arXiv:2404.12519v1 [math.AC] 18 Apr 2024

FAMILIES OF NUMERICAL SEMIGROUPS AND A SPECIAL CASE
OF THE HUNEKE-WIEGAND CONJECTURE

MIGUEL LANDEROS, CHRISTOPHER O’NEILL, ROBERTO PELAYO, KARINA PENA,
JAMES REN, AND BRIAN WISSMAN

ABSTRACT. The Huneke-Wiegand conjecture is a decades-long open question in com-
mutative algebra. Garcia-Sanchez and Leamer showed that a special case of this
conjecture concerning numerical semigroup rings k[I'] can be answered in the affir-
mative by locating certain arithmetic sequences within the numerical semigroup I.
In this paper, we use their approach to prove the Huneke-Wiegand conjecture in the
case where I' is generated by a generalized arithmetic sequence and showcase how
visualizations can be leveraged to find the requisite arithmetic sequences.

1. INTRODUCTION

Numerical semigroups, co-finite additive subsemigroups of the natural numbers, have
long been studied for their relationship to important objects in commutative algebra.
Given a numerical semigroup I' C Z~, generated by nq,...,ni, which we denote

I'= (nl,ng,...,nk> = {zlnl + 2N + -+ 2ZpNg 2 € Z20}7

the semigroup algebra k[T'] = k[z™, ..., 2"] over a field k is the subring of the polyno-
mial ring k[z| for which every term 2™ appearing with nonzero coefficient in an element
of k[['] has n € I'. Understanding monomial ideals in this ring, which is inherently
a problem in commutative algebra, can be attacked by studying the underlying semi-
group I'. The advantages of this approach are manifold, as numerical semigroups have
a well-studied factorization theory [7, 0] and several computational packages [I, [6].

One specific open problem that has benefited explicitly from this relationship is the
following special case of the Huneke-Wiegand conjecture [2], 4].

Conjecture 1.1. If R = Kk[I'] is the semigroup algebra of a symmetric numerical
semigroup I', and M is a 2-generated ideal of R, viewed as a module over K[['], then
the torsion submodule of M @r Hompg(M, R) is non-trivial.

In its general form, the Huneke-Wiegand conjecture [4], which has been open for
3 decades, concerns a one-dimensional Gorenstein domain R and a finitely generated
R-module M that is not projective. If R = k[I'] is a numerical semigroup algebra, then
R is one-dimensional, and the Gorenstein hypothesis on R is equivalent to I" being
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symmetric (that is, for every n € I', we have F/(S) —n € I', where F/(I') = max(Z>o\I")
is the Frobenius number of T').

In [2], Garcia-Sanchez and Leamer showed that Conjecture can be positively
answered for a given numerical semigroup algebra R = k([I'] if certain irreducible arith-
metic sequences can be found inside I itself. Fix a positive s ¢ T" and let

t=A{(n,0):n,l €Zs withnn+s,...,n+ls eI}

encode the arithmetic sequences of step size s that are contained in I'. Note that S} is
closed under component-wise addition since (nq, ¢1), (ng, f3) € S§ implies

n1+n2,n1+n2—|—s,...,n1+n2+(€1+€2)3EF.

The authors of [2] proved that Conjecture holds if, for any numerical semigroup I
and any positive s ¢ T', some element (n,2) € S{ is irreducible, meaning it cannot
be written as a sum of other elements of S{. This result has been leveraged to verify
Conjecture for some well-studied families of numerical semigroups, such as when I
is a complete intersection [2] or when I' is generated by an arithmetic sequence whose
step size coincides with s [3].

In this paper, we utilize the results of [2] to prove Conjecture whenever I is
generated by a generalized arithmetic sequence, that is,

I'={(a,ah +d,ah +2d, ..., ah+ kd)

for some a,h,d,k € Z>, with ged(a,d) = 1. This family of numerical semigroups,
introduced in [§], are known for admitting concise characterizations of invariants that
generally have high computational complexity in general (e.g., the Frobenius number).

Theorem 1.2. IfI" is generated by a generalized arithmetic sequence, then the Huneke-
Wiegand conjecture holds for any 2-generated monomial ideal in k[I'].

2. VISUALIZATIONS FOR LOCATING IRREDUCIBLE ELEMENTS OF wa

Before giving the proof of Theorem 1.2 we demonstrate the utility of certain visuals
that arose in obtaining this result. For a given numerical semigroup I', we may use
the Sage [10] package LeamerMonoid [5] to compute, for each s ¢ I', the set of all
irreducible elements (n,2). A particularly helpful graphic emerges when we plot a
point at (s,n) if (n,2) € Sp is irreducible; Figures|1| and [2 each contain two examples.
Thus, the semigroup algebra k[I'] satisfies the Huneke-Wiegand conjecture for all 2-
generated monomial ideals if, for each positive s ¢ T', there exists at least one point
(s,n) in that column.

Examining several of these graphs reveals a method of finding the requisite irre-
ducible elements. For example, if I' = (n,ny), such as in the left-hand graphic of
Figure[1] then (F(T')+n, —s,2) € S§ is irreducible for each s ¢ I'; this is depicted with
a diagonal red line defined by the equation n = F(vy) 4+ n; — s that contains a point in
every column.
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FIGURE 1. The points (s,n) for which (n,2) is irreducible in S}, where
I' = (5,6) (left) and I = (6, 10, 15) (right).

Lemma 2.1. Fiz a symmetric numerical semigroup I' = (ny,...,ng) with s ¢ I'. Fix
a generator n;, and let g = ged({nq,...,ng} \ {n;}). We have (F(I') —s+n;,2) € S§,
and if this element is reducible in S}, then g | s.

Proof. Since I' is symmetric, F(I') — s € I, and since
F(F) + s+ n; > F(F) + n; > F(F),

both F(I') + n; and F(I') + s 4+ n; lie in I'. This proves the first claim. For the second
claim, suppose

(FT)—s+n4,2)=(y, 1)+ (F(I') =s+n; —y,1)

with (y, 1), (F(I')—s+n;—y,1) € Si. Sincey, y+s € I', we conclude y—n;, y+s—n; ¢ I’
since I' is symmetric. It must be that no expression for y or y+ s as a sum of generators
involves the generator n;. In particular, y,y +s € (ny,...,nj,...,ny), meaning g | y
and ¢ | y + s, from which we conclude g | s. O

Lemma makes quick work of the case I' = (nj,ny). Indeed, in addition to
verifying (F(I') — s + n1,2) € S§, Lemma implies if this element were reducible,
then ny | s, which is impossible since s ¢ I

For 3-generated numerical semigroups I' = (nj,ny,n3), one can see by inspection
of the right-hand graphic of Figure [1| that, unlike the 2-generated case above, there
is no single line that contains a point in every column. However, the 3 diagonal
red lines depicted therein, each of which has the form n = F(y) — s + n; for some j,
together contain at least one point in each column. These observations yield a relatively
straightforward proof, included below, that Conjecture holds in the case where I"
has at most 3 generators; however, note that this case also follows from [2] since any
such numerical semigroup is complete intersection.
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Proposition 2.2. Given any symmetric numerical semigroup I' = (ny, ng, ng) and any
s ¢ T, the element (F(I') — s +n;,2) € S} is irreducible for some j.
Proof. Let g; = ged({n1,na, ng}\{n;}) for cach j. By Lemmal2.1] (F(I')—s+n;,2) € S§
for each generator n;, and in order to prove one of these is irreducible in S7, it suffices
to assume lem(gq, g2, 93) | s.

Since T" is symmetric, [9, Theorem 9.6] implies that, after rearranging nq, ng, n3 as
needed, d = ged(ny, ny) > 1 and

(21) dng =an; + bTLQ
for some a,b € Z>g. We claim (F(I') — s + ny,2) € SP is irreducible. Indeed, if this
element were reducible, then it could be written as a sum

(F(T) =s+n1,2) = (F0) =s+m1 — 2,1) + (2,1)
of atoms in S§. In particular, z, z+s € T'since (z,1) € S, whereas z—ny, z+s—n; ¢ T’
since I' is symmetric. As such, any expression of z and z + s as a sum of generators
must only involve n, and ng, meaning

Z = aoNg + asns and Z+ 8 = bang + bang
for some ay, as, by, by € Z>(. Moreover, we must have 0 < as, b3 < d, as otherwise ([2.1])
would yield an expression involving n;. Subtracting z + s and z, we find

s=(z+45)—2z=(by—az)ng + (bs — az)ns

and since d | s, d | ny and d 1 n3, we conclude d | (bs — as). However, |bs — a3| < d.
Thus b3 — az = 0 and s = (by — ag)ns, a contradiction. O

3. NUMERICAL MONOIDS GENERATED BY GENERALIZED ARITHMETIC SEQUENCES

We now turn our attention back to numerical semigroups I' generated by generalized
arithmetic sequences; Figure [2| shows plots of irreducible elements of S for two such
semigroups. Like the 3-generated case, multiple lines are required to find an irreducible
element for each s € Z>1 \I'. In particular, the combination of the line n = F(I')+d—s
and the horizontal line n = ah + d provide the requisite irreducible elements of Sp.
These lines manifest in the form of Proposition|3.2 which we prove after a short lemma.

Lemma 3.1. Suppose I' = (a,ah + d,ah + 2d, ... ,ah + kd) is a symmetric numerical
semigroup with 3 < k < a and ged(a,d) =1, and fir s ¢ I'. We have F(I') —s+d ¢ T
if and only if for some m € {0,..., h — 1},

s —d = am mod (ah + kd).

Proof. First, suppose s —d = am mod (ah + kd) for some m as above. Fixing [ € Z
such that s — d = am + [(ah + kd) and noting that [ > 0 since s > 0, we can write

FI)—s+d=FTI)—(d+am+1(ah+ kd))+d =F(I') — (am + l(ah + kd)).
Since I' is symmetric and am + [(ah + kd) € ', this implies F(I') — s +d ¢ .
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FIGURE 2. The points (s,n) for which (n, 2) is irreducible in S§, where
I'=(5,12,14,16) (left) and I = (6, 13,14, 15, 16) (right) are each gener-
ated by a generalized arithmetic sequence.

Conversely, suppose F(I') — s 4+ d ¢ T'. Since I' is symmetric, s — d € I', so suppose
s—d=za+ z(ah+d)+ -+ zi(ah + kd).

We claim (i) z; = 0 for each 0 < j < k, and (ii) 0 < zp < h — 1. Indeed, if z; > 0 for
0 < j <k, then

s=s—d+d=za+- -+ zi(ah + jd) + - - - + zi(ah + kd) + d
=zoa+ -+ (z; — 1)(ah + jd) + - - - + zx(ah + kd) + (ah + (j + 1)d),
which is impossible since s ¢ T', and if zy > h, then
s=s—d+d= 200+ -+ -+ zi(ah + kd) + d
= (20— h)a+ -+ zx(ah + kd) + (ah + d),

which is again impossible since s ¢ I'. Consequently, s —d = zpa+ zx(ah + kd), thereby
completing the proof with m = z,. O

Proposition 3.2. Suppose I' = (a,ah + d,ah + 2d, ... ,ah + kd) is a symmelric nu-
merical semigroup with 3 < k < a and ged(a,d) =1, and fir s ¢ T.

(a) IfF(I') —s+d €T, then (F(I') — s+ d,2) is irreducible in S§.
(b) If F(I') —s+d ¢ T, then (ah + d,2) is irreducible in S}.

So, the Huneke-Wiegand conjecture holds for any 2-generated monomial ideal in K[I'].
Proof. For part (a), suppose F(I') — s+ d € I'. Since
F(I')+s+d>F{I)+d> F(T),

we also have F(I') + d € I and F(I') + d + s € I". This means (F(I') — s +d,2) € S}.
Now, by way of contradiction, suppose (F(I') — s + d, 2) is reducible, so that

(FT)—s+d,2)=(FT)—s+d—n,1)+ (n,1)
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for some (n, 1), (F(I') = s+d —n,1) € S§. In particular, this means z and F(I') +d — n
both lie in I, and since I is symmetric, n—d ¢ I'. We claim n = zpa for some zy € Z>y.
Indeed, if n = zpa + - - - + zx(ah + kd) with z; > 0, then

n—d=(z+h)a+ (z2—1)(ah+d)+ -+ z(ah + kd),
and if z; > 0 for some j > 1, then
n—d=za+ -+ (zj-1+1)(ah+ (j — 1)d) + (2; — 1)(ah + jd) + - - - + zx(ah + kd),

both of which are impossible since n — d ¢ I". By similar reasoning, n + s € I' and
n+s—d ¢, son+s = zja for some z, € Z>q. This yields s = (n+s) —n = (2{,— 20)a,
which is impossible since s ¢ I'. As such, we conclude (F(T') — s + d,2) is irreducible
in S}, thereby proving part (a).

For part (b), suppose F(I') — s +d ¢ I'. By Lemma 3.1} s — d = am mod (ah + kd)
for some m € {0,...,h—1},solet | € Z with s—d = am+I(ah+kd). Since ah+d € T’
and k > 3, we have

ah+d+s=(ah+2d)+ am+ [(ah+ kd) €T and
ah +d+ 2s = (ah + 3d) + 2am + 2l(ah + kd) € T,

meaning (ah + d,2) € S§. Lastly, suppose by way of contradiction that (ah + d,2) is
reducible in Sf, so that

(ah+d,2) = (ah+d—n,1)+ (n,1)

for some (n,1),(ah +d —n,1) € S§. This means n and ah + d — n are both in
I, but since both are less than ah + d, there exists 2y, 2, € Z>o such that n = zua
and ah + d — n = zja. This implies ah + d = (zy + z{)a, which is impossible since
ged(a,d) = 1. This completes the proof. Il

Proof of Theorem[1.4 If T has at most 3 generators, then I' is complete intersection
by [9, Corollary 10.5], so apply [2, Corollary 22]. Otherwise, apply Proposition[3.2 O
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