On 3-colourability of (bull, H)-free graphs

Nadzieja Hodur¹, Monika Pilśniak¹, Magdalena Prorok¹, and Ingo Schiermeyer²

¹AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland ²TU Bergakademie Freiberg, 09596 Freiberg, Germany

April 22, 2024

Abstract

The 3-colourability problem is a well-known NP-complete problem and it remains NP-complete for *bull*-free graphs, where *bull* is the graph consisting of K_3 with two pendant edges attached to two of its vertices. In this paper we study 3-colourability of (bull, H)-free graphs for several graphs H. We show that these graphs are 3-colourable or contain an induced odd wheel W_{2p+1} for some $p \geq 2$ or a spindle graph M_{3p+1} for some $p \geq 1$. Moreover, for all our results we can provide certifying algorithms that run in polynomial time.

Keywords: 3-colourable graphs, forbidden induced subgraphs, perfect graphs, complexity Math. Subj. Class.: 05C15, 05C17, 68Q25, 68W40.

1 Introduction

We consider finite, simple, and undirected graphs. For terminology and notations not defined here, we refer to [1].

An *induced subgraph* of a graph G is a graph on a vertex set $S \subseteq V(G)$ for which two vertices are adjacent if and only if they are adjacent in G. In particular, we say that the subgraph is *induced by* S. We also say that a graph H is an *induced subgraph* of G if H is isomorphic to an induced subgraph of G.

Given a family \mathcal{H} of graphs and a graph G, we say that G is \mathcal{H} -free if G contains no graph from \mathcal{H} as an induced subgraph. In this context, the graphs of \mathcal{H} are referred to as forbidden induced subgraphs.

A graph is *k*-colourable if each of its vertices can be coloured with one of *k* colours so that adjacent vertices obtain distinct colours. The smallest integer *k* such that a given graph *G* is *k*-colourable is called the *chromatic number* of *G*, denoted by $\chi(G)$. Clearly, $\chi(G) \geq \omega(G)$ for every graph *G*, where $\omega(G)$ denotes the *clique number* of *G*, that is, the order of a maximum complete subgraph of G. Furthermore, a graph G is *perfect* if $\chi(G') = \omega(G')$ for every induced subgraph G' of G. For a subgraph H and a vertex v, let $d_H(v) = |N(v) \cap V(H)|$.

The graph on five vertices v_1 , v_2 , v_3 , v_4 , v_5 and with the edges v_1v_2 , v_2v_3 , v_3v_4 , v_4v_5 , v_2v_4 is called the *bull*. Let $S_{i,j,k}$ be the graph consisting of three induced paths of lengths i, j and k, with a common initial vertex. The graph $S_{1,1,1}$ is called *claw*, $S_{1,1,2}$ is called *chair* and $S_{1,2,2}$ is called E.

The 3-colourability problem is a well-known NP-complete problem and it remains NPcomplete for *claw*-free and *bull*-free graphs. In the last two decades, a large number of results of colourings of graphs with forbidden subgraphs have been shown (cf. [2], [3], [4], [10], [12], [14], [15] and cf. [9], [11], [13] for three surveys).

Following [5], an algorithm is certifying, if it returns with each input a simple and easily verifiable certificate that the particular input is correct. For example, a certifying algorithm for the bipartite graph recognition would return either a 2-colouring of the input graph proving that it is bipartite, or an odd cycle proving that it is not bipartite. In this paper we study 3-colourability of (bull, H)-free graphs for several graphs H. For all of our results we will provide certifying algorithms that run in polynomial time.

Our research has been motivated by [4] and we use some definitions and notations from it. A graph G of order 3p + 1, $p \ge 1$ is called a *spindle graph* M_{3p+1} if it contains a cycle C: $u_0u_1 \ldots u_{3p}u_0$, where $\{u_{3i-2}, u_{3i-1}, u_{3i+1}, u_{3i+2}\} = N_G(u_{3i})$ and $\{u_{3i-3}, u_{3i}\} =$ $N_G(u_{3i-1}) \cap N_G(u_{3i-2})$ for each $i \in [p]$, where $[p] := \{1, 2, \ldots, p\}$.

Observe that $M_4 \cong K_4$ and M_7 is known as the Moser spindle.

Figure 1: The spindle graph M_{3p+1} .

Proposition 1 ([4]). The graph M_{3p+1} is not 3-colourable for every $p \ge 1$.

Since the 3-colourability problem is NP-complete for claw-free graphs and K_3 -free graphs (cf. [9]), it is also NP-complete for *bull*-free graphs. The following theorem in [4] has motivated our research.

Theorem 2 ([4]). Let G be (bull, claw)-free graph. Then one of the following holds (i) G contains W_5 or (ii) G contains a (not necessarily induced) spindle graph M_{3i+1} for some $i \ge 1$ or (iii) G is 3-colourable.

The goal of this paper is to consider 3-colourability of (bull, H)-free graphs, where H is a supergraph of the claw.

Theorem 3. Let G be a connected (bull, chair)-free graph. Then

- (i) G contains an odd wheel or
- (ii) G contains a (not necessarily induced) spindle graph M_{3i+1} for some $i \geq 1$ or
- (iii) G is 3-colourable.

In fact Theorem 3 can be extended to the larger class of (bull, E)-free graphs. However, for this proof, we will show and make use of several additional graph properties.

Theorem 4. Let G be a connected (bull, E)-free graph. Then

- (i) G contains an odd wheel or
- (ii) G contains a (not necessarily induced) spindle graph M_{3i+1} for some $i \ge 1$ or
- (iii) G is 3-colourable.

If we forbid in addition induced 5-cycles, then Theorem 4 can be extended as follows.

Theorem 5. Let G be a connected (bull, C_5 , H)-free graph with $H \in \{S_{1,1,3}, S_{1,2,3}\}$. Then

- (i) G contains an odd wheel or
- (ii) G contains a (not necessarily induced) spindle graph M_{3i+1} for some $i \ge 1$ or
- (iii) G is 3-colourable.

The 3-colourability problem has been also studied for P_k -free graphs for $k \geq 5$. Let G_1, G_2, G_3 be graphs on 7, 10 and 13 vertices, respectively (see Figure 2). In [5] the following theorem was shown.

Figure 2: The graphs G_1 , G_2 and G_3 from Theorem 6.

Theorem 6 ([5]). A P_5 -free graph is 3-colourable if and only if it does not contain K_4 , W_5 , M_7 , G_1 , G_2 or G_3 as a subgraph.

Note that G_1 , G_2 and G_3 are not *bull*-free. This leads to the following corollary from Theorem 5.

Corollary 7. Let G be a (bull, P_5)-free graph. Then

- (i) G contains W_5 or
- (ii) G contains a (not necessarily induced) spindle graph M_4 or M_7 or
- (iii) G is 3-colourable.

Moreover, for P_6 -free graphs we can recall that in [6] the following theorem was shown.

Theorem 8 ([6]). A P_6 -free graph is 3-colourable if and only if it does not contain $F_1 \cong K_4, F_2 \cong W_5, F_3 \cong M_7, F_4, \dots, F_{24}$ as a subgraph, defined in [6].

It is easy to check that $F_2 \cong W_5$, $F_3 \cong M_7$, F_{12} , F_{15} and F_{18} (see Figure 3) are the only $(K_4, bull)$ -free graphs. Note that F_{18} is well known as the Mycielski graph. This leads to another corollary from Theorem 5.

Figure 3: The graphs F_{12} , F_{15} and F_{18} from Theorem 8.

Corollary 9. Let G be a (bull, P_6)-free graph. Then

- (i) G contains W_5 or
- (ii) G contains a (not necessarily induced) spindle graph M_4 or M_7 or
- (iii) G contains F_{12} , F_{15} or F_{18} or
- (iv) G is 3-colourable.

The organization of the paper is the following. In Section 2 we provide preliminary results and properties for *bull*-free graphs. Next, in Section 3 we prove Theorem 3 and in Section 4 we prove Theorem 4. Finally, in Section 5 we show that the proofs of Theorem 3 and Theorem 4 provide polynomial time certifying algorithms for 3-colourability in the class of (*bull*, *H*)-free graphs for $H \in \{S_{1,1,2}, S_{1,2,2}\}$.

2 Preliminary results

We recall that a *hole* in a graph G is an induced cycle of length at least 4, and an *antihole* in G is an induced subgraph whose complement is a cycle of length at least 4. A hole (antihole) is *odd* if it has an odd number of vertices. As the main tool for proving Theorems 3 and 4, we will use the well-known Strong Perfect Graph Theorem shown by Chudnovsky et al. [8].

Theorem 10 (Chudnovsky et al. [8]). A graph is perfect if and only if it contains neither an odd hole nor an odd antihole as an induced subgraph.

In the following we will consider 3-colourability in subclasses of *bull*-free graphs. Here are some useful reductions:

- If $\Delta(G) \leq 3$, then G is 3-colourable by Brook's Theorem.
- If G has a vertex w of degree at most 2, then G is 3-colourable if and only if G w is 3-colourable. So we can reduce G to G w.
- If G contains $K_4 = M_4$, then G is not 3-colourable.
- If a graph G contains an odd antihole $\overline{C_{2t+1}}$ with $t \ge 4$, then G contains K_4 . If t = 3, then G contains the spindle graph M_7 , and finally, if t = 2, we have an antihole $\overline{C_5}$, which is isomorphic to the hole C_5 .
- If G is not connected, then we can check 3-colourability for each component of G seperately. Moreover, if G has a cut-vertex w, let G_1, G_2, \ldots, G_t be the components of G w. Now we check whether each induced subgraph $G'_i = G[G_i \cup \{w\}]$ is 3-colourable. If all of G'_1, \ldots, G'_t are 3-colourable, then we can combine their 3-colourings to obtain a 3-colouring of G.

These reductions show that we can restrict our 3-colourability test to the class of *bull*-free graphs that are 2-connected, K_4 -free, and where $\delta(G) \geq 3$. Furthemore, we can assume without losing generality that the graph G contains an odd hole C_{2p+1} .

2.1 Properties for *bull*-free graphs

Let $Q = v_1 v_2 \dots v_p v_1$ be the smallest induced odd hole in the graph G and $w \in V(G) \setminus Q$. We define q(w) as the largest i such that w has i consecutive neighbours on the cycle Q. Thus, there is $1 \leq j \leq p$ satisfying $\{v_j, v_{j+1}, \dots, v_{j+i-1}\} \subset N_Q(w)$. All indices are taken modulo p.

We will prove some useful facts about this value.

Fact 11. If p > 5, then $q(w) \in \{1, 3\}$. If p = 5, then $q(w) \in \{1, 3, 4\}$.

Proof. Firstly, note that if q(w) = 2, then the set of vertices $\{v_{j-1}, v_j, v_{j+1}, v_{j+2}, w\}$ induces *bull.* If $4 \le q(w) < p$ and $p \ge 7$, then the set of vertices $\{v_{j-1}, v_j, v_{j+1}, v_{j+3}, w\}$ induces *bull.* If q(w) = p, then the graph G contains an odd wheel W_p .

Fact 12. If q(w) = 3, then $d_Q(w) = 3$.

Proof. Suppose q(w) = 3 and there is $v_k \in N_Q(w)$ with $v_k \notin \{v_j, v_{j+1}, v_{j+2}\}$. Hence, we have $p \ge 7$. Then one of the sets $\{v_{j-1}, v_j, v_{j+1}, v_k, w\}$ or $\{v_{j+1}, v_{j+2}, v_{j+3}, v_k, w\}$ induces bull.

Fact 13. If q(w) = 1, then $d_Q(w) \in \{1, 2\}$. Moreover, if q(w) = 1 and $d_Q(w) = 2$, then there is i such that $N_Q(w) = \{v_i, v_{i+2}\}$.

Proof. Suppose w has two neighbours v_i, v_j in Q, satisfying $|i - j| \ge 3$, where i > j. Then either the cycle $wv_iv_{i+1}\ldots v_j$ or the cycle $wv_jv_{j+1}\ldots v_i$ is odd. This cycle must contain an induced odd cycle Q', which is shorter than Q. Since w has no consecutive neighbours on Q, the cycle Q' is not K_3 .

2.2 Properties for (bull, E)-free graphs

We can now define the following sets:

- $A_i = \{ v \in V \setminus Q : N_Q(v) = \{v_i\} \}.$
- $B_i = \{v \in V \setminus Q : N_Q(v) = \{v_i, v_{i+2}\}\}.$
- $C_i = \{v \in V \setminus Q : N_Q(v) = \{v_i, v_{i+1}, v_{i+2}\}\}.$
- $D_i = \{v \in V \setminus Q : N_Q(v) = \{v_i, v_{i+1}, v_{i+2}, v_{i+3}\}\}.$

Let $A'_i = \{v \in A_i : \exists v' \in A_i, vv' \in E(G)\}$ and $B'_i = \{v \in B_i : \exists v' \in B_i \cup C_i, vv' \in E(G)\}$. Then let $A^*_i = A_i \setminus A'_i$ and $B^*_i = B_i \setminus B'_i$.

Let also $A = \bigcup_{i=1}^{p} A_i$, $B = \bigcup_{i=1}^{p} B_i$, $B' = \bigcup_{i=1}^{p} B'_i$, $C = \bigcup_{i=1}^{p} C_i$ and $D = \bigcup_{i=1}^{p} D_i$.

We want to prove that $V(G) = Q \cup A \cup B \cup C \cup D$. This is true due to the facts above and to the following lemma.

Lemma 14. Q is a dominating set in G.

Proof. Suppose there exists a vertex $v \in V(G)$ for which $\operatorname{dist}(v, Q) = 2$. Hence, there exist $v' \notin Q$ and $v_i \in Q$ such that $v'v_i, vv' \in E(G)$. If $v'v_j \in E(G)$ for every j, then the set of vertices $\{v', v_1, \ldots, v_p\}$ induces odd wheel. If there exists $k \in [p]$ such that $v'v_k, v'v_{k-1} \in E(G)$ and $v'v_{k+1} \notin E(G)$, then the set $\{v, v', v_{k-1}, v_k, v_{k+1}\}$ induces bull.

If none of these two cases occur, then q(v') = 1. Since Q is an odd cycle, there exists $j \in [p]$ such that $v'v_{j-1}, v'v_{j+1}, v'v_{j+2} \notin E(G)$ and $v'v_j \in E(G)$. Then the set of vertices $\{v, v', v_j, v_{j+1}, v_{j+2}, v_{j-1}\}$ induces E (so it also induces *chair*).

Fact 15. Let $w \in B_i \cup C_i$ and $w' \in B_j \cup C_j$. If $|i - j| \ge 2$, then $ww' \notin E(G)$.

Proof. We can assume without losing generality that $2 \leq j - i . Suppose <math>ww' \in E(G)$. Let us consider possible cases.

If $j-i \geq 3$, then one of the sets $\{v_{i+2}, v_{i+3}, \ldots, v_j, w', w\}$ or $\{v_{j+2}, v_{j+3}, \ldots, v_i, w, w'\}$ induces smaller odd cycle in G.

If j - i = 2 and p > 5, then the set of vertices $\{v_i, w, v_j, w', v_{j+2}\}$ induces bull.

If j - i = 2, p = 5 and $w' \in B$, then the set of vertices $\{v_i, w, w', v_j, v_{j+1}\}$ induces bull. Analogously if $w \in B$.

If j-i=2, p=5 and $w, w' \in C$, then the graph G contains the spindle graph M_7 . \Box

Fact 16. If $C_i \neq \emptyset$, then $C_{i+1}, C_{i-1} = \emptyset$.

Proof. Suppose that $w \in C_i$ and $w' \in C_{i+1}$. If $ww' \in E(G)$, then the induced graph $G[\{w, v_{i+1}, v_{i+2}, w'\}]$ is complete. If $ww' \notin E(G)$, then the set of vertices $\{v_{i-1}, v_i, w, v_{i+1}, w'\}$ induces bull.

Fact 17. If $w \in B_i \cup C_i$, $w' \in B_{i+1} \cup C_{i+1}$ and $ww' \in E(G)$, then $w \in B_i^*$ or $w' \in B_{i+1}^*$.

Proof. Assume $ww' \in E(G)$. Let us consider possible cases.

If $w \in C_i$, then $w' \notin C_{i+1}$ by Fact 16.

If $w \in C_i$ and $w' \in B'_{i+1}$, then there exists $w'' \in B'_{i+1}$ such that $w'w'' \in E(G)$ and either the set of vertices $\{v_{i-1}, v_i, w, v_{i+1}, w''\}$ induces bull (if $ww'' \notin E(G)$) or the set $\{w, v_{i+1}, w', w''\}$ induces K_4 (otherwise).

If $w \in B'_i$ and $w' \in B'_{i+1}$, then there exist $w'' \in B'_i \cup B_i$ and $w''' \in B'_{i+1} \cup C_{i+1}$ such that $ww'', w'w''' \in E(G)$. Then the set of vertices $\{v_{i-1}, v_i, w', w, w''\}$ induces bull (if $w'w'' \notin E(G)$), or the set $\{v_{i+4}, v_{i+3}, w''', w', w\}$ induces bull (if $ww''' \notin E(G)$), or the set $\{v_{i+4}, v_{i+3}, w'', w', w\}$ induces bull (if $w'w'' \notin E(G)$), or the set $\{v_{i+4}, v_{i+3}, w'', w', w''\}$ induces bull (if $w'w'' \in E(G)$, but $w''w''' \notin E(G)$), or the set $\{w, w', w'', w'''\}$ induces K_4 (otherwise).

3 Proof of Theorem 3

Note that if G is a (*bull*, *chair*)-free graph, then the sets A and B are empty. It is true, because if q(w) = 1, then (since Q is an odd cycle) there exists $i \in [p]$ such that $wv_{i-1}, wv_{i+1}, wv_{i+2} \notin E(G)$ and $wv_i \in E(G)$. Then the set of vertices $\{v_{i-1}, v_i, v_{i+1}, v_{i+2}, w\}$ induces *chair*.

Moreover, we can point out that for every $i \in [p]$ we have $|C_i| \leq 1$. It is true, because if we have two distinct vertices $w, w' \in C_i$, then either the graph $G[\{v_i, v_{i+1}, w, w'\}]$ is complete (if $ww' \in E(G)$) or the set of vertices $\{v_{i-2}, v_{i-1}, v_i, w, w'\}$ induces *chair* (if $ww' \notin E(G)$).

Consider the case with p = 5. We know that $V(G) = Q \cup C \cup D$. Our assumption is that $\delta(G) \geq 3$, so every vertex from Q must have at least one neighbour in the set $C \cup D$. Since p = 5, the graph G always contains M_7 .

Now, we will describe the structure of the graph G for p > 5. By Fact 11 we have $V(G) = C \cup Q$. Moreover, by Fact 16, $|N_Q(w) \cap N_Q(w')| \le 1$ for every $w, w' \in C$. Then $|C| \le \frac{p-1}{2}$. Let us recall that C is an isolated set of vertices (by Fact 15).

This graph is either 3-colourable or contains the spindle graph. If $|C| = \frac{p-1}{2}$, then it is easy to see that G is the spindle graph of order $\frac{3(p-1)}{2} + 1$. Otherwise, there either exists vertex $v \in Q$ such that $d_C(v) = 0$ or there exist two vertices $v_i, v_j \in Q$ such that $C_i, C_{j-2} \neq \emptyset, C_{i-2}, C_j = \emptyset$ and j = i + 2k, where $0 < k < \frac{p-1}{2}$. The first case is impossible due to our assumption that $\delta(G) > 2$. In second case we colour vertices $v_i, v_{i+1}, \ldots, v_j$ alternately with colours blue and red (starting with blue), and the rest of Q alternately with colours red and green. Finally, we colour vertices from C with remaining colours. Note that for every vertex $w \in C$ we have at least one free colourthe colouring method provides us that for every *i* such that $C_i \neq \emptyset$, vertices v_i and v_{i+2} get the same colour. Therefore, the obtained colouring is proper.

4 Proof of Theorem 4

The proof of Theorem 4 will be split into two cases.

4.1 Case p > 5

Notice that in this case, if $w \in A_i$, then the set of vertices $\{v_{i-2}, v_{i-1}, v_i, v_{i+1}, v_{i+2}, w\}$ induces E. Then (because $D = \emptyset$ due to Fact 11), we have $V(G) = Q \cup B \cup C$.

Let us recall that due to Fact 15 edges ww' non-incident to the cycle Q can exist only for $w \in B_i \cup C_i$ and $w' \in B_i \cup C_i \cup B_{i+1} \cup C_{i+1}$.

To shorten our considerations, we will call an ww' a "1-type edge" if $w, w' \in B_i \cup C_i$, and a "2-type edge" if $w \in B_i \cup C_i, w' \in B_{i+1} \cup C_{i+1}$. Of course, every edge non-incident to Q is either 1-type or 2-type. Fact 17 tells us that if ww' is an 2-type edge, then $w \in B^*$ or $w' \in B^*$. It is obvious, that no 1-type edge is incident to the set B^* . Therefore, the graph $G' = G[V(G) \setminus (B^*)]$ does not contain any 2-type edge and does contain all 1-type edges.

Note that if there exists a proper 3-colouring c' of the graph G', then there also exists a proper colouring c of the graph G.

Assume that c' is a proper 3-colouring of the graph G'. Let us precolour with c' all vertices outside the set B^* . By Fact 15, every neighbour of non-precoloured vertex $w \in B_i^*$ is v_i , or v_{i+2} , or belongs to the set $C_{i-1} \cup B_{i-1} \cup C_{i+1} \cup B_{i+1}$. That means every neighbour of w is also incident to the vertex v_{i+1} . Thus, the vertex w can get the colour $c'(v_{i+1})$.

How can we decide whether a proper 3-colouring of G' exists or not? We want to show that c' exists if and only if there exists a proper colouring c'' of the cycle Q satisfying the following property:

$$\forall i \in [p] : C_i \cup B'_i \neq \emptyset \Rightarrow c''(v_i) = c''(v_{i+2}). \tag{1}$$

Of course, if $C_i \cup B'_i \neq \emptyset$, then any proper colouring must assign the same colour to the vertices v_i and v_{i+2} . The inverse implication is true due to the fact that the graph G' does not contain any 2-type edge and to the following observation.

Fact 18. The graph $G[B_i \cup C_i]$ is bipartite for any *i*.

Proof. Suppose $G[B_i \cup C_i]$ contains an odd cycle. Then it contains the induced odd cycle $w_1w_2...w_s$, where $s \ge 3$, and the set of vertices $\{v_i, w_1, w_2, ..., w_sw_1\}$ induces either K_4 or an odd wheel.

Thus, having c'', we can construct c' in a very simple way, assigning every vertex the first available colour.

To find the colouring c'' satisfying the property (1), we proceed according to the following algorithm:

- 1. Colour vertex v_1 with red.
- 2. Colour with red all those vertices whose colouring is enforced by the property (1).
- 3. If there occurres a colour conflict, stop. The graph G contains the spindle graph.
- 4. Let k be an index such that v_{k-2} is non-coloured and v_k is red. Colour v_{k-1} with green.
- 5. Colour with green all those vertices whose colouring is enforced by the property (1).
- 6. If there there occurred colour conflict, stop. The graph G contains the spindle graph.
- 7. Colour vertex v_{k-2} with blue.
- 8. Colour with blue every non-coloured vertex v_{k-2l} , where $l \in \mathbb{N}$.
- 9. Colour with red all the remaining vertices.

Steps 8 and 9 are possible, since Q is an odd cycle. Using this procedure we obtain a proper colouring of the cycle Q.

4.2 Case p = 5

Since G is (bull, E)-free graph, and C_5 is a dominating cycle (by Lemma 14), it follows that $V(G) = Q \cup A \cup B \cup C \cup D$. Assuming G does not contain W_5 , K_4 and M_7 , we will prove a number of properties of these subsets.

Fact 19. The graphs $G[C_i \cup B_i]$ and $G[A_i]$ are bipartite for any *i*.

Proof. The proof is analogous to the proof of Fact 18.

Fact 20. If $w \in A_i$ and $w' \in A_{i+1} \cup A_{i-1} \cup B_{i-1}$, then $ww' \in E(G)$.

Proof. Suppose $w' \in A_{i+1} \cup B_{i-1}$ and $ww' \notin E(G)$. Then the set of vertices $\{w, v_i, v_{i+1}, v_{i+2}, v_{i+3}, w'\}$ induces E. Analogously for A_{i-1} .

Fact 21. If $w \in A_i$ and $w' \in A_{i+2} \cup A_{i+3} \cup B_i \cup B_{i+3} \cup C_i \cup C_{i+1} \cup C_{i+2} \cup C_{i+3}$, then $ww' \notin E(G)$.

Proof. Suppose $ww' \in E(G)$.

If $w' \in A_{i+2}$, then the set of vertices $\{v_{i+3}, v_{i+4}, v_i, v_{i+1}, w, w'\}$ induces E. Analogously for A_{i+3} .

If $w' \in B_i \cup C_i$, then the set of vertices $\{v_{i-1}, v_i, w, w', v_{i+2}\}$ induces *bull*. Analogously for $B_{i+3} \cup C_{i+3}$.

If $w' \in C_{i+1}$, then the set of vertices $\{w, w', v_{i+2}, v_{i+3}, v_{i+4}\}$ induces *bull*. Analogously for C_{i+2} .

Fact 22. There are at most two i, j such that A'_i and A'_j are nonempty. Moreover |i-j| > 1.

Proof. Suppose $w, w' \in A'_i$ and $u, u' \in A'_{i+1}$, where $ww', uu' \in E(G)$. Then by Fact 20 the set of vertices $\{w, w', u, u'\}$ induces K_4 . Thus |j - i| > 1. Since Q consists of five vertices, the conclusion holds.

Fact 23. If $w \in A_i$, $w' \in A_{i+1}$ and $w'' \in B_{i+2}$, then $ww'' \notin E(G)$ or $w'w'' \notin E(G)$.

Proof. Suppose $ww'', w'w'' \in E(G)$. By Fact 20 $ww' \in E(G)$. Then the set of vertices $\{v_i, w, w', w'', v_{i+2}\}$ induces bull.

Fact 24. If $w \in C_i$ and $w' \in A_{i+1} \cup B_{i-1} \cup B_{i+1}$, then $ww' \in E(G)$.

Proof. Suppose $ww' \notin E(G)$. If $w' \in A_{i+1} \cup B_{i+1}$, then the set of vertices $\{v_{i-1}, v_i, v_{i+1}, w, w'\}$ induces *bull*. Analogously for $w' \in B_{i-1}$

Fact 25. If $w \in C_i$ and $w' \in A_i \cup A_{i+2} \cup A_{i+3} \cup A_{i+4}$, then $ww' \notin E(G)$.

Proof. Suppose $ww' \in E(G)$.

If $w' \in A_i$, then the set of vertices $\{v_{i+3}, v_{i+2}, v_{i+1}, w, w'\}$ induces bull. Analogously for $w' \in A_{i+2}$

If $w' \in A_{i+3}$, then the set of vertices $\{v_{i-1}, v_i, v_{i+1}, w, w'\}$ induces bull. Analogously for $w' \in A_{i+4}$.

Fact 26. If $w, w' \in A'_i$, $ww' \in E(G)$ and there exists $w'' \in V(G) \setminus (A_i \cup D)$ such that $ww'' \in E(G)$, then $w'w'' \in E(G)$.

Proof. Suppose $ww', ww'' \in E(G)$ and $w'w'' \notin E(G)$.

By Fact 21 $w'' \notin A_{i+2} \cup A_{i+3} \cup B_i \cup B_{i+3} \cup C_i \cup C_{i+1} \cup C_{i+2} \cup C_{i+3}$. Let us consider possible cases.

If $w'' \in A_{i+1} \cup B_{i+1}$, then the set of vertices $\{v_{i-1}, v_i, w, w', w''\}$ induces bull. Analogously for A_{i-1} and B_{i+2} .

If $w'' \in B_{i-1}$, then by Fact 20 we have $w'w'' \in E(G)$.

If $w'' \in C_{i-1}$, then by Fact 24 the set of vertices $\{v_i, w, w', w''\}$ induces K_4 .

Fact 27. There is only one i such that $C_i \neq \emptyset$. Moreover, if $C_i \neq \emptyset$ then $A'_{i+1} \cup B'_{i+1} \cup B'_{i+2} \cup B'_{i+3} \cup B'_{i+4} = \emptyset$.

Proof. Let $w \in C_i$. We consider possible cases.

If $w', w'' \in A'_{i+1}$ and $ww' \in E(G)$, then by Fact 24 the set of vertices $\{v_{i+1}, w, w', w''\}$ induces K_4 .

If $w' \in C_{i+1}$, then either the set of vertices $\{v_{i-1}, v_i, w, v_{i+1}, w'\}$ induces bull (if $ww' \notin E(G)$) or the set of vertices $\{v_i, v_{i+1}, w, w'\}$ induces K_4 (otherwise). Analogously for $w' \in C_{i-1}$.

If $w' \in C_{i+2}$, then G contains the spindle graph M_7 . Analogously for $w' \in C_{i+3}$.

If $w', w'' \in B'_{i+1}$, then the set of vertices $\{v_{i-1}, v_i, w, v_{i+1}, w'\}$ induces *bull* (if $ww' \notin E(G)$), or the set of vertices $\{v_{i+4}, v_{i+3}, w'', w', w\}$ induces *bull* (if $ww' \in E(G)$ but $ww'' \notin E(G)$), or the set of vertices $\{v_i, w, w', w''\}$ induces K_4 . Analogously for $w', w'' \in B_{i-1}$.

If $w', w'' \in B'_{i+2}$, then G contains the spindle graph M_7 . Analogously for $w', w'' \in B'_{i+3}$.

Fact 28. If $w, w' \in B'_i$, $ww' \in E(G)$ and there exists $w'' \in V(G) \setminus (B_i \cup C_i \cup D)$ such that $ww'' \in E(G)$, then $w'w'' \in E(G)$.

Proof. By Facts 15, 21 we have $w'' \notin B_{i+2} \cup B_{i+3} \cup A_{i+2} \cup A_i$.

By Fact 27 we know that $C \setminus C_i = \emptyset$. Then $w'' \notin C$. If $w'' \in A_{i+1}$, then w'w'' exists by Fact 20.

Suppose now $w'' \in B_{i+1} \cup A_{i+3}$ and $ww'' \in E(G), w'w'' \notin E(G)$. Then the set of vertices $\{v_{i-1}, v_i, w', w, w''\}$ induces *bull*. Analogously if $w'' \in B_{i-1} \cup A_{i+4}$.

Fact 29. Let $w \in D_i$. If $w' \in A_{i+1} \cup A_{i+2} \cup B_{i-1} \cup B_i \cup B_{i+1} \cup B_{i+2}$, then $ww' \in E(G)$.

Proof. Suppose $ww' \notin E(G)$.

If $w' \in A_{i+1}$, then the set of vertices $\{v_{i-1}, v_i, w, v_{i+1}, w'\}$ induces bull. Analogously for $w' \in A_{i+2}$.

If $w' \in B_i \cup B_{i+1}$, then the set of vertices $\{w', v_i, v_{i+1}, w, v_{i+4}\}$ induces bull.

If $w' \in B_{i+2}$, then the set of vertices $\{v_i, w, v_{i+3}, v_{i+2}, w'\}$ induces bull.

Fact 30. Let $D \neq \emptyset$. Then $D = D_i^*$ for some i and $A_i \cup A_{i+3} \cup A'_{i+1} \cup A'_{i+2} \cup B' \cup C = \emptyset$.

Proof. Suppose $w \in D_i$. If $w' \in D \setminus D_i$, then G contains the spindle graph M_7 .

If $w' \in D_i$ and $ww' \in E(G)$, then the set of vertices $\{v_i, v_{i+1}, w, w'\}$ induces K_4 .

If $w' \in A_i$, then either the set of vertices $\{w', w, v_i, v_{i+1}, v_{i+3}\}$ induces *bull* (if $ww' \notin E(G)$) or the set of vertices $\{v_{i-1}, v_i, w', w, v_{i+2}\}$ induces *bull* (otherwise). Analogously for A_{i+3} .

Suppose $w', w'' \in A'_{i+1}$ and $w'w'' \in E(G)$. By Fact 29 the set of vertices $\{w, w', w'', v_{i+1}\}$ induces K_4 . Analogously for A'_{i+2} .

If $w' \in C_i$, then the set of vertices $\{v_{i+4}, v_{i+3}, w, v_{i+2}, w'\}$ induces *bull* if and $ww' \notin E(G)$ or the set of vertices $\{v_i, v_{i+1}, w, w'\}$ induces K_4 if $ww' \in E(G)$. Analogously for $w' \in C_{i+1}$.

If $w' \in C_{i+2} \cup C_{i+3} \cup C_{i+4}$, then the graph G contains the spindle graph M_7 . Finally, suppose $w'w'' \in E(G)$.

If $w', w'' \in B'_i$, then by Fact 29 the set of vertices $\{v_i, w, w', w''\}$ induces K_4 . Analogously for $w', w'' \in B'_{i+1}$.

If $w', w'' \in B'_{i+2} \cup B'_{i+3} \cup B'_{i+4}$, then the graph G contains the spindle graph M_7 . \Box

Due to all the facts above, we can distinguish following types of possible edges:

- Type 0: edges incident to the cycle Q.
- Type 1: edges ww' such that $w, w' \in B_i \cup C_i$.
- Type 2: edges ww' such that $w \in B_i \cup C_i$ and $w' \in B_{i+1} \cup C_{i+1}$.
- Type 3: edges ww' such that $w \in A_i$ and $w' \in B_{i-1} \cup C_{i-1}$.
- Type 4: edges ww' such that $w, w' \in A_i$.
- Type 5: edges ww' such that $w \in A_i$ and $w' \in A_{i+1}$.
- Type 6: edges ww' such that $w \in A_i$ and $w' \in B_{i+1} \cup B_{i+2}$.
- Type 7: edges non-incident to Q and incident to the set D.

Let us recall that by Fact 20 edges of types 3 and 5 are obligatory, that is, if respective sets are nonempty, every edge between them exists.

Algorithm.

Let us colour the graph G as follows.

- 1. We colour with red vertices v_1 and v_3 , with green vertices v_2 and v_4 , and with blue vertex v_3 .
- 2. For $i \neq 1$ and $w \in B_i^*$ we colour $c(w) = c(v_{i+1})$.
- 3. For $i \neq 4, 5$ and $w \in A_i^*$ we colour $c(w) = c(v_{i-1})$.
- 4. We colour C_1 with blue and A'_1, A'_3, A'_4, B'_1 with remaining colours.
- 5. If $D = \emptyset$, we colour A_5^* with green. Then we colour with red every $w \in A_4^*$ adjacent to $A_3' \cup B_1'$. The rest of A_4 we colour with blue. We colour with blue every $w \in B_1^*$ adjacent to A_5^* . The rest of B_1^* we colour with green.

6. If $D \neq \emptyset$, we colour D_1 with blue. Then we colour B_1^* with green and A_5' with red and green. Every $w \in A_5^*$ adjacent to B_1^* we colour with red. The rest of A_5^* we colour with green.

Proposition 31. The algorithm colours all vertices of G and this colouring is proper.

Proof. We want to prove that our algorithm colours all vertices of G and this gives a proper colouring. Of course, it is easy to see that there will not occur any colour conflict on edges of types 0, 2 and 3. By Fact 19 there is no colour conflict also on edges of types 1 and 4 (we have two free colours, and the respective subgraphs are bipartite). The further proof will be split into three subcases.

Case 1. $C \neq \emptyset$.

Of course in this case $D = \emptyset$ (by Fact 30). Note that we can assume without loss of generality that $C = C_1$, $B' = B'_1$ (by Fact 27) and $A'_5 = \emptyset$ (by Fact 22). Let us also recall that in this case $A'_2 = \emptyset$ (by Fact 27).

We start with checking the possible colour conflicts on the edges of type 5. Of course, one of the sets A'_3 , A'_4 is empty (by Fact 22), so there is no colour conflict on the edges of type 5 between sets A_3 and A_4 . Suppose A'_1 and A'_5 are both nonempty. If $A'_4 \neq \emptyset$, then the graph $G[\{v_4\} \cup A'_4 \cup A'_5 \cup A'_1 \cup \{v_1, v_2, v_3\} \cup C_1]$ contains M_{10} . If $A'_3 \neq \emptyset$ and $A'_4 \neq \emptyset$ then the graph $G[A'_5 \cup A'_1 \cup \{v_1, v_2, v_3\} \cup C_1 \cup A'_3 \cup A_4]$ contains M_{10} . Thus, at least one of the sets A'_3 , A'_4 is empty. Hence, we can consider the symmetry of the graph such that it swaps v_4 and v_5 . Then one of the sets A'_1 or A'_5 is empty.

Now we want to exclude colour conflicts on the edges of type 6. If A'_1 is adjacent to B_3^* , then the graph $G[B_3^* \cup A'_1 \cup \{v_1, v_2, v_3\} \cup C]$ contains M_7 (by Facts 24, 26). Analogously for A'_3 incident to B_4^* . If A'_4 is incident to B_5^* , then the graph $G[\{v_4\} \cup A'_4 \cup B_5^* \cup \{v_2, v_3\} \cup C]$ contains M_7 (by Fact 24, 26). The colour conflict between A'_4 and B_1^* may occur only if B_1 is blue. By definition of the colouring, B_1 is blue only if it is incident to A_5^* . By Fact 23 this is impossible.

If there is a colour conflict between A_4^* and B_5^* , then there must be two adjacent vertices $w \in A_4^*$ and $w' \in B_5^*$, both coloured with red. But w can be red only when it is adjacent to B_1' (by Fact 24 the graph $G[\{v_1, v_2\} \cup C \cup B_1' \cup \{w, w'\}]$ contains M_7) or when A_3' is nonempty (and the graph $G[w, w', v_2, v_3 \cup C \cup A_3']$ contains M_7).

The colour conflict between A_4^* and B_1^* can occur only if there are two vertices $w \in A_5^*$ and $w' \in B_1$, both coloured with blue. But if w' is coloured with blue, by definition of the colouring, there is $w'' \in A_5^*$ such that $w'w'' \in E(G)$. It contradicts Fact 23, so this colour conflict is also impossible.

If $w \in A_5^*$ is adjacent to $w', w'' \in B_1'$, then $u \in A_4$ and w' cannot be adjacent (otherwise the graph $G[\{w, w', w'', u\}]$ contains K_4 or $G[\{w, w', w'', v_1\} \cup A_4]$ contains M_7 , by Fact 28). Thus, we can consider the symmetry of the graph such that it swaps v_4 and v_5 . Note that this operation does not change our previous assumption. Indeed, before the reflection, if $A_4' \neq \emptyset$, then the graph $G[\{v_4\} \cup A_4' \cup A_5 \cup B_1' \cup \{v_3\}]$ contains M_7 , and if $A_3' \neq \emptyset$ and $A_4^* \neq \emptyset$, then the graph $G[A_5' \cup B_1' \cup \{v_3\} \cup A_3' \cup A_4']$ contains M_7 .

By definition of the colouring, there is no colour conflict between A_5^* and B_1^* .

Case 2. $C \cup D = \emptyset$

In case $C \cup D = \emptyset$ we can also assume $B' = \emptyset$ (because otherwise we can find another 5-cycle Q' and a vertex incident to three consecutive vertices of Q'). By Fact 22 we can assume that $A'_2 \cup A'_5 = \emptyset$. Also, we can assume that there is no 6-type edges with vertices from A' (again, by Fact 26, otherwise we could find there another 5-cycle so that we return to *Case 1*) and that if A' is nonempty, then A_5 is empty (because for $A'_i \neq \emptyset$ we have one of sets $A_{i+1}, A_{i+2}, A_{i+3}, A_{i+4}$ empty by the same argument as before).

Now, let us check the possible colour conflicts. It is easy to see that if $A' = \emptyset$, our colouring is proper. Assume $A' \neq \emptyset$. Then, thanks to $A_5 = \emptyset$, there is no conflicts on edges of type 5. The only possible (given our assumptions) conflicts may occur on edges of type 6 with vertices from A_4^* . As in previous case, there is no conflict between A_4^* and B_1 . If A_4^* is connected to B_5^* and coloured with red, then by definition of our colouring $A'_3 \neq \emptyset$. Hence, we can find another 5-cycle so that we return to *Case 1*.

Case 3. $D \neq \emptyset$

We will see that there cannot occur any colour conflict on edges of type 7. Let us recall that by Fact 30 in this case we have $A_i \cup A_{i+3} \cup A'_{i+1} \cup A'_{i+2} \cup B' \cup C = \emptyset$. If B_4 is adjacent to $D = D_1$, then the graph G contains W_5 .

Hence colour conflicts can occur only on the edges of type 6 with vertices from A_5 . If A'_5 is adjacent to B_1^* , then the graph $G[\{v_5\} \cup A'_5 \cup B_1^* \cup \{v_3, v_4\} \cup D]$ contains M_7 by Fact 29. Analogously for A'_5 adjacent to B_2^* . Now suppose there are $w \in A_5^*$, $w' \in B_1^*$ and $w'' \in B_2^*$ such that $ww', ww'' \in E(G)$. Note that $w'w'' \in E(G)$ (because otherwise the set $\{v_5, v_1, w', u, w''\}$ induces bull, for any $u \in D$). Then the set of vertices $\{v_1, w', w, w'', v_4\}$ induces bull.

4.3 Proof of Theorem 5

We can follow the proof of Theorem 4 with a few changes. Because there are no 5-cycles, we only have to consider the case p > 5. Notice that in this case, if $w \in A_i$, then the set of vertices $\{v_{i-3}, v_{i-2}, v_i, v_{i+1}, v_{i+2}, v_{i+3}, w\}$ induces $S_{1,2,3}$. Then (because $D = \emptyset$ due to Fact 11), we have $V(G) = Q \cup B \cup C$. Now, we can follow the proof of Theorem 4.

5 Certifying algorithms

Theorem 32. There exists a polynomial time certifying algorithm for 3-colourability in the class of (bull, H)-free graphs for $H \in \{S_{1,1,2}, S_{1,2,2}\}$, and in the class of (bull, C_5 , H)-free graphs with $H \in \{S_{1,1,3}, S_{1,2,3}\}$.

Proof. An odd hole can be found in polynomial time $O(n^9)$ by an algorithm in [7]. So let Q be this odd hole of length p. To check whether G contains an odd wheel W_{2t+1} for some $t \ge 1$, one can check for every vertex $w \in V(G)$ in polynomial time O(|E|) whether G[N(w)] is bipartite. If this is not the case, then G contains an odd wheel with center vertex w. In the case p > 5, all structural investigations can be performed in

polynomial time and the algorithm either finds a proper 3-colouring or detects a spindle graph M_{3t+1} for some $t \ge 3$. In the proofs for the case p = 5, proper 3-colourings of G or a subgraph from $\{M_4, M_7, M_{10}\}$ will be found in polynomial time.

Summarizing, all structural investigations and algorithms run in polynomial time and either find a proper 3-colouring of G or detect an odd wheel or a spindle graph M_{3i+1} for some $i \ge 1$.

References

- [1] J. A. Bondy, U. S. R. Murty: Graph Theory. Springer, 2008. 1
- [2] C. Brause, T. Doan, P. Holub, A. Kabela, Z. Ryjáček, I. Schiermeyer, P. Vrána: Forbidden induced subgraphs and perfectness for $K_{1,3}$ -free perfect graphs of independence number at least 4, Discrete Math. 345/6, (2022), 112837. 1
- [3] C. Brause, P. Holub, A. Kabela, Z. Ryjáček, I. Schiermeyer, P. Vrána: On forbidden induced subgraphs for claw-free perfect graphs, Discrete Math. 342 (2019), 1602– 1608. 1
- [4] C. Brause, P. Holub, I. Schiermeyer: 3-colourability and diamonds I: (claw, net)-free graphs, manuscript 2023. 1, 1, 2
- [5] D. Bruce, C.T. Hoàng, J. Sawada: A Certifying Algorithm for 3-Colorability of P₅-free Graphs, Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, 5878 (2009) 594-604. 1, 1, 6
- [6] M. Chudnovsky, J. Goedgebeur, O. Schaudt, M. Zhong: Obstructions for threecoloring graphs without induced paths on six vertices. J. Combin. Theory Ser. B 140 (2020), 45–83. 1, 8
- [7] M. Chudnovsky, A. Scott, P. Seymour, S. Spirkl: Detecting an Odd Hole. J. of the ACM 67/1 (2020), A5. 5
- [8] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas: The strong perfect graph theorem, Ann. Math. 164 (2006), 51–229. 2, 10
- [9] P. A. Golovach, M. Johnson, D. Paulusma, J. Song: A survey on the computational complexity of coloring graphs with forbidden subgraphs, J. Graph Theory 84 (2017), 331–363. 1, 1
- [10] B. Randerath, The Vizing bound for the chromatic number based on forbidden pairs, Aachen, Techn. Hochsch., PhD Thesis, 1998. 1
- B. Randerath, I. Schiermeyer: Vertex colouring and forbidden subgraphs a survey, Graphs Combin. 20 (2004), 1–40.
- [12] B. Randerath, I. Schiermeyer: 3-Colorability ∈ P for P₆-free Graphs, Discrete Appl. Math. 136 (2004), 299–313.
- [13] B. Randerath, I. Schiermeyer: Polynomial χ -binding functions and forbidden induced subgraphs: a survey, Graphs Combin. 35 (2019), 1–31. 1
- B. Randerath, I. Schiermeyer, M. Tewes: 3-Colourability and Forbidden Subgraphs II: Polynomial Algorithms, Discrete Math. 251 (2002), 137–153.

[15] D. P. Sumner, Subtrees of a graph and chromatic number, in: The Theory and Applications of Graphs, (G. Chartrand, ed.), John Wiley & Sons, New York (1981), 557–576.