FAMILIES OF NUMERICAL SEMIGROUPS AND A SPECIAL CASE OF THE HUNEKE-WIEGAND CONJECTURE

MIGUEL LANDEROS, CHRISTOPHER O'NEILL, ROBERTO PELAYO, KARINA PEÑA, JAMES REN, AND BRIAN WISSMAN

ABSTRACT. The Huneke-Wiegand conjecture is a decades-long open question in commutative algebra. García-Sánchez and Leamer showed that a special case of this conjecture concerning numerical semigroup rings $\mathbb{k}[\Gamma]$ can be answered in the affirmative by locating certain arithmetic sequences within the numerical semigroup Γ . In this paper, we use their approach to prove the Huneke-Wiegand conjecture in the case where Γ is generated by a generalized arithmetic sequence and showcase how visualizations can be leveraged to find the requisite arithmetic sequences.

1. Introduction

Numerical semigroups, co-finite additive subsemigroups of the natural numbers, have long been studied for their relationship to important objects in commutative algebra. Given a numerical semigroup $\Gamma \subseteq \mathbb{Z}_{>0}$ generated by n_1, \ldots, n_k , which we denote

$$\Gamma = \langle n_1, n_2, \dots, n_k \rangle = \{ z_1 n_1 + z_2 n_2 + \dots + z_k n_k : z_i \in \mathbb{Z}_{>0} \},$$

the semigroup algebra $\mathbb{k}[\Gamma] = \mathbb{k}[x^{n_1}, \dots, x^{n_k}]$ over a field \mathbb{k} is the subring of the polynomial ring $\mathbb{k}[x]$ for which every term x^n appearing with nonzero coefficient in an element of $\mathbb{k}[\Gamma]$ has $n \in \Gamma$. Understanding monomial ideals in this ring, which is inherently a problem in commutative algebra, can be attacked by studying the underlying semigroup Γ . The advantages of this approach are manifold, as numerical semigroups have a well-studied factorization theory [7, 9] and several computational packages [1, 6].

One specific open problem that has benefited explicitly from this relationship is the following special case of the Huneke-Wiegand conjecture [2, 4].

Conjecture 1.1. If $R = \mathbb{k}[\Gamma]$ is the semigroup algebra of a symmetric numerical semigroup Γ , and M is a 2-generated ideal of R, viewed as a module over $\mathbb{k}[\Gamma]$, then the torsion submodule of $M \otimes_R \operatorname{Hom}_R(M,R)$ is non-trivial.

In its general form, the Huneke-Wiegand conjecture [4], which has been open for 3 decades, concerns a one-dimensional Gorenstein domain R and a finitely generated R-module M that is not projective. If $R = \mathbb{k}[\Gamma]$ is a numerical semigroup algebra, then R is one-dimensional, and the Gorenstein hypothesis on R is equivalent to Γ being

Date: April 22, 2024.

²⁰¹⁰ Mathematics Subject Classification. Primary: 20M14, 05E40.

Key words and phrases. numerical semigroup; Huneke-Wiegand conjecture.

symmetric (that is, for every $n \notin \Gamma$, we have $F(S) - n \in \Gamma$, where $F(\Gamma) = \max(\mathbb{Z}_{\geq 0} \setminus \Gamma)$ is the Frobenius number of Γ).

In [2], García-Sánchez and Leamer showed that Conjecture 1.1 can be positively answered for a given numerical semigroup algebra $R = \mathbb{k}[\Gamma]$ if certain irreducible arithmetic sequences can be found inside Γ itself. Fix a positive $s \notin \Gamma$ and let

$$S_{\Gamma}^s = \{(n,\ell) : n,\ell \in \mathbb{Z}_{>1} \text{ with } n,n+s,\ldots,n+\ell s \in \Gamma\}$$

encode the arithmetic sequences of step size s that are contained in Γ . Note that S_{Γ}^{s} is closed under component-wise addition since $(n_{1}, \ell_{1}), (n_{2}, \ell_{2}) \in S_{\Gamma}^{s}$ implies

$$n_1 + n_2, n_1 + n_2 + s, \dots, n_1 + n_2 + (\ell_1 + \ell_2)s \in \Gamma.$$

The authors of [2] proved that Conjecture 1.1 holds if, for any numerical semigroup Γ and any positive $s \notin \Gamma$, some element $(n,2) \in S^s_{\Gamma}$ is *irreducible*, meaning it cannot be written as a sum of other elements of S^s_{Γ} . This result has been leveraged to verify Conjecture 1.1 for some well-studied families of numerical semigroups, such as when Γ is a complete intersection [2] or when Γ is generated by an arithmetic sequence whose step size coincides with s [3].

In this paper, we utilize the results of [2] to prove Conjecture 1.1 whenever Γ is generated by a generalized arithmetic sequence, that is,

$$\Gamma = \langle a, ah + d, ah + 2d, \dots, ah + kd \rangle$$

for some $a, h, d, k \in \mathbb{Z}_{\geq 1}$ with gcd(a, d) = 1. This family of numerical semigroups, introduced in [8], are known for admitting concise characterizations of invariants that generally have high computational complexity in general (e.g., the Frobenius number).

Theorem 1.2. If Γ is generated by a generalized arithmetic sequence, then the Huneke-Wiegard conjecture holds for any 2-generated monomial ideal in $\mathbb{k}[\Gamma]$.

2. Visualizations for locating irreducible elements of S^s_{Γ}

Before giving the proof of Theorem 1.2, we demonstrate the utility of certain visuals that arose in obtaining this result. For a given numerical semigroup Γ , we may use the Sage [10] package LeamerMonoid [5] to compute, for each $s \notin \Gamma$, the set of all irreducible elements (n,2). A particularly helpful graphic emerges when we plot a point at (s,n) if $(n,2) \in S^s_{\Gamma}$ is irreducible; Figures 1 and 2 each contain two examples. Thus, the semigroup algebra $\mathbb{k}[\Gamma]$ satisfies the Huneke-Wiegand conjecture for all 2-generated monomial ideals if, for each positive $s \notin \Gamma$, there exists at least one point (s,n) in that column.

Examining several of these graphs reveals a method of finding the requisite irreducible elements. For example, if $\Gamma = \langle n_1, n_2 \rangle$, such as in the left-hand graphic of Figure 1, then $(\mathsf{F}(\Gamma) + n_1 - s, 2) \in S^s_{\Gamma}$ is irreducible for each $s \notin \Gamma$; this is depicted with a diagonal red line defined by the equation $n = \mathsf{F}(\gamma) + n_1 - s$ that contains a point in every column.

FIGURE 1. The points (s, n) for which (n, 2) is irreducible in S_{Γ}^{s} , where $\Gamma = \langle 5, 6 \rangle$ (left) and $\Gamma = \langle 6, 10, 15 \rangle$ (right).

Lemma 2.1. Fix a symmetric numerical semigroup $\Gamma = \langle n_1, \ldots, n_k \rangle$ with $s \notin \Gamma$. Fix a generator n_j , and let $g = \gcd(\{n_1, \ldots, n_k\} \setminus \{n_j\})$. We have $(\mathsf{F}(\Gamma) - s + n_j, 2) \in S_{\Gamma}^s$, and if this element is reducible in S_{Γ}^s , then $g \mid s$.

Proof. Since Γ is symmetric, $F(\Gamma) - s \in \Gamma$, and since

$$F(\Gamma) + s + n_i > F(\Gamma) + n_i > F(\Gamma),$$

both $F(\Gamma) + n_j$ and $F(\Gamma) + s + n_j$ lie in Γ . This proves the first claim. For the second claim, suppose

$$(\mathsf{F}(\Gamma) - s + n_j, 2) = (y, 1) + (\mathsf{F}(\Gamma) - s + n_j - y, 1)$$

with $(y,1), (\mathsf{F}(\Gamma)-s+n_j-y,1) \in S^s_{\Gamma}$. Since $y,y+s \in \Gamma$, we conclude $y-n_j, y+s-n_j \notin \Gamma$ since Γ is symmetric. It must be that no expression for y or y+s as a sum of generators involves the generator n_j . In particular, $y,y+s \in \langle n_1,\ldots,\hat{n}_j,\ldots,n_k \rangle$, meaning $g \mid y$ and $g \mid y+s$, from which we conclude $g \mid s$.

Lemma 2.1 makes quick work of the case $\Gamma = \langle n_1, n_2 \rangle$. Indeed, in addition to verifying $(\mathsf{F}(\Gamma) - s + n_1, 2) \in S^s_{\Gamma}$, Lemma 2.1 implies if this element were reducible, then $n_2 \mid s$, which is impossible since $s \notin \Gamma$.

For 3-generated numerical semigroups $\Gamma = \langle n_1, n_2, n_3 \rangle$, one can see by inspection of the right-hand graphic of Figure 1 that, unlike the 2-generated case above, there is no single line that contains a point in every column. However, the 3 diagonal red lines depicted therein, each of which has the form $n = \mathsf{F}(\gamma) - s + n_j$ for some j, together contain at least one point in each column. These observations yield a relatively straightforward proof, included below, that Conjecture 1.1 holds in the case where Γ has at most 3 generators; however, note that this case also follows from [2] since any such numerical semigroup is complete intersection.

Proposition 2.2. Given any symmetric numerical semigroup $\Gamma = \langle n_1, n_2, n_3 \rangle$ and any $s \notin \Gamma$, the element $(\mathsf{F}(\Gamma) - s + n_i, 2) \in S^s_{\Gamma}$ is irreducible for some j.

Proof. Let $g_j = \gcd(\{n_1, n_2, n_3\} \setminus \{n_j\})$ for each j. By Lemma 2.1, $(\mathsf{F}(\Gamma) - s + n_j, 2) \in S^s_{\Gamma}$ for each generator n_j , and in order to prove one of these is irreducible in S^s_{Γ} , it suffices to assume $\operatorname{lcm}(g_1, g_2, g_3) \mid s$.

Since Γ is symmetric, [9, Theorem 9.6] implies that, after rearranging n_1, n_2, n_3 as needed, $d = \gcd(n_1, n_2) > 1$ and

$$(2.1) dn_3 = an_1 + bn_2$$

for some $a, b \in \mathbb{Z}_{\geq 0}$. We claim $(\mathsf{F}(\Gamma) - s + n_1, 2) \in S^s_{\Gamma}$ is irreducible. Indeed, if this element were reducible, then it could be written as a sum

$$(\mathsf{F}((\Gamma) - s + n_1, 2) = (\mathsf{F}(\Gamma) - s + n_1 - z, 1) + (z, 1)$$

of atoms in S_{Γ}^s . In particular, $z, z+s \in \Gamma$ since $(z, 1) \in S_{\Gamma}^s$, whereas $z-n_1, z+s-n_1 \notin \Gamma$ since Γ is symmetric. As such, any expression of z and z+s as a sum of generators must only involve n_2 and n_3 , meaning

$$z = a_2 n_2 + a_3 n_3$$
 and $z + s = b_2 n_2 + b_3 n_3$

for some $a_2, a_3, b_2, b_3 \in \mathbb{Z}_{\geq 0}$. Moreover, we must have $0 \leq a_3, b_3 < d$, as otherwise (2.1) would yield an expression involving n_1 . Subtracting z + s and z, we find

$$s = (z+s) - z = (b_2 - a_2)n_2 + (b_3 - a_3)n_3$$

and since $d \mid s$, $d \mid n_2$ and $d \nmid n_3$, we conclude $d \mid (b_3 - a_3)$. However, $|b_3 - a_3| < d$. Thus $b_3 - a_3 = 0$ and $s = (b_2 - a_2)n_2$, a contradiction.

3. Numerical monoids generated by generalized arithmetic sequences

We now turn our attention back to numerical semigroups Γ generated by generalized arithmetic sequences; Figure 2 shows plots of irreducible elements of S^s_{Γ} for two such semigroups. Like the 3-generated case, multiple lines are required to find an irreducible element for each $s \in \mathbb{Z}_{\geq 1} \setminus \Gamma$. In particular, the combination of the line $n = \mathsf{F}(\Gamma) + d - s$ and the horizontal line n = ah + d provide the requisite irreducible elements of S^s_{Γ} . These lines manifest in the form of Proposition 3.2, which we prove after a short lemma.

Lemma 3.1. Suppose $\Gamma = \langle a, ah + d, ah + 2d, \dots, ah + kd \rangle$ is a symmetric numerical semigroup with $3 \le k < a$ and $\gcd(a, d) = 1$, and fix $s \notin \Gamma$. We have $F(\Gamma) - s + d \notin \Gamma$ if and only if for some $m \in \{0, \dots, h-1\}$,

$$s - d \equiv am \mod (ah + kd).$$

Proof. First, suppose $s - d \equiv am \mod (ah + kd)$ for some m as above. Fixing $l \in \mathbb{Z}$ such that s - d = am + l(ah + kd) and noting that l > 0 since s > 0, we can write

$$\mathsf{F}(\Gamma) - s + d = \mathsf{F}(\Gamma) - (d + am + l(ah + kd)) + d = \mathsf{F}(\Gamma) - (am + l(ah + kd)).$$

Since Γ is symmetric and $am + l(ah + kd) \in \Gamma$, this implies $F(\Gamma) - s + d \notin \Gamma$.

FIGURE 2. The points (s, n) for which (n, 2) is irreducible in S_{Γ}^{s} , where $\Gamma = \langle 5, 12, 14, 16 \rangle$ (left) and $\Gamma = \langle 6, 13, 14, 15, 16 \rangle$ (right) are each generated by a generalized arithmetic sequence.

Conversely, suppose $F(\Gamma) - s + d \notin \Gamma$. Since Γ is symmetric, $s - d \in \Gamma$, so suppose $s - d = z_0 a + z_1 (ah + d) + \cdots + z_k (ah + kd)$.

$$s - a = z_0 a + z_1 (an + a) + \dots + z_k (an + ka).$$

We claim (i) $z_j = 0$ for each 0 < j < k, and (ii) $0 \le z_0 \le h - 1$. Indeed, if $z_j > 0$ for 0 < j < k, then

$$s = s - d + d = z_0 a + \dots + z_j (ah + jd) + \dots + z_k (ah + kd) + d$$

= $z_0 a + \dots + (z_j - 1)(ah + jd) + \dots + z_k (ah + kd) + (ah + (j+1)d),$

which is impossible since $s \notin \Gamma$, and if $z_0 \ge h$, then

$$s = s - d + d = z_0 a + \dots + z_k (ah + kd) + d$$

= $(z_0 - h)a + \dots + z_k (ah + kd) + (ah + d)$,

which is again impossible since $s \notin \Gamma$. Consequently, $s - d = z_0 a + z_k (ah + kd)$, thereby completing the proof with $m = z_0$.

Proposition 3.2. Suppose $\Gamma = \langle a, ah + d, ah + 2d, \dots, ah + kd \rangle$ is a symmetric numerical semigroup with $3 \le k < a$ and gcd(a, d) = 1, and fix $s \notin \Gamma$.

- (a) If $F(\Gamma) s + d \in \Gamma$, then $(F(\Gamma) s + d, 2)$ is irreducible in S_{Γ}^s .
- (b) If $F(\Gamma) s + d \notin \Gamma$, then (ah + d, 2) is irreducible in S_{Γ}^s .

So, the Huneke-Wiegand conjecture holds for any 2-generated monomial ideal in $\mathbb{k}[\Gamma]$.

Proof. For part (a), suppose $F(\Gamma) - s + d \in \Gamma$. Since

$$F(\Gamma) + s + d > F(\Gamma) + d > F(\Gamma),$$

we also have $F(\Gamma) + d \in \Gamma$ and $F(\Gamma) + d + s \in \Gamma$. This means $(F(\Gamma) - s + d, 2) \in S_{\Gamma}^{s}$. Now, by way of contradiction, suppose $(F(\Gamma) - s + d, 2)$ is reducible, so that

$$(\mathsf{F}(\Gamma)-s+d,2)=(\mathsf{F}(\Gamma)-s+d-n,1)+(n,1)$$

for some (n, 1), $(\mathsf{F}(\Gamma) - s + d - n, 1) \in S^s_{\Gamma}$. In particular, this means z and $\mathsf{F}(\Gamma) + d - n$ both lie in Γ , and since Γ is symmetric, $n - d \notin \Gamma$. We claim $n = z_0 a$ for some $z_0 \in \mathbb{Z}_{\geq 0}$. Indeed, if $n = z_0 a + \cdots + z_k (ah + kd)$ with $z_1 > 0$, then

$$n - d = (z_0 + h)a + (z_2 - 1)(ah + d) + \dots + z_k(ah + kd),$$

and if $z_j > 0$ for some j > 1, then

$$n - d = z_0 a + \dots + (z_{j-1} + 1)(ah + (j-1)d) + (z_j - 1)(ah + jd) + \dots + z_k (ah + kd),$$

both of which are impossible since $n-d \notin \Gamma$. By similar reasoning, $n+s \in \Gamma$ and $n+s-d \notin \Gamma$, so $n+s=z_0'a$ for some $z_0' \in \mathbb{Z}_{\geq 0}$. This yields $s=(n+s)-n=(z_0'-z_0)a$, which is impossible since $s \notin \Gamma$. As such, we conclude $(\mathsf{F}(\Gamma)-s+d,2)$ is irreducible in S_{Γ}^s , thereby proving part (a).

For part (b), suppose $\mathsf{F}(\Gamma) - s + d \notin \Gamma$. By Lemma 3.1, $s - d \equiv am \mod (ah + kd)$ for some $m \in \{0, \ldots, h-1\}$, so let $l \in \mathbb{Z}$ with s - d = am + l(ah + kd). Since $ah + d \in \Gamma$ and $k \geq 3$, we have

$$ah + d + s = (ah + 2d) + am + l(ah + kd) \in \Gamma$$
 and $ah + d + 2s = (ah + 3d) + 2am + 2l(ah + kd) \in \Gamma$,

meaning $(ah+d,2) \in S^s_{\Gamma}$. Lastly, suppose by way of contradiction that (ah+d,2) is reducible in S^s_{Γ} , so that

$$(ah + d, 2) = (ah + d - n, 1) + (n, 1)$$

for some $(n,1), (ah+d-n,1) \in S_{\Gamma}^s$. This means n and ah+d-n are both in Γ , but since both are less than ah+d, there exists $z_0, z_0' \in \mathbb{Z}_{\geq 0}$ such that $n=z_0a$ and $ah+d-n=z_0'a$. This implies $ah+d=(z_0+z_0')a$, which is impossible since $\gcd(a,d)=1$. This completes the proof.

Proof of Theorem 1.2. If Γ has at most 3 generators, then Γ is complete intersection by [9, Corollary 10.5], so apply [2, Corollary 22]. Otherwise, apply Proposition 3.2. \square

References

- [1] M. Delgado, P. García-Sánchez, and J. Morais, NumericalSgps, A package for numerical semigroups, Version 1.3.1 (2022), (Refereed GAP package), https://gap-packages.github.io/numericalsgps/.
- [2] P. García-Sánchez and M. Leamer, Huneke-Wiegand Conjecture for complete intersection numerical semigroup, J. Algebra **391** (2013), 114–124.
- [3] J. Haarman, A. Kalauli, A. Moran, C. O'Neill, and R. Pelayo, Factorization properties of Leamer monoids, Semigroup Forum 89 (2014), no. 2, 409–421.
- [4] C. Huneke and R. Wiegand, Tensor products of modules and the rigidity of Tor, Math. Ann. 299 (1994), no. 3, 449–476.
- [5] C. O'Neill, leamermonoid (Sage software), https://github.com/coneill-math/leamermonoid.
- [6] C. O'Neill, numsgps-sage (Sage software), https://github.com/coneill-math/numsgps-sage.

- [7] C. O'Neill and R. Pelayo, Factorization invariants in numerical monoids, Contemporary Mathematics 685 (2017), 231–249.
- [8] M. Omidali and F. Rahmati, On the type and minimal presentation of certain numerical semigroups, Communications in Algebra 37(4) (2009), 1275–1283.
- [9] J. Rosales and P. García-Sánchez, Numerical semigroups, Developments in Mathematics, Vol. 20, Springer-Verlag, New York, 2009.
- [10] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 7.2), 2016, http://www.sagemath.org.

MATHEMATICS DEPARTMENT, UNIVERSITY OF IOWA

 $Email\ address: \verb|mlanderos3140gmail.com|$

MATHEMATICS DEPARTMENT, SAN DIEGO STATE UNIVERSITY, SAN DIEGO, CA 92182

Email address: cdoneill@sdsu.edu

MATHEMATICS DEPARTMENT, UNIVERSITY OF CALIFORNIA, IRVINE, IRVINE, CA 92697

Email address: rcpelayo@uci.edu

MATHEMATICS & COMPUTER SCIENCE DEPARTMENT, UNIVERSITY OF GUAM, MANGILAO, GUAM 96913

Email address: renj@triton.uog.edu

Mathematics Department, University of Hawai'ı at Hilo, Hilo, HI 96720

 $Email\ address:$ wissman@hawaii.edu