to three consecutive vertices of Q^{\prime}). By Fact 22 we can assume that $A_{2}^{\prime} \cup A_{5}^{\prime}=\emptyset$. Also, we can assume that there is no 6 -type edges with vertices from A^{\prime} (again, by Fact 26, otherwise we could find there another 5-cycle so that we return to Case 1) and that if A^{\prime} is nonempty, then A_{5} is empty (because for $A_{i}^{\prime} \neq \emptyset$ we have one of sets $A_{i+1}, A_{i+2}, A_{i+3}, A_{i+4}$ empty by the same argument as before).

Now, let us check the possible colour conflicts. It is easy to see that if $A^{\prime}=\emptyset$, our colouring is proper. Assume $A^{\prime} \neq \emptyset$. Then, thanks to $A_{5}=\emptyset$, there is no conflicts on edges of type 5 . The only possible (given our assumptions) conflicts may occur on edges of type 6 with vertices from A_{4}^{*}. As in previous case, there is no conflict between A_{4}^{*} and B_{1}. If A_{4}^{*} is connected to B_{5}^{*} and coloured with red, then by definition of our colouring $A_{3}^{\prime} \neq \emptyset$. Hence, we can find another 5 -cycle so that we return to Case 1 .

Case 3. $D \neq \emptyset$
We will see that there cannot occur any colour conflict on edges of type 7 . Let us recall that by Fact 30 in this case we have $A_{i} \cup A_{i+3} \cup A_{i+1}^{\prime} \cup A_{i+2}^{\prime} \cup B^{\prime} \cup C=\emptyset$. If B_{4} is adjacent to $D=D_{1}$, then the graph G contains W_{5}.

Hence colour conflicts can occur only on the edges of type 6 with vertices from A_{5}. If A_{5}^{\prime} is adjacent to B_{1}^{*}, then the graph $G\left[\left\{v_{5}\right\} \cup A_{5}^{\prime} \cup B_{1}^{*} \cup\left\{v_{3}, v_{4}\right\} \cup D\right]$ contains M_{7} by Fact 29. Analogously for A_{5}^{\prime} adjacent to B_{2}^{*}. Now suppose there are $w \in A_{5}^{*}, w^{\prime} \in B_{1}^{*}$ and $w^{\prime \prime} \in B_{2}^{*}$ such that $w w^{\prime}, w w^{\prime \prime} \in E(G)$. Note that $w^{\prime} w^{\prime \prime} \in E(G)$ (because otherwise the set $\left\{v_{5}, v_{1}, w^{\prime}, u, w^{\prime \prime}\right\}$ induces bull, for any $\left.u \in D\right)$. Then the set of vertices $\left\{v_{1}, w^{\prime}, w, w^{\prime \prime}, v_{4}\right\}$ induces bull.

4.3 Proof of Theorem 5

We can follow the proof of Theorem 4 with a few changes. Because there are no 5-cycles, we only have to consider the case $p>5$. Notice that in this case, if $w \in A_{i}$, then the set of vertices $\left\{v_{i-3}, v_{i-2}, v_{i}, v_{i+1}, v_{i+2}, v_{i+3}, w\right\}$ induces $S_{1,2,3}$. Then (because $D=\emptyset$ due to Fact 11), we have $V(G)=Q \cup B \cup C$. Now, we can follow the proof of Theorem 4.

5 Certifying algorithms

Theorem 32. There exists a polynomial time certifying algorithm for 3-colourability in the class of (bull, H)-free graphs for $H \in\left\{S_{1,1,2}, S_{1,2,2}\right\}$, and in the class of $\left(b u l l, C_{5}, H\right)$ free graphs with $H \in\left\{S_{1,1,3}, S_{1,2,3}\right\}$.

Proof. An odd hole can be found in polynomial time $O\left(n^{9}\right)$ by an algorithm in [7]. So let Q be this odd hole of length p. To check whether G contains an odd wheel $W_{2 t+1}$ for some $t \geq 1$, one can check for every vertex $w \in V(G)$ in polynomial time $O(|E|)$ whether $G[N(w)]$ is bipartite. If this is not the case, then G contains an odd wheel with center vertex w. In the case $p>5$, all structural investigations can be performed in
polynomial time and the algorithm either finds a proper 3 -colouring or detects a spindle graph $M_{3 t+1}$ for some $t \geq 3$. In the proofs for the case $p=5$, proper 3 -colourings of G or a subgraph from $\left\{M_{4}, M_{7}, M_{10}\right\}$ will be found in polynomial time.

Summarizing, all structural investigations and algorithms run in polynomial time and either find a proper 3-colouring of G or detect an odd wheel or a spindle graph $M_{3 i+1}$ for some $i \geq 1$.

References

[1] J. A. Bondy, U.S. R. Murty: Graph Theory. Springer, 2008. 1
[2] C. Brause, T. Doan, P. Holub, A. Kabela, Z. Ryjáček, I. Schiermeyer, P. Vrána: Forbidden induced subgraphs and perfectness for $K_{1,3}$-free perfect graphs of independence number at least 4, Discrete Math. 345/6, (2022), 112837. 1
[3] C. Brause, P. Holub, A. Kabela, Z. Ryjáček, I. Schiermeyer, P. Vrána: On forbidden induced subgraphs for claw-free perfect graphs, Discrete Math. 342 (2019), 16021608. 1
[4] C. Brause, P. Holub, I. Schiermeyer: 3-colourability and diamonds I: (claw, net)-free graphs, manuscript 2023. 1, 1, 2
[5] D. Bruce, C.T. Hoàng, J. Sawada: A Certifying Algorithm for 3-Colorability of P_{5}-free Graphs, Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, 5878 (2009) 594-604. 1, 1, 6
[6] M. Chudnovsky, J. Goedgebeur, O. Schaudt, M. Zhong: Obstructions for threecoloring graphs without induced paths on six vertices. J. Combin. Theory Ser. B 140 (2020), 45-83. 1, 8
[7] M. Chudnovsky, A. Scott, P. Seymour, S. Spirkl: Detecting an Odd Hole. J. of the ACM 67/1 (2020), A5. 5
[8] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas: The strong perfect graph theorem, Ann. Math. 164 (2006), 51-229. 2, 10
[9] P. A. Golovach, M. Johnson, D. Paulusma, J. Song: A survey on the computational complexity of coloring graphs with forbidden subgraphs, J. Graph Theory 84 (2017), 331-363. 1, 1
[10] B. Randerath, The Vizing bound for the chromatic number based on forbidden pairs, Aachen, Techn. Hochsch., PhD Thesis, 1998. 1
[11] B. Randerath, I. Schiermeyer: Vertex colouring and forbidden subgraphs - a survey, Graphs Combin. 20 (2004), 1-40. 1
[12] B. Randerath, I. Schiermeyer: 3-Colorability $\in \mathcal{P}$ for P_{6}-free Graphs, Discrete Appl. Math. 136 (2004), 299-313. 1
[13] B. Randerath, I. Schiermeyer: Polynomial χ-binding functions and forbidden induced subgraphs: a survey, Graphs Combin. 35 (2019), 1-31. 1
[14] B. Randerath, I. Schiermeyer, M. Tewes: 3-Colourability and Forbidden Subgraphs II: Polynomial Algorithms, Discrete Math. 251 (2002), 137-153. 1
[15] D. P. Sumner, Subtrees of a graph and chromatic number, in: The Theory and Applications of Graphs, (G. Chartrand, ed.), John Wiley \& Sons, New York (1981), 557-576. 1

