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ABSTRACT

We develop a physical framework for interpreting complex circumstellar patterns whorled around
asymptotic giant branch (AGB) stars by investigating stable, coplanar triple systems using hydrody-
namic and particle simulations. The introduction of a close tertiary body causes an additional periodic
variation in the orbital velocity and trajectory of the AGB star. As a result, the circumstellar outflow
builds a fine non-Archimedean spiral pattern superimposed upon the Archimedean spiral produced by
the outer binary alone. This fine spiral can be approximated by off-centered circular rings that be-
come tangent to each other at the location of the Archimedean spiral. The superimposed fine pattern
fades out relatively quickly as a function of distance from the center of the system, in contrast to the
dominant Archimedean spiral pattern, which presents a much slower fractional density decrease with
radius. The different rates of radial decrease of the density contrast in the two superimposed patterns,
coupled with their different time and spatial scales, lead to an apparent, but illusory radial change in
the observed pattern interval, as has been reported, for example, in CW Leo. The function describing
the detailed radial dependence of the expansion velocity is different in the two patterns, which may
be used to distinguish them. The shape of the circumstellar whorled pattern is further explored as a
function of the orbital eccentricity and the inner companion’s mass. Although this study is confined
to stable, coplanar triple systems, the results are likely applicable to moderately noncoplanar systems
and open interesting avenues for studying noncoplanar systems.

Keywords: circumstellar matter — stars: AGB and post-AGB — stars: late-type — stars: mass-loss
— stars: winds, outflows

1. INTRODUCTION

Planetary nebulae (PNe) and preplanetary nebulae
(pPNe) exhibit a vast variety of morphologies, and
spherical PNe are extremely rare. Only 3.4% of 119
young PNe and none of 23 pPNe in the survey using
the Hubble Space Telescope have a round shape, while
the majority (> 60%) of them were classified as bipo-
lar or multipolar (Zuckerman & Aller 1986; Sahai et al.
2007, 2011). The nonspherical morphologies, in gen-
eral, include highly collimated jet-like features, bipolar
compact knots, point-symmetric filaments (or strings of
knots), bipolar ansae, and equatorially dense disk/torus-
like features. Also invoked nowadays are objects dis-
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playing moderate deviations from spherical symmetry,
such as spirals, intertwining off-centered circular rings,
and irregularly distributed arcs, often found to be sur-
rounding mass-losing asymptotic giant branch (AGB)
stars and their compact descendants at the nuclei of
pPNe and PNe. As noted in a review by Balick & Frank
(2002) and references therein, no single mechanism for
shaping offers a comprehensive explanation of all obser-
vational properties of such systems, but it is nowadays
commonly accepted that these structures require an in-
teraction with a “close” binary companion (De Marco
2009).
A spiral-shell pattern surrounding a mass-losing gi-

ant star is an important tool for identifying binarity
(e.g., Soker 1994; Mastrodemos & Morris 1999; Kim &
Taam 2012b). But the observed whorled patterns ex-
amined to date mostly, if not all, indicate “wide” (long-
period) binaries. By searching ∼ 650 optical and in-
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frared images of pPNe and PNe, Ramos-Larios et al.
(2016) found that 29 sources possess whorled patterns,
and the time lapse between their consecutive rings and
arcs ranges from 500–1200 yr. The time intervals be-
tween successive waves in the circumstellar whorled pat-
terns are also estimated using spatio-kinematic struc-
tures revealed in molecular line observations, including
350, 300, and 800 yr for the well-known carbon-rich AGB
stars (carbon stars), R Scl, CIT 6, and AFGL 3068, re-
spectively (Maercker et al. 2012; Kim et al. 2013, 2017).
The (sub)millimeter images obtained in a new survey of
oxygen-rich AGB stars seem to indicate the time interval
to be not less than 30 yr (Decin et al. 2020). Therefore,
so far, the time interval of the circumstellar whorled pat-
tern (corresponding to the orbital period of the binary)
does not seem to indicate the presence of companions
that are close enough to induce the morphological transi-
tions from AGB to PN stages. This observational result
is possibly due to a bias by observers who tend to target
close, large sources by taking into account the limita-
tions of telescopes in angular resolution and sensitivity.
Another possibility, which we focus on in this paper, is
that observers may have missed the spatial clues imply-
ing the presence of another (inner) companion in a triple
system appearing as a minor pattern having less surface
brightness (or density) contrast and a smaller pattern
interval.
Classical statistical studies of stellar populations in-

dicated that the fraction of triple to binary systems is
about 0.11 and the fraction for higher multiplicity sys-
tems consisting of n objects is fn = Nn/Nn−1 ∼ 0.25
(Duquennoy & Mayor 1991; Tokovinin 2001). Thanks
to high-resolution imaging, recent discoveries of addi-
tional subsystems in known binaries further boost the
fraction of hierarchical multiplicity relative to binaries
up to 30–50% (Raghavan et al. 2010; Hirsch et al. 2021).
This result implies that at least 3 out of 10 observed
patterns whorled around evolved stars may present ad-
ditional features induced by a tertiary component. In
addition, close binaries tend to be accompanied by at
least one other star, with the probability of finding ad-
ditional companions increased by up to 96% for spectro-
scopic binaries in the shortest-period group in Tokovinin
et al. (2006). This naturally suggests that the progen-
itors of strongly bipolar PNe, which presumably orig-
inated from close binaries, may also possess an outer
whorled pattern characterized by a longer time interval.
Before invoking a third stellar component, a binary

model with a highly eccentric orbit can be considered
to explain a bipolar outflow in terms of the short, but
impactful, pericenter passages of the companion star.
As an example, the carbon star V Hya has experienced
high-speed bullet-like ejections once every ∼ 8.5 yr,
which are hypothesized to be produced during the peri-
apse passages of a binary companion having an orbital
period of ∼ 8.5 yr (Sahai et al. 2016). However, Salas et
al. (2019) raised an issue with the long-term orbital sta-

bility of such a binary system because the eccentric orbit
should be circularized within a relatively short time by
the dynamical and tidal interactions of the companion
with the AGB star. They proposed that a triple system
could be a solution for V Hya by invoking an orbital con-
figuration in which the inner companion (≲ 0.01M⊙)
grazes the Roche limit of the mass-losing star in an ec-
centric orbit, while the eccentricity of that orbit can be
maintained by the gravitational influence of an outer
companion.
The multiple-shell structure of the closest carbon star,

CW Leo (a.k.a. IRC+10216), has been under debate
since the discovery of the shells (Mauron & Huggins
1999). The multiple shells appear roughly spherical, but
they are not simply explained by equally spaced con-
centric circles; some of them are incomplete arcs, some
are spiral-like, and some even appear to intertwine with
other shells. Many authors also noticed that the cen-
ters of curvature are offset from each other (e.g., Mau-
ron & Huggins 1999; Guélin et al. 2018, see also Guelin
et al. 1993). By combining molecular line data taken
with the Atacama Large Millimeter/submillimeter Ar-
ray (ALMA; at a resolution of ∼ 0.′′3) with those from
the Submillimeter Array (SMA; at a resolution of ∼ 3′′),
Guélin et al. (2018) found a regular interval of shells of
∼ 16′′ (or 2000 au at the distance of ∼ 123 pc derived
by Groenewegen et al. 2012) in the outer envelope (up
to a radius of ∼ 110′′), which is consistent with a bi-
nary model having an orbital period of ∼ 700 yr. Notice
that Guélin et al. claimed that the orbit of the binary
star system is eccentric and is viewed nearly face-on (see
also Cernicharo et al. 2015). This geometry associated
with a face-on and eccentric orbit binary was supported
by a separate study of the position-angle dependence
of the transverse wind velocity (Kim et al. 2021; Kim
2023). However, this proposed geometry is contradic-
tory to the nearly edge-on geometry proposed based on
the elongated shape of the dust continuum emission and
the bipolar-like optical image of the central 1′′ region
(e.g., Men’shchikov et al. 2001; Jeffers et al. 2014; Decin
et al. 2015). Guélin et al. also noted that the spatial and
time intervals between shells decrease in the inner (and
younger) part of the envelope at radii r < 10′′, where
∆r ∼ 2′′ (∆t < 100 yr), compared to larger radii be-
tween 10′′ and 40′′, where ∆r = 5′′–10′′ (∆t ∼ 300 yr).
Their speculation that such a reduction of orbital pe-
riod was caused by mass transfer either to the envelope
or to the companion star fails because, as they argue, it
requires a much higher mass-loss rate than the current
rate of CW Leo. These discrepancies between the inner
and outer parts of the circumstellar envelope may imply
the presence of an additional (inner) companion.
In this paper, we present hydrodynamic and particle

(kinematic) simulations for the circumstellar structure
induced by a triple system consisting of a mass-losing
star and two companion stars without mass loss. We
mostly focus on particle simulations in order to explicitly
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track the circumstellar density-enhanced pattern and its
velocity structure without the complexities due to gas
pressure effects. Comparison of the particle simulation
with the corresponding hydrodynamic simulation em-
phasizes the purely hydrodynamic effects, in particular,
the density dispersion caused by shocks and gas pres-
sure. Unlike hydrodynamic simulations, particle simu-
lations can employ a constant velocity for the intrinsic
wind of the mass-losing star, which facilitates the com-
parison of models over a wide parameter space for the
stellar properties, e.g., the stellar masses. In a hydro-
dynamic simulation, even in a single star case, the wind
velocities throughout the simulation domain are depen-
dent upon the stellar masses (see Section 2.2). Particle
simulations also have an advantage in computational ef-
ficiency, with which we can trace the pattern out to
the radii where the pattern induced by the third star
has been repeated on multiple scales. This paper will
also inform the merits and limits of particle simulations,
which often have been, and will be, utilized for quick
modeling of observed whorled patterns in the interpre-
tational framework of binary (and hereafter, multibody)
systems.
In Section 2 we describe our numerical methods for

determining the orbits of a triple system (Section 2.1),
for the hydrodynamic simulations (Section 2.2), and for
the pinwheel model based on following the trajecto-
ries of wind particles ejected at different moments (Sec-
tion 2.3). The results are shown in Section 3. The impli-
cations of our models are discussed, and our conclusions
are presented in Section 4.

2. NUMERICAL METHODS

2.1. Coplanar Triple System

The preservation of dynamical stability within triple
systems hinges upon the implementation of a hierarchi-
cal configuration, wherein an inner binary is orbited by
an outer entity with a much wider orbital trajectory
(Salas et al. 2019). Systems with smaller ratios of outer
to inner orbital periods are susceptible to being unstable
because of the eccentric Kozai–Lidov effect (Kozai 1962;
Lidov 1962), unless the system is coplanar and the or-
bits are near-circular. Among evolved star systems that
are suspected to have a third object, the AGB star π1

Gru could be an example of a hierarchical triple with
an orbital period ratio of > 500, suggested by the re-
cent finding of evidence for a close companion with an
orbital period of only 10 yr (Homan et al. 2020). How-
ever, owing to the very large ratio between the orbital
periods, the circumstellar patterns associated with the
individual companions could have a large density con-
trast with respect to each other. It would likely leave a
vestige of one of the companion stars on the circumstel-
lar envelope that would be too tenuous to be observable,
either because of the density attenuation of the larger
pattern or because one companion is too low mass to
build a significant pattern. As our aim in this work is to

find and track the third object’s footprints remaining in
the circumstellar medium, as may have been observed in
some AGB sources, like CW Leo, a large orbital period
ratio is not addressed in our investigations.
Adopting such a framework, we assume a stable triple

system, for which we further assume coplanar orbits.
Coplanar orbits are relatively less affected by the ec-
centric Kozai–Lidov mechanism, albeit not completely
free of such a mechanism, leading to large-amplitude ec-
centricity and inclination oscillations in near-coplanar
triple systems (Li et al. 2014). The eccentric Kozai–
Lidov mechanism is not taken into account in this paper
because the timescales for its operation are much longer
than the few-orbit timescales that we are considering
here, and possibly even longer than the duration of the
AGB phase.
Seven parameters that determine the orbits within a

triple system include the masses of the three objects
(MA, MB, and MC), the average separation between
the center of mass of the inner (A–C) binary system
and the outer B object (aAC + aB), the average sepa-
ration between the inner objects (aA + aC), and their
eccentricities (eAC−B and eA−C). Here, a represents the
semimajor axis of the orbit of a star relative to the cen-
ter of mass of the corresponding (AC–B or A–C) binary
system.
We first calculate the orbits of a binary system com-

posed of two mass components, MA+MC and MB, sep-
arated by aAC + aB, which determines the final orbit of
object B as well as the time-dependent position of the
center of mass of the inner binary system, objects A and
C. The mass ratio, MA/MC, and the A–C separation,
aA + aC, then impose the individual orbits of objects A
and C with respect to the time-dependent position of
the center of mass of the inner binary system.
Figure 1 illustrates the orbits of a triple system (a)

in XY coordinates corotating with object B about the
center of mass of the three objects (coinciding with the
coordinate origin) and (b) in the inertial frame of ob-
servers sitting on the +z-axis. In the former frame, the
locations of the center of mass of the inner binary sys-
tem and object B are fixed, and the orbits of A and
C are closed and circular (elliptical, in eccentric orbit
cases). In the observer’s frame, however, the orbits of
A and C are not necessarily closed. The small fluctua-
tion in the orbit of the mass-losing star A (red curve in
Figure 1(b)), relative to a circle, is the primary cause of
the main features described in this paper.
This study is limited to triple systems having coplanar

orbits in order to capture the essential features created
by the presence of a third object. Finally, the orbital
motions are assumed to be stable in their predefined
circular or eccentric orbits, with constant orbital pa-
rameters. In future studies, stability considerations will
be included in the modeling of the observations.

2.2. Hydrodynamic Simulations
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Three-dimensional hydrodynamic simulations for
triple systems were performed using version 4.5 of the
code FLASH (Fryxell et al. 2000) by solving the Eule-
rian hydrodynamic equations in Cartesian coordinates
with the origin at the center of mass of the triple sys-
tem. The adaptive mesh refinement scheme imposes
a higher level of refinement toward the instantaneous
stellar positions. The refinement is determined by the
stellar positions, not by the usual density or velocity
criteria. Specifically, the maximum refinement level of
9, with 64 grid points per block length for a total im-
age size of 6000 au, imposes the highest resolution of
about 0.37 au near the stellar positions; it assigns 19
grid points to the diameter (7 au) of the hypothesized
wind-launching sphere surrounding the mass-losing star,
where the initial vector velocities in the observer’s frame
of the wind material blowing out of the star are reset ev-
ery simulation time step. The mass-losing star is treated
as a point source having a gravitational softening radius
(also called the Plummer radius) of 1 au. The mass-loss
rate for all models presented in this paper has been set
at 3 × 10−6 M⊙ yr−1; the morphological results are in-
sensitive to the assumed mass-loss rate. The equation of
state of an ideal gas is assumed with the ratio of specific
heats, γ, chosen to be equal to 1.4. Radiative cooling
and heating are not included for simplicity; we only fol-
low the density of the material.
Following a commonly adopted technique for wind ac-

celeration (e.g. Theuns & Jorissen 1993), the gravita-
tional force attributed to the mass-losing star of mass
MA located at r⃗ = r⃗A is reduced by a factor of 1 − f ,
where the wind acceleration factor f is a constant rep-
resenting the ratio of the outward force due to radiation
pressure on dust grains to the inward gravitational force
(see the wind velocity profiles for different constant val-
ues of f in Kim & Taam 2012a for an isothermal gas;
the wind solution for a polytropic gas can be found in
Shivamoggi et al. 2021). In a test simulation for a cor-
responding single mass-losing star located at the center
of the simulation domain, the intrinsic wind profile as
a function of radius followed a supersonic branch of the
above papers as the updated version of Parker’s wind
solution (Parker 1958), and the terminal velocity was
around 13 km s−1. The intrinsic wind velocity is gov-
erned by the momentum equation of hydrodynamics;
therefore, it would be scaled down with an increased
companion mass.
The gravitational forces attributed to the outer and

inner companion stars of mass MB and MC located at
r⃗ = r⃗B and r⃗ = r⃗C, respectively, are also implemented in
the code. In order to explore the effects of the perturbed
orbital path of the mass-losing star and to distinguish
those effects from those created by the density wakes
formed behind the companion stars, we run simulations
that alternatively include and exclude the terms for the
companions’ gravitational forces by setting the shutoff
parameter, W, defined by Kim et al. (2019) and Kim

(2023), to 1 and 0, respectively. In any case, the orbit of
the mass-losing star is preset according to the dynamics
of the triple system, as described in Section 2.1. The
results of the hydrodynamic simulations are displayed
in Figures 2(a) and (b) for density and in Figures 3(a)
and (b) for the expansion velocity; a further description
can be found in Section 3.

2.3. Particle Simulations

We consider that most of the characteristics of the
spiral-shell pattern induced by a binary or triple system
can be explained by a simpler model that tracks the tra-
jectories of wind particles ejected from the mass-losing
giant star. In order to identify the purely hydrodynamic
effects, we compare the density and velocity fields ob-
tained through a hydrodynamic simulation with the cor-
responding particle model characteristics calculated by
the pinwheel code, as described below.
The first version of the pinwheel model accumulates

the particles that are freely moving with the instanta-
neous momenta gained at the moments of their ejection
from the mass-losing star as it passes through the prede-
fined positions along its orbit with the orbital velocities
as calculated in Section 2.1. Here, the particle velocity
is defined as the vector sum of the intrinsically isotropic
wind velocity (denoted by Vexp) with the orbital veloc-
ity of the star. If Npar particles are ejected with equal
spacing over all solid angles, from one of the discrete
Npos positions along the orbit of the star within one or-
bital period, then within the observing time t = Nturn

orbits, a total of Npar ×Npos ×Nturn particles are mov-
ing within the computational domain. Among them, the
number of particles located within each grid cell is used
as a measure of the density distribution. The velocity
map is also calculated by averaging the velocity vectors
of individual particles falling into each grid cell. An ex-
ample binary model that was calculated by this method
is shown in Kim et al. (2017)’s supplementary Figure 4.
The second version of the pinwheel code is written us-

ing the concept of a piston based at the systemic center
of mass. Once the direction of a piston (θ, ϕ) is chosen,
with the usual notations θ for the polar angle and ϕ for
the azimuthal angle, the time-variable length and veloc-
ity of the piston head are determined by the projection
of the position and velocity of the star in its orbit onto
the piston direction:

lpiston=(xA cosϕ+ yA sinϕ) sin θ, (1)

Vpiston=(vx,A cosϕ+ vy,A sinϕ) sin θ, (2)

where (xA, yA) and (vx,A, vy,A) indicate the position
and velocity of object A in the orbital plane. The wind
particle is ejected with speed Vexp + Vpiston toward the
piston direction. The output images of the first and sec-
ond versions of the pinwheel model are apparently the
same under the condition of a far-distance approxima-
tion (i.e., r ≫ lpiston).
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Table 1. Parameters for particle simulations

MA MB MC aAC + aB aA + aC eAC−B eA−C Stickiness Npos Npar Nturn Density

(M⊙) (M⊙) (M⊙) (au) (au) (% or km s−1) (Figures)

1 1 0.1 100 20 0 0 0% 2000 2000 3 2(c)

1 1 0.1 100 20 0 0 100% 2000 2000 3 2(d)

1 1 0.1 100 20 0 0 0.5 1000 2000 5 5(a)

1 1 0.1 100 20 0 0.8 0.5 1000 2000 5 5(b)

1 1 0.1 100 20 0.8 0 0.5 1000 2000 5 5(c)

1 1 0.1 100 20 0.8 0.8 0.5 1000 2000 5 5(d)

0.8 1 0.3 100 20 0 0 0.5 1000 2000 5 6(a)

1.09 1 0.01 100 20 0 0 0.5 1000 2000 5 6(b)

Note—In all models, the orbital periods are set the same as TAC−B = 690 yr and TA−C = 85 yr, yielding a ratio

of ∼ 8. The gravitational wakes of the companion objects, B and C, are not considered in particle simulations,

corresponding to the shutoff parameter W = 0 in the hydrodynamic simulations.

In the third version of the pinwheel code, the particles
are made to be sticky. For this, a piston approximation
is used for convenience. Whenever the particles ejected
at later times overtake previously ejected particles, the
velocities of all these particles at the same distance are
averaged and updated to a common new value. This
assumes that the particles spatially coinciding with each
other perfectly stick together. A binary model of this
version was exhibited in He (2007).
The fourth version of the code reduces the efficiency of

stickiness so that the velocity dispersion of the particles
that are coincident with each other is reduced to the pre-
defined speed of sound; if the initial velocity dispersion
of the overlapping particles is smaller than the specified
speed of sound, their velocities are not updated.
Figures 2(c) and 3(c) present the resulting density and

velocity maps of the first (or second) version of the pin-
wheel model (i.e., without stickiness), while Figures 2(d)
and 3(d) show the third version’s results for particles
with the efficiency of stickiness set to 100%. The exam-
ple density maps produced via the fourth version of the
piston model with the velocity dispersion of 0.5 km s−1

for the coincident particles are exhibited in Sections 3.3
and 3.4. Table 1 summarizes the parameters for the par-
ticle simulations displayed in this paper.

3. RESULTS

3.1. Hydrodynamic Simulation: Understanding the
Roles of Individual Stars

Figure 2(a) shows the density distribution in the (com-
mon) orbital plane of the triple star system with the
mass-losing giant star of mass MA = 1M⊙, the outer
companion of mass MB = 1M⊙, and the inner com-
panion of mass MC = 0.1M⊙. The distances from the
giant star are 100 au and 20 au for the outer and in-

ner companions, respectively, and the orbital shapes are
perfectly circular.
We note that a binary system consisting of two objects

with masses MA + MC and MB induces the density-
enhanced structure of an Archimedean spiral in the or-
bital plane, as denoted by the black line in the figure,
satisfying

r/ϕ = Vexp TAC−B/2π, (3)

where TAC−B represents the orbital period in this binary
system. Figure 2(a) shows that the triple system creates
the same spiral structure as in the abovementioned bi-
nary system (hereafter referred to as the main spiral),
along with finer structures in the inter-ridge region of
the main spiral. As shown in the right panel for the r–ϕ
polar coordinate map, the finer structures have a spiral
shape with the opposite orientation (i.e., the slope in
the polar coordinate map is negative). The segments of
the finer spiral structure effectively merge into the main
spiral ridge, rather than passing continuously across it.
The overall features in Figure 2(a) are compared to

the correspondences in Figure 2(b), where the gravita-
tional wakes of objects B and C are excluded; we have
further compared it to the images (not shown in this
paper) made by excluding just one of the gravitational
wakes of objects B and C. The nonlinear perturbations
appearing along the main spiral, as clearly seen in both
the left and right panels in Figure 2(a), can be attributed
to the overlay of the wake of the outer companion (object
B). The irregularities in the main spiral have a vertically
limited extent, as indicated in previous studies (see, e.g.,
Kim & Taam 2012a,b; Kim et al. 2019). On the other
hand, the broadening of the fine spiral segments shown
in Figure 2(a), relative to the width of the corresponding
features shown in Figure 2(b), occurs with the introduc-
tion of the gravitational effect of the inner companion
(object C). The density profile across the fine spiral is
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also modified from two peaks shown in Figure 2(a) to one
peak in Figure 2(b). We also note that the slope of the
black line in the right panel is greater in Figure 2(b) than
in Figure 2(a) because of the absence of the companions’
gravitational influences in Figure 2(b), which yields an
expansion velocity that is about 0.5 km s−1 greater than
in Figure 2(a). The deceleration of the wind is smaller
when the companions’ gravity is excluded.
With increasing distance from the system’s center of

gravity, the relative density decrease of the finer pattern
is much faster than that of the main spiral. Further-
more, while the radial broadening of the main spiral
is insignificant, the width of the finer pattern increases
with radius, eventually smoothly filling the region be-
tween the density ridges of the main spiral. Therefore,
the finer pattern in the outermost part would likely be
unidentified in, for example, molecular line observations
of the circumstellar medium of an AGB star in a triple
system.
In Figure 3 for the distribution of expansion velocity,

the velocity gradient is maximized at the location of
the main spiral pattern, traced by the black solid line.
Overall, the expansion velocity gradually increases from
one arm to the next outer arm of the main spiral. The
velocity jumps at the locations of fine spiral structures
are minor, which provides an important characteristic to
distinguish the main and fine spirals of a triple system
among the observed intensity peaks.

3.2. Particle Simulations: Differentiating
Hydrodynamic and Nonhydrodynamic Effects

Panels (c) and (d) of Figure 2 present the results of
pinwheel model calculations with stickiness efficiencies
of 0% and 100%, respectively. Both images well approx-
imate the locations of the whorled patterns observed in
the hydrodynamic model displayed in Figure 2(b). The
width of the main spiral pattern in the hydrodynamic
simulation is, however, smaller than in the nonsticky
model shown in Figure 2(c) and larger than in the ex-
tremely sticky model in Figure 2(d). It suggests the ne-
cessity of adjusting for the efficiency of the stickiness of
the particles when they coincide.
The net velocity distribution, as plotted in Figure 3,

is also overall well reproduced by the pinwheel model,
in particular with the sticky particles. In the perfectly
sticky model shown in Figure 3(d), the expansion veloc-
ity sharply drops from > 14 to < 11 km s−1 at the main
spiral’s ridge, whose width is unresolved in this model.
The corresponding hydrodynamic model, drawn in Fig-
ure 3(b), has a similar velocity distribution, except for
the slightly larger width of the ridge of the main spiral.
In the nonsticky model, the relatively smaller velocity
between the split edges of the main spiral is distributed
over a wider area (see Figure 3(c)), inconsistent with the
hydrodynamic result shown in Figure 3(b). Within the
region between the split edges of the main spiral, it is
also found that the continuation of the sharp velocity

structures of the finer pattern having the opposite ori-
entation does not cross the black solid line (see the right
panel of Figure 3(c)).
Although there is a close similarity in the global distri-

bution of the expansion velocity of fluid, the number of
fine spirals in the inter-ridge region of the main spiral is
doubled in the hydrodynamic model (Figure 3(b)) com-
pared to that in the pinwheel model with sticky particles
(Figure 3(d)). The fine spirals have an extremely small
width in the sticky model, while they show broadening
in both the nonsticky and hydrodynamic models, accom-
panied by double-peaked velocity profiles (see Figure 6
of Kim et al. 2019, and below for more details).
In the full three-body hydrodynamic model, the non-

linearities in the density wake of the outer companion
are apparent in Figure 3(a). The fine spirals in the full
three-body model are broad (compare Figures 2(a) and
(b)), within which triple peaks are presented, owing to
the overlay of the gravitational wake of the inner com-
panion. Accordingly, the velocity structures of the fine
partial spirals are more complex (compare Figures 3(a)
and 3(b)).
Figure 4 compares the density and velocity profiles be-

tween the 100% sticky particle model and the hydro-
dynamic model induced by the orbital motion of the
mass-losing object. The red-dotted vertical lines indi-
cate the positions of the peaks in the sticky particle
model. Note that the typical radial structure of one
spiral ridge is characterized by a one-peak density pro-
file, surrounded by double-peaked temperature profiles,
and the velocity profile with one inflection point (see
Figure 6 of Kim et al. 2019). Each of the radial zones
indicated by a horizontal two-headed arrow and shading
in Figure 4 shows that the dispersed spiral ridge of the
hydrodynamic model coincides with a common shape of
the velocity profile. Furthermore, the density peaks in
the sticky particle model coincide with inflection points
in the velocity profile, as indicated by the red-dotted
vertical lines. The darker regions represent the overlaps
of these shaded regions. These shaded regions, deter-
mined based on the velocity profile, agree well with the
enhanced regions in the density profile.
The spirals of the hydrodynamic model are enclosed

by two shocks at their inner and outer edges. Their
radial variations in density and velocity are very sim-
ilar to the characteristic density and velocity profiles
of an outgoing forward shock and a reverse shock, the
latter of which accelerates material inward, relative to
the expanding forward shock, as in a supernovae rem-
nant (e.g., Figure 1 in Truelove & McKee 1999), albeit
showing smaller shock jumps due to a much slower wind
speed. The individual peak structures of the fine spiral,
shaded in Figure 4, have such a velocity profile, including
one inflection point, superimposed upon the larger-scale
velocity variation following the main spiral pattern. As
a consequence, the density peaks in the hydrodynamic
model are largely dispersed through the regions enclosed
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by the forward and reverse shocks at the inner and outer
edges of the spiral patterns.

3.3. Efficiency of the Stickiness of Wind Particles

The efficiency of stickiness is adjusted in the piston
model by allowing a certain range of velocity dispersion
of the coincident particles up to a predefined constant
value. As a result, the width of the main spiral in the
hydrodynamic model is reasonably reproduced by ap-
plying a velocity dispersion of ∼ 0.5 km s−1 to the pin-
wheel model (see Figure 5(a)), which corresponds to the
adiabatic speed of sound of a gaseous medium at a tem-
perature of ∼ 20K. In our hydrodynamic simulations,
the temperature shows an overall decrease with radius
except for the jumps at the major and minor spiral pat-
terns, and the interarm temperature is below 20K be-
yond 1 kilo-au.

3.4. Eccentric Orbits

In this section, we demonstrate the influences of eccen-
tricities of stellar orbits in the density distribution of the
circumstellar spiral patterns. The velocity dispersion up
to ∼ 0.5 km s−1 for the coincident particles is adopted.
Figure 5(a) presents the case in which the orbital shapes
of the three stars are all circular, as described in the
previous sections. Compared to this, in the model with
an eccentric orbit for the inner companion (eA−C > 0,
Figure 5(b))1, the individual patterns are similar in lo-
cation but become very widened, in particular toward
the apocenter of the mass-losing star (ϕ ∼ 0, which we
have defined to be in the −x direction).
In the model with an eccentric orbit for the outer com-

panion (eAC−B > 0, Figure 5(c))2, a one-sided dearth of
matter in the inter-ridge regions is clearly seen toward
the pericenter of the mass-losing star (ϕ = π, or in the
+x direction), just like in a typical eccentric binary sys-
tem (Kim et al. 2015, 2019). The fine spirals accordingly
congregate near the main spiral at the position angle
corresponding to the pericenter of the mass-losing star,
making a bowtie shape in the r–ϕ map. The knot of the
bowtie occurs at values of ϕ corresponding to the peri-
center of the mass-losing star, and the knot is tighter for
larger orbital eccentricities of the outer companion. In
this model, the broadening of the fine spiral pattern is
nearly independent of the position angle.

1 In reality, the extremely eccentric (e = 0.8) inner companion that
we adopted would be susceptible to Roche-lobe overflow, as the
distance to the L1 Lagrangian point, ∼ 3 au, could be similar
to, or smaller than, the radius of an AGB star. However, our
simulations do not take this effect into account, which treated
the mass-losing star as being volumeless.

2 According to Equation (1) of Tokovinin (2021), a highly eccentric
orbit of the outer companion would be unstable. We choose an
unrealistically large eccentricity for the outer orbit for the pur-
pose of maximizing the visual appearance of the pattern changes
caused by orbital eccentricity.

Figure 5(d) shows eccentric orbits for both inner and
outer companions, in which the fine spirals are threaded
within the bowtie (as in Figure 5(c)), and the individual
fine spirals are widened around ϕ ∼ 0 (as in Figure 5(b)).

3.5. Mass of the Inner Companion

The effect of the mass ratio MA/MC at a given MA +
MC is also explored. We compared our fiducial model for
the inner companion as a low-mass star (MC = 0.1M⊙,
Figure 5(a)) with the model for a slightly more massive
star companion (MC = 0.3M⊙, Figure 6(a)) and the
model for a planetary-mass companion (MC = 0.01M⊙,
Figure 6(b)). In the pinwheel model at a constant wind
velocity of 13 km s−1, the fixed MA + MC guarantees
the same slope of the main spiral pattern. The mass
MA is 1.0, 0.8, and 1.09M⊙, respectively, in Figure 5(a),
Figure 6(a), and Figure 6(b).
From the comparison of the three cases for the mass

of the inner companion, we find that the peak density of
the pattern does not differ much, but the density in the
inter-ridge regions is significantly reduced as the mass
of the inner companion is increased, thereby increas-
ing the density contrast of the pattern. The fine pat-
tern formed due to the presence of a more massive inner
companion is somewhat broader in width, which yields a
countereffect in the density contrast because the column
density in the finer spiral features becomes more spread
out. The latter effect, governed by the velocity disper-
sion of the pattern, is, however, largely limited by the
local speed of sound, which would decrease with increas-
ing distance from the star. Because the speed of sound
in the outer circumstellar envelope is likely to be lower
than the single value used in the current simple calcu-
lations, the latter (widening) effect would be reduced
in the outer circumstellar envelope, thereby preserving
the high-density contrast. Therefore, the additional pat-
tern established by a relatively massive inner companion
tends to have a higher-density contrast, on top of the
predominant binary-induced pattern.

3.6. Circular Ring Approximation

The fine spirals are formed from the introduction of
the inner companion (object C) into the binary system
composed of the mass-losing star (object A) and the
outer companion (object B). The actual cause of these
spirals is the wiggling of the orbital trajectory of the
mass-losing star (the red curve in Figure 1(b)) and the
consequent variation of its orbital velocity. The wiggling
of the orbit around the center of mass of the objects A
and C is related to their orbital period, TA−C.
In Figure 7(a), the circular rings illustrated in red

very well approximate the fine spirals. These circular
rings (or the components of the fine spiral) that has
the time interval corresponding to the inner orbital pe-
riod of TA−C ∼ 85 yr converge on and form the main
spiral pattern, which has a time interval corresponding
to the outer orbital period of TAC−B ∼ 690 yr. There-
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fore, the seemingly position-angle-dependent change in
pattern interval is an illusion caused by the offsets of
the centers of curvature. Also, note that the centers
of the rings follow a spiral that can be expressed by
Equation (3) but for TA−C instead of TAC−B (see Fig-
ure 7(b)). The radii of the rings increase by a constant
value of 260 au during each of the inner orbits.
On the other hand, as shown in Figures 5(c) and (d),

in the models with the outer companion moving along
a highly eccentric orbit, the fine spirals can be approx-
imated by rings centered along the x-axis, which is the
line connecting the pericenter and apocenter of the or-
bit.

4. SUMMARY AND DISCUSSION

Three-body systems are being recognized as impor-
tant for explaining complex circumstellar structures and
as a possible driver for the observed morphologies of a
subset of objects undergoing the transition between the
late stellar evolutionary phases from AGB to PN. In
this paper, we have investigated the hydrodynamic and
kinematic influences on the morphology of the expand-
ing circumstellar envelope of a mass-losing star when it
is being orbited not only by a relatively distant com-
panion, but also by a third star that is closely orbiting
the mass-losing star. We propose a triple system for
the AGB star, CW Leo, which accounts for its complex
circumstellar shell pattern, such as the off-centering of
the ring-like pattern and the abrupt radial change in the
interval of this pattern.
We have first demonstrated the circumstellar pattern

induced by a triple system by performing a hydrody-
namic simulation in which the outflowing gas ejected by
the AGB star is affected only by its initial velocity and
the mass of the AGB star. We then compared the re-
sulting density and velocity fields of the gas to the full
three-body hydrodynamic simulation in which the gas
response to the mass of all three bodies was computed,
revealing incidental substructures originating from the
gravitational wakes of companions.
The hydrodynamical effects are elucidated through

comparison with the pinwheel model, which is nonhy-
drodynamic as simply following particles ejected isotrop-
ically from the mass-losing star having a predefined or-
bital motion. The pinwheel model mimics the circum-
stellar spiral pattern of the hydrodynamic model, ex-
actly coinciding in location. However, it does not re-
produce the density and width of the pattern, thereby
highlighting the hydrodynamical effect upon the fluid as
it encounters the shocks at the inner and outer edges of
the dense ridge of the spiral pattern.
As a result, the density and density contrast of the

fine spiral pattern (newly revealed to occur in a triple
system) quickly decrease as the radius increases, while
those along the main spiral pattern decline more slowly,
just as in a two-body system. Therefore, the fine pat-
tern may be observable only in the inner portions of the

circumstellar envelope, making the observed image ap-
pear to have undergone an abrupt change in the pattern
interval, as has been claimed for CW Leo (e.g., Guélin
et al. 2018).
Furthermore, the fine spiral pattern can be very well

represented by off-centered circular rings having a reg-
ular radius increment. The center positions of the rings
are located along a spiral, with the slope of that spiral in
polar coordinates being related to the orbital period of
the inner binary. The approximating off-centered rings
coincide tangentially and therefore stack up along the
ridge of the main spiral.
The detailed structure of the expansion velocity of the

outflowing envelope is closely tied to the shape of the
main spiral; after crossing the main spiral outward, the
velocity quickly drops and slowly recovers its maximum
value before reaching the next winding of the main spi-
ral. Superimposed on that large-scale velocity pattern,
the velocity jumps at the locations of the fine spiral pat-
tern are much smaller. If the propagation speed of the
matter is measurable, the detailed variations in the ex-
pansion velocity could contribute to the discrimination
between the main and fine spirals in a triple system.
The dependence of the pattern on orbital eccentrici-

ties and inner companion mass has also been explored.
A larger orbital eccentricity of the outer companion cre-
ates a density pattern that tightens a “bowtie” with the
“knot” at the position angle toward the pericenter of the
mass-losing star. And the density outside the bowtie
significantly drops, causing a one-sided gap in the inter-
pattern density. A larger orbital eccentricity of the inner
companion broadens the width of the fine spiral, in par-
ticular at angles corresponding to the apocenter of the
mass-losing star. Finally, a more massive inner com-
panion reduces the density in the regions between the
ridges of both the main and fine spiral patterns, thereby
raising the density contrast of the pattern.
According to the results of our model calculations,

CW Leo’s abrupt radial change in the interval of the
pattern and the off-centering of the pattern with inter-
twining ridges may hint at its nature as a triple sys-
tem. As CW Leo has been getting brighter for already
two decades, possibly indicating its evolutionary phase
at the critical AGB–pPN transition moment (Kim et al.
2021), continuous monitoring of it would be beneficial to
understanding the roles of the companions, in particular
of the inner companion, in the morphological transfor-
mation.
In the case of another example, the AGB star π1 Gru,

recent ALMA observations reveal an HCN spiral hav-
ing an expansion time interval between successive turns
of ∼ 10 yr, which is consistent with the orbital period
of a potential companion located at the secondary con-
tinuum peak, assuming that it has about one solar mass
(Homan et al. 2020); the implied companion differs from
the known G0V-type companion located 10 times fur-
ther from the mass-losing star (Feast 1953; Ake & John-
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son 1992), plausibly suggesting a triple system with an
orbital period ratio of > 500. However, the CO spiral
found by Homan et al. (2020) has an interval of ∼ 80 yr,
which is inconsistent with either of the above orbital
timescales. It remains unclear whether this implies a
fourth object in this system, or whether this is a triple
system having a large eccentricity and/or noncoplanar
orbits.
Only the midplane structures are examined in this pa-

per. The three-dimensional structure of the pattern in-
duced by a triple stellar system and the position-velocity
diagnostics for interpretation of spectro-imaging obser-
vations are deferred to a future study. In this paper, the
orbits of three stellar objects are assumed to be copla-
nar for simplicity. It would be interesting to study the
complexity of the spiral-shell patterns by relaxing this
orbital configuration. Dynamical stability consideration
for the orbits will also need to be pursued in the fu-
ture, especially for the eccentric orbit cases, since only
a subset of triple systems will be stable on timescales
long enough to produce a mass-losing AGB star. In a
different subset of triple systems, the radius of the AGB

star will ultimately swell to a size comparable to the
radius of the inner orbit, creating a common-envelope
binary, thereby leaving the original triple system in a
well-separated binary configuration.
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Figure 1. Orbits of three objects in a triple system used for the calculations displayed in Figures 2 and 3. All three stars

are initially aligned along the x-axis in the order of A–C–B from left to right, starting from their apocenters in eccentric orbit

cases. (a) Orbits of objects A, B, and C with individual masses of MA, MB, and MC in the corotating XY frame in which the

locations of object B and the center of mass of the A–C binary system are fixed. The center of mass of the triple system is

located at the origin. The term aAC denotes the (average) distance of the center of mass of the A–C binary system from the

center of mass of the whole system, while aB indicates that of object B. Dashed curves schematically indicate the directions of

the motions of the center of mass of the A–C binary system (red) and of object B (blue) in the observer’s frame. The notations

aA and aC demonstrate the (average) distances of objects A and C, respectively, with respect to the center of mass of the A–C

binary system. Red and green circles present the orbits of A and C in this rest frame. Red and green solid straight lines display

the velocity vectors of objects A and C at their initial positions, and are scaled to each other. (b) Orbits of objects A (red), B

(blue), and C (green) in the frame of nonrotating observers located on the +z-axis.
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Figure 2. (a) Hydrodynamic simulation for the circumstellar matter distribution governed by orbital motions of three objects

(with orbital parameters of MA = 1.0M⊙, MB = 1.0M⊙, MC = 0.1M⊙, aAC + aB = 100 au, aA + aC = 20 au, eAC−B = 0, and

eA−C = 0). The density in the orbital plane is displayed in a logarithmic scale in units of g cm−3. The black solid line represents

an Archimedean spiral with a pattern speed of 12.5 km s−1. The angle ϕ is measured from the −x-axis in the clockwise direction.

(b) Same as (a), but with the gravitational density wakes of objects B and C excluded by turning off their gravitational effects

on circumstellar gas by setting the shutoff parameter, W, to 0. The black solid line corresponds to an Archimedean spiral with

a pattern speed of 13 km s−1. (c) A pinwheel model with a constant wind velocity of Vexp = 13 km s−1, adopted to match the

major spiral pattern with that in panel (b), and (d) the corresponding piston model with sticky particles. The color bar in (c)

and (d) panels shows the number counts of particles within each grid cell, which is a function of the total number of particles

present in the computational domain after the computation has reached a steady state.



Pinwheel in a triple system 13

Figure 3. Same as Figure 2, but illustrating the expansion velocity of the fluid in the orbital plane.
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Figure 4. Comparison between hydrodynamic and sticky particle models in density and velocity profiles. The density profiles

along the azimuthal angle ϕ = π/4, passing (x, y) = (−1, 1), in Figures 2(b) and (d) are drawn in black and red curves,

respectively, in the top panel. The corresponding velocity profiles from Figures 3(b) and (d) are plotted in the bottom panel.

Red-dotted vertical lines mark the peak positions of the sticky particle model. Shaded regions, along with the horizontal two-

headed arrows, identify the characteristic spiral ridges (see Figure 6 of Kim et al. 2019, and the relevant text therein).
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Figure 5. Midplane density in pinwheel models of a three-body system in which the mass-losing star is object A. The stickiness

of particles is adjusted to provide a speed of sound of 0.5 km s−1. The employed parameters are Vexp = 13 km s−1, MA = 1.0M⊙,

MB = 1.0M⊙, MC = 0.1M⊙, aAC + aB = 100 au, and aA + aC = 20 au. The orbital eccentricity of object B (eAC−B) is 0 in the

upper two models ((a) and (b)) and 0.8 in the bottom two models ((c) and (d)). The orbital eccentricity of objects A and C

(eA−C) with respect to their center of mass is 0 in (a) and (c) but 0.8 in (b) and (d).
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Figure 6. Same as in Figure 5(a), but for (a) MA = 0.8M⊙ and MC = 0.3M⊙, while in (b) MA = 1.09M⊙ and MC = 0.01M⊙.

Notice that MA +MC is equivalent to the value for the models in Figure 5; therefore, the orbital motions of object B and of the

center of mass of objects A and C remain the same as in Figure 5(a).

Figure 7. (a) Ring approximation for the locations of the fine spirals (red), overlaid upon Figure 2(d), the sticky particle

model, in grayscale. (b) The positions of the centers of the rings illustrated in panel (a) with respect to the systemic center of

mass. The increment of ring radius in each of the inner orbits is 0.26 kilo-au.
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