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SHARP CONDITIONS FOR ENERGY BALANCE IN
TWO-DIMENSIONAL INCOMPRESSIBLE IDEAL

FLOW WITH EXTERNAL FORCE

FABIAN JIN1, SAMUEL LANTHALER2, MILTON C. LOPES FILHO3,
AND HELENA J. NUSSENZVEIG LOPES3

Abstract. Smooth solutions of the forced incompressible Euler
equations satisfy an energy balance, where the rate-of-change in
time of the kinetic energy equals the work done by the force per
unit time. Interesting phenomena such as turbulence are closely
linked with rough solutions which may exhibit inviscid dissipation,
or, in other words, for which energy balance does not hold. This
article provides a characterization of energy balance for physically
realizable weak solutions of the forced incompressible Euler equa-
tions, i.e. solutions which are obtained in the limit of vanishing
viscosity. More precisely, we show that, in the two-dimensional pe-
riodic setting, strong convergence of the zero-viscosity limit is both
necessary and sufficient for energy balance of the limiting solution,
under suitable conditions on the external force. As a consequence,
we prove energy balance for a general class of solutions with initial
vorticity belonging to rearrangement-invariant spaces, and going
beyond Onsager’s critical regularity.

1. Introduction

The present work concerns weak solutions of the forced incompress-
ible Euler equations on a two-dimensional periodic domain, focusing on
solutions that arise as vanishing viscosity limits. The Euler equations
describe the motion of an idealized fluid in the absence of friction and
other diffusive effects, and formally satisfy the principle of conservation
of energy [22]. Without an external force, conservation of energy is the
conservation in time of the square of the L2-norm of the fluid velocity.
When allowing for an external force in the equations of motion, the
conservation of energy instead takes the form of an identity in which
the rate-of-change of the kinetic energy equals the work of the external
force per unit time [20].
While smooth solutions conserve energy, this may not be the case for

weak solutions. In fact, weak solutions which dissipate energy are an
1
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essential part of Kolmogorov’s K41 theory of homogeneous 3D turbu-
lence. In 1949, L. Onsager argued that only ideal flows with a third of
a derivative or less may exhibit inviscid dissipation, a statement later
referred to as the Onsager Conjecture, see [12,13,16,17]. There is sub-
stantial recent work connected with this issue. Inviscid dissipation is
indeed ruled out for weak solutions at higher than 1/3 regularity, see
[5, 9]. Starting with the pioneering work of DeLellis and Székelyhidi
[11], convex integration techniques have been employed to rigorously
prove that dissipative Hölder continuous solutions exist in three spa-
tial dimensions [4,10,14], up to the Onsager-critical regularity. Despite
this extensive body of work, it is unclear whether such weak solutions
can be obtained in the zero-viscosity limit, and hence their physical
significance remains unclear.
For solutions obtained in the zero-viscosity limit in two dimensions,

Cheskidov, Nussenzveig Lopes, Lopes Filho and Shvydkoy [6] prove
energy conservation under the assumption that the initial vorticity is
p-th power integrable, for p > 1, and in the absence of forcing. This is
surprising in view of the fact that for p < 3/2, such solutions go beyond
Onsager-criticality (see [24] for a discussion of Onsager-criticality), and
their result hints at non-trivial dynamic constraints for solutions ob-
tained in the zero-viscosity limit. Following [6], solutions obtained in
the zero-viscosity limit will be hereafter referred to as “physically real-
izable”.
Still in the absence of forcing, the results of [6] have subsequently

been extended to provide a complete characterization of physically re-
alizable energy-conservative solutions in [18], where it is shown that
energy conservation of such solutions is equivalent to the strong con-
vergence of the zero-viscosity limit. In a different direction, Ciampa
[8] derives sufficient conditions for energy conservation when the fluid
domain is the full plane. The forced periodic case has been consid-
ered in [20], where sufficient conditions for energy balance of physically
realizable solutions were derived based on suitable Lp-integrability as-
sumptions on the vorticity and the curl of the external force.
External forcing is a natural mechanism for the generation of small

scales in incompressible flow, and small-scale motion is an inherent
feature of turbulence. Hence, finding precise conditions which rule out
inviscid dissipation in the presence of an external force is particularly
pertinent. In view of the characterization of physically realizable energy
conservative solutions in the unforced case [18], one might hope that
a similar characterization could also be obtained for energy balanced
solutions when considering external forcing. This is the motivation for
the present work.
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We derive necessary and sufficient conditions for energy balance in
the zero-viscosity limit for solutions of the two-dimensional Euler equa-
tions with external force. Under suitable assumptions on the force, we
show that energy balance in the limit is equivalent to the strong conver-
gence in the zero-viscosity limit. We then discuss how the results ob-
tained here sharpen those of the previous work [20], and allow for an ex-
tension of those results to vorticity in general rearrangement-invariant
spaces with compact embedding in H−1. To prove such an extension,
we derive novel a priori bounds for the rearrangement-invariant maxi-
mal vorticity function for solutions of the Navier-Stokes equations. To
the best of our knowledge such a result is not contained in the literature
on the two-dimensional Navier-Stokes equations. Our work also fills a
gap in [18, Corollary 2.13], where these bounds were asserted without
proof.
We briefly discuss two results related to our work. First, in [3], E.

Bruè and C. De Lellis construct a sequence of viscous approximations,
converging weakly to a solution of the incompressible Euler equations
on the three-dimensional torus T3, exhibiting both anomalous dissipa-
tion along the sequence, see Definition 2.6, and inviscid dissipation.
This is an illustration of the sharpness of our result, in particular since
the implication “energy balance =⇒ strong convergence” holds in any
spatial dimension, see Remark 3.9. Second, in [7], A. Cheskidov, carries
out an extensive discussion of the vanishing viscosity limit in the three-
dimensional torus, constructing a vanishing viscosity sequence which
exhibits both anomalous and inviscid dissipation, and, surprisingly, an
example of inviscid dissipation without anomalous dissipation along the
viscous approximation. All examples mentioned above require forcing.
For details, and additional related work, see [3,7] and references therein.
Overview: In Section 2, we recall several definitions before stating

our main result, Theorem 2.8, that strong convergence in the zero-
viscosity limit is both necessary and sufficient for energy conservation
of physically realizable solutions. The proof of this theorem is detailed
in Section 3; necessity is shown in subsection 3.2, sufficiency in subsec-
tion 3.3. Applications of our main result to rearrangement-invariant
spaces can be found in Section 4; we refer to subsection 4.1 for a dis-
cussion of Lp-bounded vorticity, subsection 4.2 for a priori estimates
in more general rearrangement-invariant spaces, and subsection 4.3 for
sufficient conditions for energy balance of solutions with vorticity in
the Lorentz space L(1,2), the largest rearrangement-invariant space with
continuous embedding in H−1 (cf. Theorem 4.18). The derivation of
our a priori estimates in rearrangement-invariant spaces is based on
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operator splitting. We include in Appendix A the required results on
convergence of these particular operator splitting approximations.

2. Problem setting

We study the incompressible Euler equations with initial data u0,
external forcing f and subject to periodic boundary conditions, given
by





∂tu+ u · ∇u+∇p = f, in T
2 × (0, T ),

div u = 0, in T
2 × [0, T ],

u = u0, at T2 × {0}.
(2.1)

Above T
2 denotes the two-dimensional flat torus. Throughout this

work, we fix a time-horizon T > 0. We also assume, without loss
of generality, that the forcing f is divergence-free as, otherwise, the
gradient part can be absorbed in the pressure term. In the following,
we are interested in the evolution of the kinetic energy 1

2
‖u(t)‖2L2

x
of

weak solutions of the system (2.1).

Definition 2.1. Fix T > 0, let u0 ∈ L2(T2) be a divergence-free
vector field. Assume f ∈ L1(0, T ;L2(T2)), div f = 0. A vector field
u ∈ L∞(0, T ;L2(T2)) is a weak solution of (2.1), if

(1) for all divergence-free test vector fields φ ∈ C∞
c (T2× [0, T )), we

have
ˆ T

0

ˆ

T2

{u · ∂tφ+ u⊗ u : ∇φ} dx dt+

ˆ

T2

u0(x) · φ(x, 0) dx

=

ˆ T

0

ˆ

T2

f · φ dx dt, (2.2)

(2) for almost every t ∈ [0, T ], div u( · , t) = 0 holds in the sense of
distributions.

Existence of weak solutions in the sense of Definition 2.1 can be
established under additional assumptions, such as Lp-bounds, p ≥ 1,
on the initial vorticity ω0 = curl(u0) and on the curl of the forcing [20].
Before moving forward let us comment on notation. We will use the

subscript ‘c’ in a function space to denote elements of the space whose
support is compact; we use, whenever convenient, subscripts ‘t’ and ‘x’
to denote time and spatial dependence respectively, so that L2

tH
1
x is

shorthand for L2((0, T );H1(T2)).
Given that the Euler equations describe the motion of an ideal fluid,

i.e. one for which friction and other dissipative effects are neglected,
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it is reasonable to expect that a change in kinetic energy can only be
caused by the action of the external forcing f . Following [20], we recall
the following definition.

Definition 2.2. We say u ∈ L∞((0, T );L2(T2)) is an energy bal-
anced weak solution if u is a weak solution of the incompressible
Euler equations with forcing f ∈ L1((0, T );L2(T2)), div f = 0, such
that

1

2
‖u(t)‖2L2

x
=

1

2
‖u0‖2L2

x
+

ˆ t

0

〈f, u〉L2
x
dτ, (2.3)

for almost every t ∈ [0, T ]. Here, 〈f, u〉L2
x
(t) :=

´

T2 f(x, t) · u(x, t) dx
denotes the L2

x-inner product.

Remark 2.3. Note that the right-hand-side of (2.3) is continuous with
respect to t. Therefore, redefining u on a set of measure zero in [0, T ],
we will assume hereafter that an energy balanced weak solution u sat-
isfies (2.3) for all t ∈ [0, T ] and, hence, t 7→ ‖u(t)‖L2 is continuous.

In the absence of additional constraints, weak solutions with initial
data u0 ∈ L2

x are not unique and may not satisfy energy balance (or
even energy conservation, without external forcing), see [25] for an ex-
ample with vortex sheet data. It is thus natural to impose additional
constraints. Such constraints arise, for example, when considering the
Euler equations (2.1) as the zero-viscosity limit of the physically rele-
vant Navier-Stokes equations:




∂tu
ν + uν · ∇uν +∇pν = ν∆uν + f ν , in T

2 × (0, T ),
div(uν) = 0, in T

2 × [0, T )
uν = uν

0, at T2 × {0}.
(2.4)

In contrast to the incompressible Euler equations, it is well-known
that the initial value problem (2.4) is well-posed for uν

0 ∈ L2(T2), f ν ∈
L1((0, T );L2(T2)), and the solution uν belongs to L∞((0, T );L2(T2))∩
L2((0, T );H1(T2)), e.g. [19] and references therein. Furthermore, since
we consider only two dimensional flows, solutions of (2.4) satisfy the
following energy identity for all t ∈ [0, T ],

1

2
‖uν(t)‖2L2

x
=

1

2
‖uν

0‖2L2
x
− ν

ˆ t

0

‖ων(τ)‖2L2
x
dτ +

ˆ t

0

〈f ν, uν〉L2
x
dτ. (2.5)

Above, ων = curl(uν) denotes the vorticity of the flow uν . Formally,

the energy dissipation term ν
´ t

0
‖ων(τ)‖2L2

x
dτ vanishes when ν = 0,

corresponding to the energy balance relation (2.3).
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Remark 2.4. Observe that, since uν ∈ L∞((0, T );L2(T2))∩L2((0, T );H1(T2))
it follows immediately from (2.5) that t 7→ ‖uν(t)‖L2

x
is continuous on

[0, T ].

Let us recall the definition of physically realizable solutions of (2.1):

Definition 2.5. A weak solution u ∈ L∞((0, T );L2(T2)) of the incom-
pressible Euler equations with (divergence-free) forcing f ∈ L1((0, T );L2(T2))
is physically realizable, if there exists a sequence ν → 0, initial data
uν
0 ∈ L2(T2) and forces f ν ∈ L1((0, T );L2(T2)), div f ν = 0, such that

• uν
0 → u0 strongly in L2(T2),

• f ν⇀f weakly in L1((0, T );L2(T2)),

and the corresponding solutions uν of the Navier-Stokes equations (2.4)

• uν⇀u weakly-∗ in L∞((0, T );L2(T2)).

In this case, the sequence uν, ν → 0, is referred to as a physical
realization of u.

The class of physically realizable solutions was originally introduced
in [6] in the absence of forcing, and extended to the forced case in [20].
In both of these papers sufficient conditions for physically realizable
solutions to be energy conservative, or energy balanced, were obtained
in terms of Lp-control of the vorticity. For the unforced case, a sharp
characterization of energy conservation for physically realizable solu-
tions was achieved in [18]. The goal of the present work is to carry out
a programme similar to [18] in the forced case.

Definition 2.6. Let u be a physically realizable weak solution and
consider uν ⇀ u a physical realization. Let ων ≡ curl(uν). We say the
family {uν}ν exhibits anomalous dissipation if

lim inf
ν→0+

ν

ˆ t

0

‖ων(τ)‖2L2
x
dτ > 0.

Remark 2.7. Note that our definition of anomalous dissipation cor-
responds to what was defined as “dissipation anomaly” in [7]. Further-
more, what was defined as “anomalous dissipation” in [7] is what we
refer to as inviscid dissipation.

We are now ready to state our main result.
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Theorem 2.8. Let u be a physically realizable solution of the in-
compressible Euler equations (2.1) with divergence-free forcing f ∈
L2((0, T );L2(T2)) and initial data u0 ∈ L2(T2). Let uν, ν → 0,
be a physical realization of u with forcing f ν ∈ L2((0, T );L2(T2)),
div f ν = 0, and initial data uν

0 ∈ L2(T2). Assume that the convergence
f ν → f is strong in L2((0, T );L2(T2)). Then the following assertions
are equivalent:

(1) u is energy balanced,
(2) the convergence uν → u is strong in L2((0, T );L2(T2)),
(3) the convergence uν → u is strong in C([0, T ];L2(T2)).

Before delving into the proof of Theorem 2.8 we make a few remarks
on the assumptions.

Remark 2.9. Observe that, from the hypotheses of Theorem 2.8, we
assume implicitly that the sequence of external forcings f ν is uniformly
bounded in L2

tL
2
x as ν → 0. This assumption is related to vorticity

estimates. Indeed, recall the vorticity formulation of the the Navier-
Stokes equations (2.4):

∂tω
ν + uν · ∇ων = ν∆ων + gν, (2.6)

with gν = curl(f ν). Multiplying (2.6) by ων , and integrating the forcing
term by parts gives

d

dt

1

2
‖ων‖2L2

x
= −ν‖∇ων‖2L2

x
+

ˆ

T2

gνων dx

= −ν‖∇ων‖2L2
x
−
ˆ

T2

f ν · ∇⊥ων dx.

We estimate the last term from above by 1
2
ν‖∇ων‖2L2

x
+ (2ν)−1‖f ν‖2L2

x
,

thus obtaining the differential inequality

d

dt
‖ων‖2L2

x
≤ −ν‖∇ων‖2L2

x
+

1

ν
‖f ν‖2L2

x
. (2.7)

Neglecting the non-positive term and upon integration in time, we find

‖ων(t)‖2L2 ≤ ‖ων(τ)‖2L2 +
1

ν

ˆ t

τ

‖f ν‖2L2
x
ds, (2.8)

for τ ∈ (0, t]. We will see that, in order to obtain a bound on ‖ων(t)‖2L2,
we require f ν ∈ L2

tL
2
x; see Lemma 3.7.
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Remark 2.10. In Theorem 2.8 it is furthermore assumed that f ν con-
verges strongly to f in L2

tL
2
x as ν → 0. This assumption ensures that

ˆ T

0

〈f ν , uν〉L2
x
dt →

ˆ T

0

〈f, u〉L2
x
dt, (2.9)

thus ruling out the failure of energy balance arising from the forcing
term. If the convergence uν → u is strong, then (2.9) holds even under
the relaxed condition that f ν⇀f only weakly in L2

tL
2
x. In fact we will

see in Proposition 3.12, that, assuming strong convergence of uν to u,
energy balance of the limit u follows under this weaker condition on
f ν , f .

In Example 2.11 below we will show that the hypothesis of strong
convergence of f ν to f is actually required for Theorem 2.8. More
precisely we exhibit a physically realizable solution u which is energy
balanced, for which the forcings f ν of the physical realization converge
weakly in L2

tL
2
x to the forcing f of the limit u, yet uν does not converge

strongly to u. Therefore the direction “energy balance ⇒ strong con-
vergence” does not hold under the assumption that f ν converges only
weakly to f .

Example 2.11. We claim that u ≡ 0 is a physically realizable solution,
for which there exists a physical realization uν⇀u with forcing f ν⇀0
in L2

tL
2
x, but such that uν does not converge strongly to u in L2

tL
2
x.

To this end, fix two non-zero functions γ, φ ∈ C∞
c ((0,+∞)) sup-

ported on [1/2, 1]. Let u ≡ f ≡ 0, and consider

uν(x, t) :=
x⊥

|x|2 sin
( |x|
ν1/3

)
φ(|x|)γ(t), (2.10)

f ν := ∂tu
ν − ν∆uν . (2.11)

Of course, u is an energy balanced solution of the incompressible Euler
equations, with forcing f (both vanishing identically). We next verify
that uν is a physical realization of u: It is straightforward to show
that uν ∗

⇀ u ≡ 0 in L∞
t L2

x. Furthermore, we have uν( · , 0) ≡ 0, since
γ(0) = 0 by assumption. In particular, this implies that uν

0 → u0 in
L2
x. Next, by construction of f ν = ∂tu

ν − ν∆uν , one readily verifies
that

f ν =
x⊥

|x|2 sin
( |x|
ν1/3

)
φ(|x|)γ′(t) +O(ν1/3),

where the O(ν1/3)-term is with respect to L∞
t L∞

x . Thus, f ν⇀0 in L2
tL

2
x

as ν → 0 by the oscillatory nature of the sine-factor. Finally, we point
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out that uν is a solution of the Navier-Stokes equations (2.4) with forc-

ing f ν : Indeed, any velocity field of the form U(x) = x⊥

|x|2 sin
(

|x|
ν1/3

)
φ(|x|)

is a stationary solution of the Euler equations (see e.g. [22, Chap-
ter 2.2.1, Example 2.1]), i.e. there exists a pressure P such that
U · ∇U +∇P = 0. Thus, uν(x, t) = U(x)γ(t) solves the Navier–Stokes
equations

∂tu
ν + uν · ∇uν +∇pν = ν∆uν + f ν ,

where pν = P (x)γ(t)2, and f ν = ∂tu
ν − ν∆uν . Lastly, we remark

that, even though uν⇀u ≡ 0, it is readily verified from (2.10), that
‖uν‖2L2

x
6→ 0 as ν → 0, and hence uν does not converge strongly to

0 ≡ u in L2
tL

2
x. This establishes the claim.

3. Proof of Theorem 2.8

In the present section, we will provide a detailed proof of Theorem
2.8. After recalling several useful a priori estimates on the Navier-
Stokes equations (2.4) in Section 3.1, a proof of the direction “energy
balance ⇒ strong convergence uν → u” will be given in Proposition
3.8 in Section 3.2. A proof of the converse is given in Section 3.3, see
Proposition 3.12. Finally, in Section 3.4, Proposition 3.15, we show
that, under the assumptions of Theorem 2.8, the convergence uν → u
in L2

tL
2
x can be improved to uniform-in-time convergence, i.e. uν → u

in C([0, T ];L2
x).

3.1. A priori estimates. We collect several useful a priori estimates
for solutions of the Navier-Stokes equations. Although these estimates
are well-known, we include precise statements and proofs for complete-
ness.

Lemma 3.1. Let uν ⇀ u be a physically realizable solution of the
forced Euler equations with initial data uν

0 → u0 in L2. Assume that
supν ‖f ν‖L2

tL
2
x
≤ M . Then

‖u(t)‖2L2
x
≤
(
‖u0‖2L2

x
+
√
tM
)
e
√
tM , ∀ t ∈ [0, T ].

Proof. For ν > 0, we have

‖uν(t)‖2L2
x
= ‖uν

0‖2L2
x
− 2ν

ˆ t

0

‖ων‖2L2
x
dτ + 2

ˆ t

0

〈f ν , uν〉 dτ

≤ ‖uν
0‖2L2

x
+ 2

ˆ t

0

‖f ν(τ)‖L2
x
‖uν(τ)‖L2

x
dτ
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We estimate the forcing term as follows,

2

ˆ t

0

‖f ν(τ)‖L2
x
‖uν(τ)‖L2

x
dτ ≤

ˆ t

0

‖f ν(τ)‖L2
x
dτ +

ˆ t

0

‖f ν(τ)‖L2
x
‖uν(τ)‖2L2

x
dτ,

to obtain

‖uν(t)‖2L2
x
≤ ‖uν

0‖2L2
x
+

ˆ t

0

‖f ν(τ)‖L2
x
dτ +

ˆ t

0

‖f ν(τ)‖L2
x
‖uν(τ)‖2L2

x
dτ.

The integral form of Gronwall’s inequality then implies that

‖uν(t)‖2L2
x
≤
(
‖uν

0‖2L2
x
+

ˆ t

0

‖f ν(τ)‖L2
x
dτ

)
e
´ t
0 ‖fν‖

L2
x
dτ
. (3.1)

This provides a quantitative upper bound on ‖uν(t)‖L2
x
, provided that

f ν ∈ L1
tL

2
x. The additional assumption supν ‖f ν‖L2

tL
2
x
≤ M implies an

estimate which is uniform in ν:

‖uν(t)‖2L2
x
≤
(
‖uν

0‖2L2
x
+
√
t ‖f ν‖L2

tL
2
x

)
e
√
t ‖fν‖

L2
t L

2
x

≤
(
‖uν

0‖2L2
x
+
√
tM
)
e
√
tM .

(3.2)

Since uν ⇀ u weakly-∗ in L∞
t L2

x, and uν
0 → u0 converges strongly in

L2, the above estimate implies that

‖u(t)‖2L2
x
≤
(
‖u0‖2L2

x
+
√
tM
)
e
√
tM .

�

Remark 3.2. If f ν → f strongly in L1
tL

2
x, and if the convergence

uν
0 → u0 is strong in L2

x, then, using weak lower-semicontinuity of the
L2-norm on the estimate (3.1) derived in the proof of Lemma 3.1, we
obtain

‖u(t)‖2L2
x
≤
(
‖u0‖2L2

x
+

ˆ t

0

‖f(τ)‖L2
x
dτ

)
e
´ t
0
‖f(τ)‖

L2
x
dτ
.

We next show that, under the L2
tL

2
x-bound on the forcing, physically

realizable solutions belong to C([0, T ];w-L2(T2)).

Lemma 3.3. Let u ∈ L∞
t L2

x be a physically realizable weak solution
of the incompressible Euler equations. Consider a physical realization
uν⇀u with external forcing f ν⇀f , such that supν ‖f ν‖L2

tL
2
x
< ∞. Let

〈·, ·〉L2 denote the L2-inner product. Then, up to redefinition on a set of
times of Lebesgue measure zero, it follows that, for every φ ∈ L2(T2),
the function t 7→ 〈u(t), φ〉L2 is continuous, i.e. u ∈ C([0, T ];w-L2(T2)).
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Remark 3.4. Given the result of Lemma 3.3, we will assume that any
physically realizable solution uν⇀u with supν ‖f ν‖L2

tL
2
x
< ∞ belongs

to u ∈ C([0, T ];w-L2(T2)) without further comment.

Proof of Lemma 3.3. Let M := supν ‖f ν‖L2
tL

2
x
. It follows from the

strong convergence uν
0 → u0 and by Lemma 3.1 that we can bound

‖uν‖2L2
x
≤
(
‖uν

0‖L2
x
+
√
TM

)
e
√
TM ≤ C,

by a constant C that is independent of ν. Therefore {uν} is a bounded
subset of L∞((0, T );L2(T2)).
Next we will bound ∂tu

ν .
Let φ = φ(x) be a smooth test vector field. We write

∂tu
ν = −uν · ∇uν −∇pν + ν∆uν + f ν ,

we take the inner product with φ and integrate on T
2 to find

ˆ

T2

∂tu
ν · φ = −

ˆ

T2

[div (uν ⊗ uν) +∇pν + ν∆uν + f ν ] · φ.

Without loss of generality we may assume that div(φ) = 0, since we
have div(uν) = 0; thus the pressure term drops out. Transferring
derivatives to φ, and bounding the terms on the right, we find∣∣∣∣

ˆ

T2

∂tu
ν · φ

∣∣∣∣ ≤ ‖uν‖2L2
x
‖Dφ‖L∞

x
+ ν‖uν‖L2

x
‖∆φ‖L2

x
+ ‖f ν‖L2

x
‖φ‖L2

x
,

where Dφ denotes the Jacobian matrix of φ.
It follows from Sobolev embedding that, for sufficiently large L, we

have ∣∣∣∣
ˆ

T2

∂tu
ν · φ

∣∣∣∣ ≤ C
(
1 + ‖f ν‖L2

x

)
‖φ‖HL

x
,

for all φ ∈ HL(T2), with a constant C > 0 that is independent of ν.
Interpreting the left-hand-side above as a duality pairing between H−L

and HL yields
‖∂tuν‖H−L

x
≤ 1 + ‖f ν‖L2

x
.

Therefore
‖∂tuν‖L2

tH
−L
x

≤ C(1 +M), (3.3)

so that {∂tuν} is a bounded subset of L2((0, T );H−L(T2)).
It now follows immediately from the Aubin-Lions-Simon lemma, see

for instance [2, Theorem II.5.16], that {uν}ν is a compact subset of
C([0, T ];w-L2(T2)), because the embedding L2 ⊂ w-L2 is compact.
Given that uν ⇀ u weak-∗ L∞

t L2
x it follows from the uniqueness of

limits that u ∈ C([0, T ];w-L2(T2)), as desired.
�
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Lemma 3.5. Let uν ⇀ u be a physically realizable solution of the
forced Euler equations with initial data uν

0 → u0 strongly in L2
x. As-

sume that supν ‖f ν‖L2
tL

2
x
≤ M . Then u = u(t) is right-continuous at

t = 0, i.e.
lim
t→0+

‖u(t)− u0‖L2
x
= 0.

Proof. Since u ∈ C([0, T ];w-L2
x), and by lower-semicontinuity of the

L2
x-norm under weak limits and the upper bound from Lemma 3.1, it

follows that:

‖u0‖2L2
x
≤ lim inf

t→0
‖u(t)‖2L2

x
≤ lim sup

t→0
‖u(t)‖2L2

x

≤ lim sup
t→0

(
‖u0‖2L2

x
+
√
tM
)
e
√
tM = ‖u0‖2L2

x
.

These lower and upper bounds imply that limt→0 ‖u(t)‖L2
x
= ‖u0‖L2

x
.

We also have u(t) ⇀ u0 as t → 0, from u ∈ C([0, T ];w-L2
x). Weak con-

vergence together with convergence of the norms implies strong con-
vergence, which concludes the proof. �

Remark 3.6. It follows from Lemma 3.5, in particular, that

lim
δ→0

‖u(δ)‖L2
x
= ‖u0‖L2

x
. (3.4)

Furthermore, since u ∈ L∞
t L2

x and f ∈ L2
tL

2
x, we have 〈f, u〉L2

x
∈ L1

t .
Therefore,

lim
δ→0

ˆ t

δ

〈f, u〉L2
x
ds =

ˆ t

0

〈f, u〉L2
x
ds. (3.5)

Following the classical terminology of turbulence theory, we refer to
the square of the L2-norm of vorticity as the enstrophy.

Lemma 3.7. Let uν be a solution of the forced Navier-Stokes equa-
tions with forcing f ν ∈ L2

tL
2
x. Then there exists a constant C =

C(‖uν
0‖L2

x
, ‖f ν‖L2

tL
2
x
) > 0, such that

‖ων(t)‖L2
x
≤ C√

νt
.

Proof. From the energy balance for solutions of Navier-Stokes, we ob-
tain

ν

ˆ T

0

‖ων‖2L2
x
dt =

1

2
‖u0‖2L2

x
− 1

2
‖uν(T )‖2L2

x
−
ˆ T

0

〈f ν , uν〉L2
x
dt

≤ 1

2
‖u0‖2L2

x
+

1

2
‖f ν‖2L2

tL
2
x
+

T

2
‖uν‖2L∞

t L2
x
.
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We use the a priori estimate from Lemma 3.1 to deduce that all
terms on the right-hand side are bounded by a positive constant C =
C(‖uν

0‖L2
x
, ‖f ν‖L2

tL
2
x
):

ν

ˆ T

0

‖ων‖2L2
x
dτ ≤ C(‖uν

0‖L2
x
, ‖f ν‖L2

tL
2
x
). (3.6)

To obtain a pointwise estimate on ‖ων(t)‖L2
x
, we note that the vortic-

ity equation implies the following upper bound on the enstrophy (cf.
(2.8)), for τ ∈ [0, t]:

‖ων(t)‖2L2
x
≤ ‖ων(τ)‖2L2

x
+

1

ν

ˆ t

τ

‖f ν(s)‖2L2
x
ds.

≤ ‖ων(τ)‖2L2
x
+

1

ν
‖f ν‖2L2

tL
2
x
.

In particular, integrating in τ from 0 to t, the above estimate implies
that

νt ‖ων(t)‖2L2
x
≤ ν

ˆ t

0

‖ων‖2L2
x
dτ + T‖f ν‖2L2

tL
2
x

By (3.6), the first term on the right-hand side is bounded by a constant
depending only on the initial data and forcing. In particular, we con-
clude that there exists a positive constant C = C(T, ‖uν

0‖L2
x
, ‖f ν‖L2

tL
2
x
),

such that

‖ων(t)‖L2
x
≤ C√

νt
.

�

3.2. Energy balance implies strong convergence.

Proposition 3.8. Let u be a physically realizable solution of the
forced Euler equations (2.1), with initial data u0 ∈ L2(T2) and forcing
f ∈ L2((0, T );L2(T2)). Let uν be a physical realization of u, and
assume additionally that the forcing f ν converges strongly to f in
L2((0, T );L2(T2)). Then it holds that, if u is energy balanced, then
uν → u strongly in L2((0, T );L2(T2)).

Proof. As u is energy balanced it follows that

‖u(t)‖2L2
x
= ‖u0‖2L2

x
+ 2

ˆ t

0

〈f, u〉L2
x
dτ.

Furthermore, in view of the convergence uν⇀u in weak-∗ L∞((0, T );L2(T2))
we have

uν⇀u weakL2
tL

2
x,
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so that, by weak lower semicontinuity,

‖u‖L2
tL

2
x
≤ lim inf

ν→0+
‖uν‖L2

tL
2
x
.

Recall the energy inequality for the physical realization, valid for any
0 ≤ τ ≤ T :

‖uν(τ)‖2L2
x
≤ ‖uν

0‖2L2
x
+ 2

ˆ τ

0

〈f ν , uν〉L2
x
ds.

The information above yields
ˆ T

0

‖u(τ)‖2L2
x
dτ ≤ lim inf

ν→0+

ˆ T

0

‖uν(τ)‖2L2
x
dτ (3.7)

≤ lim sup
ν→0+

ˆ T

0

‖uν(τ)‖2L2
x
dτ (3.8)

≤ lim sup
ν→0+

ˆ T

0

(
‖uν

0‖2L2
x
+ 2

ˆ τ

0

〈f ν , uν〉L2
x
ds

)
dτ

(3.9)

=

ˆ T

0

(
‖u0‖2L2

x
+ 2

ˆ τ

0

〈f, u〉L2
x
ds

)
dτ (3.10)

=

ˆ T

0

‖u(τ)‖2L2
x
dτ. (3.11)

Therefore ‖uν‖L2
tL

2
x
→ ‖u‖L2

tL
2
x
and, using again that convergence of

norms and weak convergence implies strong convergence, the proof is
concluded. �

Remark 3.9. Notice that Proposition 3.8 is valid in any space dimen-
sion. In other words, after appropriately adjusting the definition of an
energy balanced physically realizable solution, we may substitute T2 in
the statement by T

d for any d ≥ 2.

3.3. Strong convergence implies energy balance. The proof that
strong convergence uν → u in L2

tL
2
x of the physical realization implies

energy balance of the limit u will be based on the following inequality
for the enstrophy, for δ < t, with δ, t ∈ [0, T ], which follows from (2.8):

‖ων(t)‖2L2
x
≤ ‖ων(δ)‖2L2

x
− ν

ˆ t

δ

‖∇ων‖2 dτ +
1

ν

ˆ t

δ

‖f ν‖2L2
x
dτ.

The basic idea, introduced in [6], is to reduce the inequality above to
a differential inequality for ‖ων‖2L2

x
, which in turn can be used to show

that the energy dissipation term ν
´ T

0
‖ων‖2L2

x
dτ → 0 as ν → 0. To
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this end, the crucial ingredient is a good lower bound on ‖∇ων‖2L2
x
in

terms of ‖ων‖2L2
x
, which is obtained in Lemma 3.10 below. Before we

state this lemma we must recall the notation for structure functions
introduced in [18].
If v ∈ L2

x then the (L2-based) structure function S2(v; r) is given by

S2(v; r) =

(
 

Br(0)

|v(x+ h)− v(x)|2 dh
)1/2

.

If, now, v ∈ L2
tL

2
x then the time-integrated structure function ST

2 (v; r)
is defined as

ST
2 (v; r) =

(
ˆ T

0

[S2(v(t); r)]
2 dt

)1/2

.

Lemma 3.10. Let {uν}ν>0 be a precompact family of divergence-free
vector fields in L2((0, T );L2(T2)). There exists a monotonically in-
creasing function σ : [0,∞) → [0,∞), such that limz→∞ σ(z) = ∞,
and such that for each ν > 0 and δ, t ∈ [0, T ], δ < t, the vorticity
ων = curl uν satisfies the following inequality
(
ˆ t

δ

‖ων(τ)‖2L2
x
dτ

)2

σ

(
ˆ t

δ

‖ων(τ)‖2L2
x
dτ

)
≤
ˆ t

δ

‖∇ων(τ)‖2L2
x
dτ.

Proof. This result is implicitly contained in the proof of [18, Thm.
2.11]. We outline the argument here. The first step is the following
“interpolation-type” inequality valid for any ω = curl u ∈ H1(T2), see
[18, Lemma 2.6]: There exists an absolute constant C > 0, such that

‖ω‖L2
x
≤ Cr‖∇ω‖L2

x
+

2S2(u; r)

r
, ∀r > 0.

Applying this estimate to ων , squaring terms and integrating in time,
it follows that

ˆ t

δ

‖ων‖2L2
x
dτ . r2

ˆ t

δ

‖∇ων‖2L2
x
dτ +

[ST
2 (u

ν ; r)]2

r2
, ∀ r > 0,

with an implied constant independent of ν, r > 0 and independent
of δ, t ∈ [0, T ]. By [18, Prop. 2.10], the precompactness of {uν} ⊂
L2
tL

2
x implies that there exists a (monotonically increasing) modulus of

continuity φ : [0,∞) → [0,∞), with limr→0 φ(r) = 0, such that

sup
ν>0

[ST
2 (u

ν; r)]2 ≤ [φ(r)]2.

Since the left-hand side is uniformly bounded from above by

sup
ν

ST
2 (u

ν ; r) ≤ sup
ν

2‖uν‖L2
tL

2
x
< ∞,
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we may assume, without loss of generality, that [φ(r)]2 ≤ β for some
β > 0, for all r ≥ 0. Optimizing with respect to r > 0 so as to balance
terms (cf. [18, eq. (2.13)]) results in
(
ˆ t

δ

‖ω‖2L2
x
dτ

)2

≤ C

[
φ

(
β
[
´ t

δ
‖∇ων‖2L2

x
dτ
]−1/4

)]2 ˆ t

δ

‖∇ων‖2L2
x
dτ,

with a constant C > 0, independent of ν, r, δ and t. To simplify

notation, let us define a new modulus of continuity φ̃ := Cφ2, so that
(
ˆ t

δ

‖ω‖2L2
x
dτ

)2

≤ φ̃

(
β
[
´ t

δ
‖∇ων‖2L2

x
dτ
]−1/4

)
ˆ t

δ

‖∇ων‖2L2
x
dτ.

(3.12)
We next claim that the right-hand side of inequality (3.12) is bounded

by a monotonically increasing function of z =
´ t

δ
‖∇ων‖2L2

x
dτ . Indeed,

if we denote the right-hand side of (3.12) by f(z) = φ̃(βz−1/4)z, then

f(z) = o(z) as z → ∞, since φ̃ is a modulus of continuity and hence

φ̃(βz−1/4) → 0 as z → ∞. In [18, Appendix C, Lemma C.1] it is
shown that, for such f = f(z), there exists a dominating function F ,
with F (z) ≥ f(z), satisfying the following properties: F (z) = o(z) as
z → ∞, F is invertible and its inverse F−1 is a monotonically increasing
function which grows super-linearly. It is shown, furthermore, that F−1

can be written in the form F−1(y) = yσ(
√
y), with σ a monotonically

increasing function such that σ(
√
y) → ∞ as y → ∞. Using the nota-

tion introduced in the current paragraph, see (3.12), and estimating f
by F we find

(
ˆ t

δ

‖ω‖2L2
x
dτ

)2

≤ F

(
ˆ t

δ

‖∇ων‖2L2
x
dτ

)
.

Applying F−1 to both sides of the inequality above yields

F−1

([
ˆ t

δ

‖ω‖2L2
x
dτ

]2)
≤
ˆ t

δ

‖∇ων‖2L2
x
dτ.

Finally, writing F−1(y) = yσ(
√
y) implies the desired upper bound

(
ˆ t

δ

‖ω‖2L2
x
dτ

)2

σ

(
ˆ t

δ

‖ω‖2L2
x
dτ

)
≤
ˆ t

δ

‖∇ων‖2L2
x
dτ.

�

The previous lemma will allow us to derive a differential inequality
for the energy dissipation term ζν(t) = ν

´ t

0
‖ων‖2L2

x
dτ , starting from

the vorticity equation. The next lemma will then be used to show
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that ζν(T ) → 0, as ν → 0, i.e. absence of anomalous dissipation, see
Definition 2.6.

Lemma 3.11. Let 0 ≤ a < T , M > 0 and let σ : R+ → R+ be a con-
tinuous, monotonically increasing function, such that limz→∞ σ(z) =
∞. Let {ζν}ν>0 ⊂ W 1,1([a, T ]) be a family of monotonically increasing
functions. If ζν satisfies the differential inequality

dζν
dt

≤ M − ζ2νσ

(
ζν
ν

)
, a.e. t ∈ [a, T ],

then lim supν→0 ζν(T ) = 0.

Proof. Since ζν is monotonically increasing and ζν ∈ W 1,1 we have, for
almost every t ∈ [a, T ], that:

0 ≤ d

dt
ζν(t) ≤ M − [ζν(t)]

2σ

(
ζν(t)

ν

)
.

We note that the function on the right-hand side is continuous as a
function of t. Letting t → T , we deduce that

[ζν(T )]
2σ(ζν(T )/ν) ≤ M, ∀ ν > 0.

From the monotonicity of σ it follows that the function z 7→ z2σ(z/ν)
is increasing.
Let us assume now, by contradiction, that lim supν→0 ζν(T ) ≥ 2ǫ0 >

0, so that there exists a sequence νk → 0 with ζνk(T ) ≥ ǫ0, for all
k ∈ N. In this case we have, in particular, that

ǫ20σ

(
ǫ0
νk

)
≤ [ζνk(T )]

2σ

(
ζνk(T )

νk

)
≤ M, (3.13)

for all k ∈ N, i.e. ǫ20σ(ǫ0/νk) is uniformly bounded. On the other hand,
letting k → ∞, and using the assumption that limz→∞ σ(z) = ∞ leads
to

lim
k→∞

ǫ20σ

(
ǫ0
νk

)
= ∞,

in contradiction with (3.13). Therefore, we must have lim supν→0 ζν(T ) =
0 as claimed. �

We are now in a position to prove the following result, which encodes
the “strong convergence ⇒ energy balance” part of Theorem 2.8.

Proposition 3.12. Let u be a physically realizable solution of the
Euler equations (2.1) with forcing f ∈ L2((0, T );L2(T2)). Let uν be
a physical realization of u and assume that the forcing f ν converges
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weakly to f in L2((0, T );L2(T2)). If uν → u strongly in L2((0, T );L2(T2)),
then u is energy balanced.

Proof. Step 1: We begin by proving that for any δ > 0, the strong con-
vergence assumption implies that the “δ-truncated” energy dissipation
term is vanishingly small:

ν

ˆ T

δ

‖ων‖2L2
x
dτ → 0, as ν → 0.

To see this, first recall that, by Lemma 3.7, for any δ > 0, we have
‖ων(δ)‖L2

x
< ∞. We may thus consider the following enstrophy equa-

tion, valid for any ν > 0, and δ ∈ (0, t]:

1

2
‖ων(t)‖2L2

x
=

1

2
‖ων(δ)‖2L2

x
− ν

ˆ t

δ

‖∇ων‖2L2
x
dτ +

ˆ t

δ

〈ων, gν〉 dτ,

with gν = curl f ν ∈ L2
tH

−1
x . Integrating by parts the last term and

using the Cauchy-Schwarz inequality we find

‖ων(t)‖2L2
x
≤ ‖ων(δ)‖2L2

x
− 2ν

ˆ t

δ

‖∇ων‖2L2
x
dτ + 2

ˆ t

δ

‖∇ων‖L2
x
‖f ν‖L2

x
dτ.

By Young’s inequality we have

‖ων(t)‖2L2
x
≤ ‖ων(δ)‖2L2

x
− ν

ˆ t

δ

‖∇ων‖2L2
x
dτ +

1

ν

ˆ t

δ

‖f ν‖2L2
x
dτ. (3.14)

In the following we keep δ > 0 fixed, and we will only consider values
t ≥ δ. We note that, using again Lemma 3.7, there exists a constant
C > 0, depending only on ‖uν

0‖L2
x
and ‖f ν‖L2

tL
2
x
, such that

‖ων(δ)‖2L2 ≤ C

νδ
. (3.15)

Furthermore we have

1

ν

ˆ t

δ

‖f ν‖2L2 dτ ≤ 1

ν
‖f ν‖2L2

tL
2
x
. (3.16)

Using (3.15), (3.16) in (3.14), and since ‖uν
0‖L2

x
, ‖f ν‖L2

tL
2
x
are clearly

uniformly bounded, we can find a constant M = M(δ) > 0 such that

‖ων(t)‖2L2
x
≤ M

ν
− ν

ˆ t

δ

‖∇ων‖2L2
x
dτ, (3.17)

for all ν > 0. To estimate the gradient term, we note that Lemma
3.10 implies the existence of a monotonically increasing continuous,



ENERGY BALANCE 19

nonnegative, function σ = σ(z), with limz→∞ σ(z) = ∞, such that
(
ˆ t

δ

‖ων(s)‖2L2
x
dτ

)2

σ

(
ˆ t

δ

‖ων(s)‖2L2
x
dτ

)
≤
ˆ t

δ

‖∇ων(s)‖2L2
x
dτ,

(3.18)

for all ν > 0. We introduce the shorthand notation

ζν,δ(t) := ν

ˆ t

δ

‖ων(τ)‖2L2
x
dτ, (3.19)

for t ≥ δ, and we conclude that

−ν

ˆ t

δ

‖∇ων(τ)‖2L2
x
dτ ≤ −1

ν
[ζν,δ(t)]

2σ

(
ζν,δ(t)

ν

)
.

We also note that ζν,δ ∈ W 1,1([δ, T ]), with d
dt
ζν,δ(t) = ν‖ων(t)‖2L2 . Mul-

tiplication of (3.17) by ν and substitution of the above estimate there-
fore yields

d

dt
ζν,δ(t) ≤ M − [ζν,δ(t)]

2σ

(
ζν,δ(t)

ν

)
. (3.20)

Recall that M depends on δ but is independent of ν and t. By
construction, see (3.19), t 7→ ζν,δ(t) is monotonically increasing, and
ζν,δ ∈ W 1,1([δ, T ]). Since δ > 0 is fixed, and ζν,δ satisfies the differential
inequality (3.20), we can use Lemma 3.11 to obtain that

lim sup
ν→0

ν

ˆ T

δ

‖ων(τ)‖2L2
x
dτ ≡ lim sup

ν→0
ζν,δ(T ) = 0,

as desired. This concludes step 1 of the proof.
Step 2: We are now in a position to show that the physically real-

izable solution u satisfies the energy balance equation (2.3). First we
note that the strong convergence uν → u in L2

tL
2
x implies strong conver-

gence of ‖uν(t)‖L2
x
→ ‖u(t)‖L2

x
in L2([0, T ]). Passing to subsequences

as needed, without relabeling, we may assume that

‖uν(t)‖L2
x
→ ‖u(t)‖L2

x
, a.e. t ∈ [0, T ]. (3.21)

Next, we recall the energy identity for uν, see also (2.5):

1

2
‖uν(t)‖2 = 1

2
‖uν(δ)‖2 − ν

ˆ t

δ

‖ων‖2L2
x
dτ +

ˆ t

δ

〈f ν , uν〉L2
x
dτ, (3.22)

valid for 0 ≤ δ ≤ t ≤ T
By (3.21) we can choose δ > 0 outside of a set of measure 0 so that

‖uν(δ)‖L2
x
→ ‖u(δ)‖L2

x
. From the weak convergence f ν ⇀ f in L2

tL
2
x,
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and the strong convergence uν → u in L2
tL

2
x, it follows that

ˆ t

δ

〈f ν , uν〉L2
x
dτ →

ˆ t

δ

〈f, u〉L2
x
dτ, (ν → 0),

for any t ∈ [δ, T ]. By Step 1, it follows that

ν

ˆ t

δ

‖ων‖2L2
x
dτ → 0, (ν → 0),

uniformly for all t ∈ [δ, T ].
Thus, we conclude that for almost every t ∈ [δ, T ], we have

1

2
‖u(t)‖2L2

x
= lim

ν→0

1

2
‖uν(t)‖2L2

x
=

1

2
‖u(δ)‖2L2

x
+

ˆ t

δ

〈f, u〉L2
x
dτ.

By Remark 3.6 it holds that δ 7→ ‖u(δ)‖2L2
x
, and δ 7→

´ t

δ
〈f, u〉L2

x
dτ are

both right-continuous at δ = 0, see (3.4) and (3.5). Letting δ → 0, we
therefore conclude that

1

2
‖u(t)‖2L2

x
=

1

2
‖u0‖2L2

x
+

ˆ t

0

〈f, u〉L2
x
dτ,

for almost all t ∈ [0, T ], so that u is energy balanced.
Redefining u on a set of times of measure zero it follows that the

energy balance holds for all t ∈ [0, T ], see also Remark 2.3. This
concludes the proof. �

Corollary 3.13. Let u be a physically realizable solution of the Euler
equations (2.1) with forcing f ∈ L2((0, T );L2(T2)). Let uν be a physi-
cal realization of u and assume that the forcing f ν converges weakly to
f in L2((0, T );L2(T2)). If uν → u strongly in L2((0, T );L2(T2)), then

lim
ν→0

ν

ˆ T

0

‖ων‖2L2
x
dτ = 0. (3.23)

Proof. For the sake of contradiction, assume that the claim is false.
Then there exists ǫ0 > 0, and a sequence νn → 0, such that

νn

ˆ T

0

‖ωνn‖2L2
x
dτ ≥ ǫ0 > 0.

In step 1 of the proof of Proposition 3.12, we have already shown that
for any δ > 0, we have

lim
ν→0

ν

ˆ T

δ

‖ων‖2L2
x
dτ = 0.
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Thus, the assumed lower bound on the energy dissipation would imply
that

lim inf
n→∞

νn

ˆ δ

0

‖ωνn‖2L2
x
dτ ≥ ǫ0 > 0, (3.24)

for any δ > 0. Our aim is to find δ > 0 for which this lower bound
fails, thus reaching the desired contradiction.
By energy balance for Navier-Stokes (2.5), we have

νn

ˆ δ

0

‖ωνn‖2L2
x
dτ =

1

2
‖uνn(δ)‖2L2

x
− 1

2
‖uνn

0 ‖2L2
x
−
ˆ δ

0

〈f νn, uνn〉L2
x
dτ.

Since uνn → u strongly in L2
tL

2
x, and since f νn⇀f weakly in L2

tL
2
x, it

follows that

lim
n→∞

ˆ δ

0

〈f νn, uνn〉L2
x
dτ =

ˆ δ

0

〈f, u〉L2
x
dτ.

Furthermore, since uνn
0 → u(0) strongly in L2

x by assumption, we have

lim
n→∞

1

2
‖uνn

0 ‖2L2
x
=

1

2
‖u(0)‖2L2

x
.

Finally, as shown in the proof of Proposition 3.12 (cf. equation 3.21),
after passing to a subsequence we can ensure that

lim
n→∞

‖uνn(δ)‖L2
x
= ‖u(δ)‖L2

x
, a.e. δ ∈ [0, T ].

Thus, for almost every δ > 0, we conclude that

lim
n→∞

νn

ˆ δ

0

‖ωνn‖2L2
x
dτ =

1

2
‖u(δ)‖2L2

x
− 1

2
‖u(0)‖2L2

x
−
ˆ δ

0

〈f, u〉 dτ.

From Remark 3.6, it follows that the right-hand side in the last display
tends to 0 as δ → 0. In particular, given ǫ0 > 0, we can find δ > 0,
outside of a set of measure zero, such that

lim
n→∞

νn

ˆ δ

0

‖ωνn‖2L2
x
dτ =

1

2
‖u(δ)‖2L2

x
− 1

2
‖u(0)‖2L2

x
−
ˆ δ

0

〈f, u〉 dτ

≤ ǫ0
2
. (3.25)

This upper bound (3.25) is clearly in contradiction with (3.24), com-
pleting the proof. �

Remark 3.14. Corollary 3.13 corresponds to the statement that strong
convergence of the physical realization implies no anomalous dissipa-
tion. In Proposition 3.12 we use the strong convergence and the ab-
sence of anomalous dissipation to establish that there is no inviscid
dissipation in the associated physically realizable solution. Proposition
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3.8 corresponds to the statement that absence of inviscid dissipation
implies strong convergence, which in turn implies no anomalous dissi-
pation.
It is natural to ask whether absence of anomalous dissipation alone

implies no inviscid dissipation. Going back to (2.5) we see that
ˆ t

0

〈f ν, uν〉L2
x
dτ − ν

ˆ t

0

‖ων(τ)‖2L2
x
dτ =

1

2

(
‖uν(t)‖2L2

x
− ‖uν

0‖2L2
x

)

(3.26)

≤
ˆ t

0

〈f ν , uν〉L2
x
dτ.

If f ν → f strongly in L2
tL

2
x and uν ⇀ u weakly in L2

tL
2
x then the

right-hand-side of (3.26) converges to
ˆ t

0

〈f, u〉L2
x
dτ,

as ν → 0. If, additionally, we assume absence of anomalous dissipation
then the left-hand-side converges to the same term. It follows that

lim sup
ν→0

(
‖uν(t)‖2L2

x
− ‖uν

0‖2L2
x

)
=

ˆ t

0

〈f, u〉L2
x
dτ. (3.27)

However, even though ‖uν
0‖L2

x
→ ‖u0‖L2

x
we cannot conclude that u

satisfies energy balance unless we have ‖uν(t)‖2L2
x
→ ‖u(t)‖2L2

x
a.e. t ∈

[0, T ]. As we have already argued, this is equivalent to requiring that
uν converge strongly to u in L2

tL
2
x. Therefore, absence of anomalous

dissipation does not rule out inviscid dissipation. Nevertheless, it is in-
teresting in its own right to study the absence of anomalous dissipation
and we refer the reader to [23] for results in this direction.

3.4. Improvement from L2
tL

2
x to CtL

2
x convergence. Putting to-

gether Propositions 3.8 and 3.12, we have shown that Theorem 2.8(1)
is equivalent to Theorem 2.8(2). We will now complete the proof of
Theorem 2.8 by showing that these two equivalent statements are also
equivalent to Theorem 2.8(3).

Proposition 3.15. Let u be a physically realizable solution of the
Euler equations (2.1) with forcing f ∈ L2((0, T );L2(T2)). Let uν be
a physical realization of u and assume that the forcing f ν converges
strongly to f in L2

tL
2
x.

If uν → u strongly in C([0, T ];L2(T2)) then uν → u converges
strongly in L2((0, T );L2(T2)), or, equivalently, u is energy balanced.
Conversely, if either of the following equivalent assertions holds,
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• u is energy balanced, (cf. Theorem 2.8(1)),
• uν converges to u in L2((0, T );L2(T2)), (cf. Theorem 2.8(2)),

then the convergence uν → u is actually strong in C([0, T ];L2(T2)),
(cf. Theorem 2.8(3)).

Proof. It is immediate that uν → u strongly in C([0, T ];L2(T2)) im-
plies uν → u strongly in L2

tL
2
x. By Propositions 3.8 and 3.12 this is

equivalent to u being energy balanced.
It remains to show that Theorem 2.8(1) and Theorem 2.8(2) together

imply Theorem 2.8(3). Let u be energy-balanced and uν → u strongly
in L2

tL
2
x.

Step 1: We start with the observation that, since u is energy-
balanced, then u ∈ C([0, T ];L2(T2)). To see this first, recall Remark
2.3, in which we observed that the function t 7→ ‖u(t)‖L2 is continuous.
In addition in Lemma 3.3 we showed that u ∈ C([0, T ];w-L2(T2)). It
is now immediate that continuity of norms together with continuity in
time into L2

x with the weak topology implies continuity in time into L2
x.

We now come to the heart of the proof.
Step 2: We claim that ‖uν(t)‖2L2

x
→ ‖u(t)‖2L2

x
uniformly on [0, T ].

To see this, we note that, since u is energy balanced and from the en-
ergy balance identity (2.5) for solutions of the Navier-Stokes equations,
we have for any t ∈ [0, T ]:

‖u(t)‖2L2
x
− ‖uν(t)‖2L2

x
=

{
‖u0‖2L2

x
+ 2

ˆ t

0

〈f, u〉L2
x
dτ

}

−
{
‖uν

0‖2L2
x
− 2ν

ˆ t

0

‖ων‖2L2
x
dτ + 2

ˆ t

0

〈f ν , uν〉L2
x
dτ

}

= ‖u0‖2L2
x
− ‖uν

0‖2L2
x

+ 2

{
ˆ t

0

〈f, u〉L2
x
dτ −

ˆ t

0

〈f ν, uν〉L2
x
dτ

}

+ 2ν

ˆ t

0

‖ων‖2 dτ.
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Bounding the integal terms on the right-hand side, it follows that
∣∣∣‖u(t)‖2L2

x
− ‖uν(t)‖2L2

x

∣∣∣ ≤
∣∣∣‖u0‖2L2

x
− ‖uν

0‖2L2
x

∣∣∣

+ 2

ˆ T

0

‖f(τ)− f ν(τ)‖L2
x
‖u(τ)‖L2

x
dτ

+ 2

ˆ T

0

‖f ν(τ)‖L2
x
‖u(τ)− uν(τ)‖L2

x
dτ

+ 2ν

ˆ T

0

‖ων‖2 dτ

=: (I) + (II) + (III) + (IV ).

Since the right-hand side is independent of t, we conclude that

sup
t∈[0,T ]

∣∣∣‖u(t)‖2L2
x
− ‖uν(t)‖2L2

x

∣∣∣ ≤ (I) + (II) + (III) + (IV ).

It remains to show that the terms on the right-hand side converge to
0 as ν → 0.
We note that (I) converges to 0 as ν → 0, since by assumption,

uν
0 → u0 strongly in L2

x, and hence ‖uν
0‖L2

x
→ ‖u0‖L2

x
. Next, we can

bound

(II) ≤ ‖f − f ν‖L2
tL

2
x
‖u‖L2

tL
2
x
→ 0,

by assumption on f ν → f in L2
tL

2
x. Furthermore, since ‖f ν‖L2

tL
2
x
≤ M

is uniformly bounded, and since we also assume that uν → u in L2
tL

2
x,

we similarly conclude that (III) → 0. Finally, since uν → u in L2
tL

2
x,

the convergence (IV ) → 0, as ν → 0, follows from Corollary 3.13.
Step 3: We finally claim that

sup
t∈[0,T ]

‖u(t)− uν(t)‖L2
x
→ 0, as ν → 0.

We argue by contradiction. If this is not the case, then there exists a
convergent sequence tn → t ∈ [0, T ] and a sequence νn → 0, such that

‖u(tn)− uνn(tn)‖L2
x
≥ ǫ0 > 0.

But, by the uniform convergence of ‖uνn( · )‖L2
x
→ ‖u( · )‖L2

x
in C([0, T ]),

it follows that ‖uνn(tn)‖L2
x
→ ‖u(t)‖L2

x
. From the convergence uνn →

u in C([0, T ];w − L2
x), see the proof of Lemma 3.3, it follows that

uνn(tn)⇀u(t) in L2
x. Since norm convergence and weak convergence

imply strong convergence, we conclude that

lim
n→∞

‖uνn(tn)− u(t)‖L2
x
= 0,
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Owing to the fact that u ∈ C([0, T ];L2
x) (cf. Step 0 of this proof), this

leads to a contradiction:

0 < ǫ0 ≤ lim sup
n→∞

‖u(tn)− uνn(tn)‖L2
x

≤ lim sup
n→∞

‖uνn(tn)− u(t)‖L2
x

+ lim sup
n→∞

‖u(t)− u(tn)‖L2
x
= 0.

Thus, we must have that uνn → u in C([0, T ];L2
x). �

Putting together Propositions 3.8, 3.12 and 3.15 we have completed
the proof of Theorem 2.8.

4. Examples

Theorem 2.8 provides necessary and sufficient conditions for a phys-
ically realizable solution u to be energy balanced. In the present sec-
tion, we focus on specific classes of initial data and forcing for which
these conditions are satisfied. More precisely, we will study solutions
whose vorticity belongs to rearrangement invariant spaces, including
Lp (p > 1), the Orlicz spaces L log(L)α (α > 1/2), and the (modified)
Lorentz spaces L(1,q) (1 ≤ q ≤ 2).
Besides exhibiting instances to which Theorem 2.8 applies, the goals

of this section are two-fold:

(i) we show how the present work extends the main result of [20,
Thm. 2.4], where energy balance was shown for physically re-
alizable solutions with Lp-control on the vorticity for p > 1;

(ii) we fill a gap in the proof of [18, Corollary 2.13], where it was
asserted that certain bounds on decreasing rearrangements are
preserved by the solution operator of the Navier-Stokes equa-
tions, in the absence of an external force. A detailed proof of
this assertion has, so far, been missing from the literature.

In Section 4.1 we connect our main results with the recent work
[20] on Lp vorticity control. Section 4.2 contains basic definitions on
rearrangement invariant spaces; we also include the statements of our
main results on a priori vorticity control for solutions of the Navier-
Stokes equations. In Section 4.3 we extend the discussion of energy
balance from the rearrangement-invariant Lp-spaces (p > 1) to more
general rearrangement-invariant spaces, including Orlicz and Lorentz
spaces.
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4.1. Solutions with vorticity in Lp, p > 1. Proposition 3.12 implies
the following stronger version of [20, Thm. 2.4]:

Corollary 4.1. Let u be a physically realizable solution of the incom-
pressible Euler equations (2.1) with external forcing f ∈ L1((0, T );L2(T2)).
Consider a physical realization uν of u, with viscosity ν > 0 and forcing
f ν , as in Definition 2.5. Suppose, in addition, that for some p > 1:

(1) ω0 ≡ curl u0 ∈ Lp(T2),
(2) ων

0 ≡ curl uν
0 → ω0 strongly in Lp(T2),

(3) gν = curl f ν is bounded in L2((0, T );Lp(T2)).

Then u is an energy balanced weak solution.

Remark 4.2. To derive the corresponding result in [20, Thm. 2.4] the
authors assume that gν is uniformly bounded in L1((0, T );Lp(T2)) ∩
L∞((0, T );L2(T2)). We note that, in the most relevant range 1 < p < 2,
this is strictly stronger than assumption (3) of Corollary 4.1.

Proof. We begin by observing that, from the hypothesis that gν is
bounded in L2

tL
p
x, we have, using elliptic regularity and the Poincaré

inequality, that f ν is bounded in L2
tW

1,p
x . Therefore, since W 1,p(T2)

is continuously embedded in L2(T2) for p ≥ 1, we obtain that {f ν} ⊂
L2
tL

2
x is uniformly bounded. Thus it is precompact in L2

tL
2
x with the

weak topology. Since f ν ⇀ f in L1
tL

2
x it follows that f ν converges

weakly to f in L2
tL

2
x as well.

Next, we make a small adaptation in the proof of [20, Lemma 3.1]
to show that the assumptions of Corollary 4.1 imply that uν converges
strongly to u in C([0, T ];L2(T2)). For convenience of the reader, recall
the estimate [20, (3.3)]:

‖ων(t)‖Lp ≤ C

(
‖ων

0‖Lp +

ˆ T

0

‖gν(s)‖Lpds

)
.

Using the Cauchy-Schwarz inequality in the integral term above we con-
clude that ων is bounded in L∞

t Lp
x, uniformly with respect to ν. Thus,

as in [20, Lemma 3.1], we use elliptic regularity and the Poincaré in-
equality to conclude that uν is bounded in L∞

t W 1,p
x . We then further

deduce from the PDE (2.4), that ∂tu
ν is bounded in L2

tH
−M
x for some

M ∈ N. Since the embedding of W 1,p(T2) into L2(T2) is compact
for p > 1, it follows by the Aubin-Lions-Simons Lemma, see [2, The-
orem II.5.16], that {uν} is compact in C([0, T ];L2(T2)). Passing to
subsequences as needed without relabeling we find uν → v strongly in
C([0, T ];L2(T2)). By hypothesis we already know that uν ⇀ u weak-∗



ENERGY BALANCE 27

L∞
t L2

x. Therefore v = u and the whole family converges strongly in
C([0, T ];L2(T2)).
The desired result is now an immediate corollary of Proposition 3.12.

�

4.2. A priori estimates in rearrangement-invariant spaces. Aim-
ing to generalize the result of the previous section, which pertains to
solutions with Lp-vorticity control, we consider solutions with vorticity
in more general rearrangement invariant spaces in the present section.
In order to treat such spaces we will need the following definition.

Definition 4.3. Let f ∈ L1(T2). The rearrangement invariant maxi-
mal function for f is

Ms(f) := sup

{
ˆ

E

|f(x)| dx
∣∣∣E ⊂ T

2, E measurable, |E| = s

}
,

defined for 0 ≤ s ≤ |T2| = (2π)2.

Remark 4.4. We mention in passing that, since the torus T
2 with

the Haar measure is a strongly resonant measure space, the function
Ms(f) defined above corresponds to sf ∗∗(s), where f ∗∗ is the standard
maximal function of the non-increasing rearrangement function f ∗; see
[1, Chapter 2, Section 3] for additional information.

In this section, we prove the following a priori estimate for solutions
of the Navier-Stokes equations:

Proposition 4.5. Let uν ∈ L∞((0, T );L2(T2) be the unique solution
of the Navier-Stokes equations (2.4), with forcing f ν ∈ L1((0, T );L2(T2))
and initial data uν

0 ∈ L2(T2), both assumed to be divergence-free. As-
sume that ων

0 = curl uν
0 ∈ L1(T2), and gν = curl f ν ∈ L1((0, T );L1(T2)).

Then for any t ∈ [0, T ], we have the following a priori estimate:

Ms(ω
ν(t)) ≤ Ms(ω

ν
0) +

ˆ t

0

Ms(g
ν(τ)) dτ. (4.1)

Our proof of this fact is based on operator splitting: The idea is
to approximate the solution of the vorticity form of the Navier-Stokes
equations by a composition of (small) time-steps for the forced heat
equation and a transport PDE, respectively. The necessary a priori

bounds for the heat and the transport equations are readily derived
based on explicit solution formulae. If the operator splitting scheme
converges to the solution operator of the Navier-Stokes equations in a
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suitable norm, then the necessary bounds for the Navier-Stokes equa-
tions can be deduced from a limiting argument.
One difficulty with this approach is the potential lack of smoothness

of the underlying solution; in the absence of such smoothness, the op-
erator splitting scheme is not known to converge. We circumvent this
difficulty via an additional mollification argument: we establish the re-
quired bounds for solutions of the mollified system, and extend these a
priori bounds to rough solutions by a limiting argument. The details
of this argument are contained in Sections 4.2.1–4.2.3.
Section 4.2.1 discusses basic a priori estimates for the heat and trans-

port PDEs involved in the operator splitting scheme. Section 4.2.2
defines the operator splitting approximant, and provides relevant es-
timates for this approximant. Section 4.2.3 combines these results to
prove Proposition 4.5.

4.2.1. Split estimates. Given initial data ων
0 ∈ C∞(T2) and forcing

gν ∈ C∞(T2 × [0, T ]), standard well-posedness theory of the Navier-
Stokes equations implies that there exists a unique smooth solution
ων ∈ C∞(T2 × [0, T ]) of the vorticity formulation of the Navier-Stokes
equations. Given such a smooth solution, our aim is to derive estimates
on Ms(ω

ν) through operator splitting. To this end, we decompose the
vorticity equation:

∂tω
ν = −uν · ∇ων

︸ ︷︷ ︸
(E)

+ ν∆ων + gν︸ ︷︷ ︸
(H)

, (4.2)

according to the two terms (E) and (H) on the right-hand side.

In the following we assume that the smooth initial data ων
0 and

smooth forcing gν are fixed. We denote by ων ∈ C∞(T2 × [0, T ]) the
corresponding solution, and we denote by uν ∈ C∞(T2 × [0, T ]) the
divergence-free velocity field satisfying ων = curl uν.

As indicated in (4.2), the vorticity equation can be split into a trans-
port equation and a forced heat equation. We next introduce the cor-
responding solution operators.

Transport equation. Given t0, t ∈ [0, T ], t ≥ t0, we denote by β0 7→
E(t; t0)β0 the solution operator associated with the transport PDE

∂tβ(t) + uν(t) · ∇β(t) = 0, β(t0) = β0, (E)

so that E(t; t0)β0 := β(t). In (E), uν(t) = uν( · , t) denotes the velocity
field obtained by solving the Navier-Stokes equations with the fixed
initial vorticity ων

0 and the fixed vorticity forcing gν . The following
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proposition gives a simple a priori estimate on rearrangements under
E(t; t0):

Proposition 4.6. Let t0, t ∈ [0, T ], t ≥ t0. If uν is smooth, and if
β(t) = E(t, t0)β0 is a solution of the transport PDE (E) with data
β ∈ L1(T2) then, for all s ≥ 0, we have

Ms(β(t)) = Ms(β0).

Proof. Let φ : T2 × [t0, t] → T
2 denote the flow-map of uν , i.e.





dφ

dτ
(x, τ) = uν(φ(x, τ), τ), τ ∈ [t0, t],

φ(x, t0) = x, x ∈ T
2.

We recall that β(t) = β0 ◦ [φ(·, t)]−1. Since uν is divergence-free, φ(·, t)
is measure-preserving, i.e. |φ(·, t)−1(E)| = |E|. In particular, it follows
that

Ms(β(t)) = sup
|E|=s

ˆ

E

|β(x, t)| dx = sup
|E|=s

ˆ

φ(·,t)−1(E)

|β0(x)| dx

= sup
|E|=s

ˆ

E

|β0(x)| dx = Ms(β0).

�

Heat equation. Let t, t0 ∈ [0, T ] with t ≥ t0. We denote by β0 7→
H(t; t0)β0 the solution operator associated with the forced heat equa-
tion, i.e. we set H(t; t0)β0 := β(t), where β solves

∂tβ(t) = ν∆β(t) + gν(t), β(t0) = β0. (H)

In the following, we derive simple a priori estimates on rearrangements
under H(t; t0). We first consider the action of the heat kernel.

Proposition 4.7. For t > 0, let Gt : T
2 → R denote the ν-heat kernel

on the 2-dimensional torus; more precisely, let

Gt(x) :=
1

4πνt

∑

k∈Z2

e−
(x−2πk)2

4νt .

Then for any β ∈ C∞(T2) and s ≥ 0, we have

Ms (Gt ∗ β) ≤ Ms(β).
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Proof. We note that ‖Gt‖L1 = 1, and hence

Ms (Gt ∗ β) = sup
|E|=s

ˆ

E

|Gt ∗ β| dx

≤ sup
|E|=s

ˆ

T2

1E(x)

ˆ

T2

Gt(y)|β(x− y)| dy dx

= sup
|E|=s

ˆ

T2

Gt(y)

(
ˆ

T2

1E(x)|β(x− y)| dx
)

dy

≤ sup
|E|=s

‖Gt‖L1 sup
y∈T2

ˆ

E

|β(x− y)| dx

= sup
|E|=s

ˆ

E

|β(y)| dy

= Ms(β).

�

As a consequence of the last proposition, we obtain

Proposition 4.8. Let t, t0 ∈ [0, T ] be given, such that t ≥ t0. Let
β0 ∈ C∞(T2), gν ∈ C∞(T2 × [0, T ]), and let

β(t) = H(t; t0)β0 ∈ C∞(T2 × [0, T ]),

be the solution of the forced heat equation (H), i.e.

∂tβ(t) = ν∆β(t) + gν(t), β(t0) = β0.

Then for any s ≥ 0:

Ms(β(t)) ≤ Ms(β0) +

ˆ t

t0

Ms(g
ν(τ)) dτ.

Proof. By Duhamel’s formula, the solution of the forced heat equation
is given by

β( · , t) = Gt−t0 ∗ β0 +

ˆ t

t0

Gt−τ ∗ gν( · , τ) dτ.
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Thus,

Ms(β(t)) = sup
|E|=s

ˆ

E

|β( · , t)| dx

≤ sup
|E|=s

ˆ

E

|Gt−t0 ∗ β0| dx+

ˆ t

t0

(
sup
|E|=s

ˆ

E

|Gt−τ ∗ gν( · , τ)| dx
)

dτ

= Ms(Gt−t0 ∗ β0) +

ˆ t

t0

Ms(Gt−τ ∗ gν(τ)) dτ.

≤ Ms(β0) +

ˆ t

t0

Ms(g
ν(τ)) dτ,

where the last inequality follows from Proposition 4.7. �

4.2.2. Operator splitting approximation. In view of the definitions of
E(t; t0), as the solution operator of the transport PDE (E) for t ≥ t0,
and H(t; t0), as the solution operator of the forced heat equation (H)
for t ≥ t0, we now define an “operator splitting” approximation of
ων recursively as follows: Fix a time-step ∆t, and for n ∈ N0 define
tn = n∆t. Given initial data ων

0 , we set ων,∆
0 (t0) := ων

0 at t = t0 = 0.
Then, we recursively define

{
ων,∆
n+1/2(t) := E(t; tn)ω

ν,∆
n (tn),

ων,∆
n+1(t) := H(t; tn)ω

ν,∆
n+1/2(t),

for t ∈ (tn, tn+1]. (4.3)

We finally define ων,∆ piecewise in time, by setting

ων,∆(t) := ων,∆
n (t), for t ∈ (tn−1, tn]. (4.4)

Before providing formal motivation for (4.3) (cf. the next remark),
we would like to point out that

ων,∆
n+1(t) = H(t; tn)ω

ν,∆
n+1/2(t),

depends on time t through both the solution operator H(t; tn) and ad-

ditionally through the data ων,∆
n+1/2(t) to which this solution operator is

applied. To avoid confusion, we point out that we could have equiva-
lently defined ων,∆

n+1(t) in two steps, by first setting for τ1, τ2 ∈ [tn, tn+1]:

h(τ1, τ2) := H(τ1; tn)ω
ν,∆
n+1/2(τ2), (4.5)

and then setting ων,∆
n+1(t) = h(t, t).
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Remark 4.9. To motivate the above definition, we note that upon
formally expanding in time and neglecting terms O(|t− tn|2), we have

ων,∆
n+1/2(t) = E(t; tn)ω

ν,∆
n (tn)

≈ ων,∆
n (tn)− [t− tn] u

ν(tn) · ∇ων,∆
n (tn),

(4.6)

and

ων,∆
n+1(t) = H(t; tn)ω

ν,∆
n+1/2(t)

≈ ων,∆
n+1/2(t) + [t− tn]

{
gν(t) + ν∆ων,∆

n+1/2(t)
}
.

(4.7)

Inserting (4.6) into (4.7), rearranging and retaining only lowest order
terms in [t− tn], we find

ων,∆
n+1(t) ≈ ων,∆

n (tn)+[t−tn]
{
−uν(tn) · ∇ων,∆

n (tn) + gν(t) + ν∆ων,∆
n (tn)

}
.

Equivalently, upon rearranging and stating this equation in terms of
ων,∆(t), we find for t ∈ [tn, tn+1],

ων,∆(t)− ων,∆(tn)

t− tn
= −uν(tn) · ∇ων,∆(tn) + gν(t) + ν∆ων,∆(tn).

Expanding the terms in this equation once more around t, we have

ων,∆(t)− ων,∆(tn)

t− tn
= ∂tω

ν,∆(t) + O(∆t),

−uν(tn) · ∇ων,∆(tn) = −uν(t) · ∇ων,∆(t) +O(∆t),

ν∆ων,∆(tn) = ν∆ων,∆(t) +O(∆t).

Thus, formally up to terms of order O(∆t), the function ων,∆(t) defined
by (4.3) solves the equation,

∂tω
ν,∆(t) = −uν(t) · ∇ων,∆(t) + gν(t) + ν∆ων,∆(t) +O(∆t).

This provides the formal justification for our definition of the splitting
approximant ων,∆. To make this precise, a detailed analysis of the
O(∆t) correction term is required. The detailed derivation will be
provided in Appendix A.

Combining Propositions 4.6 and 4.8 we obtain the following a priori

control on rearrangements for the operator splitting approximant ων,∆:

Lemma 4.10. Let ων
0 ∈ C∞(T2) be initial data for the Navier-Stokes

equations in vorticity formulation with forcing gν ∈ C∞(T2 × [0, T ]).
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Let ων,∆ be the operator splitting approximation (4.3) for a given time-
step ∆t > 0. Then for any time t ∈ [0, T ] and for any s ≥ 0, we have
the following estimate

Ms(ω
ν,∆(t)) ≤ Ms(ω

ν
0) +

ˆ t

0

Ms(g
ν(τ)) dτ. (4.8)

Proof. Given t ∈ [0, T ], we can choose n ∈ N, such that t ∈ [tn, tn+1].
By definition, we have ων,∆(t) = ων,∆

n (t). It thus suffices to prove that
for n ∈ N, we have

Ms(ω
ν,∆
n (t)) ≤ Ms(ω

ν
0) +

ˆ t

0

Ms(g
ν(τ)) dτ, ∀t ∈ [tn, tn+1]. (4.9)

We prove (4.9) by induction on n. The claim is trivially true for
n = 0. For the induction step and fixed t ∈ [tn, tn+1], we recall that

ων,∆
n+1/2(t) = E(t; tn)ω

ν,∆
n (tn), and ων,∆

n+1(t) = H(t; tn)ω
ν,∆
n+1/2(t). Since

the advecting velocity field uν is smooth for solutions of 2D Navier-
Stokes with smooth initial data and forcing, Proposition 4.8 implies
that

Ms(ω
ν,∆
n+1(t)) = Ms

(
H(t; tn)ω

ν,∆
n+1/2(t)

)

≤ Ms(ω
ν,∆
n+1/2(t)) +

ˆ t

tn

Ms(g
ν(τ)) dτ.

Furthermore, since ων,∆
n+1/2(t) = E(t; tn)ω

ν,∆
n (tn), by Proposition 4.6 we

have

Ms(ω
ν,∆
n+1/2(t)) = Ms(ω

ν,∆
n (tn)).

By the induction hypothesis, we have

Ms(ω
ν,∆
n (tn)) ≤ Ms(ω

ν
0 ) +

ˆ tn

0

Ms(g
ν(τ)) dτ.

Combining these estimates yields (4.9). �

The previous result provides a priori bounds on the operator splitting
approximant ων,∆. The next result shows that the operator splitting
approximant ων,∆ → ων converges to the solution, provided that the
underlying forcing and solution are sufficiently regular:

Proposition 4.11. Let uν
0 ∈ C∞(T2) be smooth divergence-free ini-

tial data for the incompressible Navier-Stokes equations (2.4). As-
sume that that the forcing f ν ∈ C∞(T2 × [0, T ]) is smooth. Let
uν ∈ C∞(T2 × [0, T ]) be the unique smooth solution with this data.



34 JIN, LANTHALER, LOPES FILHO, AND NUSSENZVEIG LOPES

Then the operator splitting approximant ων,∆ defined by (4.3) con-
verges to ων ; more precisely, we have

lim
∆t→0

‖ων − ων,∆‖L∞
t L2

x
= 0.

Remark 4.12. The last proposition implies in particular that ων,∆( · , t) →
ων( · , t) converges in L1

x for any t ∈ [0, T ].

Proof of Proposition 4.11. This is a direct consequence of the conver-
gence result for operator splitting applied to the forced advection-
diffusion PDE ∂tβ + U · ∇β = ν∆β + g, which we have included in
Appendix A for completeness; more precisely, we invoke Proposition
A.6 with β := ων, β0 := ων

0 , U := uν, g := gν = curl(f ν). This yields
the claim. We emphasize that the convergence rate in this Proposi-
tion depends on certain Ck-norms of ων

0 , u
ν , f ν and on ν > 0, and

hence this result applies only to smooth solutions of the Navier-Stokes
equations. �

Given the convergence of operator splitting, Proposition 4.11, we
next aim to derive an a priori estimate for the rearrangement invariant
vorticity maximal functions Ms(ω

ν), where ων is a solution of the
vorticity form of the Navier-Stokes equations. To this end, we will
need the following simple lemma:

Lemma 4.13. If ω∆ → ω converges in L1(T2), then for any s ≥ 0, we
have

Ms(ω) = lim
∆

Ms(ω
∆).

Proof. The convergence ω∆ → ω in L1 implies the convergence of the
rearrangements, since (see e.g. Thm. 1.D of [26])

|Ms(ω)−Ms(ω
∆)| ≤ ‖ω − ω∆‖L1(T2) → 0.

�

4.2.3. Proof of Proposition 4.5.

Proof. Based on the results of the last sections, we finally prove that for
solutions uν ∈ L∞((0, T );L2(T2)) ∩ L2((0, T );H1(T2)) of the Navier-
Stokes equations (2.4) with additional vorticity control ων

0 = curl(uν
0) ∈

L1(T2) and gν = curl(f ν) ∈ L1((0, T );L1(T2)), we have the following a

priori bound on the vorticity maximal function

Ms(ω
ν(t)) ≤ Ms(ω

ν
0) +

ˆ t

0

Ms(g
ν(τ)) dτ.
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We aim to deduce this estimate from the corresponding estimate for
suitable operator splitting approximants, equation (4.9).
To this end, we denote by ων,ǫ

0 the mollification of the initial data
with a smooth mollifier (e.g. applying the heat kernel for time ǫ), and
we denote by gν,ǫ the mollification of gν in both space and time (where
we extend gν by zero for t /∈ [0, T ]). Let ων,ǫ denote the solution of the
corresponding vorticity equation

∂tω
ν,ǫ + uν,ǫ · ∇ων,ǫ = ν∆ων,ǫ + gν,ǫ, ων,ǫ(t = 0) = ων,ǫ

0 .

Finally, let ων,ǫ,∆ denote the operator splitting approximant of ων,ǫ for
a time-step ∆t. By Lemma 4.10, we have

Ms(ω
ν,ǫ,∆(t)) ≤ Ms(ω

ν,ǫ
0 ) +

ˆ t

0

Ms(g
ν,ǫ(τ)) dτ.

It follows from Proposition 4.11 that ων,ǫ,∆→ων,ǫ in L∞
t L1

x as ∆t → 0.
Lemma 4.13 thus implies that

Ms(ω
ν,ǫ(t)) ≤ Ms(ω

ν,ǫ
0 ) +

ˆ t

0

Ms(g
ν,ǫ(τ)) dτ.

Next, we note that mollification decreases the value of the vorticity
maximal function (cf. the proof of Proposition 4.7), so that

Ms(ω
ν,ǫ(t)) ≤ Ms(ω

ν,ǫ
0 ) +

ˆ t

0

Ms(g
ν,ǫ(τ)) dτ

≤ Ms(ω
ν
0 ) +

ˆ t

0

Ms(g
ν(τ)) dτ

(4.10)

is uniformly bounded for any ǫ > 0. Finally, we note that the last esti-
mate implies that, for each t ∈ [0, T ], the family {ων,ǫ(t) | ǫ ∈ (0, 1]} is
weakly compact L1(T2) by the Dunford-Pettis theorem. Furthermore,
ων,ǫ → ων in C([0, T ];w-H−1(T2)), since uν,ǫ → uν in C([0, T ];w-L2(T2))
by classical well-posedness of the Navier-Stokes equations in dimension
two. Therefore, it follows that the only weak L1-limit point of ων,ǫ(t)
is ων(t), and hence ων,ǫ → ων in C([0, T ];w-L1(T2)), as ǫ → 0. It is
easy to see that Ms( · ) is weakly-L1 lower semi-continuous so, using
(4.10), this gives

Ms(ω
ν(t)) ≤ lim inf

ǫ→0
Ms(ω

ν,ǫ(t)) ≤ Ms(ω
ν
0) +

ˆ t

0

Ms(g
ν(τ)) dτ.

This concludes the proof. �
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4.3. The Lorentz space L(1,q)(T2). For 1 ≤ q < ∞, the rearrangement-
invariant Lorentz space L(1,q)(T2) is defined as the space

L(1,q)(T2) =
{
ω ∈ L1(T2)

∣∣ ‖ω‖L(1,q) < ∞
}
,

with norm

‖ω‖L(1,q) =

(
ˆ |T2|

0

|Ms(ω)|q
ds

s

)1/q

.

Remark 4.14. We comment in passing that the spaces L(p,q) discussed
in [21, Section 2.3], see also [19, (4.39)], were defined as the space of
functions f such s1/pf ∗∗(s) ∈ Lq(ds/s). Note that, since Ms(f) =
sf ∗∗(s), this definition coincides with the one above for p = 1.

It is well-known that for 1 ≤ q ≤ 2, we have a continuous embedding
L(1,q)(T2)→֒H−1(T2). This embedding is compact for q < 2, see for
example [21, Theorem 2.3]. For q = 2, the space L(1,2)(T2) is the largest
rearrangement invariant space with a continuous (but not compact)
embedding in H−1(T2) [19]. The following proposition, due to P.L.
Lions, provides sufficient conditions for a family of functions in L(1,2)

to be precompact in H−1, see [19, Lemma 4.1]:

Proposition 4.15 (P.L. Lions). A family {ων}ν ⊂ L(1,2)(T2) is pre-
compact in H−1(T2), if the following conditions hold:

(i) There exists C > 0, such that ‖ων‖L(1,2)(T2) ≤ C uniformly in ν,
(ii) we have uniform decay

lim
δ→0

{
sup
ν

ˆ δ

0

|Ms(ω
ν)|2ds

s

}
= 0

We recall that C([0, T ];w-X) denotes the space of continuous func-
tions in time with values in X endowed with the topology of weak
convergence. We also recall the following lemma from [21]:

Lemma 4.16 ([21, Lemma 2.3]). Let X be a reflexive, separable Ba-
nach space. Let {fn} be a bounded sequence in C([0, T ];X). Then {fn}
is precompact in C([0, T ];X) if and only if the following two conditions
hold:

(a) {fn} is precompact in C([0, T ];w-X),
(b) For any t ∈ [0, T ] and for any sequence tn → t, we have that

{fn(tn)} is precompact in X .

As a consequence of Lemma 4.16 and Proposition 4.15 we obtain:
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Corollary 4.17. Let {ων}ν be a family of functions in C([0, T ];H−1(T2))
and suppose that {∂tων}ν is bounded in L2((0, T );H−M(T2)) for some
M > 1. Then {ων}ν is precompact in C([0, T ];H−1(T2)), if the follow-
ing conditions hold:

(1) we have

sup
ν

sup
t∈[0,T ]

‖ων(t)‖L(1,2)(T2) < ∞,

(2) we have the following uniform decay in ν and t:

lim
δ→0

{
sup
ν

sup
t∈[0,T ]

ˆ δ

0

|Ms(ω
ν(t))|2ds

s

}
= 0.

Proof. We will check that conditions (a) and (b) in Lemma 4.16 hold
true with X = H−1(T2).

From the boundedness in L∞
t L

(1,2)
x , it follows that {ων} is bounded in

L∞
t H−1

x because L
(1,2)
x →֒H−1

x . Since we assumed that {∂tων} bounded
in L2((0, T );H−M(T2)) for some, possibly large, M > 1, it follows
that {ων} is equicontinuous from [0, T ] into H−M

x . We may now use
[19, Lemma C.1] to verify that (a) holds.
To check condition (b) let {tν} be a convergent sequence in [0, T ]

and consider {ων(·, tν)}. Then, hypotheses (1) and (2) imply that
conditions (i) and (ii) of Proposition 4.15 hold true, which in turn
implies that {ων(·, tν)} is precompact in H−1

x . This verifies condition
(b) of Lemma 4.16.
The proof is complete. �

Theorem 4.18. Let u be a physically realizable solution of the Euler
equations (2.1), with forcing f ∈ L2((0, T );L2(T2)) and divergence-
free initial data u0 ∈ L2(T2). Let uν be a physical realization of u and
assume that the forcing f ν ⇀ f in L2((0, T );L2(T2)). Assume that
ων
0 = curl(uν

0) ∈ L(1,2)(T2) and gν = curl(f ν) ∈ L1([0, T ];L(1,2)(T2)),
for all ν. If we have

• uniform bounds

sup
ν

‖ων
0‖L(1,2) ≤ C, sup

ν
‖gν‖

L1
tL

(1,2)
x

≤ C, (4.11)

• uniform decay of the vorticity initial data

lim
δ→0

{
sup
ν

ˆ δ

0

|Ms(ω
ν
0)|2

ds

s

}
= 0, (4.12)
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• and uniform decay of the time-averaged forcing

lim
δ→0

{
sup
ν

ˆ δ

0

∣∣∣∣
ˆ T

0

Ms(g
ν(τ)) dτ

∣∣∣∣
2
ds

s

}
= 0, (4.13)

then the family {uν}ν is relatively compact in C([0, T ];L2(T2)), and u
is an energy balanced solution.

Proof. From the definition of a physical realization, see Definition 2.5,
we already have uν ⇀ u in weak-∗ L∞

t L2
x.

We will show that, under the assumptions of Theorem 4.18, the vor-
ticities {ων = curl(uν)}ν} are relatively compact in C([0, T ];H−1(T2)).
This in turn implies that {uν}ν is relatively compact in C([0, T ];L2(T2))
and hence, by Proposition 3.12, that u is energy balanced.
We will use Corollary 4.17 to show that {ων}ν} is relatively compact

in C([0, T ];H−1(T2)). To this end we begin by observing that, for each
fixed ν > 0, ων ∈ C([0, T ];H−1(T2)). Indeed, this is an immediate
consequence of the fact that uν ∈ C([0, T ];L2(T2)), as noted in Remark
2.4. Next, in the proof of Lemma 3.3 we deduced an estimate on ∂tu

ν,
(3.3), from which it follows that {∂tων} is bounded in L2

tH
−M
x for some,

possibly large, M > 1.
It remains to show that our assumptions imply uniform control on

‖ων(t)‖L(1,2) and that sup
ν

sup
t∈[0,T ]

ˆ δ

0

|Ms(ω
ν(t))|2ds

s
→ 0 as δ → 0. By

Proposition 4.5, we have

Ms(ω
ν(t)) ≤ Ms(ω

ν
0) +

ˆ t

0

Ms(g
ν(τ)) dτ.

We can thus bound

‖ων,ǫ(t)‖L(1,2) =

(
ˆ |T2|

0

|Ms(ω
ν,ǫ(t))|2 ds

s

)1/2

≤
(
ˆ |T2|

0

|Ms(ω
ν
0 )|2

ds

s

)1/2

+

(
ˆ |T2|

0

∣∣∣∣
ˆ T

0

Ms(g
ν(τ)) dτ

∣∣∣∣
2
ds

s

)1/2
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Minkowski’s integral inequality applied to G(τ, s) := Ms(g
ν(τ)) im-

plies that
[
ˆ |T2|

0

[
ˆ T

0

G(τ, s) dτ

]2
ds

s

]1/2
≤
ˆ T

0

[
ˆ |T2|

0

G(τ, s)2
ds

s

]1/2
dτ,

and hence

‖ων,ǫ(t)‖L(1,2) ≤ ‖ων
0‖L(1,2) +

ˆ t

0

‖gν(τ)‖L(1,2) dτ.

By our assumptions on ων
0 and gν, the right-hand side is bounded

uniformly in ν and t ∈ [0, T ]. This is the first condition of Corollary
4.17.
Next, replacing the upper integration bound |T2| by δ > 0, the same

argument implies that
(
ˆ δ

0

|Ms(ω
ν,ǫ(t))|2ds

s

)1/2

≤
(
ˆ δ

0

|Ms(ω
ν
0 )|2

ds

s

)1/2

+

(
ˆ δ

0

∣∣∣∣
ˆ T

0

Ms(g
ν(τ)) dτ

∣∣∣∣
2
ds

s

)1/2

.

The right-hand side is independent of t. Furthermore, by our assump-
tions, the right-hand side converges to zero as δ → 0, uniformly in ν.
Thus, the family {ων}ν satisfies the assumptions of Corollary 4.17, and
hence {ων

t }ǫ,ν>0 is precompact in C([0, T ];H−1(T2)).
This concludes the proof. �

In particular, the last theorem can be invoked if ων
0 and gν satisfy

uniform bounds in L(1,q) for 1 ≤ q < 2, as shown next.

Corollary 4.19. Let u be a physically realizable solution of the Euler
equations (2.1), with forcing f ∈ L2((0, T );L2(T2)) and divergence-
free initial data u0 ∈ L2(T2). Let uν be a physical realization of u and
assume that the forcing f ν ⇀ f in L2((0, T );L2(T2)). Fix 1 ≤ q < 2,
and assume that ων

0 = curl(uν
0) ∈ L(1,q)(T2) and gν = curl(f ν) ∈

L1([0, T ];L(1,q)(T2)) for all ν. If we have uniform bounds

sup
ν

‖ων
0‖L(1,q)

x
≤ C, sup

ν
‖gν‖

L1
tL

(1,q)
x

≤ C,

then {uν}ν is relatively compact in C([0, T ];L2(T2)), and u is an energy
balanced solution.

Proof. We note that the a priori L(1,2)-bounds (4.11) on ων
0 and gν

follow immediately from the assumed L(1,q)-bounds. In the following,
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we will show that the a priori L(1,q)-bounds on ων
0 and gν for q < 2

imply the uniform decay conditions (4.12) and (4.13) of Theorem 4.18:
Indeed, since s 7→ Ms(ω

ν
0) is a monotonically increasing function, we

have
ˆ δ

0

|Ms(ω
ν
0)|2

ds

s
≤ |Mδ(ω

ν
0 )|2−q

ˆ δ

0

|Ms(ω
ν
0)|q

ds

s
≤ |Mδ(ω

ν
0)|2−q ‖ων

0‖qL(1,q),

and

|Mδ(ω
ν
0)|q log

( |T2|
δ

)
≤
ˆ |T2|

δ

|Ms(ω
ν
0 )|q

ds

s
≤ ‖ων

0‖qL(1,q) .

Combining these estimates yields
ˆ δ

0

|Ms(ω
ν
0)|2

ds

s
≤

‖ων
0‖2L(1,q)

| log(|T2|/δ)|(2−q)/q
.

Given that supν ‖ων
0‖L(1,q) ≤ C, the last upper bound decays to zero

uniformly in ν, as δ → 0. This shows the uniform decay condition
(4.12).

Similarly, replacing Ms(ω
ν
0) by

´ T

0
Ms(g

ν(τ)) dτ , we can show that

ˆ δ

0

∣∣∣∣
ˆ T

0

Ms(g
ν(τ)) dτ

∣∣∣∣
2
ds

s
≤

[
´ |T2|
0

∣∣∣
´ T

0
Ms(g

ν(τ)) dτ
∣∣∣
q

ds
s

]2/q

| log(|T2|/δ)|(2−q)/q

≤

[
´ T

0

(
´ |T2|
0

|Ms(g
ν(τ))|q ds

s

)1/q
dτ

]2

| log(|T2|/δ)|(2−q)/q

=

[
´ T

0
‖gν(τ)‖L(1,q) dτ

]2

log(|T2|/δ)(2−q)/q
,

where we have used Minkowski’s integral inequality to pass to the sec-
ond line. The boundedness assumption on gν now implies the uniform
decay condition (4.13). The claim thus follows from Theorem 4.18. �

We close this subsection with a result for the Orlicz spaces L(logL)α,
with α > 2. We briefly recall that these spaces are defined as

L(logL)α(T2) = {f ∈ L1(T2)
∣∣
ˆ

T2

|f |[log+(|f |)]α dx < ∞}.

These are Banach spaces under the Luxembourg norm, given by

‖u‖L(logL)α := inf

{
λ

∣∣∣∣
ˆ

T2

( |u(x)|
λ

)[
log+

( |u(x)|
λ

)]α
dx ≤ 1

}
,

see e.g. [1].
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Corollary 4.20. Let u be a physically realizable solution of the Euler
equations (2.1), with forcing f ∈ L2((0, T );L2(T2)) and divergence-
free initial data u0 ∈ L2(T2). Let uν be a physical realization of u

and assume that the forcing f ν ⇀ f in L2((0, T );L2(T2)). Fix α >
1

2
,

and assume that ων
0 = curl(uν

0) ∈ L(logL)α(T2) and gν = curl(f ν) ∈
L1([0, T ];L(logL)α(T2)) for all ν. If we have uniform bounds

sup
ν

‖ων
0‖L(logL)αx ≤ C, sup

ν
‖gν‖L1

tL(logL)
α
x
≤ C,

then {uν}ν is relatively compact in C([0, T ];L2(T2)), and u is an energy
balanced solution.

Proof. The result is an immediate consequence of Corollary 4.19 and
the embedding

L(logL)α(T2) ⊂ L(1,1/α)(T2),

which was established in [21, Lemma 2.1]. �

5. Conclusion

The primary objective of this work is to find suitable conditions on
the regularity of the forcing to characterize those physically realizable
weak solutions of the 2D Euler equations which are energy balanced,
combining previous work by Lanthaler, Mishra and Parés-Pulido in
[18] with work by Lopes Filho and Nussenzveig Lopes in [20]. In [18],
the authors establish, for flows without forcing, equivalence between
strong convergence of the viscous approximation in L2

tL
2
x and conser-

vation of energy. We have proved the corresponding statement for flows
with forcing, assuming {f ν} converges strongly in L2

tL
2
x. In addition,

we prove that these equivalent conditions are also equivalent to strong
convergence of the viscous velocities in C([0, T ];L2(T2)). Furthermore,
even if we consider only initial vorticities in Lp, 1 < p < 2, and the
direction “strong convergence =⇒ energy balance”, our conditions on
the forcing are weaker than those in [20]. Additionally, we provide
examples of flows with vorticity in rearrangement-invariant spaces, for
which the sufficient conditions are shown to hold. To this end, we de-
velop novel a priori estimates for the rearrangement-invariant maximal
vorticity function of solutions of the incompressible Navier-Stokes equa-
tions, and under minimal regularity assumptions. Our result fills a gap
in the proof of [18, Corollary 2.13], where such bounds were asserted
without proof. In short, we have proven energy conservation of phys-
ically realizable solutions with initial vorticity belonging to arbitrary
rearrangement-invariant spaces with compact embedding in H−1, and
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under natural assumptions on the external force. In particular, this
sharpens and extends the results of [20] in the forced setting, going
beyond Lp vorticity control.
We describe a few avenues for future work. Firstly, the present work

only considers deterministic forcing. Since investigations of driven tur-
bulence often employ stochastic forcing, it would be of interest to ex-
tend the present work to the stochastic setting. Second, it would be
interesting to consider the effects of a boundary, and investigate poten-
tial connections of the characterization of energy conservation in the
present work with the Kato criterion [15]. Thirdly, combining the ideas
of the present work with those of [8] could provide a proof of energy
conservation in the two-dimensional plane, going beyond vorticity in
L log(L)α as assumed in [8]. We plan to explore some of these research
directions in the future.
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Appendix A. Operator splitting for advection-diffusion

In this appendix, our goal is to provide a self-contained proof of con-
vergence for an operator splitting approximation of a simple advection-
diffusion equation. We fix a smooth divergence-free vector field U ∈
C∞(T2 × [0, T ]), a scalar forcing g ∈ C∞(T2 × [0, T ]) with zero mean
´

T2 g(x, t) dx = 0 for all t ∈ [0, T ], and we consider the following
advection-diffusion PDE:

{
∂tβ + U · ∇β = ν∆β + g, in T

2 × (0, T ),
β(t = 0) = β0, on T

2 × {0}. (A.1)

We will assume throughout that the initial data β0 ∈ C∞(T2), and β0

has zero mean, so that
´

T2 β0(x) dx = 0.
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Remark A.1. While several convergence results for operator split-
ting approximations of advection-diffusion-reaction equations are avail-
able in the literature, those results mostly focus on higher-order (e.g.
Strang-) operator splitting procedures. We have not been able to find a
simple reference for the exact PDE (A.1) and the low-order splitting of
relevance for the present work. Our goal in this appendix is therefore
to provide a self-contained proof of convergence of a low-order operator
splitting scheme for (A.1). From a numerical analysis point of view,
the estimates in this appendix mostly follow standard procedure. We
claim no originality, but include them here for completeness.

A.1. Operator splitting.

A.1.1. Heat equation. Let t, t0 ∈ [0, T ] with t ≥ t0. In the following, we
will denote by β0 7→ H(t; t0)β0 the solution operator of the following
forced heat equation:

{
∂tβ(t) = ν∆β(t) + g(t),

β( · , t0) = β0,
(A.2)

i.e. t 7→ H(t; t0)β0 solves (A.2) over the time interval [t0, T ]. We recall
that g(x, t) depends explicitly on t, and therefore the solution operator
H(t; t0) depends on both the initial time t0, as well as on t.

A.1.2. Transport equation. Similarly, we denote by β0 7→ E(t; t0)β the
solution operator of the transport equation:

{
∂tβ + U · ∇β = 0,

β( · , t) = β0.
(A.3)

So that t 7→ E(t; t0)β0 solves (A.3).

A.1.3. Splitting scheme. We expect that the solution operator S(t; t0)
for the advection-diffusion equation (A.1) can be approximated by

S(t; t0) ≈ H(t; t0)E(t; t0) +O(∆t2), for |t− t0| ≤ ∆t,

and hence, repeated application of H and E over small time-steps
of size ∆t are expected to converge to the true solution operator as
∆t → 0. Our goal is to make this intuition precise, in the following.
To this end, we will show that the corresponding “operator splitting
approximant” β∆ converges as ∆t → 0:
To be more precise, given initial data β0 at t = 0, a finite time-

horizon T > 0 and a small time-step ∆t =
T

N
> 0, we set tn := n∆t
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for n = 0, 1, . . . , N , and we define a sequence β∆
n (t) recursively, by

β∆
0 (0) := β0, (A.4)

and {
β∆
n+1/2(t) := E(t; tn)β

∆
n (tn),

β∆
n+1(t) := H(t; tn)β

∆
n+1/2(t),

for t ∈ (tn, tn+1]. (A.5)

We furthermore define β∆ for any t ∈ [0, T ] by

β∆(t) := β∆
n (t), for t ∈ (tn−1, tn]. (A.6)

A.2. Convergence. Let t 7→ β(t) denote the exact solution to (A.1)
with initial data β0 ∈ C∞(T2× [0, T ]), satisfying

´

T2 β0(x) dx = 0. Our
first goal is to show that the operator splitting approximation converges
β∆ → β as ∆t → 0.
To this end, we will need to derive several basic stability estimates.

We start with the following lemma:

Lemma A.2. Let σ ≥ 0. Let t, t0 ∈ [0, T ] with t ≥ t0. Assume
smooth forcing g ∈ C∞(T2 × [0, T ]) in the forced heat equation (A.2),
and

´

T2 g(x) dx = 0. If |t− t0| ≤ ∆t, then

‖H(t; t0)β0‖Hσ
x
≤ ‖β0‖Hσ

x
+∆t‖g‖L∞

t Hσ
x
. (A.7)

Furthermore, if k ∈ N and ∆ is the Laplacian then

‖∆kH(t; t0)β0‖L2
x
≤ ‖∆kβ0‖L2

x
+∆t‖∆kg‖L∞

t L2
x
. (A.8)

Proof. Both (A.7) and (A.8) follow in a straightforward manner from
the representation of the solution in terms of the heat kernel Gt:

H(t; t0)β0 = Gt−t0 ∗ β0 +

ˆ t

t0

Gt−τ ∗ g( · , τ) dτ.

�

Lemma A.3 (Stability estimate for β∆). Assume that β0, g and U
are smooth functions, div(U) = 0 and β0, g have zero mean. Let β∆

be defined by (A.6). For any σ > 0, there exists a constant C =
C(T, σ, g, U, β0) > 0, such that

sup
t∈[0,T ]

‖β∆(t)‖Hσ
x
≤ C,

and
max
n: tn<T

sup
t∈[tn,tn+1]

‖E(t; tn)β
∆
n (tn)‖Hσ

x
≤ C,

uniformly as ∆t → 0.
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Proof. Recall that β∆(t) is defined piecewise as β∆(t) = β∆
n (t) over

intervals t ∈ (tn−1, tn] with tn = n∆t for n = 1, 2, . . . . By definition,
we have the recursion

β∆
n (t) = H(t; tn)E(t; tn)β

∆
n−1(tn).

To provide a uniform bound on ‖β∆(t)‖Hσ
x
for all t ∈ [0, T ], we will

proceed in three steps: In a first step, we derive a general Hσ
x -estimate

over short time-intervals of length ∆t. Then, we use this estimate to
bound the values ‖β∆(tn)‖Hσ

x
at the interval endpoints. Finally, we

combine the short-time estimate of Step 1 and the uniform bound on
the ‖β∆(tn)‖Hσ

x
from Step 2, to conclude that there exists a uniform

bound on ‖β∆(t)‖Hσ
x
for all t ∈ [0, T ].

Step 1: (short-time estimate) We begin by claiming that, for
any σ > 0, ‖H(t; t0)E(t; t0)β0‖Hσ

x
is bounded on short time intervals

|t− t0| < ∆t in terms of ‖β0‖Hσ and ∆t. By interpolation, it suffices to
prove the claim for σ = 2k, where k ∈ N. We first recall that for any
t0 ≤ t, and β0 ∈ C∞ with zero-mean, we have (cf. Lemma A.2), (A.7):

‖H(t; t0)E(t; t0)β0‖Hσ
x
≤ ‖E(t; t0)β0‖Hσ

x
+∆t‖g‖L∞

t Hσ
x
. (A.9)

Let us denote β̃(t) := E(t; t0)β0. To estimate ‖β̃‖Hσ
x
= ‖E(t; t0)β0‖Hσ

x

for σ = 2k, we multiply (A.3) by ∆2kβ̃, with ∆ the Laplacian, to find

d

dt

1

2
‖∆kβ̃‖2L2

x
≤
∣∣∣〈U · ∇β̃,∆2kβ̃〉L2

x

∣∣∣

=
∣∣∣〈∆k

(
U · ∇β̃

)
,∆kβ̃〉L2

x

∣∣∣

≤
∣∣∣〈U · ∇(∆kβ̃),∆kβ̃〉L2

x

∣∣∣ + Ck‖U‖W 2k,∞
x

‖β̃‖2H2k
x
,

with a constant Ck depending only on k. Since U is divergence-free,
the first term vanishes on account of the periodic boundary conditions,

∣∣∣〈U · ∇(∆kβ̃),∆kβ̃〉L2
x

∣∣∣ =
∣∣∣∣
ˆ

T2

div

(
1

2

[
∆kβ̃

]2
U

)∣∣∣∣ = 0.

Since β0, g are assumed to have zero mean, it follows that also
´

T2 β̃(x, t) dx =
0 at later times, and hence we may use the Poincaré inequality to obtain
equivalence of norms:

‖∆kβ̃‖L2
x
≤ ‖β̃‖H2k

x
≤ Ck‖∆kβ̃‖L2

x
.

Gronwall’s lemma applied to the differential inequality

d

dt
‖∆kβ̃‖2L2

x
.k,U ‖∆kβ̃‖2L2

x
,
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implies that ‖∆kβ̃(t)‖2L2
x
≤ eC|t−t0|‖∆kβ0‖2L2

x
, with C depending only on

k and U . Therefore,

‖∆kβ̃(t)‖2L2 ≤ (1 + C|t− t0|)‖∆kβ0‖2L2 , (A.10)

where the implied constant in the second estimate is uniform for |t −
t0| ≤ T . By the equivalence of norms and upon rewriting σ = 2k, we
conclude that there exists a constant C = C(σ, U) > 0, such that

‖E(t; t0)β0‖Hσ
x
≤ C(1 + ∆t)1/2‖β0‖Hσ , (A.11)

whenever |t − t0| ≤ ∆t. Combining (A.9) and (A.11), we have shown
that there exists a constant C = C(σ, U, g) > 0, such that

‖H(t; t0)E(t; t0)β0‖Hσ
x
≤ C(1 + ∆t)1/2‖β0‖Hσ + C∆t, (A.12)

if |t− t0| ≤ ∆t ≤ T .
Furthermore, from (A.8) and (A.10), we also have

‖∆kH(t; t0)E(t; t0)β0‖L2
x
≤ (1 + C∆t)1/2‖∆kβ0‖L2

x
+ ‖∆kg‖L∞

t L2
x
∆t,

(A.13)

if |t− t0| ≤ ∆t ≤ T .
Step 2: (estimate for t = tn) Recall that β∆ is defined recursively

by application of H(t; tn)E(t; tn) over short time-intervals of length ∆t.
Using (A.13), we thus arrive at the recursive estimate

‖∆kβ∆
n+1(tn+1)‖L2

x
≤ (1 + C∆t)1/2‖∆kβ∆

n (tn)‖L2
x
+ ‖∆kg‖L∞

t L2
x
∆t.

Iterating this inequality backwards until n = 0 yields

‖∆kβ∆
n+1(tn+1)‖L2

x
≤ (1 + C∆t)(n+1)/2‖∆kβ∆

0 (0)‖L2
x

(A.14)

+ ‖∆kg‖L∞
t L2

x
∆t

n∑

j=0

(1 + C∆t)j/2. (A.15)

Recall tn = n∆t, with n = 0, 1, . . . , N . Then, the first term on the
right-hand-side of (A.14) is bounded by

(
1 + C

T

N

)N/2

‖∆kβ∆
0 (0)‖L2

x
,

which, in turn, converges to eCT/2‖∆kβ∆
0 (0)‖L2

x
as N → ∞.

The second term on the right-hand-side of (A.14) is bounded by

‖∆kg‖L∞
t L2

x

T

N

N−1∑

j=0

(
1 + C

T

N

)j/2

,



ENERGY BALANCE 47

which converges, as N → ∞, to

2
‖∆kg‖L∞

t L2
x

C
(eCT/2 − 1).

Therefore it follows that

‖∆kβ∆
n (tn)‖L2

x
.T,U,g,k ‖∆kβ0‖L2

x
+ 1,

for all n = 0, 1, . . . , N , with an implied constant depending only on
T, U, g, k. Thus, from the equivalence of norms we have that there exists
a constant C > 0 depending only on T , σ, U , g and on β∆

0 (t0) = β0,
such that

max
tn≤T

‖β∆(tn)‖Hσ
x
≤ C.

Step 3: (conclusion) Appealing once more to the inequality (A.12),
i.e.

‖β∆(t)‖Hσ
x
= ‖H(t; tn)E(t; tn)β

∆(tn)‖Hσ
x

≤ C(1 + ∆t)‖β∆(tn)‖Hσ + C∆t,

it follows that there exists a constant C = C(T, σ, U, g, β0) > 0, such
that

sup
t∈[0,T ]

‖β∆(t)‖Hσ
x
≤ C.

This is the claimed upper bound. �

The solution operator of the heat equation H(t; t0) evaluated at t =
t0 is identity, H(t0; t0) = I. Formally expanding in t, we expect that
H(t; t0) = I + O(∆t). The following lemma formalizes this fact (with
a very crude estimate for the first-order correction term):

Lemma A.4. Let β0 ∈ C∞(T2) be a smooth function, and let t0 ∈
[0, T ]. Then for any t ∈ [t0, t0 +∆t], and σ ≥ 0, we have

‖H(t; t0)β0 − β0‖Hσ
x
≤ ∆t ν‖β0‖H2+σ

x

+∆t(1 + ν∆t)‖g‖L∞
t H2+σ

x
.

(A.16)

If Gτ denotes the heat kernel, then we similarly have

‖Gt−t0 ∗ β0 − β0‖Hσ
x
≤ ∆t ν‖β0‖H2+σ

x
(A.17)

Proof. Let h(t) := H(t; t0)β0. By definition of H(t; t0), we have

∂th(t) = ν∆h(t) + g(t),

and h(t0) = β0. Integration in time yields

H(t; t0)β0 − β0 = ν

ˆ t

t0

∆h(τ) dτ +

ˆ t

t0

g(τ) dτ,
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and we can estimate

‖H(t; t0)β0 − β0‖Hσ
x
≤ ν

ˆ t

t0

‖∆h(τ)‖Hσ
x
dτ +

ˆ t

t0

‖g(τ)‖Hσ
x
dτ

≤ ∆t ν‖h‖L∞
t H2+σ

x
+∆t ‖g‖L∞

t Hσ
x
.

Taking into account (A.7), we have

‖h(t)‖H2+σ
x

= ‖H(t; t0)β0‖H2+σ ≤ ‖β0‖H2+σ +∆t‖g‖L∞
t Hσ

x
.

Upon substitution of this bound, we thus obtain the (rough) estimate

‖H(t; t0)β0 − β0‖Hσ
x
≤ ∆tν‖β0‖H2+σ

x
+∆t(1 + ν∆t)‖g‖L∞

t H2+σ
x

.

The estimate for Gt−t0 ∗ β0 is the special case where g ≡ 0. �

Using the last lemma, we next show that the operator splitting ap-
proximant β∆ is an approximate solution of the relevant equation, up
to an O(∆t) error.

Lemma A.5. Assume that β0, U and g are smooth, div(U) = 0 and
that β0, g have zero mean. Then the function β∆ defined by (A.6) is
continuous, and with the potential exception of finitely many break-
points t = t0, t1, . . . , the function β∆ solves the following PDE:

∂tβ
∆ + U · ∇β∆ = ν∆β∆ + g + F∆, (A.18)

where F∆ can be estimated by

‖F∆‖L∞
t L2

x
≤ C∆t, (A.19)

with a constant C = C(T, ν, U, g, β0) > 0 which is bounded uniformly
in ∆t.

Proof. Continuity of β∆ is straight-forward. We therefore focus on
(A.18). To this end, we consider t ∈ [tn, tn+1] for n ≥ 0. By definition,
we have

β∆(t) = β∆
n+1(t) = H(t; tn)

[
E(t; tn)β

∆
n (tn)

]
, ∀ t ∈ [tn, tn+1].

For τ1, τ2 ∈ [tn, tn+1], we now define,

h(τ1, τ2) := H(τ1; tn)
[
E(τ2; tn)β

∆
n (tn)

]
,

so that β∆
n+1(t) = h(t, t). Note that the dependency on the spatial

variable has been suppressed in this notation, i.e. h is considered as a
mapping

h : [tn, tn+1]× [tn, tn+1] → C∞(T2).

We next observe that

∂tβ
∆
n+1(t) = (∂τ1h)(t, t) + (∂τ2h)(t, t). (A.20)



ENERGY BALANCE 49

We will compute the partial derivatives with respect to τ1, τ2 on the
right-hand side of (A.20).
Calculation for ∂τ1 : With τ2 fixed, let β(τ2) := E(τ2; tn)β0. By

definition of H(τ1; tn), the function τ1 7→ h(τ1, τ2) = H(τ1; tn)β(τ2)
solves the heat equation with initial data β(τ2). In particular,

∂τ1h(τ1, τ2) = g(τ1) + ν∆h(τ1, τ2). (A.21)

Calculation for ∂τ2 : To compute the derivative with respect to τ2,
we freeze τ1, and note that H(τ1; tn) is explicitly given by

H(τ1; tn)β(τ2) = Gτ1−tn ∗ β(τ2) +
ˆ τ1

tn

Gτ1−τ ∗ g(τ) dτ,

in terms of the heat kernel Gτ . Since the second term is independent
of τ2, upon taking a partial derivative of h(τ1, τ2) = H(τ1; tn)β(τ2) with
respect to τ2, we obtain,

∂τ2h(τ1, τ2) = Gτ1−tn ∗ ∂τ2β(τ2).

By definition, τ2 7→ β(τ2) = E(τ2; tn)β
∆
n (tn) solves the transport equa-

tion, and hence,

∂τ2β(τ2) = −U(τ2) · ∇β(τ2).

Substitution of this identity in our equation for ∂τ2h yields,

∂τ2h(τ1, τ2) = −Gτ1−tn ∗
(
U(τ2) · ∇β(τ2)

)
. (A.22)

Deriving the equation for β∆
n : Combining (A.20), (A.21) and

(A.22), and recalling that β∆
n (t) = h(t, t), we obtain,

∂tβ
∆
n (t) = −Gt−tn ∗

(
U(t) · ∇β(t)

)
+ g(t) + ν∆β∆

n (t).

Setting

F∆(t) := U(t) · ∇β∆
n (t)−Gt−tn ∗

(
U(t) · ∇β(t)

)
,

we thus have

∂tβ
∆
n (t) + U(t) · ∇β∆

n (t) = g(t) + ν∆β∆
n (t) + F∆(t).

This is (A.18).
To conclude the proof of Lemma A.5, it thus remains to derive the

bound (A.19) on F∆(t).
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Estimate for F∆(t): We can bound,

‖F∆(t)‖L2
x
= ‖U(t) · ∇β∆

n (t)−Gt−tn ∗
(
U(t) · ∇β(t)

)
‖L2

x

= ‖U(t) · ∇H(t; t0)β(t)−Gt−tn ∗
(
U(t) · ∇β(t)

)
‖L2

x

≤ ‖U(t) · ∇
{
H(t; t0)

[
β(t)

]
− β(t)

}
‖L2

x

+ ‖U(t) · ∇β(t)−Gt−tn ∗
(
U(t) · ∇β(t)

)
‖L2

x

=: (I) + (II).

Applying Lemma A.4, bound (A.16), to the first term, we obtain

(I) =
∥∥U(t) · ∇

{
H(t; tn)

[
β(t)

]
− β(t)

}∥∥
L2
x

≤ ‖U(t)‖L∞

∥∥H(t; tn)[β(t)]− β(t)
∥∥
H1

≤ ‖U(t)‖L∞

{
∆t ν

∥∥β(t)
∥∥
H3 +∆t (1 + ν∆t) ‖g(t)‖H3

}
.

By Lemma A.3, we can bound ‖β(t)‖H3 by a constant C = C(T, g, U, β0) >
0, uniform in time and in ∆t, i.e.

sup
t∈[tn,tn+1]

‖β(t)‖H3 ≤ C. (A.23)

Enlarging the constant C, if necessary, we thus have

(I) ≤ C∆t,

where C = C(T, ν, g, U, β0) is independent of t and ∆t.
Finally, by Lemma A.4, bound (A.17), we have

(II) = ‖U(t) · ∇β(t)−Gt−tn ∗
(
U(t) · ∇β(t)

)
‖L2

x

≤ ∆t ν‖U(t) · ∇β(t)‖H2

≤ ∆t ν‖U(t)‖W 2,∞
x

‖β(t)‖H3 .

Invoking (A.23), it follows that

(II) ≤ C∆t,

where C = C(T, ν, g, U, β0) > 0.
We conclude that

‖F∆(t)‖L2
x
≤ (I) + (II) ≤ C∆t,

for a constant C = C(T, ν, g, U, β0) > 0, independent of t and ∆t. The
claimed bound on F∆(t) thus follows upon taking the supremum over
all t ∈ [tn, tn+1] and all n ∈ N such that tn ≤ T . This concludes our
proof of Lemma A.5. �

We can finally state the following convergence result for the operator
splitting approximation:
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Proposition A.6 (Convergence of operator splitting). Let β0 ∈ C∞(T2)
be initial data for the advection-diffusion equation (A.1), with forc-
ing g ∈ C∞(T2 × [0, T ]) and divergence-free advecting velocity field
U ∈ C∞(T2×[0, T ]). Assume that

´

T2 β0(x) dx = 0 and
´

T2 g(x) dx = 0.
Let β be the solution of the advection-diffusion PDE (A.1), and let β∆

be given by the operator splitting approximation (A.4),(A.5). Then

lim
∆t→0

‖β − β∆‖L∞
t L2

x
= 0.

Proof. We define r̃∆ := β∆ − β. Then, by Lemma A.5, r̃∆ solves

∂tr̃
∆ + U · ∇r̃∆ = ν∆r̃∆ + F∆,

where ‖F∆‖L2
x
≤ C∆t for some constant C independent of ∆t. Mul-

tiplying by r̃∆, integrating over space and employing the Poincaré in-
equality, ‖r̃∆‖L2

x
≤ C‖∇r̃∆‖L2

x
, readily yields

d

dt
‖r̃∆‖2L2

x
≤ −2ν‖∇r̃∆‖2L2

x
+ 2‖F∆‖L2

x
‖r̃∆‖L2

x

≤ −2ν‖∇r̃∆‖2L2
x
+ Cν‖r̃∆‖2L2

x
+ (Cν)−1‖F∆‖2L2

x

≤ (Cν)−1‖F∆‖2L2
x
≤ Cν−1∆t2,

for some constant C > 0, independent of ∆t. Noting that r̃(t = 0) = 0,
we conclude that

sup
t∈[0,T ]

‖r̃∆(t)‖2L2
x
≤ CTν−1∆t2 → 0,

as ∆t → 0. This shows that

lim
∆t→0

‖β − β∆‖L∞
t L2

x
= 0,

i.e. the solution computed by operator splitting converges to the exact
solution. �
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