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A key challenge in molecular biology is to decipher the mapping of protein sequence to function.
To perform this mapping requires the identification of sequence features most informative about
function. Here, we quantify the amount of information (in bits) that T-cell receptor (TCR) se-
quence features provide about antigen specificity. We identify informative features by their degree
of conservation among antigen-specific receptors relative to null expectations. We find that TCR
specificity synergistically depends on the hypervariable regions of both receptor chains, with a degree
of synergy that strongly depends on the ligand. Using a coincidence-based approach to measuring
information enables us to directly bound the accuracy with which TCR specificity can be predicted
from partial matches to reference sequences. We anticipate that our statistical framework will be
of use for developing machine learning models for TCR specificity prediction and for optimizing
TCRs for cell therapies. The proposed coincidence-based information measures might find further
applications in bounding the performance of pairwise classifiers in other fields.

Mapping the amino acid sequence of a particular T-cell
receptor (TCR) to its antigen specificity is a holy grail of
systems immunology [1–3]. The T-cell receptor endows
T-cells with the ability recognize snippets of pathogenic
material presented on the surface of antigen presenting
cells by major histocompatibility complexes (MHC) [4].
TCRs are specific, meaning a given T-cell will only ac-
tivate in response to a select range of antigen stimuli.
Coverage of the vast antigen space explored by evolv-
ing pathogens is enabled by immense sequence variation
within the TCR [5, 6], in particular within six hypervari-
able loops of the heterodimeric receptor, named comple-
mentary determining regions (CDRs).

The immense diversity of TCRs implies that many
have no experimentally determined ligands [7]. Emerg-
ing computational approaches predict the specificity of
such orphan TCRs by their sequence similarity to anno-
tated TCRs [1, 3, 8, 9]. However, which level of partial
matching is sufficient for reliable prediction has remained
unclear. Moreover, there is substantial interest in under-
standing for which immunological questions knowledge of
paired receptor chains obtainable by single-cell sequenc-
ing is worth the trade-off with the higher throughput
achievable by bulk sequencing [10], and which TCR fea-
tures are most informative for machine learning applica-
tions [3, 11].

Here, we address these important open questions by
putting universal limits on the accuracy with which TCR
specificity can be predicted from partial information.
Our work takes inspiration from a long history of suc-
cessful applications of information theory to the study of
complex biological input-output relationships from neu-
ral coding [12–14] and transcriptional regulation [15, 16]
to pattern formation during embryo development [17–
19]. Following recent applications of information the-
ory to TCR repertoires by us [20] and others [21], our
analysis builds on a fundamental insight from evolution-

ary biology: patterns of sequence conservation in protein
families provide clues about functionally relevant proper-
ties. In the immunological context, this means that TCR
features that are important for specific recognition of a
particular epitope will be most highly conserved among
epitope-specific TCRs relative to their global diversity
(Fig. 1).

In our current work, we provide the first comprehensive
map of how much information each section of the paired
chain TCR sequence provides about its specificity. To
provide such a map, we make use of two recent datasets
that have sequenced TCRs specific to a dozen viral MHC
class I epitopes [1, 22]. We overcame statistical limita-
tions of prior analyses of pairs of residues [20, 21, 23]
using coincidence-based measures of repertoire diversity
[24]. These measures can be estimated from smaller sam-
ples than traditional measures based on Shannon entropy
[25–27]. The information-theoretic approach naturally
allowed us to identify synergies between different TCR
sections in determining antigen specificity. Importantly,
our quantification of coincidence information is under-
pinned by theory that directly links achievable classifica-
tion accuracy to the coincidence information gained from
a partial match and prior beliefs about the prevalence of
epitope-specific T cells in a repertoire.

I. AN INFORMATION-THEORETIC
APPROACH TO T CELL SPECIFICITY

A. Coincidence analysis for features

We have recently introduced a coincidence-based sta-
tistical framework to measure antigen-driven selection in
TCR repertoires [24]. The main idea of this work was to
quantify clonal convergence by counting how often pairs
of independently recombined clonal lineages in a sample
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FIG. 1. Overview of analysis methodology. a) Sketch of T-cell receptor structure highlighting the V, CDR3 and J regions
and their interaction with MHC-bound peptides. The TCR is composed of two chains, most commonly α and β chains. Each
chain in turn is comprised of a V (variable), J (joining) and C (constant) gene, with the addition of a D (diversity) gene in the
β chain. Within each chain, the CDR1 and CDR2 amino acid loops are coded for by the V gene while the CDR3 regions are
at the V(D)J intersection, which is additionally diversified through the random insertion and deletion of nucleotides at gene
template junctions. b) An abstracted view of TCR sequence space. The set B includes all possible TCRs. The subsets Si

represent TCRs specific to particular ligands. c) Sequencing TCR from either the whole repertoire or epitope-specific subsets
gives us samples from their respective distributions. d) The number of pairs which match in a particular feature may then
be recorded to compute a probability of coincidence. The logarithm of the probability of coincidence gives a measure of the
entropy of the feature. Our information theoretic approach quantifies the change in entropy between background TCRs and
sets of specific TCRs of different features (top to bottom). Features which experience a large reduction in entropy (bottom)
are the most informative for predicting the epitope specificity of a sequence.

have TCRs that are more similar to each other than some
threshold level. Here, we pursue a conceptually related
but novel approach that considers near-coincidences as
coincidences on the level of coarse-grained TCR features.
A feature may be a gene segment choice at a given lo-
cus, an amino acid at a particular residue, or a physical
property of a hypervariable loop such as its charge or
length. Features may also contain other features such as
the α chain containing the Vα, Jα, and the CDR3α as
component features.

Mathematically, a feature is a random variable that

maps the sample space of all TCR sequences to a discrete
set of possible categories. We denote the distribution of
feature values for randomly drawn TCRs from a reper-
toire by P (X). The probability that two independent
draws return the same outcome, i.e. the probability of
coincidence of X, is then defined by

pC [P (X)] =
∑
x

P (x)2, (1)

where P (x) represents P (X = x) and the sum runs over
all possible outcomes of X. We recall that in ecology
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pC [P (X)] is referred to as the Simpson’s diversity index
of X with D(X) = 1/pC [P (X)] being an effective number
of distinct species in a population [28]. Intuitively, we ex-
pect the most informative features to be those whose di-
versity is most reduced among TCRs specific to the same
epitope when compared with background TCRs. In the
following we will make this intuition mathematically pre-
cise using a coincidence-based formulation of information
theory.

B. Coincidence entropy

A central quantity in information theory is entropy.
The entropy of a probability distribution P (X) is given
in its form proposed by Shannon in 1948 as [29]

H[P (X)] =
∑
x

P (x) logP (x). (2)

Entropy represents the average amount of information
lacking about the outcome of a measurement of random
variable X. It is usually calculated with the logarithm
taken to base 2 such that its units are in bits and all
logarithms in this following should be understood as log-
arithms taken with respect to this base. In 1961, Renyi
showed that by relaxing one of the Shannon-Khinchin
axioms from which the mathematical form of entropy is
uniquely derived (strong additivity), a more general ex-
pression for entropy may be obtained [30, 31]

Hα[P (X)] =
1

1− α
log

(∑
x

P (x)α

)
, (3)

where α is referred to as the order of the Renyi entropy.
The family of Renyi entropies include Shannon’s entropy
measure as the limit of α → 1.

We may note that the probability of coincidence intro-
duced in the previous subsection provides a measure for
the Renyi entropy of order α = 2

H2[P (X)] = − log pC [P (X)]. (4)

The Renyi entropy of order 2 is known as collision en-
tropy in cryptography and may also be motivated from
an optimal code length perspective with non-linearly
weighted length penalties [32]. Here we use the term
coincidence entropy to stress its relation to coincidence-
counting among sample pairs.

C. Coincidence mutual information

We have previously used the coincidence ratio
pC [P (X|Π)]/pC [P (X)] between specific and and back-
ground TCRs as a measure of antigen-driven selection
[24], where pC [P (X|Π)] is the probability of coincidence
among epitope-specific TCRs averaged over a collection

of epitopes, Π, and pC [P (X)] the probability of coinci-
dence among background TCRs. Different definitions of
conditional Renyi entropy for α ̸= 1 have been proposed.
Here we follow [33, 34] and define

H2[P (X|Y )] = − log pC [P (X|Y )], (5)

where pC [P (X|Y )] is an average of pC [P (X|y)] over all
outcomes of Y

pC [P (X|Y )] =
∑
y

ρ2(y)pC [P (X|y)], (6)

with weighting factors

ρ2(y) =
P (y)2∑
y P (y)2

. (7)

Detailed justification for these definitions is provided in
Appendix A. This definition allows us to express the coin-
cidence probability ratio in terms of coincidence entropies

log

(
pC [P (X|Π)]

pC [P (X)]

)
= H2[P (X)]−H2[P (X|Π)]. (8)

We note that for Shannon entropy this difference defines
the mutual information between X and Π [29], which
motivates the following definition of coincidence mutual
information

I2(X,Π) = log

(
pC [P (X|Π)]

pC [P (X)]

)
. (9)

Importantly, our definition of conditional entropy
maintains additivity H2[P (X,Y )] = H2[P (X)] +
H2[P (Y |X)], where P (X,Y ) is the joint distribution of
the random variables X and Y . As a correlate it fol-
lows that coincidence mutual information is symmetric,
I2(X,Y ) = I2(Y,X) – as is its Shannon counterpart – so
it tells us not only how much information we gain about
sequence features upon learning their epitope specificity,
but also, by symmetry, how much information a sequence
feature provides about its epitope specificity. Coinci-
dence mutual information thus provides a natural way
to score the importance of a TCR feature in determining
specificity, which we will refer to as the feature relevancy.

D. Describing the interactions between features
with redundancy and synergy

The connection between coincidence analysis and in-
formation theory naturally allows us to apply additional
notions from information theory [35, 36] to describe how
multiple features work in tandem to provide antigen
specificity. First, conditional mutual information

I2(X,Π|Y ) = H2[P (X|Y )]−H2[P (X|Π, Y )], (10)

describes the remaining information provided by feature
X given that the value of a second feature Y is already
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known. Here, H2[P (X|Π, Y )] indicates conditioning on
both epitope specificity and feature Y . If I2(X,Π|Y ) = 0
then we refer to X as a fully redundant feature in the
context of Y . As a trivial example, knowledge of the
complete primary sequence of the full α chain makes any
information provided by CDR3α redundant, and so on.

Second, interaction information

I2,int(X,Y |Π) = I2 ([X,Y ],Π)−I2(X,Π)−I2(Y,Π) (11)

describes how much additional information both features
provide in conjunction (Appendix B). Here, I2 ([X,Y ],Π)
is the relevancy of the feature produced by combining the
two features X and Y . If I2,int(X,Y |Π) > 0 then there
is synergy between the two features.

II. BOUNDING CLASSIFICATION ACCURACY
OF PARTIAL TCR MATCHES

A. Pairwise classification odds

There are well-known connections between information
measures and achievable classification errors both in the
Shannon [37] and Renyi case [38, 39]. In the following we
derive how TCR classification accuracy using partial fea-
ture matches with a reference sequence is bounded when
only partial information is available. We consider a clas-
sification setting, where the task is to identify spiked-in
TCR sequences specific to a particular epitope π in an
otherwise naive repertoire. We will derive how poste-
rior classification odds depend on feature relevancy and
prior beliefs, i.e. the fraction of spiked-in sequences P (π).
Mathematically, in this setting the presence of a TCR se-
quence σ is due to either of two generative processes:

P (σ) = P (π)P (σ|π) + P (B)P (σ|B), (12)

where P (B) = (1 − P (π)), and where P (σ|π) describes
the distribution of TCR sequences specific to epitope
π and P (σ|B) the distribution of background TCR se-
quences according to V(D)J recombination.

To recapitulate the empirical procedure of matching
TCR sequences to a database of known binders, we con-
sider the following one-shot classification strategy: We
classify a query sequence as having been generated from
P (σ|π), if it matches in a feature X with a reference se-
quence randomly drawn from P (σ|π). Using the odds
formulation of Bayes’ theorem, we may express the pos-
terior odds of correct classification as

P (π|x = x′)
P (B|x = x′)

=
P (x = x′|π)
P (x = x′|B)

P (π)

P (B)
. (13)

Here, P (x = x′|π) = pC [P (X|π)] is the probability of a
match in feature X if both sequences were truly drawn
from distribution P (σ|π), while P (x = x′|B) is the prob-
ability of a match in feature X for a query drawn from
P (σ|B) and a reference drawn from P (σ|π). Under the

assumption that the propensity of a TCR for specific
binding is independent of its recombination probability
[24], one can show that P (x = x′|B) = pC [P (X)] (Ap-
pendix C 1). Therefore

P (π|x = x′)
P (B|x = x′)

=
pC [P (X|π)]
pC [P (X)]

P (π)

P (B)
(14)

This expression can be generalized for mixtures of multi-
ple epitope groups, in which case the average odds over
epitopes (Appendix C 2) can be expressed as〈

P (π|x = x′)
P (B|x = x′)

〉
=

pC [P (X|Π)]

pC [P (X)]

〈
P (π)

P (B)

〉
, (15)

where pC [P (X|Π)] is the conditional probability of coin-
cidence defined previously and the averages for the odds
are taken over P (π)/(1 − P (B)). By the definition of
coincidence mutual information (Eq. 9) we can rewrite
the last equation as

Opost = 2I2(X,Π) Oprior, (16)

which links the average posterior odds Opost to aver-
age prior odds Oprior via coincidence mutual information.
Each bit of coincidence mutual information between X
and Π corresponds to a two-fold gain in posterior odds.

B. When is partial information sufficient?

Eq. 16 captures an important Bayesian intuition about
classification: Correct classification depends not only on
how much information we have available, but also on our
prior belief. Here, our prior belief about the likelihood
that any particular sequence is specific should reflect the
total fraction of spiked-in sequences. If we are searching
for a needle in a haystack, this is when Oprior is small, we
need to use more highly informative features for correct
classification. Mathematically, a minimal prior odds of
2−I2(X,Π) T is needed to ensure that the average posterior
odds exceeds a threshold value T .

Expressed in terms of prior probabilities

Pprior(I2) ≥
T 2−I2

1 + T 2−I2
, (17)

is needed if only I2 bits are available for classification.
To illustrate this result, we performed in-silico simula-
tions with a toy model of TCR specificity (Appendix C 4).
These simulations showed close agreement between pre-
dicted values for Pprior(I2) and those obtained through
numerical simulation (Fig. S1).

Note that sequences drawn from P (σ|B) may also be
specific to π. Therefore, P (π) and P (π|x = x′) are not
exactly equal to the fraction of sequences specific to π and
the posterior probability of specificity, respectively. How-
ever, as shown in Appendix C 3 in most cases of practical
interest, where P (π) exceeds the background frequency
of sequences specific to a given epitope, this distinction
is irrelevant.
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FIG. 2. Coincidence mutual information between TCR sections and antigen specificity. Relevancy scores of
various sections of the T-cell receptor sequence. The off-diagonal values indicate the amount of coincidence information that
combinations of features provide. The top right hand grid shows the relevancy of combination of features where one is from
the α chain and the other the β chain. Interaction information and conditional mutual information between features can be
computed by taking the difference between the off-diagonals and the sum of the corresponding diagonal values. In particular,
positive interaction information is observed between the α and β chains and the CDR3 and V regions indicating synergy
between these features while negative interaction information is seen between the CDR3 and J regions indicating redundancy.

III. APPLICATION OF THE METHODOLOGY
TO TCR SEQUENCE DATA

We applied our framework to a curated set of multimer-
sorted TCRs from CD8+ T cells with specificity to viral
antigens (described in detail in Appendix E). We com-
bined TCRs specific to nine SARS-CoV-2 epitopes from
Minervina et al. [22] with TCRs specific to three epitopes
from other viruses epitopes from Dash et al. [1] (Table
I). To obtain a background TCR dataset we randomly
paired TCRα and TCRβ sequences generated by a com-
putational model of VDJ recombination [40].

A. A decomposition of TCR specificity into its
component parts

To provide a top-down decomposition of the informa-
tion content of the TCR, we computed the relevancy of
different sections of the TCR for its specificity, as well as
their combinations (Fig. 2). We first analyzed the infor-
mation provided by the α and β chains alone, which re-

capitulated the expected greater relevancy of the β chain
(19 bits) than the α chain (12 bits). By Eq. 17 the in-
formation provided by each chain bounds prior probabil-
ities needed for accurate classification using single chain
matches. A β chain match requires a prior probabil-
ity Pprior ≥ 3 · 10−5 for a 95% posterior confidence. In
contrast, an α chain match allows reliable classification
only for prior probabilities Pprior ≥ 3 · 10−3. We then
broke down the two chains further into their component
V and J gene segments and CDR3 amino acid sequence.
A CDR3β match provides 16 bits of information (cor-
responding to Pprior ≥ 4 · 10−4) while a CDR3α match
provides only 10 bits of information (corresponding to
Pprior ≥ 1 · 10−2).

To assess variations in feature relevancy across epi-
topes, we defined local relevancy as the information gain
for a specific epitope π,

i2(X,π) = log

(
pC [P (X|π)]
pC [P (X)]

)
. (18)

Local relevancy scores revealed a broadly consistent hier-
archy of feature relevancy across epitopes (Figs. S2 - S6).
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FIG. 3. Coincidence mutual information between
physical properties of the TCR sequence and anti-
gen specificity. Relevancy scores of CDR3 length, CDR3
net charge and glycine content computed for the α and β
chains taken independently and combined. Although each
feature has modest relevancy when considered independently,
these features all display substantial synergy demonstrating
how physical complementarity underlies overall chain pairing
constraints.

The analysis also identified variability in local relevancy
of features between different epitopes not explained by
finite sampling deviations alone in line with our prior
findings on a subset of the studied epitopes [27]. We will
analyze this variability in more detail in section IIID.

B. CDR3 length, net charge and glycine content as
features

In addition to analysing features such as the CDR3, V
and J regions, we wished to show that our definition of a
feature may extend to physical properties of the TCR. To
illustrate this, we computed the coincidence mutual infor-
mation for the length of the CDR3 loop, its net charge
and its glycine content (Fig. 3 and Figs. S7 - S9), all
features that had been described in the literature as be-

[CDR3α,Vα] [CDR3β,Vβ] [Lα, Lβ] [CDR3α, CDR3β] [α, β]

[X, Y]
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FIG. 4. Synergistic TCR sequence features. Interac-
tion information scores for combinations of features computed
from Figures 2 and 3. Positive interaction information indi-
cates that two features become more informative in the con-
text of one another and hence have synergy.

ing important for epitope specifcity [1, 41]. Our results
confirm that each of these summary physical properties
of the CDR3 has some relevancy in determining TCR
specificity. For instance, CDR3β net charge is roughly as
informative as Jβ choice. However, no individual CDR3
property captures a substantial proportion of CDR3 in-
formation demonstrating the contribution of higher order
sequence features to specific binding.

C. Synergy and redundancy between TCR features

Comparing relevancy scores for individual and com-
bined features revealed the pervasiveness of interac-
tions between TCR sections (Fig. 2) and CDR3 features
(Fig. 3), where their combined information differed from
the sum of their individual relevancies. Fig. 4 summarizes
the interaction information between important TCR fea-
tures.

Our analysis identified substantial synergy between the
α and β chains (4 bits). This synergy implies that there
are pairing restriction between α and β chains in specific
TCRs, which make each chain more informative when
considered in its full paired chain sequence context (Ap-
pendix B). These results broaden our prior findings to a
broader set of epitopes [24], and add to a growing litera-
ture investigating TCR α-β pairing rules [20, 24, 41–44].
Pairing restrictions imply that the diversity of TCRs re-
sponding to a given epitope is lower than the product of
the diversities of responsive α and β chains.

We also analysed the interaction information between
the CDR3 of each chain and the corresponding V seg-
ment choice. We again identified substantial synergy,
presumably reflecting spatial constraints between V-gene
encoded framework and CDR1/2 variability and CDR3
choice. In contrast, the interaction information between
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the CDR3 and J gene is negative (Figure 2). This is ex-
pected as the sequence variability provided by the J gene
is contained in the CDR3 region [45], but demonstrates
how our framework can identify redundant features with-
out such a prior knowledge. We furthermore discovered
substantial synergy between the lengths of CDR3α and
CDR3β regions. Similarly, glycine-content – which is
thought to be involved in CDR3 loop flexibility [41] –
also showed synergy across chains. Collectively, these
findings identify some of the key physical constraints that
underlie the observed global α-β pairing restrictions.

D. Variability in interaction information across
epitopes is explained by mixture models

To better understand potential sources of variabil-
ity of TCR sequence restriction across epitopes we
defined additional measures of local sequence varia-
tion: Local conditional mutual information i2(X,π|Y ) =
H2[P (X|Y )]−H2[P (X|π, Y )] and local interaction infor-
mation i2,int(X,Y |π) = i2 ([X,Y ], π)−i2(X,π)−i2(Y, π).
We then analysed dependencies across four variables
(Fig. 5): Interaction information i2,int(α, β|π), α-chain
relevancy i2(α, π), β-chain relevancy i2(β, π) and paired
chain relevancy i2 ([α, β], π). These analyses highlighted
strong dependencies between the variables. The more in-
formative an α chain or β chain is for a given epitope,
the less α-β interaction information contributes to global
diversity restriction (Fig. 5a,b). Moreover, epitopes with
more informative α chains also have more informative β
chains (Fig. 5c) and more informative full TCR sequences
(Fig. 5d).

Unexpectedly, all variables were highly correlated with
each other and well-fitted by linear regressions, suggest-
ing the existence of a single underlying degree of free-
dom that drives the observed variability across epitopes.
Based on the clustering of epitope-specific TCRs we had
previously proposed mixture of motif models [24], in
which epitope-specific TCRs are composed of a number
of distinct binding solutions (binding modes or motifs).
We asked whether variability in the number of such mo-
tifs across epitopes might provide the common degree of
freedom explaining the observed correlations. Deriving
the expected theoretical relationships between variables
(Appendix D 1), we found an increased local interaction
information for epitopes with more binding modes and a
decrease in individual feature relevance. Across all vari-
able pairs studied in Fig. 5 the mixture model predicted
linear relations with slopes of ±1, in good agreement with
the best fit lines to the empirical data. Intuitively, if an
epitope has multiple binding solutions, more α and β
chains will be able to bind it, given the right comple-
mentary chain (thus lowering the information from each
individual chain). At the same time, where many solu-
tions exist a high degree of α-β pairing is expected as
most α chains from one binding solution would not be
valid with β-chains from another solution (thus increas-

ing the observed synergy between the two chains).
Given the low prevalence of epitope-specific TCRs in a

repertoire, we expect the dataset to be a mixture contain-
ing some false positive TCRs with no or low affinity to
the epitope of interest even if sorting is highly specific. As
we show in Appendix D 2 variations in the proportion of
false positives across epitopes provide an alternative ex-
planation of the observed dependencies among variables,
with high interaction information for epitopes with many
false positives. Both models share the common underly-
ing insight that epitope-specific repertoires are mixtures
rather than draws from a unimodal distribution – future
research might elucidate the contributions of the different
underlying mechanisms to the observed variability.

IV. DISTANCE METRICS AND
NEAR-COINCIDENCE ENTROPY

A. Generalization of coincidence mutual
information to fuzzy matches

As exact matches are rare for complex features, it
is of interest to also quantify the information provided
by fuzzy feature matches.- As previously explored in
Ref. [24], we are not limited to computing the probability
of exact coincidences between features but can also con-
sider near-coincidences according to some distance met-
ric. Given a feature X distributed according to P (X)
and a distance metric d(x, x′) between outcomes x and
x′, the probability that two draws from P (X) are at dis-
tance d(x, x′) = ∆ can be defined as

pC [P (X)](∆) =
∑
x,x′

P (x)P (x′)δd(x,x′),∆, (19)

where δd(x,x′),∆ is the Kronecker delta. We use
this measure to propose a near-coincidence entropy
H2[P (X)](∆) = − log pC [P (X)](∆), and a near-
coincidence conditional entropy H2[P (X|Y )](∆) =
− log pC [P (X|Y )](∆), where pC [P (X|Y )](∆) once again
is an average of pC [P (X|y)](∆) over outcomes of Y using
the ρ2(y) weighting factor. We define a near-coincidence
mutual information

I2 (∆X,X′ , Y ) = H2[P (X)](∆)−H2[P (X|Y )](∆), (20)

where ∆X,X′ denotes that this information is computed
for near-coincidences in feature X at distance ∆. As
this measure deals with pairs of instances of a random
variable rather than single instances, this quantity cannot
be defined straightforwardly for Shannon entropy but is
motivated naturally when using coincidence entropies.

B. Pairwise classification using fuzzy matches

To obtain an interpretation of near-coincidence en-
tropy, we turn once again to pairwise classification. We
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FIG. 5. Correlation between α-β interaction information and per-chain information across epitopes. Local
interaction information and single chain information across epitopes. Weighted linear fits (solid lines) obtained using orthogonal
distance regression were used to quantify the dependence between variables, with regression slopes a displayed above each panel.
Epitope-specific interaction information depends negatively on the local informational value of the a) α chain and b) β. We
furthermore find that the c) per-chain relevancies are positively correlated with each other as is d,e) total information with
both single chain relevancies. The observed dependencies between variables agree well with theoretical expectations from a
mixture model (dashed lines), in which epitopes differ in the number of distinct binding solutions or contain false positives.

consider the same classification procedure as previously,
but based on a fuzzy match where the sequence with un-
known specificity is distance ∆ from the sequence with
known specificity such that d(x, x′) = ∆. Similarly to
our prior derivations, we find (Appendix C 5)

Opost = 2I2(∆X,X′ ,Π)Oprior. (21)

One bit of near-coincidence mutual information again
corresponds to an average two-fold increase in posterior
classification odds. As in the case of exact matching, Eq.
21 defines regimes in which fuzzy matches at a given dis-
tance are expected to succeed or fail. In Figure 6, we
provide an example of this by computing the required
prior fraction of specific sequences to obtain a posterior
probability of 0.95 with fuzzy CDR3 matches at a certain
Levenshtein distance. Inversely, at a given prior odds
ratio and target posterior odds ratio we can use these
results to compute a critical distance beyond which clas-
sification becomes unreliable.

V. DISCUSSION

The ubiquity of information theory lies in its ability to
describe complex relationships between data points using
a simple quantitative vocabulary. As shown by Shan-
non [29], entropy provides the most natural measure of

uncertainty and hence changes in entropy directly cap-
ture how knowledge of one event increases understand-
ing of another. The application of information theory to
the problem of immune receptor specificity has proved
highly fruitful in the past. In particular, estimates of
residue Shannon entropy aided in identifying potential
complementary determining regions of the TCR and im-
munoglobulin and highlighted that TCRs were the more
diverse of these two antigen receptors [46]. Other, more
recent studies have employed concepts from information
theory such as mutual information to quantify inter-
actions between various sections of the TCR sequence
[20, 21]. These previous studies have taken a ‘bottom-
up’ approach, computing an upper bound on sequence
diversity by summing up the entropy of each constituent
amino acid residue or pairs of residues. In part, this
‘bottom-up’ approach has been required due to biases in
estimating Shannon entropy in small samples. Although
there exist methods for reducing bias in Shannon entropy
estimation, these still require resolving higher order dis-
tribution moments or essentially resort to coincidence
counting and use Renyi entropy to approximate Shan-
non’s [47, 48]. In this work, we have proposed a ‘top-
down’ approach to decomposing TCR specificity firmly
rooted in second order Renyi entropy.

Our methodology provides a general framework to as-
sess the role of individual TCR sequence features in de-
termining antigen specificity as well as combinations of
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FIG. 6. Information theoretic analysis of fuzzy CDR3
matches. Critical prior probabilities for 95% confidence in
classification using a fuzzy match with a Levenshtein distance
∆. Distances are CDR3α and CDR3β amino acid edit dis-
tances as well as the sum of CDR3α+CDR3β edit distance.
Levenshtein distances are defined as the minimum number of
insertions/deletions and substitutions required to turn one se-
quence into another.

features by introducing the concepts of relevancy, redun-
dancy and synergy. We first compute the entropy of the
full TCR sequence, divide this into its two constituent
amino acid chains and then further sub-divide these into
their V, J and CDR3 regions. Our results identify the β
chain as the most informative of the heterodimeric TCR’s
chains and the CDR3 regions to be the most informative
regions of each chain. However, we also find that the in-
formation these constituent parts provide is far smaller
than that of the full TCR sequence. Although these re-
sults are unsurprising, with previous work highlighting
the higher contribution of the β chain in epitope bind-
ing predictions and the importance of paired chain data
[23, 49, 50], we provide the first full quantification of
the information contained within these regions and, as
our methodology has its foundations in coincidence-based
statistics, we are able to directly interpret information
measures in terms of achievable pairwise classification
accuracy. Our work thus paves the way for the devel-
opment of principled Bayesian methods for interpreting
partial sequence matches.

Our results provide clear guides for when a limited
amount of TCR sequence information, such as a single
chain, is enough to solve an epitope specificity classifica-
tion problem and when this loss of information may se-
riously impact predictive performance. We expect these
insights to be important for experimental design, to de-
cide whether the time and cost trade-off of single cell se-
quencing over bulk are worth the increase in information
paired chain information might provide.

We have also shown how the vocabulary of information
theory can be applied to TCR near-coincidence analy-

sis, which we have introduced in recent work [24]. Our
framework predicts pairwise classification performance
when using fuzzy matches at a given threshold TCR dis-
tance. This approach may be used to define relevant
data regimes in which current or future distance metrics
[1, 51] may be usefully applied and allows setting critical
distances for classifying or clustering sequences [52].

Our ‘top-down’ approach allows us to compute inter-
action information, which describes synergistic and re-
dundant relationships between TCR sequence features.
We observe positive interaction information, synergy, be-
tween the α and β chain as well as the CDR3 and V
regions, while knowledge of CDR3 regions makes their
associated J regions redundant. In addition, we high-
light the flexibility of our methodology by assessing the
information provided by CDR3 length, net charge and
glycine content. We find positive synergy between the
lengths of the CDR3α and CDR3β amino acid chains and
their glycine content. We furthermore show how the rela-
tionship between interaction and single chain information
across epitopes is compatible with a model in which epi-
topes vary in the number of distinct binding solutions (or
possibly in the rate of false positives). With the steady
accumulation of data on more epitopes, we envisage that
our approach will help decipher principles underlying se-
quence space organization of responding TCRs.

The next steps for applying our theoretical approach
are numerous. On the practical side, we propose com-
pleting the ‘top-down’ approach and performing an anal-
ysis of the informational value of the CDR3 sequences
residue by residue. This may allow for the identification
of informationaly dense regions of the CDR3s and for
a quantification of more complex allosteric interactions
present across the receptor structure. Further extensions
of our framework could account for the hierarchy of selec-
tive processes shaping the TCR repertoire by varying the
background used to compute background entropy. For
example, to bound the performance of multi-class classi-
fication between a set of known epitopes, it may be more
appropriate to quantify the entropy of TCRs across the
chosen epitope-specific groups. Likewise, sequence statis-
tics in a naive T cell repertoire could be used as back-
ground to account for the imprint of thymic selection.
Our information theoretical tools may also be used on
problems other than epitope specificity. For example,
one may apply them to the study of TCR-HLA associa-
tions [53, 54] or TCR sequence to phenotype relationships
[44, 55–57].

Linking feature information to classification isn’t a
problem unique to the field of protein function, nor is
the task of class prediction from pairwise comparisons.
Transformer neural networks, the architecture underly-
ing the current rise of large language models, embed data
in high dimensional vector spaces [58] and may be trained
in a pairwise contrastive manner, such that items from
the same class are closer together than items from dif-
ferent classes [59–62]. More generally, metric and rep-
resentation learning commonly utilise pairwise measures
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to tackle problems ranging from sentence embeddings to
facial recognition [63–67]. Our pairwise coincidence in-
formation measure may be applicable for identifying in-
terpretable informative features in these applications.

To conclude, we have introduced a theoretical frame-
work for mapping the information content of the T-cell
receptor sequence with regards to its antigen specificity.
Our results confirm prior insights from more limited
structural studies regarding the relative importance of
the α and β chains [2, 5, 68–71], but also highlight
unexpected variability in the synergy between chains
across epitopes. As dataset sizes continue to increase
the proposed framework will be able to guide the
development of machine-learning models for predicting

TCR specificity from sequence by providing means to
find interpretable physical features and performance
bounds where information is limited.
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Appendix A: Defining conditional coincidence entropy

We follow Refs. [33, 34] and define Renyi conditional entropies as

Hα[P (X|Y )] = f−1

(∑
y

ρα(y)f (Hα[P (X|y)])
)
, (A1)

where ρα(y) represents a generalised weighting given by

ρα(y) =
P (y)α∑
y P (y)α

. (A2)

For α ̸= 1, f can be any invertible function positive in [0,∞) which is a linear transform of

f(x) = 2(1−α)x. (A3)

Using this definition of conditional entropy ensures that entropy is additive [33, 34]:

Hα[P (X,Y )] = Hα[P (X)] +Hα[P (Y |X)], (A4)

where Hα[P (X,Y )] represents the joint Renyi entropy of two random variables defined as

Hα[P (X,Y )] =
1

1− α
log

(∑
x,y

P (x, y)α

)
. (A5)

For simplicity, we will use the following definition for the conditional Renyi entropy of order α = 2

H2[P (X|Y )] = − log

(∑
y

ρ2(y)2
−H2[P (X|y)]

)
. (A6)

Comparing this expression to the probability of coincidence suggests the following definition for the conditional
probability of coincidence averaged over Y

pC [P (X|Y )] =
∑
y

ρ2(y)pC [P (X|y)], (A7)

such that:

H2[P (X|Y )] = − log pC [P (X|Y )]. (A8)

This definition appears quite natural as it ensures that the conditional probability of coincidence behaves like a regular
conditional probability

pC [P (X|Y )] =
pC [P (X,Y )]

pC [P (Y )]
, (A9)

and follows Bayes’ theorem

pC [P (X|Y )] =
pC [P (Y |X)]pC [P (X)]

pC [P (Y )]
. (A10)

Appendix B: Relations between interaction information and conditional mutual information

Interaction information and conditional mutual information can be related using the additive property of entropy
to give

I2,int(X,Y |Π) = I2(X,Π|Y )− I2(X,Π) (B1)
= I2(Y,Π|X)− I2(Y,Π). (B2)
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Therefore, if I2,int(X,Y |Π) > 0 then X and Y are more relevant when considered in the context of one another
than when taken independently. Conversely, for I2,int(X,Y |Π) < 0 features are partially redundant and becomes less
informative in the context of one another. Interaction information may also be expressed in terms of the coincidence
mutual information between X and Y to give

I2,int(X,Y |Π) = I2(X,Y |Π)− I2(X,Y ) (B3)
= I2(Y,X|Π)− I2(Y,X). (B4)

Features with positive interaction information are those which become more informative about one another in the
context of Π. Features with zero interaction information experience no change in their mutual information, while
features with negative interaction information have a decrease in their mutual information. Finally, conditional
mutual information may be expressed as

I2(X,Π|Y ) = I2(X,Π) + I2,int(X,Y |Π). (B5)

So that the information X provides about Π in the context of Y is equal to the information it provides on its
own plus a coupling term determined by its interactions with Y . If one feature makes another fully redundant,
e.g. I2(X,Π|Y ) = 0, then the interaction information between them is I2,int(X,Y |Π) = −I2(X,Π) such that their
coupling completely negates the information provided by X on its own. As explored in [36], definitions of redundancy
and synergy may be built from interaction information and conditional mutual information. Interaction information
captures a mixture of synergy and redundancy and is positive if synergy outweighs redundancy, negative if redundancy
outweighs synergy and zero if they are both equal.

Appendix C: Linking pairwise classification odds to coincidence information

1. Likelihood ratio in terms of coincidence probabilities

We begin with the posterior odds

P (π|x = x′)
P (B|x = x′)

=
P (x = x′|π)
P (x = x′|B)

P (π)

P (B)
. (C1)

Similarly to [24] we may relate the probability distributions associated with π and B using the following expression:
P (x|π) = Qπ(x)P (x|B), where Qπ(x) is a selection factor which reweighs the probability of each feature outcome
according to some fitness function. To ensure normalisation of P (X|π), we require that ⟨Qπ(x)⟩P (x|B) = 1. ⟨⟩P (x|B)

indicates an expectation value over the distribution P (X|B). P (x = x′|π) is the probability of a match in feature X
if both sequences were truly drawn from distribution P (σ|π). We compute this by summing over all possible ways to
obtain such a match

P (x = x′|π) =
∑
x,x′

δx,x′P (x|π)P (x′|π) = pC [P (X|π)], (C2)

where δx,x′ is the Kronecker delta. P (x = x′|B) is the probability of a match in feature X for a query drawn from
P (σ|B) and a reference drawn from P (σ|π). This may be written as

P (x = x′|B) =
∑
x,x′

δx,x′P (x|π)P (x′|B). (C3)

Using the fact that P (x|π) = Qπ(x)P (x|B) this may be rewritten as

P (x = x′|B) =
∑
x,x′

δx,x′Qπ(x)P (x|B)P (x′|B), (C4)

which may also be written as

P (x = x′|B) =

〈∑
x′

δx,x′Qπ(x)P (x′|B)

〉
P (x|B)

= ⟨Qπ(x)P (x|B)⟩P (x|B) . (C5)
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Assuming that the background probability of a particular feature is independent of its selection factor, we may
decompose the expectation value to arrive at

P (x = x′|B) = ⟨Qπ(x)⟩P (x|B) ⟨P (x|B)⟩P (x|B)

= pC [P (X|B)] (C6)

As ⟨Qπ(x)⟩P (x|B) = 1 by normalisation. We will write pC [P (X|B)] = pC [P (X)] as it is the probability of coincidence
over a background distribution.

2. Average classification odds over subsets of specific TCRs

The odds ratio for a particular epitope subset given a match in feature X is:

P (π|x = x′)
P (B|x = x′)

=
pC [P (X|π)]
pC [P (X)]

P (π)

P (B)
(C7)

Taking the average of this over the normalised distribution of epitope subsets P (Π)/(1− P (B)) yields∑
π

P (π|x = x′)
P (B|x = x′)

P (π)

1− P (B)
=
∑
π

pC [P (X|π)]
pC [P (X)]

P (π)

P (B)

P (π)

1− P (B)
. (C8)

Recalling the definition of the conditional probability of coincidence, Eq. 6, the right hand side becomes

∑
π

pC [P (X|π)]
pC [P (X)]

P (π)

P (B)

P (π)

1− P (B)
=

pC [P (X|Π)]

pC [P (X)]

∑
π′ P (π′)2

P (B)(1− P (B))
, (C9)

we therefore obtain in full: ∑
π

P (π|x = x′)
P (B|x = x′)

P (π)

1− P (B)
=

pC [P (X|Π)]

pC [P (X)]

∑
π′ P (π′)2

P (B)(1− P (B))
, (C10)

which may be written as: 〈
P (π|x = x′)
P (B|x = x′)

〉
=

pC [P (X|Π)]

pC [P (X)]

〈
P (π)

P (B)

〉
. (C11)

Where ⟨⟩ denotes an average over P (π)
1−P (B) .

3. Relating the probability of specificity and the probability of being drawn from a specific subset

We show here how P (π) and P (π|x = x′), which represent the prior and posterior probabilities that a sequence is
observed because it was drawn from distribution P (σ|π) may be related to the prior and posterior probabilities that
a sequence is in-fact specific to epitope π. We consider the mixture distribution of sequences

P (σ) = P (π)P (σ|π) + P (B)P (σ|B). (C12)

We denote the fraction of sequences in this mixture which would bind to epitope π in a test of specificity as P (Sπ).
We may express this fraction in terms of the mixture proportions

P (Sπ) = P (π)P (Sπ|π) + P (B)P (Sπ|B), (C13)

where P (Sπ|π) and P (Sπ|B) are the fractions of sequences produced by distributions P (σ|π) and P (σ|B) which are
specific to π respectively. As P (σ|π) represents the distribution of sequences specific to π, by definition P (Sπ|π) = 1,
so

P (Sπ) = P (π) + P (B)P (Sπ|B). (C14)
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As P (π) + P (B) = 1, this may be written as

P (Sπ) = P (π) + (1− P (π))P (Sπ|B). (C15)

If we assume that the fraction of sequences generated by distribution P (σ|B) which are specific to π is much smaller
than the proportion P (π) in our mixture so P (Sπ|B) ≪ P (π), then we may simplify this directly down to:

P (Sπ) ≈ P (π) (C16)

Now substituting P (Sπ) into our prior odds in Eq. 14, we obtain

P (π|x = x′)
P (B|x = x′)

=
pC [P (X|π)]
pC [P (X)]

P (Sπ)

1− P (Sπ)
. (C17)

Following similar reasoning, we may write the posterior probability that a sequence sampled from the mixture is
specific to epitope π given that it matches in feature X with sequence with known specificity to π as

P (Sπ|x = x′) = P (π|x = x′)P (Sπ|π, x = x′) + P (B|x = x′)P (Sπ|B, x = x′). (C18)

Once again, P (Sπ|π, x = x′) = 1 and P (Sπ|B, x = x′) ≤ 1, therefore

P (Sπ|x = x′) ≈ P (π|x = x′) (C19)

as long as the posterior odds exceeds one. Taken together, this allows us to re-express Eq. 14 in terms of prior and
posterior odds of specificity to π

P (Sπ|x = x′)
1− P (Sπ|x = x′)

=
pC [P (X|π)]
pC [P (X)]

P (Sπ)

1− P (Sπ)
. (C20)

4. Simulating pairwise classification with limited information.

a. Generating background and specific TCRs

Here, we followed a previously described procedure for the in silico simulation of epitope-specific repertoires [24]. In
short, we simulated a synthetic background repertoire by randomly generating strings of length k from a predefined
alphabet of q characters. We defined ‘epitope specific’ TCRs by a set of hard coded rules: For each epitope we
generated M motifs, where each motif contained c out of q letters for each of the TCR’s k ‘residues’. To generate the
specific TCRs for a motif, we produced all possible combinations of these amino acids. The set of TCRs specific to a
given epitope was the full set of TCRs produced by all motifs associated with the epitope.

b. Comparing theoretical perforance to true classifcation accuracy

We computed the relevancy of various ‘features’ of simulated sequences for q = 20, k = 4, M = 5 and c = 3. To
define features we divided each TCR by its residues. For example, to produce an α and a β chain we divided each
TCR into two halves. We then produced a mixture data set into which we mixed a particular fraction of simulated
background and specific TCRs. For each TCR we also assigned a label identifying which of these two original sets it
came from. We then simulated pairwise classification using feature matching by sampling sequences from the mixture
set and looking for matches in a particular feature with a TCR from the true set of specific sequences. Using the
labels, we were able to calculate the probability that the sampled sequence was truly specific given that this match
occurred. We performed this simulation using a range of features and mixture ratios as shown in Figure S1 and
simulation results aligned with the theoretical predictions from coincidence information.

5. Classification odds given a fuzzy match

For both query and reference being drawn from P (σ|π), the probability of a match is

P (d(x, x′) = ∆|π) =
∑
x,x′

δd(x,x′),∆P (x|π)P (x′|π) = pC [P (X|π)](∆). (C21)
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FIG. S1. Simulated prior vs posterior probabilities given feature match Prior probability of a sequence being present
in a mixture distribution due to being sampled from a spiked in epitope specific distribution, vs posterior probability given
a feature match with a specific sequence. Dashed lines indicate theoretical prior probability values for which a posterior
probability of 0.5 should be observed given the informational value of a given feature computed from Eq. 17. Solid curves cover
classification for a given fraction of spiked in specific sequence in the following scenarios: using matches in the full simulated
TCR (single chain), using matches in one half of the TCR (single chain), using matches from a single amino acid (single residue),
using matches in both halves of the TCR but considered independently (independent chains).

Now consider the case where the query is truly from P (σ|B) while the reference is from P (σ|π)

P (d(x, x′) = ∆|B) =
∑
x,x′

δd(x,x′),∆P (x|B)P (x′|π). (C22)

Similarly to the case for exact matching, we may write P (x′|π) = Qπ(x′)P (x′|B) such that

P (d(x, x′) = ∆|B) =
∑
x,x′

δd(x,x′),∆P (x|B)Qπ(x′)P (x′|B). (C23)

Next, we may rewrite this equation as:

P (d(x, x′) = ∆|B) =

〈∑
x

δd(x,x′),∆P (x|B)Qπ(x′)

〉
P (x′|B)

(C24)

=

〈
Qπ(x′)

∑
x

δd(x,x′),∆P (x|B)

〉
P (x′|B)

(C25)

We define n∆(x
′) =

∑
x δd(x,x′),∆P (x|B) to be the neighbourhood density around x′ at distance ∆. Assuming

independence of neighbor density n∆(x
′) and selection factor Qπ(x′) we have

P (d(x, x′) = ∆|B) = ⟨Qπ(x′)⟩P (x′|B) ⟨n∆(x
′)⟩P (x′|B) . (C26)

By normalization the first term evaluates to 1 so we are left with

P (d(x, x′) = ∆|B) = ⟨n∆(x
′)⟩P (x′|B) =

∑
x,x′

δd(x,x′),∆P (x|B)P (x′|B) = pC [P (X|B)](∆), (C27)

therefore the likelihood ratio becomes

P (d(x, x′) = ∆|π)
P (d(x, x′) = ∆|B)

=
pC [P (X|π)](∆)

pC [P (X)](∆)
. (C28)

Where once again we have used pC [P (X)](∆) = pC [P (X|B)](∆) to denote the background probability of coincidence.
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Appendix D: Feature interactions arising from data structure

1. Mixture of motifs model

In the following we explore in a minimal model how local feature relevancy and interaction information depend on
the number of distinct binding solutions able to engage a particular epitope. We consider that for a given epitope π
there is a distribution of motifs/binding modes, P (Φ). For a given binding mode, Φ = ϕ, there is an associated set of
specific sequences and sequence features, P (X|ϕ, π). The probability of drawing a particular feature X = x from the
distribution of sequences specific to π is

P (x|π) =
∑
ϕ

P (x|ϕ, π)P (ϕ), (D1)

The coincidence probability for sequences drawn from P (X|π) is

pC [P (X|π)] =
∑
x

∑
ϕ

P (x|ϕ, π)P (ϕ)

2

(D2)

In [24] we show that such a mixture distribution may be expressed as the sum of a within-motif and a cross-motif
term

pC [P (X|π)] = pC [P (ϕ)] ⟨pC [P (X|π, ϕ)]⟩P (ϕ|ϕ1=ϕ2=ϕ) + (1− pC [P (ϕ)]) ⟨pC [P (X|π, ϕ1), P (X|π, ϕ2)]⟩P (ϕ1,ϕ2|ϕ1 ̸=ϕ2)
,

(D3)
where ⟨pC [P (X|π, ϕ)]⟩P (ϕ|ϕ1=ϕ2=ϕ) = pC [P (X|π,Φ)] is the average probability of feature coincidence within each
motif subset for motifs associated with epitope π weighted by

P (ϕ|ϕ1 = ϕ2 = ϕ) =
P (ϕ)2∑
ϕ′ P (ϕ′)2

= ρ2(ϕ). (D4)

And ⟨pC [P (X|π, ϕ1), P (X|π, ϕ2)]⟩P (ϕ1,ϕ2|ϕ1 ̸=ϕ2)
is the cross-motif coincidence probability with the probability of co-

incidence for two distributions defined in general as:

pC [Pi(X), Pj(X)] =
∑
x

Pi(x)Pj(x), (D5)

with the average computed with respect to the following weighting factor

P (ϕ1, ϕ2|ϕ1 ̸= ϕ2) =
P (ϕ1)P (ϕ2)

1−∑ϕ′ P (ϕ′)2
. (D6)

We will assume that in general this cross-motif coincidence probability is far smaller than the within coincidence
probability such that

pC [P (X|π)] ≈ pC [P (ϕ)]pC [P (X|π,Φ)]. (D7)

To proceed, we will now assume that pC [P (ϕ)] = 1/M , where M is number of motifs associated with a given epitope
π. We will also assume that for a given M there is a characteristic probability of coincidence pC [P (X|ΠM )] where
ΠM denotes the fact that we are considering epitopes with M motifs. We use uppercase Π to highlight that we are
theorising that epitopes with equal number of motifs only vary in their coincidence probabilities for particular features
due to finite sample size error and hence their true coincidence probabilities should be equal in the limit of infinite
data. We will assume that pC [P (X|π,Φ)] = pC [P (X|Π1)] such that it is the probability of feature coincidence for
epitopes with a single motif. Therefore, for an epitope with M motifs we obtain

pC [P (X|ΠM )] ≈ 1

M
pC [P (X|Π1)]. (D8)

The local relevancy of X for an epitope with M motifs is then

i2(X,ΠM ) = log

(
1

M

pC [P (X|Π1)]

pC [P (X)]

)
= log

(
pC [P (X|Π1)]

pC [P (X)]

)
− logM

= i2(X,Π1)− logM, (D9)
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where i2(X,Π1) is the characteristic local relevancy of feature X for epitopes with a single motif. Therefore, the
greater the number of motifs associated with a given epitope, the less locally relevant each feature is expected to
become. With such a model we would expect the local relevancy of two features, X and Y , for a given number of
motifs to be related by the following equation

i2(X,Π1)− i2(X,ΠM ) = i2(Y,Π1)− i2(Y,ΠM ). (D10)

Such that

i2(X,ΠM ) = i2(Y,ΠM ) + i2(X,Π1)− i2(Y,Π1). (D11)

Which is a relationship we observe in Figure 5. Now let us consider how we expect the local interaction information
between two features to change with number of motifs

i2,int(X,Y |ΠM ) = i2([X,Y ],ΠM )− i2(X,ΠM )− i2(Y,ΠM ) (D12)
= i2([X,Y ],Π1)− i2(X,Π1)− i2(Y,Π1)− logM + 2 logM (D13)
= i2,int(X,Y |Π1) + logM. (D14)

We expect the local interaction information between pairs of features to increase with the number of motifs associated
to the particular eptiope. Therefore, we expect the interaction information between two features and their independent
local relevancy for a given number of motifs to be related by the following expressions

i2,int(X,Y |ΠM )− i2,int(X,Y |Π1) = i2(X,Π1)− i2(X,ΠM ) (D15)
= i2(Y,Π1)− i2(Y,ΠM ). (D16)

So that

i2,int(X,Y |ΠM ) = −i2(X,ΠM ) + i2(X,Π1) + i2,int(X,Y |Π1) (D17)
= −i2(Y,ΠM ) + i2(Y,Π1) + i2,int(X,Y |Π1). (D18)

Which is a relationship observed in Figure 5.

2. False positives

We will briefly show that false positives, that is sequences which are not truly specific to a given epitope but yet
appear in a specific TCR sample, lead to similar results to the mixture of motif models. Consider that a sample of
sequences is taken in an experiment designed to obtain sequences specific to epitope π and that a distribution of a
particular feature X is obtained, P (X|π̃). A fraction of features in this distribution are truly specific to π, P (π), while
a fraction of sequences are false positives, P (¬π). We will denote the subset of sequence features truly specific to
epitope π as P (X|π) and the subset of sequence feature not specific to π as P (X|¬π). The probability of coincidence
for the distribution P (X|π̃) is

pC [P (X|π̃)] =
∑
x

(P (X|π)P (π) + P (X|¬π)P (¬π))2 . (D19)

Expanding out we get

pC [P (X|π̃)] =
∑
x

P (X|π)2P (π)2 +
∑
x

P (X|¬π)2P (¬π)2 + 2
∑
x

P (X|π)P (X|¬π)P (π)P (¬π) (D20)

= P (π)2pC [P (X|π)] + P (¬π)2pC [P (X|¬π)] + 2P (π)P (¬π)pC [P (X|π), P (X|¬π)]. (D21)

We will assume that cross coincidences are rare, that coincidences are far more likely between the truly spe-
cific sequences and that the fraction of false positives is far smaller than the fraction of true positives such that
the following expressions hold: P (π)2pC [P (X|π)] ≫ 2P (π)P (¬π)pC [P (X|π), P (X|¬π)] and P (π)pC [P (X|π)] ≫
P (¬π)pC [P (X|¬π)]. Therefore we obtain

pC [P (X|π̃)] ≈ P (π)2pC [P (X|π)].
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Now considering the local relevancy of X computed from pC [P (X|π̃)]

i2(X, π̃) = log

(
P (π)2pC [P (X|π)]

pC [P (X)]

)
=

(
pC [P (X|π)]
pC [P (X)]

)
+ 2 logP (π)

= i2(X,π) + 2 logP (π). (D22)

If P (π) < 1, then logP (π) < 0 so the relevancy of X will be lower when computed using distribution P (X|π̃) than
when using P (X|π). Similarly to D1, we identify that when P (π) < 1 the local interaction information between two
features X and Y will be increased

i2,int(X,Y |π̃) = i2([X,Y ], π̃)− i2(X, π̃)− i2(Y, π̃)

= i2([X,Y ], π)− i2(X,π)− i2(Y, π) + 2 logP (π)− 2 logP (π)− 2 logP (π)

= i2,int(X,Y |π)− 2 logP (π). (D23)

Therefore the relationships observed in Figure 5 could also be produced by false positives. Analyses of how TCR
clustering depends on background sequence space coverage could provide a potential avenue for distinguishing between
both models in future work.
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Appendix E: Data analysis methods

1. Data collection and pre-processing

TCR sequencing data from Minervina et al. [22] and Dash et al. [1] was processed as follows: Data was deduplicated
on the full nucleotide sequence level for each epitope in order to enable assessment of clonal convergence independently
of clonal expansions within individual donors [24]. Only TCRs with full CDR3, V gene and J gene annotations for
both the α and β chain were retained, and V and J gene names were standardized using tidytcells [72]. Furthermore,
epitope specific sets were only retained in cases where at least one full TCR coincidence was observed. Background
TCR sequence data was produced using the OLGA generation model [40]. We generated 1000000 α and β chain
sequences and then randomly paired these to produce paired chain background data. The final number of sequences
retained is detailed in Table I.

Epitope ID Data set Epitope HLA Sequence counts
OLGA N/A N/A 1000000

1 Minervina NQKLIANQF HLA-B*15:01 148
2 Minervina DTDFVNEFY HLA-A*01:01 88
3 Minervina LLYDANYFL HLA-A*02:01 53
4 Minervina PTDNYITTY HLA-A*01:01 155
5 Minervina YLQPRTFLL HLA-A*02:01 288
6 Minervina FTSDYYQLY HLA-A*01:01 450
7 Minervina ALSKGVHFV HLA-A*02:01 197
8 Minervina LTDEMIAQY HLA-A*01:01 398
9 Minervina TTDPSFLGRY HLA-A*01:01 1909
10 Dash NLVPMVATV HLA-A*02:01 67
11 Dash GLCTLVAML HLA-A*02:01 92
12 Dash GILGFVFTL HLA-A*02:01 249

TABLE I. TCR sequence data used in this study. The first column shows the epitope ID used throughout figures.

2. Statistical analysis

Coincidence probabilities and their variance were computed using unbiased estimators described in [27]. Conditional
probabilities of coincidence were averaged over epitopes using Eq. 6 with an equal weighting assigned to each epitope
specific subset. Background entropies of the paired chain TCRs were computed as the sum of α and β chain entropies,
exploiting the independent pairing of chains in the computationally constructed background. Mutual information
scores and higher order statistics such as synergy were then computed from these entropies using Eqs. 9, 18 and 11.
Orthogonal distance regression was performed as implemented in Scipy [73].

Name Version Link
Tidytcells [72] 2.00 https://pypi.org/project/tidytcells/
Pyrepseq [24] 1.2.1 https://pypi.org/project/pyrepseq/
OLGA [40] 1.2.4 https://github.com/statbiophys/OLGA
Scipy [73] 1.11.3 https://pypi.org/project/scipy/

TABLE II. Software packages used in this study.

https://pypi.org/project/tidytcells/
https://pypi.org/project/pyrepseq/
https://github.com/statbiophys/OLGA
https://pypi.org/project/scipy/
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FIG. S2. Coincidence entropy reduction on the per-epitope level. Coincidence entropy reduction between specific and
background TCRs for the a) α and b) β chains. c) Local relevancy of the full paired TCR chain. X ∩ Y represents joint
consideration of features X and Y here and in the following. d) Sum of local relevancies of the α and β chain. X ⊥⊥ Y represents
separate consideration of features X and Y here and in the following. Epitopes are ordered within each dataset by their full
entropy change. Dashed lines indicate the average entropy change shown in Figure 2. Although a large amount of variability
between various epitopes not captured by their associated uncertainties is observed, every epitope shows a decrease in both α
and β chain entropy. For every epitope, the α and β chain are therefore informative features. The change in entropy of the
full TCR sequence αβ is in all cases greater than the sum of the entropy changes of the α and β chains taken independently,
suggesting that synergy between α and β chain information is a general phenomenon.
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FIG. S3. Coincidence entropy reduction for CDR3α and Vα. Both the Vα and CDR3α contributions to specificity
vary across epitopes, with some epitopes showing no detectable restriction of Vα gene choice. Further details as described for
Fig. S2.
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FIG. S4. Coincidence entropy reduction for CDR3β and Vβ. Both the Vβ and CDR3β contributions to specificity vary
across epitopes. Most epitopes show small, but positive restriction of Vβ gene choice. Further details as described for Fig. S2.
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FIG. S6. Coincidence entropy reduction for CDR3β and Jβ. Comparison of panel c and d reveals negative interaction
information between Jβ and CDR3β regions suggesting that the CDR3β makes the Jβ redundant. Further details as described
for Fig. S2.
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FIG. S7. Coincidence entropy reduction for CDR3 net charge across epitopes. While α chain charge has variable
relevancy and in some cases is not informative, β chain charge is consistently informative across epitopes. Further details as
described for Fig. S2.
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FIG. S8. Coincidence entropy reduction for CDR3 length across epitopes. The CDR3 length of both the α and
β chains are relevant features for all epitopes. There is substantial α and β length pairing as all epitopes display positive
interaction information (synergy). Further details as described for Fig. S2.
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FIG. S9. Coincidence entropy reduction for CDR3 glycine content across epitopes. CDR3 glycine content, defined
as the number of glycine residues within the CDR3, is only weakly relevant when considered on the single chain level, but there
is substantial synergy. Further details as described for Fig. S2.
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