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ABSTRACT

Repeated decision-making problems under uncertainty may arise in the health pol-
icy context, such as infectious disease control for COVID-19 and other epidemics.
These problems may sometimes be effectively solved using Markov decision processes
(MDPs). However, the continuous or large state space of such problems for captur-
ing infectious disease prevalence renders it difficult to implement tractable MDPs
to identify the optimal disease control policy over time. We therefore develop an
algorithm for discretizing continuous states for approximate MDP solutions in this
context. We benchmark performance against a uniform discretization using both a
synthetic example and an example of COVID-19 in Los Angeles County.
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1. Introduction

Public health officials often need to determine the optimal health intervention policy
over time while facing substantial uncertainty about the state and trajectory of disease
in a population. Many of these problems require making policy decisions sequentially
over time, where the state may be represented using a continuous measure (e.g., the
proportion of the population that is infected). For instance, during the COVID-19
pandemic, decision-makers needed to repeatedly set the start and end times of lock-
downs that limited travel and interactions between individuals to reduce transmission
without fully understanding the exact transmissibility of COVID-19. This sequential
decision-making problem under uncertainty appears repeatedly in infectious disease
control, as evidenced by prior literature on similar problems (Blower, Koelle, & Mills,
2002; Fu, Jin, Xiang, & Wang, 2022; Kaplan, Anderson, et al., 1996; Matrajt et al.,
2021; Talbot et al., 2005; F. Zhang, Wagner, & Ross-Degnan, 2011). Such problems
often take into account underlying disease dynamics, which are uncertain or depend
on a variety of complex social and biological factors.

A difficulty in solving repeated decision making problems for infectious disease con-
trol is the complexity of infectious disease dynamics, which are typically represented
using compartmental models and simulation-based models (Brauer, 2008; Kopec et al.,
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2010). Such models are difficult to use for repeated decision-making problems as one
often needs to evaluate the model repeatedly to identify an optimal policy for disease
control, which may require a significant investment of computational time, as there is
no closed-form solution.

While there are sophisticated means to identify optimal policies, these tech-
niques have their own challenges. For instance, the maximum principal approach
(Goenka, Liu, & Nguyen, 2014; Piguillem & Shi, 2022; Pontryagin, 2018) offers a solu-
tion framework for optimal control issues under differential equation systems. However,
its application becomes increasingly challenging with a large number of states or poli-
cies. Such expansion complicates both the Hamiltonian and the differential equations
system, thereby rendering the process of deriving analytical or numerical solutions
complicated and time-consuming. Moreover, it is difficult to find the optimal solution
when the problem is non-convex. Simulation optimization, which can handle complex
systems, has also been used in disease contexts (Carson & Maria, 1997). However,
this can also be computationally expensive and time-consuming. Furthermore, the
quality of the solution highly depends on the search space and the heuristic function
chosen, presenting challenges to its practical application. One can formulate the in-
fectious disease problem as a dynamic programming (Calvia, Gozzi, Lippi, & Zanco,
2023) problem, but the continuous or large state space can create difficulties.

Dynamic programming methods such as Markov decision processes (MDPs), are
also a commonly used method for repeated decision making under uncertainty. MDPs
allow for uncertainty in state transitions, which can be used to describe changes in
disease/health states over time and allow for repeated decisions over time. Given cur-
rent computing innovations, many MDPs of useful size can be solved effectively using
algorithms such as backward induction, value iteration, policy iteration, etc. MDPs
can also be efficiently solved with non-convex problems. Additionally, they inherently
account for uncertainty in the outcomes of actions through transition probabilities.

However, incorporating dynamics from compartmental models and simulations into
an MDP framework is challenging because disease models often use a continuous or
large number of possible states (as the state usually represents a proportion of the
whole population in certain statuses like infected, recovered, and hospitalized). Having
a continuous state space makes the MDP problem difficult to solve since traditional
MDP solution methods may then not work even for a short time horizon due to
state-space explosion issues. For example, backward induction need |S|2|A||T − 1|
multiplications. In the case of value iteration, each iteration carries a complexity
of O(|S|2|A|). In the case of policy iteration, each iteration carries a complexity
of O(|S|3 + |S|2|A|), and modified policy iteration requires O(k|S|2 + |S|2|A|) per
iteration (Puterman, 1994). For this reason, many traditional MDP studies in the
healthcare field focus on finite-state decision-making problems like monitoring,
treatment initiation, and disease testing and diagnosis (Ahn & Hornberger, 1996;
Alagoz, Chhatwal, & Burnside, 2013; Alagoz, Maillart, Schaefer, & Roberts, 2004,
2007; Capan, Ivy, Wilson, & Huddleston, 2017; Chhatwal, Alagoz, & Burnside,
2010; David & Yechiali, 1985; Denton, Kurt, Shah, Bryant, & Smith, 2009;
Hu, Lovejoy, & Shafer, 1996; Kreke, 2007; Kurt, Denton, Schaefer, Shah, & Smith,
2011; Lefèvre, 1981; Liu, Brandeau, & Goldhaber-Fiebert, 2017;
Magni, Quaglini, Marchetti, & Barosi, 2000; Maillart, Ivy, Ransom, & Diehl, 2008;
Mason, Denton, Shah, & Smith, 2014; Shechter, Bailey, Schaefer, & Roberts, 2008;
Suen, Brandeau, & Goldhaber-Fiebert, 2018; S. Zhang et al., 2021). Therefore,
finding a good state discretization method that translates infectious disease dynamics
onto a limited number of states improve computational efficiency and potentially
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widen the scope of MDP applications, particularly in the infectious disease space.
Uniform discretization is a traditional way of addressing continuous state prob-

lems. However, this methodology is suboptimal for addressing infectious disease con-
trol challenges. The heterogeneity in state visit frequencies—wherein some states
(with extremely high prevalence) may remain unvisited and others (with lower preva-
lence) might be visited more frequently—renders uniform discretization inefficient.
This approach may result in the overuse of discretizations towards states that are
less likely to be visited and an inadequate number of discretizations for those with
higher probabilities of being reached. How can we find a better way of discretizing the
state space to closely represent the changes in health systems/disease? While many
works have used various discretization methods to reduce state spaces (Lovejoy, 1991;
Sandıkçı, Maillart, Schaefer, & Roberts, 2013), we take a novel approach that treats
the state discretization problem as an optimization problem. This allows us to find
the discretization that will provide a smaller discretized region in more likely visited
states for a more accurate description of the true dynamics.

We will explore the above state discretization in the context of a disease control
problem where states are used to describe the disease dynamics over a population,
actions are implemented to prevent disease spread (lockdown, social distancing, face
masks, and so on). States are assumed to be fully observable at each time period.
Under this framework, we find a better way of discretizing states such that the dis-
cretized state space serves as a good proxy of the original state space. This paper
addresses the challenge of formulating infectious disease control problems as MDPs
by proposing a new algorithm for non-uniform state discretization that enables the
discrete representation of infinite state spaces.

1.1. Contributions

We make several contributions in this study. We provide a novel algorithm for defin-
ing a non-uniform, discrete state space for infectious disease control problems that
well approximates the original continuous state dynamics. Our algorithm exploits the
likelihood of each state being visited in the system to more efficiently capture the
transitions between states. Defining a discrete set of states from an originally contin-
uous system allows us to incorporate infectious disease dynamics within frameworks
that are better suited for discrete state spaces, such as MDPs. Finally, we demonstrate
that our state space discretization allows for more accurate MDP outcomes through
two numerical examples, one using a classic SIR compartmental model and one using
COVID-19 model of Los Angeles County.

The remainder of this paper is organized as follows: we review the related literature
in Section 2, present the problem setup in Section 3, and provide the algorithms in
Section 4. The numerical example is shown in Section 5. In Section 6, we conclude.

2. Literature Review

2.1. Markov Decision Processes in Healthcare Applications

MDPs have a rich history in the field of operations research, with wide range of ap-
plications such as inventory management (Giannoccaro & Pontrandolfo, 2002), port-
folio management (Bäuerle & Rieder, 2009), production and storage optimization
(Arruda & do Val, 2008), and various others. Extensive research has been conducted
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to solve and understand the structure of MDPs, with notable contributions from works
such as (Puterman, 1994) and (Topkis, 2011).

MDPs also find widespread application in the field of healthcare. They offer
valuable insights and solutions to various health-related issues, including screen-
ing (Alagoz et al., 2013; Chhatwal et al., 2010; Maillart et al., 2008), sequential
disease testing (Arruda, Pereira, Thiers, & Tura, 2019; Singh, Liu, & Shroff, 2020),
treatment initiation (Liu et al., 2017; Shechter et al., 2008), and organ transplan-
tation (Sandıkçı, Maillart, Schaefer, Alagoz, & Roberts, 2008; Sandıkçı et al., 2013;
S. Zhang et al., 2021). For instance, patients in different age groups with risks of
breast cancer may need personalized mammography exam frequencies (Alagoz et al.,
2013), or, in another example, a patient with organ failure may be presented
at different states with organ transplant options that vary in their compatibility
with the patient. The patient may face the decision to either wait for a better
match or accept an offered organ as their own survival probability decreases over
time (S. Zhang et al., 2021). For a more extensive exploration of MDPs in health-
care, refer to the comprehensive reviews by Schaefer, Bailey, Shechter, and Roberts
(2004), Alagoz, Hsu, Schaefer, and Roberts (2010), and Sonnenberg and Beck (1993).
Although MDPs are widely used in healthcare applications, most of these consider
finite-state decision-making. Constructing an MDP for infectious disease control prob-
lems with repeated decisions is challenging, especially when the state space for such
problems is continuous.

2.2. Solving Continuous State MDP

As previously discussed, an infinite or continuous state space is a major chal-
lenge when formulating MDPs. Several methods have been proposed to address
this problem. In Munos and Moore (2002), different criteria for dicretizing state
and time space non-uniformly are discussed. These methods involve evaluating
values or policies using dynamic programming; however, some of these methods
raise computational concerns for problems with continuous or large numbers of
states. Brooks, Makarenko, Williams, and Durrant-Whyte (2006) proposed a para-
metric method to discretize a continuous state space by constraining distributions
over state space to a parametric family. However, since prior knowledge of the dis-
tribution is required, MDPs for population-level infectious disease control would be
difficult to solve in this manner. One remedy is to solve the MDP formulation by
truncation and discretization of the state (Boucherie & Van Dijk, 2017). Researchers
have used various methods to achieve this. For example, Zhou, Fu, and Marcus (2010)
used Monte-Carlo simulation to approximate the belief state by a finite number of
particles on a discretized grid mesh. Sandıkçı et al. (2013) used fixed-resolution, non-
uniform grids to discretize the belief state and approximate the optimal policy for a
partially observable MDP (POMDP) model. Lovejoy (1991) used fixed or uniform grids
to approximate the solution of the POMDP. However, using uniform or pre-defined
discretizations (which requires domain knowledge) may not always be appropriate,
particularly for infectious disease control problems where disease spread is subject to
uncertainty across different policy scenarios. In such cases, a more effective discretiza-
tion algorithm is needed to enable the computation of the optimal policy.
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2.3. Modeling Disease Dynamics

To identify the optimal policy for an infectious disease control problem, it is necessary
to have a model for describing the disease dynamics. For instance, during an emerg-
ing pandemic, how would disease transmission change if the government imposed a
1-month lockdown? How would it change if the government imposed a 3-month lock-
down instead? Different policies may change the patterns of disease transmission and
thus change the proportion of infections in total. To efficiently avert infections, these
different possibilities need to be evaluated to understand the resultant health and cost
outcomes. Multiple methods are available for assessing the impact of different policies
on a specific population.

One common method to model disease dynamics is to use compartmental mod-
els based on differential equations (Brauer, 2008; W. Kermack & McKendrick, 1991;
W. O. Kermack & McKendrick, 1991a, 1991b). A compartmental model uses a math-
ematical framework to provide insights into the mechanism that affect the transmis-
sion and progression of disease. This framework partitions the population into dif-
ferent health or treatment states (compartments). For instance, each compartment
represents a specific stage of the infectious disease (e.g., susceptible, infected, re-
covered), and proportions of the population move between compartments described
by differential equations at certain rates. This model is fundamental in epidemiol-
ogy for understanding the spread of diseases and evaluating the potential impact of
public health interventions. For example, compartmental models can compare the
effectiveness of wearing masks and social distancing during the COVID-19 pandemic
(Grimm, Mengel, & Schmidt, 2021; Kai, Goldstein, Morgunov, Nangalia, & Rotkirch,
2020). Long, Nohdurft, and Spinler (2018) use a classical compartmental model to
assist with the decision of allocating resources during the 2014 Ebola outbreak
in Africa. In Section 5, we consider a classic Susceptible-Infected-Recovered (SIR)
epidemic model, which has been extensively used in the epidemiological literature
(Beckley et al., 2013; Harko, Lobo, & Mak, 2014; Kröger & Schlickeiser, 2020).

Another method of evaluating disease dynamics is to use simulation models,
which can be used to track transmission, progression, and behavior as well as pol-
icy outcomes. For instance, simulation models can be employed to examine the
cost-effectiveness of screening recommendations for positive-HIV men who have sex
with men (MSM) (Tuite, Burchell, & Fisman, 2014), as well as to study the ef-
fectiveness of different disease control strategies for tuberculosis (TB) in India
(Suen, Bendavid, & Goldhaber-Fiebert, 2014). Although these methods indeed cap-
ture the dynamics of complicated diseases, they are unable to compute dynamic poli-
cies effectively as mt evaluations are usually needed when there are m possible inter-
ventions and t decision epochs. Therefore, it is beneficial to find alternative effective
ways of identifying the optimal policy for infectious disease control. In our paper, we
consider a discrete-state MDP framework that takes advantage of its effective solution
methods with underlying disease dynamics estimated from traditional disease models
such as compartmental and simulation models.

To model this problem as a discrete-state MDP, we also need to define a transition
function to describe the probability of transitioning between the states. Several existing
techniques can be used to construct this function. For instance, Yaesoubi and Cohen
(2011) proposed a way to compute transition probabilities given a system of ODEs.
In another example, Mishalani and Madanat (2002) proposed a method of developing
transition probabilities from a stochastic duration model based on the hazard rate
function. However, these methods are computationally intensive, which limits their
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usage to problems with small populations or disease models with special structures.

3. Problem Setup

The notation used in this paper is as follows. We denote Xt ∈ X as the state of the
epidemic at time t. Xt = [X1t,X2t, ...,Xnt] has n components where each represents
the proportion of the population in the compartment (e.g., for a SIR model, n = 3). For
example, Xt = [XSt,XIt,XRt] ∈ [0, 1]3 can describe the proportion of the population
in susceptible (S), infected (I), and recovered (R) compartments at time t for a SIR
model. We denoteX0 as the initial state and we assume it follows an initial distribution
Ω. We use {Xt} = (X0, ...,XN ) to denote the disease trajectory.

In this paper, we focus on the finite horizon problem. Let T = {1, ..., N} be the set
of possible decision epochs for the problem. A = {1, ..., |A|} is the set of possible policy
interventions for the problem. We assume a small, finite number of actions/policies
(e.g., lockdown versus no lockdown). We denote πt ∈ A as the policy intervention at
time t.

We consider a model denoted by f(Xt, πt) = Xt+1 that describes the disease dy-
namics across time epochs t. This function f(Xt, πt) can consider disease progression,
transmission over time, mortality, and interventions. Generally, f(Xt, πt) takes the
state of the system and policy intervention as an input and then returns the state
in the next period. We assume that f(Xt, πt) is time-homogeneous for simplicity (if
time-inhomogeneous dynamics are desired, our methods can be easily extended).

The cost in state Xt ∈ X and taking action πt ∈ A for t ∈ T in the infectious
disease control problem is denoted using r(Xt, πt). This cost can be dependent on
health outcomes (e.g., number of infected, total vaccinated population, etc.) as well
as other factors (financial cost, economic burden, etc.). We let λ denote the discount
factor.

Given the transition function f(Xt, πt) and the cost function r(Xt, πt), we have the
following optimization formulation for our repeated decision-making disease control
problem:

min
π0,...,πN−1

N
∑

t

λtr(Xt, πt)|X0 (1)

s.t. Xt = f(Xt−1, πt−1) (2)

In the above problem, the objective is to find a sequence of actions {π0, ..., πN−1}
that minimizes the total discounted cost function r(Xt, πt) over states Xt for the whole
N -period time horizon given a known initial state X0. For example, Xt can represent
the proportion of individuals in each COVID-19-related health stage at time t, and
let r(Xt, πt) compute the proportion of people dead from COVID-19 at time t. If
πt denotes the policy intervention (lockdown or not) at time t, then f(Xt−1, πt−1)
could be a system of difference equations that describes the population flow across
different health stages. Our objective in this problem then is to find the optimal policy
intervention at each time t that minimizes the total cost within N periods.

There are challenges to solving the above formulation using traditional MDP so-
lution methods (e.g., backward induction, value iteration, policy iteration, etc.) as
this formulation usually contains constraints with non-linear dynamics on a contin-
uous state space. These solution methods require a finite number of states for effec-
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Figure 1.: Four regions defined using G = {[0, 0.6, 1], [0, 0.2, 1]} are shown in different colors. These correspond
to four states:(1) : [X̄S , X̄I ] = [0.3, 0.1]; (2) : [X̄S , X̄I ] = [0.3, 0.6]; (3) : [X̄S , X̄I ] = [0.8, 0.1]; (4) : [X̄S , X̄I ] =
[0.8, 0.6]. For example, Xt = [0.1, 0.3], the corresponding discretized state representation is X̄t = [0.3, 0.6].

tive evaluation. Moreover, the function f(Xt, πt) may not be expressed as transition
probabilities from state to state, while many traditional MDP solution methods use
transition probability matrices to allow for the modeling of uncertainty and variability
in decision-making processes.

To discretize the continuous state space, we partition the state space X into a
discrete set of states X̄ . For each component i in X , we use the discretization vector
Gi to describe how the continuous state space is partitioned into discrete states. The
discretization vector Gi contains the maximal and minimal values of the discretized
regions for component i. We use G to represent the list of discretization vectors for
all components in X . For instance, for an SI model, if G = {[0, 0.6, 1], [0, 0.2, 1]}, we
mean that group 1 (the susceptible proportion of the population) is partitioned into
two regions [0, 0.6) and [0.6, 1], and the second group (infected proportion) is being
partitioned into two regions [0, 0.2) and [0.2, 1]. In this case, we have a total of 2×2 = 4
regions. These four regions are given by (1) : XS ∈ [0, 0.6),XI ∈ [0, 0.2); (2) : XS ∈
[0, 0.6),XI ∈ [0.2, 1]; (3) : XS ∈ [0.6, 1],XI ∈ [0, 0.2); (4) : XS ∈ [0.6, 1],XI ∈ [0.2, 1]
(shown in Figure 1).

From these regions, we capture the discretized state space in matrix X̄ , which is
comprised of the Euclidean centroids of each region. The dimension of X̄ is |G| ×
n where |G| is the number of regions and n is the number of components. Thus,
in the example above, we would have four states. (1) : [X̄S , X̄I ] = [0.3, 0.1]; (2) :
[X̄S , X̄I ] = [0.3, 0.6]; (3) : [X̄S , X̄I ] = [0.8, 0.1]; (4) : [X̄S , X̄I ] = [0.8, 0.6]. In this case,

X̄ =









0.3 0.1
0.3 0.6
0.8 0.1
0.8 0.6









. Similarly, we define X̄t ∈ X̄ to be the discretized state at time t and

{X̄t} = (X̄0, ..., X̄N ) to be the trajectory for the discretized state.
With this new discretized state space, we can now define f̄(X̄t, πt, G), the disease

dynamics on the discretized state space. Even though the true disease dynamics might

7



be non-linear, we approximate the transitions on the discretized state space using a
linear transition matrix. This is a reasonably good approximation if the length of t is
sufficiently small.

We denote this transition probability matrix as P (πt) for πt ∈ A. P (πt) has the
dimension of |X̄ | × |X̄ | where |X̄ | is the size of the state space. Then the probability
of the system being in a state at time t + 1, X̄t+1, given it was in state X̄t at time t
and policy intervention πt ∈ A is denoted as P (X̄t+1|X̄t, πt).

Let Vt(X̄t) denote the optimal value function of the discretized state X̄t ∈ X̄ , t ∈ T
for the discretized infectious disease control problem. At optimality, the following must
hold:

Vt(X̄t) =max
πt∈A

{

r(X̄t, πt) + λ
∑

X̄t+1∈X̄

P (X̄t+1|X̄t, πt)Vt(X̄t+1)
}

3.1. State Space Discretization Problem

With the original system f(Xt, πt) and state space X , we aim to find the discretized
state space X̄ and the transition matrices P that approximate well the original system
in that it gives a similar objective value Vt(X̄t), trajectories {X̄t} given {π0, ..., πN−1},
and a small optimality gap. In order to do this, we need to find a suitable G and map
from f̄(X̄t, πt, G) to P .

We focus on approximating the original system by establishing an appropriate dis-
cretization approach. An effective discretization method should consist of a small num-
ber of discretized states that consider intervention effects. To do this efficiently, the
discretized states should be capable of providing higher precision in areas where the
state space is more likely to be visited. This can lead to a better approximation of the
true disease dynamics and can thus result in a more accurate MDP solution.

Given the function f(Xt, πt), the initial state, the time horizon, and a sequence of
policies {π0, ..., πN−1}, we can calculate a trajectory {Xt}. Subsequently, we require a
state discretization G that ensures the discretized trajectory {X̄t} closely approximates
{Xt} for various initial states and policies. Therefore, our objective is to minimize the
distance between the true trajectory and trajectory from the discretized model over all
samples θ = (X0, {π0, ..., πN−1}) ∈ Θ, all policy intervention scenarios πt, and all time,

i.e., minimizing
∑

θ∈Θ

∑N
t=1 ||Xt − X̄t||2 | θ. Given a sequence of policy intervention

{π0, ..., πN−1} and an initial state X0, we compute the true trajectory using f(Xt, πt).
We use f̄(X̄t, πt, G) to compute the trajectory from the discretization space matrix
X̄ .

We then map the transition function for discretized states f̄(X̄t, πt, G) to transi-
tion probability matrix P . Various existing techniques help to construct transition
probabilities given function f̄(X̄t, πt, G). We discuss how to find a generalizable and
efficient way of computing transition probabilities from f̄(X̄t, πt, G) given the state
discretization in the next section.

4. Algorithms

In this section, we present a generalizable framework for discretizing a continuous
state space for use in MDP frameworks and correspondingly constructing transition
probability matrices.
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4.1. Greedy Algorithm for Finding Discretizations (GreedyCut)

The main objective of discretization is to design an effective approach for approx-
imating the disease dynamics with a high level of accuracy, making such problems
tractable for conventional discrete-space MDP frameworks. However, it would not
be advantageous if the process of finding discretizations itself becomes excessively
costly. Therefore, our motivation is to identify a low-cost method that can produce
discretizations capable of representing the disease dynamics effectively. In particular,
we are interested in outperforming a uniform discretization, which can be considered
a general default discretization appropriate across many domains.

We assume there is a budget B that represents the total number of re-
gions/discretizations we can have in realize of computational considerations. We use
simulated initial states and policy interventions θ = (X0, {π0, ..., πN−1}) ∈ Θ to find
the discretizations.

The greedy approach has been widely applied to various optimiza-
tion tasks, which is easy to implement and effective at finding solutions
(Blanchard, Cermak, Hanle, & Jing, 2014; Wu, Luo, Xiong, Zhang, & Kim, 2018;
Zhao, Zhou, & Liu, 2021). We now propose Algorithm 1 (GreedyCut), a greedy-based
iterative approach to finding a good discretization.

In Algorithm 1, we have three functions. The cost function computes
the sum of squared error between the trajectory from the discretized state
space {X̄t} and true trajectory {Xt} from f(Xt, πt). We compute the dis-
cretized trajectory {X̄t} using f̄(X̄t, πt, G), where the i-th component X̄it =
∑|Gi|−1

j=0 1Gi,j≤f(X̄t−1,πt−1)i<Gi,j+1

Gi,j+Gi,j+1

2 takes the average value of the region it be-

longs to after the discretization. The cost function can also be customized (e.g., intro-
duce another penalty term to emphasize certain disease compartments).

The cut function halves the i-th region of the d-th component to make two dis-
cretized regions from one continuous range. For example, if we apply CUT (1, 1, G)
where G = {[0, 0.6, 1], [0, 0.2, 1]} is defined the same as Figure 1, then the new dis-
cretization G′ becomes G′ = {[0, 0.3, 0.6, 1], [0, 0.2, 1]}. The new discretization G′ is
shown in Figure 2b. After the cut, there are now 6 discretized regions.
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Figure 2.: Apply Cut(1,1,G) where G = {[0, 0.6, 1], [0, 0.2, 1]} gives new discretizations G′ =
{[0, 0.3, 0.6, 1], [0, 0.2, 1]}. In the new discretization, the X̄t is changed as the Euclidean centroid where Xt

belongs to has changed. For G, ||Xt − X̄t||2 = 0.11. For G′, ||Xt − X̄t||2 = 0.0925.

The greedy function then iteratively computes the cost of cutting one continuous
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Algorithm 1 Iterative Discretization for Disease Control Problems

1: procedure Cost({Xt}, {X̄t}) ⊲ {Xt} is the true trajectory, {X̄t} is the
trajectory from the disretization

2: return
∑N

t=1 ||X̄t −Xt||
2
2

3: procedure Cut(d, i, G) ⊲ d is the component we want to cut, and we want to
cut interval [i, i + 1] in half

4: Gd = [0, ..., Gd,i, (Gd,i +Gd,i+1)/2, Gd,i+1, ..., 1]
5: return G
6: procedure Greedy(B, G, f(Xt, πt), f̄(X̄t, πt, G), θ)⊲ B is the budget, f(Xt, πt)

is the compartmental model dynamics, f̄(X̄t, πt, G) calculates the trajectory using
discretized states X̄t, Θ is the pre-generated samples of initial states and policies,
for each θ ∈ Θ, θ = (X0, {π0, ..., πN−1})

7: iter per sample = |Θ|/B
8: for θ ∈ Θ do

9: for iterations = 1 : iter per sample do

10: best cost = UB
11: worst cost = LB
12: for Component d do

13: for discretization i ∈ Gd do

14: Compute {Xt} using Xt = f(Xt−1, πt−1)
15: Compute {X̄t} using X̄t = f̄(X̄t−1, πt−1,Cut(d, i, G))
16: tmp cost = Cost({Xt},{X̄t})
17: if tmp cost < best cost then
18: best cost = tmp cost

19: if tmp cost > worst cost then
20: worst cost = tmp cost

21: if worst cost = best cost then
22: draw a point Xdt from {Xt}
23: update G=Cut(d, i, G) such that Gd,i ≤ Xdt ≤ Gd,i+1

24: else

25: cut where cost is minimized
26: return G

10



range into two equal discretizations along each component (dimension) and finds the
best cut. If each cut has the same cost, a point (Xdt ∈ Xt) from the sampled trajectory
({Xt}|θ) will be randomly drawn, and the region that this point belongs to (component
d of the region i ofG such thatGd,i ≤ Xdt ≤ Gd,i+1) will be cut into halves. When every
cut incurs the same cost, we want to cut based on the data obtained through sampling.
In general, it is unlikely that the costs for all cuts will be exactly the same; this might
occur at the beginning of the algorithm when each discretized state encompasses a
large range and the approximation will not improve if cut only once. Through this
process, in total, |G| =

∑

d |Gd| discretizations will be generated.

4.1.1. Complexity Analysis

In Algorithm 1, if we assume that computing {Xt} and {X̄t} using f(Xt, πt) and
f̄(X̄t, πt, G) requiresK and K̄ operations respectively, we can analyze the total number
of operations performed by the GreedyCut algorithm. Since the computational costs
for generating new discretizations, comparing costs, and computing costs are relatively
small compared to computing {Xt} and {X̄t} in our problem, we assume these costs are
negligible compared with other costs. The GreedyCut algorithm enumerates through
each discretization of b discretizations at the current iteration, where 1 ≤ b ≤ |G|. For
each discretization, the algorithm performs computations of {Xt} and {X̄t}, which
have time complexities of K and K̄ operations respectively.

The total number of operations for the GreedyCut algorithm can be estimated as the

sum of operations over all discretizations. This can be expressed as
∑|G|

b=1 b(K + K̄) =
|G|(|G|+1)

2 (K + K̄). Therefore, the complexity of the GreedyCut algorithm is on the
order ofO(|G|2(K+K̄)). This implies that the complexity grows exponentially with the
number of discretizations, given by |G|. The time complexity increases quadratically
with |G| while linearly with the number of operations required for each discretization,
represented by (K + K̄).

As a result, the computational complexity of the algorithm grows rapidly as the
number of discretizations increases. This highlights the exponential relationship be-
tween the complexity and the desired level of granularity in the discretization process.

4.2. Constructing a Corresponding Transition Matrix

Once a suitable discretization of a continuous state space has been constructed, we
additionally need a transition matrix between these discretized states to capture the
dynamics for use in an MDP framework. To do this, we present Algorithm 2, which
draws samples from each discretized state to determine the frequency of transitions to
subsequent states via the function f(Xt, πt) and G.

In Algorithm 2, we draw c samples within each region in G and count the fre-
quency of the transitions from the current region to other regions using policy πt
and f(Xt, πt). By sampling and counting the transitions from the original system, we
approximate the underlying transition probabilities directly. Creating approximated
transition probability matrices in this way offers a practical approach to capturing the
essential dynamics of the system and enables efficient decision-making at the popula-
tion level.

11



Algorithm 2 Generating Transition matrix

1: procedure Generate(f(Xt, πt), G)⊲ f(Xt, πt) is the ground-truth discrete time
model, G is the discretization

2: Let P be a ||X̄ | × |X̄ | × |A| transition matrix with all zeros and each state
represents a discretized state from the discretized state space X̄ defined by G

3: for each policy intervention πt ∈ A do

4: for each discretized state i from X̄ do

5: Uniformly draw c number of samples (X̂0) within the region that con-
tains i (including a centroid in this region)

6: for each sample X̂0 do

7: Compute X̂1 = f(X̂0, πt)
8: Find the discretized state j such that the discretized region contains

j also contains X̂1

9: P (j|i, πt) = P (j|i, πt) + 1

10: Normalize P to make it a stochastic matrix
11: return P

4.2.1. Complexity Analysis

In Algorithm 2, we generate c samples |G||A| times, where |G| denotes the number
of discretizations and |A| represents the size of the action space. Assuming that com-

puting and locating X̂1 in the appropriate discretization take K̂ operations, we can
analyze the time complexity of Algorithm 2. The number of operations performed by
the algorithm then is O(cK̂|G||A|).

Furthermore, in most disease control problems, such as COVID-19 mitigation strate-
gies like lockdown, social distancing, and face masks, the size of the action space |A|
is typically small. This implies that the algorithm’s time complexity is primarily influ-
enced by the number of samples c, the number of discretizations |G|, and the operations

K̂ needed for computing and locating X̂1.

5. Numerical Examples

In this section, we first showcase our proposed framework for reformulating a SIR
model to an infectious disease control MDP framework for supporting public health
decisions around social distancing policy. We then demonstrate the utility of this
framework with an example of COVID-19 in Los Angeles County, drawing from em-
pirical data of case counts in 2020.

We benchmark the outcome of our method (we refer to the ‘GreedyCut discretiza-
tion method’ hereafter) in both examples by comparing our model outcomes to that
of a uniform discretization framework. In this uniform discretization framework, we
discretize the entire state space uniformly using the same number of discretizations
as used in the GreedyCut discretization method. We then construct the transition
probability matrix using Algorithm 2. The transition probabilities for both methods
are generated using Algorithm 2. In the second example, we additionally compare our
model outcomes to the empirical status-quo policy in Los Angeles in 2020 to demon-
strate the improvement our method can achieve.

12



5.1. Example 1: A Simple SIR Model

The SIR model tracks the proportion of the population that is susceptible (S), infected
(I), and recovered (R) at each time t. We use a discrete time model where the SIR
model can be described using a system of difference equations (Allen, 1994):

St+1 = St − βStIt

It+1 = It + βStIt − γIt

Rt+1 = Rt + γIt

The parameter β is the rate at which disease transmits from the infected to sus-
ceptible population proportions, and is dependent on the average contact rate and
probability of transmission given a discordant contact. Similarly, γ is the recovery
rate.

Typically, at the beginning of an epidemic, the exact proportion of the population
that is infected may be unknown. We useX0 = [XS0,XI0,XR0] = [S0, I0, R0] to denote
the initial state at the first decision epoch. We assume that while the exact initial state
is unknown, we know an upper and lower bound on each of the compartments. We use
S, S̄, I, Ī, and R, R̄ to denote the upper and lower bound on initial states S0, I0, and
R0, respectively.

Suppose at each time t, the health department can choose to implement a social
distancing policy (a “lockdown”) until time epoch t+1 that reduces the transmission
rate β. We assume there are a finite number of periods N .

The decision maker wishes to minimize the negative health outcomes and economic
and social costs of implementing a lockdown policy. To capture this objective, at
each decision epoch, we let the cost be r(Xt, πt) = It + u(πt), the proportion of the
population infected (It) plus some time-invariant dis-utility value u(πt) that captures
the economic and social costs that are only incurred when the intervention is in effect
and zero otherwise.

Throughout this section, we refer to this discrete time system as the ground-truth
system, and we will construct our discretized MDP framework based on this. We
assume no discounting in the objective (λ=1). The objective of the MDP is therefore
to minimize the total costs over the whole time horizon.

5.1.1. Inputs

To evaluate this example, we let the transmission rate (β) be 1.4 and the recovery
rate (γ) be 0.49. The decision interval (∆t) is a week, and the time horizon (N) is
ten weeks. Implementing a lockdown will incur an economic and social cost, but it
is unclear how this dis-utility can be quantified in reality. For simplicity, we assume
the dis-utility is 0.03 if lockdown was implemented and 0 otherwise (u(lockdown) =
0.03, u(no lockdown) = 0).

During the early stages of a pandemic, there is typically a large population in the
susceptible category, while only a small population is infected. Therefore, we choose
the initial states to be uniformly distributed within the upper and lower bounds for
each compartment to be: [S, S̄] = [0.7, 0.99], [I, Ī ] = [0.01, 0.1], and [R, R̄] = [0, 0.29].

In the GreedyCut discretization method, for each sample (θ) generated, ten itera-
tions are run to generate ten additional discretizations (lines 9 - 24 in Algorithm 2).
To generate samples θ, X0 are generated uniformly from the region above, and π is
a vector with ten random binary variables to indicate the policy intervention (0 – no
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lockdown, 1 – lockdown). In Algorithm 2, we generate c = 1000 samples to compute
two transition probability matrices to correspond to the no lockdown and lockdown
policies, respectively.

5.1.2. MDP Solutions

We compare MDP solutions between the GreedyCut and the uniform discretization
methods on 90, 150, 300, and 1200 discretizations.

To evaluate our algorithm’s performance, we create 300 samples (we denote the
set of all samples as X̌0) by selecting the initial susceptible proportion from 0.7 to
0.99 with stepsize of 0.01 and initialize the infected proportion from 0.001 to 0.01
with 0.001 stepsize. By enumerating each pair of S and I, we can have a total of 300
different possible initial states (if S + I > 1, we will renormalize each compartment).
We compute the following metrics for both GreedyCut and uniform discretization
methods on 90, 150, 300, and 1200 discretizations:

• ACC: accuracy in matching the percentage of optimal actions by comparing
discretized MDP with brute force (ground-truth) solution over each state-time

pair (a total of 3000 state-time pairs). ACC = 1− #mismatch
3000 .

• MSE: mean squared error between the optimal value of the discretized MDP
(V̄ ∗

0 ) and the brute force solution (V ∗
0 ) on the first decision epoch over all states.

MSE = E
X0∈X̌0

[||V̄ ∗
0 (X0)− V ∗

0 (X0)||
2].

• E2: relative mean absolute error on the first decision epoch over all states. E2

= E
X0∈X̌0

[ |V̄
∗

0 (X0)−V ∗

0 (X0)|
V ∗

0 (X0)
].

• Opt. Gap: average of the relative difference between the optimal value of
brute force solution and the value of running optimal policy from discretized
MDP on the true disease model (Ṽ0) on the first decision epoch. Opt. Gap

= E
X0∈X̌0

[ |Ṽ0(X0)−V ∗

0 (X0)|
V ∗

0 (X0)
].

The GreedyCut discretized MDP is able to generate solutions with a higher accuracy
than the uniform discretized MDP. We compare the solutions from the GreedyCut and
the uniform discretized MDPs against the brute force solution in the fifth week (t = 5)
for illustration. In the fifth week, we compare optimal actions across 300 states. The
results indicate that the GreedyCut discretized MDP has six mismatches, whereas
the uniform discretized MDP has 26 mismatches when compared with the brute force
solution.

Moreover, the direction of error may be worse with the uniform discretization MDP.
In the GreedyCut discretized MDP, all six mismatches belong to the case where the
brute force solution recommends not to lockdown while the GreedyCut discretized
MDP recommends implementing lockdown. However, in the uniform discretized MDP,
all 27 mismatches belong to the case where the brute force solution recommends lock-
down while the discretized MDP recommends not implementing lockdowns. In infec-
tious disease control, failing to implement a lockdown when it is necessary can cause
a rapid increase in the proportion of infected cases. Therefore, error in this direction
may be practically worse than in the converse direction. We see this illustrated in the
optimality gap between the two discretized MDPs (last columns in Table 1), which
measures the distance between solutions from discretized MDPs and the true optimal
solution. Here we see that GreedyCut MDP achieves a much lower optimality gap for
this reason.

The GreedyCut discretization method outperforms the uniform discretization meth-
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Figure 3.: We compare the optimal solution at t = 5 across different states using the GreedyCut and uniform
discretized MDPs against the ground truth optimal solution found using brute force methods. (a): Optimal
solution from the GreedyCut discretized MDP compared to the brute force solution; (b): Optimal solution
from the uniform discretized MDP compared to the brute force solution. ( 0 – both models recommend not
implementing lockdown; 1 – both models recommend implementing lockdown; 2 – the brute force method
recommends not implementing lockdown while the other method recommends lockdown [type 2 error]; 3 – the
brute force method recommends implementing lockdown while the other method recommends not implementing
lockdown [type 1 error].)

|G| ACC MSE E2 Opt. Gap

GreedyCut Uniform GreedyCut Uniform GreedyCut Uniform GreedyCut Uniform

90 0.9657 0.8120 4.3239e-04 0.0580 0.0689 0.8846 0.0033 0.0954

150 0.9850 0.8820 1.7896e-04 0.0169 0.0435 0.4946 0.0011 0.0583

300 0.9787 0.8613 6.5032e-05 0.0054 0.0233 0.2487 0.0018 0.0251

1200 0.9880 0.9150 3.1079e-05 4.3529e-04 0.0181 0.0654 0.0010 0.0072

Table 1.: Comparison on MDP solutions

ods across different evaluation metrics across all time periods and different discretiza-
tion budgets. Table 1 shows the comparison between the GreedyCut and the uniform
discretization methods. Also, the GreedyCut discretization method has higher accu-
racy (approximately 10% more) in matching the optimal actions from the brute force
(ground-truth) solution over all state-time pairs. The GreedyCut discretization method
is able to generate accurate recommendations on policy interventions even with a small
number of discretizations. Additionally, this method is able to provide a closer approx-
imation of the objective value in both MSE and E2 metrics across all discretizations.
When the number of discretizations is small, the GreedyCut algorithm has an MSE
that is under 1% of the MSE generated using the uniform discretization approach.
Similarly, under these conditions, the GreedyCut algorithm’s E2 remains below 10%
of the E2 from the uniform discretization method. Moreover, the GreedyCut algorithm
outperforms the uniform discretization method in reducing the optimality gap. The
optimality gap ranges from 0.1% to 0.33% with different numbers of discretizations
in the GreedyCut algorithm, compared with its ranges from 0.72% to 9.54% in the
uniform discretization method.

As expected, with a small number of discretizations, the difference in performance
between the GreedyCut and the uniform discretization methods is large. The perfor-
mance gap shrinks when the number of discretizations increases, as uniform discretiza-
tions naturally benefit from smaller discretized regions – higher resolution.
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Run Time Outcomes. To understand how much time is needed to construct an
MDP using the GreedyCut discretization method and Algorithm 2, we compare the
run time of Algorithm 1 and Algorithm 2 with different numbers of discretizations
using Matlab 2022b on a laptop with 16 GB memory and Apple M1 pro chip.
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Figure 4.: Runtime of Algorithm 1

There is an exponential relationship between the number of discretizations and
the algorithm runtime (see Figure 4), consistent with the time complexity analysis in
Section 4.1.1. The curvature of the exponential function will depend on the complexity
of the disease model f(Xt, πt); with more compartments or population stratifications,
the total runtime may be larger for a similar number of discretizations.

|G| Runtime (hours):

90 0.12

150 0.34

>300 >1

Table 2.: Runtime of Algorithm 2

The runtime of generating transition matrices is much more costly compared with
generating the discretizations when number of discretizations (|G|) is small for both
GreedyCut and uniform discretization. Table 2 shows the runtime of generating tran-
sitions using Algorithm 2 for the GreedyCut discretization method (the uniform dis-
cretization method should have the same runtimes as there are the same number
of iterations needed). The runtime exceeds one hour with 300 discretizations given
c =1000. Therefore, when |G| is small, the total runtime of constructing an approx-
imate MDP is roughly the time for generating transitions using Algorithm 2. In this
case, the time that it takes to construct the MDP using the GreedyCut discretization
method is close to that of using the uniform discretization method – because the run-
time of the Algorithm 1 (which is only needed for GreedyCut and not the uniform
discretization) is negligible compared to the runtime of Algorithm 2.
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5.1.3. General Algorithm Evaluation

In this section, we evaluate the GreedyCut discretization method’s performance on
generating discretizations that approximate the disease dynamics {Xt} and Algo-
rithm 2’s performance on generating transition probability matrices to generate the
discretized trajectories {X̄t}. We first examine the performance of Algorithm 2 to
highlight its capability to generate precise transition probabilities. These probabili-
ties are crucial for describing the discretized trajectory across various discretization
settings. Subsequently, we assess the performance of the GreedyCut discretization
method by comparing the Markovian trajectories (using transition probabilities from
Algorithm 2) between the GreedyCut algorithm and uniform discretization method.

How Accurate Are the Generated Transition Probabilities? To evaluate the
accuracy of generated transition probabilities from Algorithm 2, we draw samples and
evaluate computed trajectories compared with trajectories {X̄t} from f̄(X̄t, πt, G) to
eliminate the influence of the quality of the discretization algorithm.

For evaluation, we uniformly draw 1000 samples (θ̂ ∈ Θ̂) that consist of initial
states within the upper and lower bound of the proportions in each compartment and a
sequence of policy interventions for each initial state. For each evaluation sample θ̂, we
compute the discretized trajectory {X̄t} using f̄(X̄t, πt, G). To obtain the Markovian
trajectories from the discretized Markov model, we use an initial belief b0 = ei where all
entries of b0 are zero except for i-th entry (corresponding to X0) which has value one.
This indicates we know 100% the initial state of the discretized Markov model. Then
we update the belief bt = P (πt)bt−1 over time. To compute the expected proportion
of people on each time t (Markovian trajectory at time t, X̃t), we use the weighted
average over the belief vector at time t, e.g., X̃t = bTt X̄ . We then compute the cost

E
θ̂∈Θ̂[

∑N
t=1 ||X̃t − X̄t||

2
2] to evaluate how close is Algorithm 2 able to generate reliable

transition probability matrices.
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Figure 5.: Comparison between trajectories generated from Algorithm 2 given discretizations and trajectories
generated from discretized states. For each compartment S, I, and R, both trajectories are close to each other.

The trajectories obtained from Algorithm 2 closely align with those generated from
discretized states for each compartment. As shown in Figure 5, we compared the
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trajectories obtained from Algorithm 2 using 300 discretizations with the f̄(X̄t, πt, G)
trajectories generated from the same 300 discretized states.

We observed that as the number of discretizations increases, Algorithm 2 is capable
of generating transitions that closely resemble the dynamics of the disease, represented
by {X̄t}. In Table 3, we show a comparison of the cost E[

∑N
t=1 ||X̃t − X̄t||

2
2] for |G| of

90, 150, 300, and 1,200 using the GreedyCut discretization method. We observe that
the population proportions generated using the Markovian and discretized processes
closely align, even over time.

With fewer discretizations, each individual discretization possesses a larger range,
making it more difficult for samples drawn from these discretizations to transition
accurately between decision epochs, leading to more error in approximating {X̄t}. On
the other hand, when a larger number of discretizations is employed, each discretization
exhibits a smaller range. By drawing a sufficient number of samples, it becomes possible
to provide a more precise description of {X̄t}. These findings highlight the algorithm’s
reliability and accuracy in capturing the system’s dynamics.

|G| Mean Squared Error Between Discretized Trajectory and Markovian Trajectory [95% uncertainty interval]

90 0.4362 [0.3921, 0.4802]

150 0.1869 [0.1665, 0.2072]

300 0.1370 [0.1191, 0.1548]

1200 0.1212 [0.1075, 0.1349]

Table 3.: Mean squared error for the trajectories given different numbers of discretizations

How Accurate Are the Discretizations Generated from the GreedyCut
Discretization Method? Next, to evaluate the quality of discretizations generated
from the GreedyCut discretization method, we draw samples and calculate the mean
squared error across all samples. This error is measured between the actual trajectory
({Xt}) and anticipated Markovian trajectory ({X̃t}), using the transition matrix cre-
ated in Algorithm 2 using the discretizations generated from Algorithm 1 based on
the same 1000 samples for evaluating Algorithm 2.
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Figure 6.: Comparison between trajectories generated from the GreedyCut discretization method against the
uniform discretization method (using 300 discretizations in total) given trajectories generated from SIR model.
For each compartment S, I, and R, the GreedyCut discretization method can better capture the disease dy-
namics.

We use the same discretization levels (90, 150, 300, and 1200 discretizations) gener-
ated in the previous section for evaluation. To benchmark our model, we also generated
uniform discretizations with the same discretizations. Then, for both discretization
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methods, transition probability matrices were generated using Algorithm 2.
We find that the GreedyCut discretization method is able to better approximate

the disease dynamics over the uniform discretization method. As shown in Figure 6, a
comparison between the GreedyCut and the uniform discretization methods based on
300 discretizations shows that the Markovian trajectories for the GreedyCut discretiza-
tion methods are closely aligned with the actual trajectories. However, the uniform
discretization method shows poor approximation, especially showing incorrect trends
for the proportion of the population infected over time – where the proportion of the
population infected over time starts to decline after week 8 in the Markovian trajec-
tory, whereas the proportion of infected people over time increases in the entire time
horizon in the actual trajectory. Additionally, the uniform overestimates the propor-
tion of recovered populations by more than twice compared with the actual proportion
of infected people.

|G| GreedyCut Uniform

90 0.1411 [0.1264, 0.1558] 0.3269 [0.2388, 0.4150]

150 0.1300 [0.1162, 0.1439] 0.2483 [0.1887, 0.3708]

300 0.1218 [0.1087, 0.1350] 0.1969 [0.1729, 0.2210]

1200 0.1205 [0.1071, 0.1339] 0.1797 [0.1617, 0.1977]

Table 4.: Mean squared error for the trajectories given different numbers of discretizations

For all comparison pairs, the GreedyCut discretization method outperforms the uni-
form discretization method in the squared error between Markovian and actual tra-
jectories. In Table 4, we show the result of the comparison of E

θ̂∈Θ̂[||{X̃t} − {Xt}||
2]

over 1000 samples and 10 time periods between the GreedyCut and uniform discretiza-
tion methods. Both algorithms are able to improve the result of approximation when
the number of discretizations used increases, as expected. However, the improvement
in approximations for the GreedyCut discretization method is small compared with
uniform discretization, which suggests a high budget may not be necessary. When
the number of allowable discretizations is small due to the computational budget, the
GreedyCut discretization method can provide a much better approximation than the
uniform discretization method, and adding discretizations may not add much accuracy.

5.2. Example 2: COVID-19

COVID-19 led to a significant surge in infections within Los Angeles County (LAC).
To mitigate the pandemic during its initial phases, LAC implemented a lockdown from
the second week to the tenth week following March 1st, 2020, which marked the onset
of the epidemic. In this example, we use an MDP with discretizations to identify the
optimal timing of imposing lockdowns in LAC to minimize the proportion of infected
cases while considering the cost of a lockdown.

5.2.1. Model Structure and Inputs

To describe the disease dynamics of COVID-19 in LAC, we calibrated a SIR model that
is stratified by health districts (HD) (Redelings, Lieb, & Sorvillo, 2010), meaning that
the model allows for heterogeneity in health outcomes across HDs. The transmission
rates between HDs is also allowed to vary. The disease dynamics for HD i are then
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described as follows:

Si
t+1 = Si

t −
∑

j

βjiS
i
tI

j
t

Iit+1 = Iit +
∑

j

βjiS
i
tI

j
t − γIit

Ri
t+1 = Ri

t + γIit

We use βij to represent the transmission rate from HD i to HD j, and all HDs are as-
sumed to have the same clearance rate. We consider whether to implement a lockdown
policy at each decision epoch, ∆t, which has a duration of one week. Decisions need
to be made over a total time horizon of 60 weeks (N=60). If lockdown is implemented,
transmission will be reduced (β decreases 80%).

We assume there were 1000 infections (0.01% of the total population) at the initial
time epoch. This is consistent with the early stage of the COVID-19 epidemic in
LAC where the proportion of the population infected remains a small proportion of
the overall population. To calibrate the parameters of the stratified SIR model, we
used empirical COVID-19 data of case counts to calibrate transmission rate β and
recovery rate γ (City of Los Angeles Public Health, 2023). LAC mobility data is also
used to help capture the heterogeneity in transmission rate among HDs (Caltrans,
2023; Yu, Zhang, Suen, Dessouky, & Ordonez, 2024).

We let the stage costs be the proportion of the population infected plus the dis-
utility if lockdown is implemented. We assume that the dis-utility without a policy
intervention is zero. However, determining the dis-utility associated with a lockdown
is challenging. If the dis-utility is excessively low, the optimal choice consistently leans
towards implementing the lockdown, which ignores the potential economic and social
burden brought by the lockdown. On the contrary, if the dis-utility proves to be exces-
sively burdensome, it will never be enforced. To better reflect this tradeoff, we assume
the dis-utility of implementing a one-week lockdown is 0.005, implying it equates to
the dis-utility of 0.5% of the population infected per epoch.

We create two discretized MDPs with 150 discretizations using the GreedyCut dis-
cretization method and compare outcomes against that of a uniform discretization
method. This will guarantee the completion of model construction within an hour for
both the GreedyCut and the uniform discretization methods.

5.2.2. MDP Results

We compared the optimal action recommended by the discretized state MDP from
the GreedyCut and uniform discretization methods. We find that our GreedyCut al-
gorithm outperforms the uniform discretization by identifying a better MDP optimal
solution with a smaller cumulative proportion of the population infected. Figure 7
shows a comparison of disease dynamics across different policies. Compared with no
lockdown, the empirical policy in LAC (lockdown from week 2 to week 10) does not
prevent but rather postpones infections (the total cumulative proportion of the popu-
lation infected over time is 0.7504 in the empirical policy, and 0.7508 if no intervention
is used). Both uniform-discretized and GreedyCut discretized MDPs are able to re-
duce the cumulative proportion of infections and the peak of infections. Comparing
the two MDP solutions, the GreedyCut discretization method outperforms the uni-
form discretization method in terms of the overall reduction in the proportion of the
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population infected by 0.4793 over the 60-week time horizon.
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Figure 7.: Proportions of the population that is susceptible/infected over time.
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Figure 8.: Comparison between objective values across policies from GreedyCut MDP, uniform MDP, empirical
policy, and no policy.

GreedyCut outperforms uniform, empirical, and ‘do nothing’ policies by achieving
the lowest objective value (proportion of infected people over time plus lockdown disu-
tility). Figure 8 compares the objective value among different models evaluated on the
ground-truth disease (compartmental) model. The 8-week empirical lockdown policy
LAC imposed has a lower objective value than doing nothing after considering the cost
of lockdown, as it was not able to reduce infections while incurring lockdown disutility
costs. Both uniform and GreedyCut MDPs provide a better solution. GreedyCut MDP
is able to improve the objective value from doing nothing by 67% and outperforms the
uniform MDP outcome by 57%.

This example demonstrates that the GreedyCut algorithm is able to provide a solu-
tion that has a smaller total cost compared to the empirical lockdown policy in LAC
and the policy generated by the uniform discretized MDP. Even when the number of
discretizations is limited for each compartment (for example, a stratified compartmen-
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tal model includes death, hospitalizations, exposed, etc.), the GreedyCut discretization
method can generate quality solutions with low total discounted costs. Moreover, we
found that the uniform discretization method is not able to generate a near-optimal
solution as its optimal value exceeds twice the objective value of the GreedyCut dis-
cretized MDP.

5.2.3. Extension: MDP with at Most Two Policy Switches

In Section 5.2.2, both discretized MDPs recommended a policy with many pol-
icy switches where lockdown would be imposed for many short durations. For ex-
ample, the policy from the uniform discretized MDP recommends lockdown ev-
ery few weeks in weeks 9-23 (shown in Figure 9). This is not practical, as in-
consistency in policies can lead to poor adherence or even psychological issues
(Pedrozo-Pupo, Pedrozo-Cortés, & Campo-Arias, 2020; Webster et al., 2020). In this
section, we consider the same problem with additional constraints where we allow the
policy to switch at most twice (once from no lockdown to lockdown, and once from
lockdown to no lockdown). We set up the COVID-19 dynamics in the same way as in
Section 5.2.2.
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Figure 9.: Lockdown policy. The GreedyCut discretized MDP recommends starting the lockdown on week 7
for 42 weeks. The uniform discretized MDP recommends starting the lockdown on week 8 for 50 weeks.

With at most two policy switches (one lockdown duration), the GreedyCut dis-
cretized MDP recommends a shorter lockdown duration than the uniform discretized
MDP and an earlier lockdown initiation date. Figure 9 shows the lockdown policy
outcomes given the disease dynamics of the ground-truth model. The GreedyCut dis-
cretized MDP recommends starting the lockdown on week 7 for a duration of 42 weeks.
The uniform discretized MDP recommends starting the lockdown on week 9 for a du-
ration of 50 weeks. Due to the highly transmissible nature of COVID-19, a lockdown
of over 40 weeks is needed to reduce transmission. Figure 10 compares the trajectories
using policies from the uniform discretized MDP and GreedyCut discretized MDP. The
GreedyCut discretized MDP is able to generate a policy that reduces the cumulative
proportion of the population infected by 0.0864 while using fewer weeks of lockdowns
compared to the uniform discretized MDP.

With the additional constraint on the policy switches, the GreedyCut discretized
MDP consistently generates a better solution than the uniform discretized MDP and
other policies we considered in this analysis. In addition, the GreedyCut discretized
MDP recommends a shorter lockdown duration compared with the uniform discretized
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Figure 10.: Proportion of the population susceptible/infected over time for different MDPs with policy con-
straints.

MDP which could reduce the economic and societal burden brought by the lockdown.

6. Conclusions

In this paper, we introduce a novel algorithm for formulating an MDP framework tai-
lored for continuous or large state-space problems in repeated decision-making with
uncertainty for infected disease control. In our numerical analyses, we found that our
algorithm provides better MDP solutions than the uniform discretized MDP for the
models we evaluated. Our approach better approximates the true value function than
the uniform discretized MDP, therefore leading to a better policy with a lower op-
timality gap. Compared to uniform discretization, our method demonstrates better
performance across different discretization budgets, particularly showing notable ben-
efits when the number of discretizations is small. This may be particularly pertinent
for a compartmental model with many compartments, as the resultant number of dis-
cretizations for each compartment may be extremely limited. In this case, a uniform
discretization method may result in a poor estimation of disease dynamics.

We found that our algorithm is able to provide a better state discretization than
the uniform discretization method in approximating disease dynamics for the examples
considered. Our approach generates smaller regions for states with a higher likelihood
of being visited and increases the range of the region for those less frequently visited.
Using the GreedyCut method would substantially improve the approximation quality,
thus resulting in an improved decision-making process.

Additionally, we offer an effective method to compute the transition probability
matrices for formulating MDPs given f(Xt, πt), which may be a compartmental or
simulation-based model. This helps us incorporate other common disease modeling
frameworks into the MDP decision-making framework, facilitating the seamless inte-
gration of diverse healthcare applications. This approach is not only straightforward to
implement but also effectively captures the complex function f(Xt, πt) that represents
the dynamics of the disease in transition probability matrices.

With a small number of discretizations, the time spent discretizing the state using
our approach is considerably smaller than the time required to produce transition
probability matrices. In our examples, the time needed to formulate the discretized
MDP using our approach is nearly equivalent to the time necessary for the construction
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of a uniform discretized MDP. Therefore, our approach could offer an improvement
to the MDP solution without substantially increasing computational expense under
limited budgets.

We provide numeric examples to demonstrate the efficiency and effectiveness of our
algorithm in discretizing continuous-state decision-making problems. Benchmarking
the performance with the uniform discretization method, we demonstrate that our
algorithm is able to generate preferable discretizations with a limited budget that is
a good proxy of the ground truth system. We also demonstrate that our algorithm
can generate better policies in both synthetic examples and a COVID-19 example.
In the synthetic example, our algorithm outperforms the uniform discretization in all
metrics for different discretization budgets. In the COVID-19 example, our algorithm
improves the objective by nearly 100% from the uniform discretization.

Our numerical analysis also generated policy implications for social distancing pol-
icy during COVID-19 in LAC. The first policy implication is that the threshold of
implementing the lockdown depends on the proportions of susceptible and infected
(recommending implementing the lockdown if the proportions of infected and sus-
ceptible are above certain numbers). When the proportion of the population infected
increases, the threshold of implementing the lockdown on the proportion of the sus-
ceptible population decreases. This is because a less susceptible population is needed
to spread the disease as the infected population grows. Similarly, when the proportion
of the susceptible population increases, the threshold of implementing the lockdown
on the proportion of the infected population decreases. Secondly, a short lockdown
interval may not effectively reduce the total number of cases, instead only delays
the epidemic peak. To more effectively control cases, a prolonged lockdown period is
needed.

We must acknowledge several limitations of this work. The GreedyCut algorithm
may not find the discretization that globally minimizes the cost function. The perfor-
mance gap between the GreedyCut and the uniform discretization methods is small
with a large discretization budget. The GreedyCut algorithm may have computational
difficulty if there is a large action space and does not consider continuous action spaces;
this leaves an interesting optimization direction for future studies. The output of the
GreedyCut algorithm may be sensitive to the choice of cost function; different choices
may result in widely different discretization choices, thus requiring reevaluation of the
objective function is changed.

Despite these limitations, we believe that this work provides an effective and easy-to-
handle scheme for dealing with decision-making problems in large or continuous state
spaces. Our paper provides insight into future work on improving the discretization of
solving large-scale MDPs.
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