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Abstract

The 3-colourability problem is a well-known NP-complete problem and it remains
NP-complete for bull-free graphs, where bull is the graph consisting of K3 with two
pendant edges attached to two of its vertices. In this paper we study 3-colourability
of (bull,H)-free graphs for several graphs H. We show that these graphs are 3-
colourable or contain an induced odd wheel W2p+1 for some p ≥ 2 or a spindle
graph M3p+1 for some p ≥ 1. Moreover, for all our results we can provide certifying
algorithms that run in polynomial time.
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Math. Subj. Class.: 05C15, 05C17, 68Q25, 68W40.

1 Introduction

We consider finite, simple, and undirected graphs. For terminology and notations not
defined here, we refer to [1].

An induced subgraph of a graph G is a graph on a vertex set S ⊆ V (G) for which two
vertices are adjacent if and only if they are adjacent in G. In particular, we say that the
subgraph is induced by S. We also say that a graph H is an induced subgraph of G if
H is isomorphic to an induced subgraph of G.

Given a family H of graphs and a graph G, we say that G is H-free if G contains no
graph from H as an induced subgraph. In this context, the graphs of H are referred to
as forbidden induced subgraphs.

A graph is k-colourable if each of its vertices can be coloured with one of k colours so
that adjacent vertices obtain distinct colours. The smallest integer k such that a given
graph G is k-colourable is called the chromatic number of G, denoted by χ(G). Clearly,
χ(G) ≥ ω(G) for every graph G, where ω(G) denotes the clique number of G, that is,
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the order of a maximum complete subgraph of G. Furthermore, a graph G is perfect if
χ(G′) = ω(G′) for every induced subgraph G′ of G. For a subgraph H and a vertex v,
let dH(v) = |N(v) ∩ V (H)|.

The graph on five vertices v1, v2, v3, v4, v5 and with the edges v1v2, v2v3, v3v4, v4v5,
v2v4 is called the bull. Let Si,j,k be the graph consisting of three induced paths of lengths
i, j and k, with a common initial vertex. The graph S1,1,1 is called claw, S1,1,2 is called
chair and S1,2,2 is called E.

The 3-colourability problem is a well-known NP-complete problem and it remains NP-
complete for claw-free and bull-free graphs. In the last two decades, a large number of
results of colourings of graphs with forbidden subgraphs have been shown (cf. [2], [3],
[4], [10], [12], [14], [15] and cf. [9], [11], [13] for three surveys).

Following [5], an algorithm is certifying, if it returns with each input a simple and
easily verifiable certificate that the particular input is correct. For example, a certifying
algorithm for the bipartite graph recognition would return either a 2-colouring of the
input graph proving that it is bipartite, or an odd cycle proving that it is not bipartite.
In this paper we study 3-colourability of (bull,H)-free graphs for several graphs H. For
all of our results we will provide certifying algorithms that run in polynomial time.

Our research has been motivated by [4] and we use some definitions and notations
from it. A graph G of order 3p+ 1, p ≥ 1 is called a spindle graph M3p+1 if it contains
a cycle C: u0u1 . . . u3pu0, where {u3i−2, u3i−1, u3i+1, u3i+2} = NG(u3i) and {u3i−3, u3i} =
NG(u3i−1) ∩NG(u3i−2) for each i ∈ [p], where [p] := {1, 2, . . . , p}.
Observe that M4

∼= K4 and M7 is known as the Moser spindle.

Figure 1: The spindle graph M3p+1.

Proposition 1 ([4]). The graph M3p+1 is not 3-colourable for every p ≥ 1.

Since the 3-colourability problem is NP-complete for claw-free graphs and K3-free
graphs (cf. [9]), it is also NP-complete for bull-free graphs. The following theorem in [4]
has motivated our research.

Theorem 2 ([4]). Let G be (bull, claw)-free graph. Then one of the following holds

(i) G contains W5 or
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(ii) G contains a (not necessarily induced) spindle graph M3i+1 for some i ≥ 1 or

(iii) G is 3-colourable.

The goal of this paper is to consider 3-colourability of (bull,H)-free graphs, where H
is a supergraph of the claw.

Theorem 3. Let G be a connected (bull, chair)-free graph. Then

(i) G contains an odd wheel or

(ii) G contains a (not necessarily induced) spindle graph M3i+1 for some i ≥ 1 or

(iii) G is 3-colourable.

In fact Theorem 3 can be extended to the larger class of (bull, E)-free graphs. However,
for this proof, we will show and make use of several additional graph properties.

Theorem 4. Let G be a connected (bull, E)-free graph. Then

(i) G contains an odd wheel or

(ii) G contains a (not necessarily induced) spindle graph M3i+1 for some i ≥ 1 or

(iii) G is 3-colourable.

If we forbid in addition induced 5-cycles, then Theorem 4 can be extended as follows.

Theorem 5. Let G be a connected (bull, C5, H)-free graph with H ∈ {S1,1,3, S1,2,3}.
Then

(i) G contains an odd wheel or

(ii) G contains a (not necessarily induced) spindle graph M3i+1 for some i ≥ 1 or

(iii) G is 3-colourable.

The 3-colourability problem has been also studied for Pk-free graphs for k ≥ 5. Let
G1, G2, G3 be graphs on 7, 10 and 13 vertices, respectively (see Figure 2). In [5] the
following theorem was shown.

G1 G2 G3

Figure 2: The graphs G1, G2 and G3 from Theorem 6.

Theorem 6 ([5]). A P5-free graph is 3-colourable if and only if it does not contain K4,
W5, M7, G1, G2 or G3 as a subgraph.
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Note that G1, G2 and G3 are not bull-free. This leads to the following corollary from
Theorem 5.

Corollary 7. Let G be a (bull, P5)-free graph. Then

(i) G contains W5 or

(ii) G contains a (not necessarily induced) spindle graph M4 or M7 or

(iii) G is 3-colourable.

Moreover, for P6-free graphs we can recall that in [6] the following theorem was shown.

Theorem 8 ([6]). A P6-free graph is 3-colourable if and only if it does not contain
F1

∼= K4, F2
∼= W5, F3

∼= M7, F4,..., F24 as a subgraph, defined in [6].

It is easy to check that F2
∼= W5, F3

∼= M7, F12, F15 and F18 (see Figure 3) are the
only (K4, bull)-free graphs. Note that F18 is well known as the Mycielski graph. This
leads to another corollary from Theorem 5.

F12 F15 F18

Figure 3: The graphs F12, F15 and F18 from Theorem 8.

Corollary 9. Let G be a (bull, P6)-free graph. Then

(i) G contains W5 or

(ii) G contains a (not necessarily induced) spindle graph M4 or M7 or

(iii) G contains F12, F15 or F18 or

(iv) G is 3-colourable.

The organization of the paper is the following. In Section 2 we provide preliminary
results and properties for bull-free graphs. Next, in Section 3 we prove Theorem 3 and in
Section 4 we prove Theorem 4. Finally, in Section 5 we show that the proofs of Theorem 3
and Theorem 4 provide polynomial time certifying algorithms for 3-colourability in the
class of (bull,H)-free graphs for H ∈ {S1,1,2, S1,2,2}.
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2 Preliminary results

We recall that a hole in a graph G is an induced cycle of length at least 4, and an
antihole in G is an induced subgraph whose complement is a cycle of length at least 4.
A hole (antihole) is odd if it has an odd number of vertices. As the main tool for proving
Theorems 3 and 4, we will use the well-known Strong Perfect Graph Theorem shown by
Chudnovsky et al. [8].

Theorem 10 (Chudnovsky et al. [8]). A graph is perfect if and only if it contains neither
an odd hole nor an odd antihole as an induced subgraph.

In the following we will consider 3-colourability in subclasses of bull-free graphs. Here
are some useful reductions:

• If ∆(G) ≤ 3, then G is 3-colourable by Brook’s Theorem.

• If G has a vertex w of degree at most 2, then G is 3-colourable if and only if G−w
is 3-colourable. So we can reduce G to G− w.

• If G contains K4 = M4, then G is not 3-colourable.

• If a graph G contains an odd antihole C2t+1 with t ≥ 4, then G contains K4. If
t = 3, then G contains the spindle graph M7, and finally, if t = 2, we have an
antihole C5, which is isomorphic to the hole C5.

• If G is not connected, then we can check 3-colourability for each component of G
seperately. Moreover, if G has a cut-vertex w, let G1, G2, . . . , Gt be the components
of G − w. Now we check whether each induced subgraph G′

i = G[Gi ∪ {w}] is
3-colourable. If all of G′

1, . . . , G
′
t are 3-colourable, then we can combine their 3-

colourings to obtain a 3-colouring of G.

These reductions show that we can restrict our 3-colourability test to the class of
bull-free graphs that are 2-connected, K4-free, and where δ(G) ≥ 3. Furthemore, we can
assume without losing generality that the graph G contains an odd hole C2p+1.

2.1 Properties for bull-free graphs

Let Q = v1v2 . . . vpv1 be the smallest induced odd hole in the graph G and w ∈ V (G)\Q.
We define q(w) as the largest i such that w has i consecutive neighbours on the cycle Q.
Thus, there is 1 ≤ j ≤ p satisfying {vj , vj+1, . . . , vj+i−1} ⊂ NQ(w). All indices are taken
modulo p.

We will prove some useful facts about this value.

Fact 11. If p > 5, then q(w) ∈ {1, 3}. If p = 5, then q(w) ∈ {1, 3, 4}.

Proof. Firstly, note that if q(w) = 2, then the set of vertices {vj−1, vj , vj+1, vj+2, w}
induces bull. If 4 ≤ q(w) < p and p ≥ 7, then the set of vertices {vj−1, vj , vj+1, vj+3, w}
induces bull. If q(w) = p, then the graph G contains an odd wheel Wp.

Fact 12. If q(w) = 3, then dQ(w) = 3.
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Proof. Suppose q(w) = 3 and there is vk ∈ NQ(w) with vk /∈ {vj , vj+1, vj+2}. Hence,
we have p ≥ 7. Then one of the sets {vj−1, vj , vj+1, vk, w} or {vj+1, vj+2, vj+3, vk, w}
induces bull.

Fact 13. If q(w) = 1, then dQ(w) ∈ {1, 2}. Moreover, if q(w) = 1 and dQ(w) = 2, then
there is i such that NQ(w) = {vi, vi+2}.

Proof. Suppose w has two neighbours vi, vj in Q, satisfying |i − j| ≥ 3, where i > j .
Then either the cycle wvivi+1 . . . vj or the cycle wvjvj+1 . . . vi is odd. This cycle must
contain an induced odd cycle Q′, which is shorter than Q. Since w has no consecutive
neighbours on Q, the cycle Q′ is not K3.

2.2 Properties for (bull, E)-free graphs

We can now define the following sets:

• Ai = {v ∈ V \Q : NQ(v) = {vi}}.
• Bi = {v ∈ V \Q : NQ(v) = {vi, vi+2}}.
• Ci = {v ∈ V \Q : NQ(v) = {vi, vi+1, vi+2}}.
• Di = {v ∈ V \Q : NQ(v) = {vi, vi+1, vi+2, vi+3}}.

Let A′
i = {v ∈ Ai : ∃v′ ∈ Ai, vv

′ ∈ E(G)} and B′
i = {v ∈ Bi : ∃v′ ∈ Bi ∪ Ci, vv

′ ∈
E(G)}. Then let A∗

i = Ai \A′
i and B∗

i = Bi \B′
i.

Let also A =
⋃p

i=1Ai, B =
⋃p

i=1Bi, B
′ =

⋃p
i=1B

′
i, C =

⋃p
i=1Ci and D =

⋃p
i=1Di.

We want to prove that V (G) = Q∪A∪B ∪C ∪D. This is true due to the facts above
and to the following lemma.

Lemma 14. Q is a dominating set in G.

Proof. Suppose there exists a vertex v ∈ V (G) for which dist(v,Q) = 2. Hence, there
exist v′ /∈ Q and vi ∈ Q such that v′vi, vv

′ ∈ E(G). If v′vj ∈ E(G) for every j, then
the set of vertices {v′, v1, . . . , vp} induces odd wheel. If there exists k ∈ [p] such that
v′vk, v

′vk−1 ∈ E(G) and v′vk+1 /∈ E(G), then the set {v, v′, vk−1, vk, vk+1} induces bull.

If none of these two cases occur, then q(v′) = 1. Since Q is an odd cycle, there exists
j ∈ [p] such that v′vj−1, v

′vj+1, v
′vj+2 /∈ E(G) and v′vj ∈ E(G). Then the set of vertices

{v, v′, vj , vj+1, vj+2, vj−1} induces E (so it also induces chair).

Fact 15. Let w ∈ Bi ∪ Ci and w′ ∈ Bj ∪ Cj. If |i− j| ≥ 2, then ww′ /∈ E(G).

Proof. We can assume without losing generality that 2 ≤ j − i < p − (j − i). Suppose
ww′ ∈ E(G). Let us consider possible cases.

If j− i ≥ 3, then one of the sets {vi+2, vi+3, . . . , vj , w
′, w} or {vj+2, vj+3, . . . , vi, w, w

′}
induces smaller odd cycle in G.

If j − i = 2 and p > 5, then the set of vertices {vi, w, vj , w′, vj+2} induces bull.

If j − i = 2, p = 5 and w′ ∈ B, then the set of vertices {vi, w, w′, vj , vj+1} induces
bull. Analogously if w ∈ B.

If j−i = 2, p = 5 and w,w′ ∈ C, then the graph G contains the spindle graph M7.
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Fact 16. If Ci ̸= ∅, then Ci+1, Ci−1 = ∅.

Proof. Suppose that w ∈ Ci and w′ ∈ Ci+1. If ww′ ∈ E(G), then the induced graph
G[{w, vi+1, vi+2, w

′}] is complete. If ww′ /∈ E(G), then the set of vertices {vi−1, vi, w, vi+1,
w′} induces bull.

Fact 17. If w ∈ Bi ∪Ci, w
′ ∈ Bi+1 ∪Ci+1 and ww′ ∈ E(G), then w ∈ B∗

i or w′ ∈ B∗
i+1.

Proof. Assume ww′ ∈ E(G). Let us consider possible cases.

If w ∈ Ci, then w′ /∈ Ci+1 by Fact 16.

If w ∈ Ci and w′ ∈ B′
i+1, then there exists w′′ ∈ B′

i+1 such that w′w′′ ∈ E(G)
and either the set of vertices {vi−1, vi, w, vi+1, w

′′} induces bull (if ww′′ /∈ E(G)) or the
set {w, vi+1, w

′, w′′} induces K4 (otherwise).

If w ∈ B′
i and w′ ∈ B′

i+1, then there exist w′′ ∈ B′
i ∪ Bi and w′′′ ∈ B′

i+1 ∪ Ci+1 such
that ww′′, w′w′′′ ∈ E(G). Then the set of vertices {vi−1, vi, w

′, w, w′′} induces bull (if
w′w′′ /∈ E(G)), or the set {vi+4, vi+3, w

′′′, w′, w} induces bull (if ww′′′ /∈ E(G)), or the
set {vi+4, vi+3, w

′′′, w′, w′′} induces bull (if w′w′′ ∈ E(G), but w′′w′′′ /∈ E(G)), or the set
{w,w′, w′′, w′′′} induces K4 (otherwise).

3 Proof of Theorem 3

Note that if G is a (bull, chair)-free graph, then the sets A and B are empty. It
is true, because if q(w) = 1, then (since Q is an odd cycle) there exists i ∈ [p]
such that wvi−1, wvi+1, wvi+2 /∈ E(G) and wvi ∈ E(G). Then the set of vertices
{vi−1, vi, vi+1, vi+2, w} induces chair.

Moreover, we can point out that for every i ∈ [p] we have |Ci| ≤ 1. It is true, because
if we have two distinct vertices w,w′ ∈ Ci, then either the graph G[{vi, vi+1, w, w

′}] is
complete (if ww′ ∈ E(G)) or the set of vertices {vi−2, vi−1, vi, w, w

′} induces chair (if
ww′ /∈ E(G)).

Consider the case with p = 5. We know that V (G) = Q ∪ C ∪D. Our assumption is
that δ(G) ≥ 3, so every vertex from Q must have at least one neighbour in the set C∪D.
Since p = 5, the graph G always contains M7.

Now, we will describe the structure of the graph G for p > 5. By Fact 11 we have
V (G) = C ∪Q. Moreover, by Fact 16, |NQ(w)∩NQ(w

′)| ≤ 1 for every w,w′ ∈ C. Then
|C| ≤ p−1

2 . Let us recall that C is an isolated set of vertices (by Fact 15).

This graph is either 3-colourable or contains the spindle graph. If |C| = p−1
2 , then it

is easy to see that G is the spindle graph of order 3(p−1)
2 + 1. Otherwise, there either

exists vertex v ∈ Q such that dC(v) = 0 or there exist two vertices vi, vj ∈ Q such
that Ci, Cj−2 ̸= ∅, Ci−2, Cj = ∅ and j = i + 2k, where 0 < k < p−1

2 . The first case
is impossible due to our assumption that δ(G) > 2. In second case we colour vertices
vi, vi+1, . . . , vj alternately with colours blue and red (starting with blue), and the rest
of Q alternately with colours red and green. Finally, we colour vertices from C with
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remaining colours. Note that for every vertex w ∈ C we have at least one free colour -
the colouring method provides us that for every i such that Ci ̸= ∅, vertices vi and vi+2

get the same colour. Therefore, the obtained colouring is proper.

4 Proof of Theorem 4

The proof of Theorem 4 will be split into two cases.

4.1 Case p > 5

Notice that in this case, if w ∈ Ai, then the set of vertices {vi−2, vi−1, vi, vi+1, vi+2, w}
induces E. Then (because D = ∅ due to Fact 11), we have V (G) = Q ∪B ∪ C.

Let us recall that due to Fact 15 edges ww′ non-incident to the cycle Q can exist only
for w ∈ Bi ∪ Ci and w′ ∈ Bi ∪ Ci ∪Bi+1 ∪ Ci+1.

To shorten our considerations, we will call an ww′ a “1-type edge” if w,w′ ∈ Bi ∪Ci,
and a “2-type edge” if w ∈ Bi∪Ci, w

′ ∈ Bi+1∪Ci+1. Of course, every edge non-incident
to Q is either 1-type or 2-type. Fact 17 tells us that if ww′ is an 2-type edge, then w ∈ B∗

or w′ ∈ B∗. It is obvious, that no 1-type edge is incident to the set B∗. Therefore, the
graph G′ = G[V (G)\ (B∗)] does not contain any 2-type edge and does contain all 1-type
edges.

Note that if there exists a proper 3-colouring c′ of the graph G′, then there also exists
a proper colouring c of the graph G.

Assume that c′ is a proper 3-colouring of the graph G′. Let us precolour with c′

all vertices outside the set B∗. By Fact 15, every neighbour of non-precoloured vertex
w ∈ B∗

i is vi, or vi+2, or belongs to the set Ci−1 ∪Bi−1 ∪Ci+1 ∪Bi+1. That means every
neighbour of w is also incident to the vertex vi+1. Thus, the vertex w can get the colour
c′(vi+1).

How can we decide whether a proper 3-colouring of G′ exists or not? We want to show
that c′ exists if and only if there exists a proper colouring c′′ of the cycle Q satisfying
the following property:

∀i ∈ [p] : Ci ∪B′
i ̸= ∅ ⇒ c′′(vi) = c′′(vi+2). (1)

Of course, if Ci ∪ B′
i ̸= ∅, then any proper colouring must assign the same colour to

the vertices vi and vi+2. The inverse implication is true due to the fact that the graph
G′ does not contain any 2-type edge and to the following observation.

Fact 18. The graph G[Bi ∪ Ci] is bipartite for any i.

Proof. Suppose G[Bi ∪ Ci] contains an odd cycle. Then it contains the induced odd
cycle w1w2 . . . ws, where s ≥ 3, and the set of vertices {vi, w1, w2, . . . , wsw1} induces
either K4 or an odd wheel.
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Thus, having c′′, we can construct c′ in a very simple way, assigning every vertex the
first available colour.

To find the colouring c′′ satisfying the property (1), we proceed according to the
following algorithm:

1. Colour vertex v1 with red.

2. Colour with red all those vertices whose colouring is enforced by the property (1).

3. If there occurres a colour conflict, stop. The graph G contains the spindle graph.

4. Let k be an index such that vk−2 is non-coloured and vk is red. Colour vk−1 with
green.

5. Colour with green all those vertices whose colouring is enforced by the property
(1).

6. If there there occurred colour conflict, stop. The graph G contains the spindle
graph.

7. Colour vertex vk−2 with blue.

8. Colour with blue every non-coloured vertex vk−2l, where l ∈ N.
9. Colour with red all the remaining vertices.

Steps 8 and 9 are possible, since Q is an odd cycle. Using this procedure we obtain
a proper colouring of the cycle Q.

4.2 Case p = 5

Since G is (bull, E)-free graph, and C5 is a dominating cycle (by Lemma 14), it follows
that V (G) = Q∪A∪B ∪C ∪D. Assuming G does not contain W5, K4 and M7, we will
prove a number of properties of these subsets.

Fact 19. The graphs G[Ci ∪Bi] and G[Ai] are bipartite for any i.

Proof. The proof is analogous to the proof of Fact 18.

Fact 20. If w ∈ Ai and w′ ∈ Ai+1 ∪Ai−1 ∪Bi−1, then ww′ ∈ E(G).

Proof. Suppose w′ ∈ Ai+1 ∪Bi−1 and ww′ /∈ E(G). Then the set of vertices {w, vi, vi+1,
vi+2, vi+3, w

′} induces E. Analogously for Ai−1.

Fact 21. If w ∈ Ai and w′ ∈ Ai+2 ∪ Ai+3 ∪ Bi ∪ Bi+3 ∪ Ci ∪ Ci+1 ∪ Ci+2 ∪ Ci+3, then
ww′ /∈ E(G).

Proof. Suppose ww′ ∈ E(G).

If w′ ∈ Ai+2, then the set of vertices {vi+3, vi+4, vi, vi+1, w, w
′} induces E. Analogously

for Ai+3.

If w′ ∈ Bi∪Ci, then the set of vertices {vi−1, vi, w, w
′, vi+2} induces bull. Analogously

for Bi+3 ∪ Ci+3.

If w′ ∈ Ci+1, then the set of vertices {w,w′, vi+2, vi+3, vi+4} induces bull. Analogously
for Ci+2.

9



Fact 22. There are at most two i, j such that A′
i and A′

j are nonempty. Moreover
|i− j| > 1.

Proof. Suppose w,w′ ∈ A′
i and u, u′ ∈ A′

i+1, where ww′, uu′ ∈ E(G). Then by Fact 20
the set of vertices {w,w′, u, u′} induces K4. Thus |j − i| > 1. Since Q consists of five
vertices, the conclusion holds.

Fact 23. If w ∈ Ai, w
′ ∈ Ai+1 and w′′ ∈ Bi+2, then ww′′ /∈ E(G) or w′w′′ /∈ E(G).

Proof. Suppose ww′′, w′w′′ ∈ E(G). By Fact 20 ww′ ∈ E(G). Then the set of vertices
{vi, w, w′, w′′, vi+2} induces bull.

Fact 24. If w ∈ Ci and w′ ∈ Ai+1 ∪Bi−1 ∪Bi+1, then ww′ ∈ E(G).

Proof. Suppose ww′ /∈ E(G). If w′ ∈ Ai+1∪Bi+1, then the set of vertices {vi−1, vi, vi+1, w, w
′}

induces bull. Analogously for w′ ∈ Bi−1

Fact 25. If w ∈ Ci and w′ ∈ Ai ∪Ai+2 ∪Ai+3 ∪Ai+4, then ww′ /∈ E(G).

Proof. Suppose ww′ ∈ E(G).

If w′ ∈ Ai, then the set of vertices {vi+3, vi+2, vi+1, w, w
′} induces bull. Analogously

for w′ ∈ Ai+2

If w′ ∈ Ai+3, then the set of vertices {vi−1, vi, vi+1, w, w
′} induces bull. Analogously

for w′ ∈ Ai+4.

Fact 26. If w,w′ ∈ A′
i, ww

′ ∈ E(G) and there exists w′′ ∈ V (G) \ (Ai ∪D) such that
ww′′ ∈ E(G), then w′w′′ ∈ E(G).

Proof. Suppose ww′, ww′′ ∈ E(G) and w′w′′ /∈ E(G).

By Fact 21 w′′ /∈ Ai+2 ∪ Ai+3 ∪ Bi ∪ Bi+3 ∪ Ci ∪ Ci+1 ∪ Ci+2 ∪ Ci+3. Let us consider
possible cases.

If w′′ ∈ Ai+1 ∪ Bi+1, then the set of vertices {vi−1, vi, w, w′, w′′} induces bull.
Analogously for Ai−1 and Bi+2.

If w′′ ∈ Bi−1, then by Fact 20 we have w′w′′ ∈ E(G).

If w′′ ∈ Ci−1, then by Fact 24 the set of vertices {vi, w, w′, w′′} induces K4.

Fact 27. There is only one i such that Ci ̸= ∅. Moreover, if Ci ̸= ∅ then A′
i+1 ∪B′

i+1 ∪
B′

i+2 ∪B′
i+3 ∪B′

i+4 = ∅.
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Proof. Let w ∈ Ci. We consider possible cases.

If w′, w′′ ∈ A′
i+1 and ww′ ∈ E(G), then by Fact 24 the set of vertices {vi+1, w, w

′, w′′}
induces K4.

If w′ ∈ Ci+1, then either the set of vertices {vi−1, vi, w, vi+1, w
′} induces bull (if ww′ /∈

E(G)) or the set of vertices {vi, vi+1, w, w
′} induces K4 (otherwise). Analogously for

w′ ∈ Ci−1.

If w′ ∈ Ci+2, then G contains the spindle graph M7. Analogously for w′ ∈ Ci+3.

If w′, w′′ ∈ B′
i+1, then the set of vertices {vi−1, vi, w, vi+1, w

′} induces bull (if ww′ /∈
E(G)), or the set of vertices {vi+4, vi+3, w

′′, w′, w} induces bull (if ww′ ∈ E(G) but
ww′′ /∈ E(G)), or the set of vertices {vi, w, w′, w′′} induces K4. Analogously for w′, w′′ ∈
Bi−1.

If w′, w′′ ∈ B′
i+2, then G contains the spindle graph M7. Analogously for w′, w′′ ∈

B′
i+3.

Fact 28. If w,w′ ∈ B′
i, ww

′ ∈ E(G) and there exists w′′ ∈ V (G) \ (Bi ∪ Ci ∪D) such
that ww′′ ∈ E(G), then w′w′′ ∈ E(G).

Proof. By Facts 15, 21 we have w′′ /∈ Bi+2 ∪Bi+3 ∪Ai+2 ∪Ai.

By Fact 27 we know that C \ Ci = ∅. Then w′′ /∈ C. If w′′ ∈ Ai+1, then w′w′′ exists
by Fact 20.

Suppose now w′′ ∈ Bi+1 ∪ Ai+3 and ww′′ ∈ E(G), w′w′′ /∈ E(G). Then the set of
vertices {vi−1, vi, w

′, w, w′′} induces bull. Analogously if w′′ ∈ Bi−1 ∪Ai+4.

Fact 29. Let w ∈ Di. If w′ ∈ Ai+1 ∪Ai+2 ∪Bi−1 ∪Bi ∪Bi+1 ∪Bi+2, then ww′ ∈ E(G).

Proof. Suppose ww′ /∈ E(G).

If w′ ∈ Ai+1, then the set of vertices {vi−1, vi, w, vi+1, w
′} induces bull. Analogously

for w′ ∈ Ai+2.

If w′ ∈ Bi ∪Bi+1, then the set of vertices {w′, vi, vi+1, w, vi+4} induces bull.

If w′ ∈ Bi+2, then the set of vertices {vi, w, vi+3, vi+2, w
′} induces bull.

Fact 30. Let D ̸= ∅. Then D = D∗
i for some i and Ai∪Ai+3∪A′

i+1∪A′
i+2∪B′∪C = ∅.

Proof. Suppose w ∈ Di. If w
′ ∈ D \Di, then G contains the spindle graph M7.

If w′ ∈ Di and ww′ ∈ E(G), then the set of vertices {vi, vi+1, w, w
′} induces K4.

If w′ ∈ Ai, then either the set of vertices {w′, w, vi, vi+1, vi+3} induces bull (if ww′ /∈
E(G)) or the set of vertices {vi−1, vi, w

′, w, vi+2} induces bull (otherwise). Analogously
for Ai+3.

Suppose w′, w′′ ∈ A′
i+1 and w′w′′ ∈ E(G). By Fact 29 the set of vertices {w,w′, w′′, vi+1}

induces K4. Analogously for A′
i+2.
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If w′ ∈ Ci, then the set of vertices {vi+4, vi+3, w, vi+2, w
′} induces bull if and ww′ /∈

E(G) or the set of vertices {vi, vi+1, w, w
′} induces K4 if ww′ ∈ E(G). Analogously for

w′ ∈ Ci+1.

If w′ ∈ Ci+2 ∪ Ci+3 ∪ Ci+4, then the graph G contains the spindle graph M7.

Finally, suppose w′w′′ ∈ E(G).

If w′, w′′ ∈ B′
i, then by Fact 29 the set of vertices {vi, w, w′, w′′} induces K4. Analo-

gously for w′, w′′ ∈ B′
i+1.

If w′, w′′ ∈ B′
i+2 ∪B′

i+3 ∪B′
i+4, then the graph G contains the spindle graph M7.

Due to all the facts above, we can distinguish following types of possible edges:

• Type 0: edges incident to the cycle Q.

• Type 1: edges ww′ such that w,w′ ∈ Bi ∪ Ci.

• Type 2: edges ww′ such that w ∈ Bi ∪ Ci and w′ ∈ Bi+1 ∪ Ci+1.

• Type 3: edges ww′ such that w ∈ Ai and w′ ∈ Bi−1 ∪ Ci−1.

• Type 4: edges ww′ such that w,w′ ∈ Ai.

• Type 5: edges ww′ such that w ∈ Ai and w′ ∈ Ai+1.

• Type 6: edges ww′ such that w ∈ Ai and w′ ∈ Bi+1 ∪Bi+2.

• Type 7: edges non-incident to Q and incident to the set D.

Let us recall that by Fact 20 edges of types 3 and 5 are obligatory, that is, if respective
sets are nonempty, every edge between them exists.

(a) Case 1/2. (b) Case 3.

Algorithm.

Let us colour the graph G as follows.

1. We colour with red vertices v1 and v3, with green vertices v2 and v4, and with blue
vertex v3.

2. For i ̸= 1 and w ∈ B∗
i we colour c(w) = c(vi+1).

3. For i ̸= 4, 5 and w ∈ A∗
i we colour c(w) = c(vi−1).

4. We colour C1 with blue and A′
1, A

′
3, A

′
4, B

′
1 with remaining colours.

5. If D = ∅, we colour A∗
5 with green. Then we colour with red every w ∈ A∗

4 adjacent
to A′

3∪B′
1. The rest of A4 we colour with blue. We colour with blue every w ∈ B∗

1

adjacent to A∗
5. The rest of B∗

1 we colour with green.

12



6. If D ̸= ∅, we colour D1 with blue. Then we colour B∗
1 with green and A′

5 with red
and green. Every w ∈ A∗

5 adjacent to B∗
1 we colour with red. The rest of A∗

5 we
colour with green.

Proposition 31. The algorithm colours all vertices of G and this colouring is proper.

Proof. We want to prove that our algorithm colours all vertices of G and this gives a
proper colouring. Of course, it is easy to see that there will not occur any colour conflict
on edges of types 0, 2 and 3. By Fact 19 there is no colour conflict also on edges of
types 1 and 4 (we have two free colours, and the respective subgraphs are bipartite).
The further proof will be split into three subcases.

Case 1. C ̸= ∅.
Of course in this case D = ∅ (by Fact 30). Note that we can assume without loss of

generality that C = C1, B
′ = B′

1 (by Fact 27) and A′
5 = ∅ (by Fact 22). Let us also

recall that in this case A′
2 = ∅ (by Fact 27).

We start with checking the possible colour conflicts on the edges of type 5. Of course,
one of the sets A′

3, A
′
4 is empty (by Fact 22), so there is no colour conflict on the edges

of type 5 between sets A3 and A4. Suppose A′
1 and A∗

5 are both nonempty. If A′
4 ̸= ∅,

then the graph G[{v4} ∪ A′
4 ∪ A∗

5 ∪ A′
1 ∪ {v1, v2, v3} ∪ C1] contains M10. If A′

3 ̸= ∅ and
A∗

4 ̸= ∅ then the graph G[A∗
5 ∪ A′

1 ∪ {v1, v2, v3} ∪ C1 ∪ A′
3 ∪ A4] contains M10. Thus, at

least one of the sets A′
3, A

∗
4 is empty. Hence, we can consider the symmetry of the graph

such that it swaps v4 and v5. Then one of the sets A′
1 or A∗

5 is empty.

Now we want to exclude colour conflicts on the edges of type 6. If A′
1 is adjacent to B∗

3 ,
then the graphG[B∗

3∪A′
1∪{v1, v2, v3}∪C] containsM7 (by Facts 24, 26). Analogously for

A′
3 incident to B∗

4 . If A
′
4 is incident to B∗

5 , then the graph G[{v4}∪A′
4∪B∗

5∪{v2, v3}∪C]
contains M7 (by Fact 24, 26). The colour conflict between A′

4 and B∗
1 may occur only

if B1 is blue. By definition of the colouring, B1 is blue only if it is incident to A∗
5. By

Fact 23 this is impossible.

If there is a colour conflict between A∗
4 and B∗

5 , then there must be two adjacent
vertices w ∈ A∗

4 and w′ ∈ B∗
5 , both coloured with red. But w can be red only when it

is adjacent to B′
1 (by Fact 24 the graph G[{v1, v2} ∪ C ∪ B′

1 ∪ {w,w′}] contains M7) or
when A′

3 is nonempty (and the graph G[w,w′, v2, v3 ∪ C ∪A′
3] contains M7).

The colour conflict between A∗
4 and B∗

1 can occur only if there are two vertices w ∈ A∗
5

and w′ ∈ B1, both coloured with blue. But if w′ is coloured with blue, by definition of
the colouring, there is w′′ ∈ A∗

5 such that w′w′′ ∈ E(G). It contradicts Fact 23, so this
colour conflict is also impossible.

If w ∈ A∗
5 is adjacent to w

′, w′′ ∈ B′
1, then u ∈ A4 and w′ cannot be adjacent (otherwise

the graph G[{w,w′, w′′, u}] contains K4 or G[{w,w′, w′′, v1} ∪A4] contains M7, by Fact
28). Thus, we can consider the symmetry of the graph such that it swaps v4 and v5.
Note that this operation does not change our previous assumption. Indeed, before the
reflection, if A′

4 ̸= ∅, then the graph G[{v4} ∪ A′
4 ∪ A5 ∪ B′

1 ∪ {v3}] contains M7, and if
A′

3 ̸= ∅ and A∗
4 ̸= ∅, then the graph G[A∗

5 ∪B′
1 ∪ {v3} ∪A′

3 ∪A∗
4] contains M7.

By definition of the colouring, there is no colour conflict between A∗
5 and B∗

1 .
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Case 2. C ∪D = ∅
In case C ∪D = ∅ we can also assume B′ = ∅ (because otherwise we can find another

5-cycle Q′ and a vertex incident to three consecutive vertices of Q′). By Fact 22 we
can assume that A′

2 ∪ A′
5 = ∅. Also, we can assume that there is no 6-type edges with

vertices from A′ (again, by Fact 26, otherwise we could find there another 5-cycle so that
we return to Case 1 ) and that if A′ is nonempty, then A5 is empty (because for A′

i ̸= ∅
we have one of sets Ai+1, Ai+2, Ai+3, Ai+4 empty by the same argument as before).

Now, let us check the possible colour conflicts. It is easy to see that if A′ = ∅, our
colouring is proper. Assume A′ ̸= ∅. Then, thanks to A5 = ∅, there is no conflicts on
edges of type 5. The only possible (given our assumptions) conflicts may occur on edges
of type 6 with vertices from A∗

4. As in previous case, there is no conflict between A∗
4 and

B1. If A
∗
4 is connected to B∗

5 and coloured with red, then by definition of our colouring
A′

3 ̸= ∅. Hence, we can find another 5-cycle so that we return to Case 1.

Case 3. D ̸= ∅
We will see that there cannot occur any colour conflict on edges of type 7. Let us

recall that by Fact 30 in this case we have Ai ∪Ai+3 ∪A′
i+1 ∪A′

i+2 ∪B′ ∪ C = ∅. If B4

is adjacent to D = D1, then the graph G contains W5.

Hence colour conflicts can occur only on the edges of type 6 with vertices from A5. If
A′

5 is adjacent to B∗
1 , then the graph G[{v5} ∪ A′

5 ∪ B∗
1 ∪ {v3, v4} ∪D] contains M7 by

Fact 29. Analogously for A′
5 adjacent to B

∗
2 . Now suppose there are w ∈ A∗

5, w
′ ∈ B∗

1 and
w′′ ∈ B∗

2 such that ww′, ww′′ ∈ E(G). Note that w′w′′ ∈ E(G) (because otherwise the set
{v5, v1, w′, u, w′′} induces bull, for any u ∈ D). Then the set of vertices {v1, w′, w, w′′, v4}
induces bull.

4.3 Proof of Theorem 5

We can follow the proof of Theorem 4 with a few changes. Because there are no 5-cycles,
we only have to consider the case p > 5. Notice that in this case, if w ∈ Ai, then the set
of vertices {vi−3, vi−2, vi, vi+1, vi+2, vi+3, w} induces S1,2,3. Then (because D = ∅ due to
Fact 11), we have V (G) = Q ∪B ∪ C. Now, we can follow the proof of Theorem 4.

5 Certifying algorithms

Theorem 32. There exists a polynomial time certifying algorithm for 3-colourability in
the class of (bull,H)-free graphs for H ∈ {S1,1,2, S1,2,2}, and in the class of (bull, C5, H)-
free graphs with H ∈ {S1,1,3, S1,2,3}.

Proof. An odd hole can be found in polynomial time O(n9) by an algorithm in [7]. So
let Q be this odd hole of length p. To check whether G contains an odd wheel W2t+1

for some t ≥ 1, one can check for every vertex w ∈ V (G) in polynomial time O(|E|)
whether G[N(w)] is bipartite. If this is not the case, then G contains an odd wheel with
center vertex w. In the case p > 5, all structural investigations can be performed in
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polynomial time and the algorithm either finds a proper 3-colouring or detects a spindle
graph M3t+1 for some t ≥ 3. In the proofs for the case p = 5, proper 3-colourings of G
or a subgraph from {M4,M7,M10} will be found in polynomial time.

Summarizing, all structural investigations and algorithms run in polynomial time and
either find a proper 3-colouring of G or detect an odd wheel or a spindle graph M3i+1

for some i ≥ 1.
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