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Abstract—The emergence of 5G networks has enabled the
deployment of a two-tier edge and vehicular-fog network. It
comprises Multi-access Edge Computing (MEC) and
Vehicular-Fogs (VFs), strategically positioned closer to Internet
of Things (IoT) devices, reducing propagation latency compared
to cloud-based solutions and ensuring satisfactory quality of
service (QoS). However, during high-traffic events like concerts
or athletic contests, MEC sites may face congestion and become
overloaded. Utilizing offloading techniques, we can transfer
computationally intensive tasks from resource-constrained
devices to those with sufficient capacity, for accelerating tasks
and extending device battery life. In this research, we consider
offloading within a two-tier MEC and VF architecture,
involving offloading from MEC to MEC and from MEC to VF.
The primary objective is to minimize the average system cost,
considering both latency and energy consumption. To achieve
this goal, we formulate a multi-objective optimization problem
aimed at minimizing latency and energy while considering
given resource constraints. To facilitate decision-making for
nearly optimal computational offloading, we design an
equivalent reinforcement learning environment that accurately
represents the network architecture and the formulated
problem. To accomplish this, we propose a Distributed-TD3
(DTD3) approach, which builds on the TD3 algorithm.
Extensive simulations, demonstrate that our strategy achieves
faster convergence and higher efficiency compared to other
benchmark solutions.

Index Terms—Energy, latency, MEC, offloading, vehicular-fog,
IoT, TD3.

I. INTRODUCTION

THE main concept of the Internet of Things (IoT) is that
various devices comprising different technologies, such

as industrial actuators, wearable devices, autonomous
vehicles, smart sensors, etc., will be connected and
communicate with each other without human intervention
through the Internet [1]. It is a key paradigm in creating a
smart service and making an informed decision for
monitoring, control, and management purposes [2]. IoT
devices generate a massive amount of data which requires a
huge amount of computational power and storage capacity.
However, its limited computational capacity and battery
power pose a big challenge in meeting the quality of service
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(QoS) [3]. To address these issues, an offloading concept can
be used [4]. Offloading involves migrating resource-intensive
computations from a resource-constrained device to a device
with adequate resources to speed up computations and save
battery life. IoT devices can offload their tasks to cloud
computing, which offers abundant computing and storage
capacity. However, cloud computing has its own drawbacks,
such as a single point of failure, lack of location awareness,
reachability, and latencies [5].

Multi-access Edge Computing (MEC) has been introduced
by the European Telecommunications Standards Institute
(ETSI) as a supplement to cloud computing and mobile edge
computing by deploying edge servers at base stations [6]. It
serves as an effective method to solve the limited resources
problems in IoT devices [7]. In MEC environments, servers
with less processing capabilities than cloud-based servers are
positioned closer to IoT devices on the edge of the cellular
network, enabling them to provide computing services for
IoT devices. IoT devices can optimize their functionality by
transferring computational tasks to Mobile Edge Computing
(MEC) sites [8]. This process involves leveraging
device-to-device (D2D) communication through wireless
networks to improve their performance [9]. Once the tasks
have been completed, the IoT devices will receive the final
results back. In this way, idle network resources can be
utilized efficiently, and QoS can be enhanced by reducing
the energy consumption of IoT devices and the latency in
carrying out computational operations [10].

In the context of MEC, high-traffic scenarios, such as
those occurring during sporting events or music concerts, can
potentially overload an MEC site [11]. To address this,
horizontal and vertical federations can be established.
Horizontal federation facilitates the offloading of a portion of
traffic to neighboring MEC sites [12], while vertical
federation involves offloading traffic into the connected
Vehicle Fog (VF) [13]. In an Internet of Vehicles (IoV)
ecosystem, vehicles equipped with sensors, communication
devices, and smart technologies communicate with each
other, infrastructure, and central control systems [14].
Vehicles with limited computational capacity can collaborate
to serve as both a communication and computation platform.
Additionally, a connected device handling numerous tasks
could be parking lot vehicular fog or traffic intersection
vehicular fog, contributes to further enhancing overall
performance [15].

Over the past decade, researchers have demonstrated

ar
X

iv
:2

40
4.

12
58

4v
1 

 [
cs

.N
I]

  1
9 

A
pr

 2
02

4



2

significant interest in computational offloading. In an MEC
system, computational offloading is classified into issues
concerning the control plane and the management plane. The
control plane swiftly addresses incoming traffic, while the
management plane predicts future traffic or task arrival rates
based on historical data [4]. However, existing research on
this federated architecture has primarily concentrated on the
management plane. The offloading problem is typically
regarded as a component of the management plane, involving
upward vertical offloading from a UE or vehicles to an MEC
or cloud server and horizontal offloading between vehicles,
MECs, or fogs, with the UE or vehicles making those
decisions [16], [17]. In this study, we aim to bridge this gap
by delving into the control plane within the same
architecture. The offloading problem is considered a
component of the MEC control plane, involving horizontal
offloading to the neighboring MEC site or downward vertical
offloading to the VF, where the offloading decisions are
made by the MEC. It’s worth noting that only a limited
number of studies have explored this particular area [18], to
the best of our current knowledge.

In this study, we focus on investigating horizontal
offloading (from MEC to MEC) and vertical offloading
(from MEC to VFs) in a two-tier MEC and VF architecture.
When IoT devices generate a substantial volume of traffic,
it’s categorized as hotspot traffic and routed to the MEC site
to harness its enhanced computation capabilities. However,
the MEC site faces the challenge of potential overload due to
its limited computational capacity, leading to significant
computational delays that violate QoS requirements. To
address this issue, incoming traffic can either be processed
locally or offloaded to a nearby horizontally federated MEC
site or a vertically federated VF to enhance response times.
However, once traffic is offloaded to VFs, it undergoes rapid
processing with reduced latency due to the extensive
distributed computational capacity of VFs, albeit at the
expense of increased energy consumption. Achieving a
balance between traffic processing delay and energy
consumption is imperative, with the primary objective being
the simultaneous minimization of both average system
latency and energy consumption.

Offloading decisions in this study are made using a deep
reinforcement learning (DRL) agent, the distributed
twin-delayed deep deterministic policy gradient (DTD3)
algorithm, deployed at the control plane. The algorithm’s
main objective is to make an optimal offloading decision that
simultaneously minimizes latency and maximizes battery life
for the VFs while satisfying QoS requirements. Once the
traffic is offloaded to the preferred site and computations are
completed, the results are returned to the MEC site. In short,
the main contributions of this work are summarized as
follows:

1) We formulate an optimization problem of computational
offloading for MEC and VF architecture using queueing
theory, with the objective of minimizing the average
weighted sum cost of the entire system in terms of
latency and energy consumption.

2) We develop an equivalent reinforcement learning (RL)

environment for the MEC and VF network and transform
the above problem into it.

3) We propose an efficient DRL-based Distributed-TD3
algorithm to optimize offloading decisions for solving
the problem.

4) We conduct extensive simulations to assess the efficiency
of the RL environment and evaluate the performance of
the proposed approach.

The rest of the study is organized as follows. Section II
describes the related work. Section III discusses the system
modeling and problem formulation. Section IV introduces the
proposed solution. Section V presents the parameter setting
and result analysis. Finally, Section VI provides the conclusion
of this work.

II. RELATED WORKS

Most previous research [19]–[29] primarily focused on
designating the destination for offloaded tasks rather than
quantifying the volume of traffic to be offloaded. Moreover,
existing studies mainly explored the option for UE or
vehicles to perform upward vertical offloading [19]–[29] to
MEC or the cloud or horizontal offloading [19], [25],
[27]–[29] to nearby vehicles or MECs. In contrast, this study
addresses the challenge of relieving an overloaded MEC site,
which can horizontally offload specific incoming tasks to
neighboring MEC sites or vertically downward to a VF. The
Distributed-TD3 algorithm is utilized to determine the
optimal offloading decision, specifying both the location and
quantity of tasks to be offloaded by an MEC site. This
section provides a summary of literature studies that have
explored different target networks for computational
offloading, aiming to achieve diverse objectives using various
RL techniques, as illustrated in Table I.

He et al. [19] proposed an edge-enabled IoV designed to
offload task-data chunks to maximize the quality of
experience for vehicles. They introduce a deep deterministic
policy gradient (DDPG)-based DRL algorithm to achieve this
goal. The study considers vehicle caching, computation, and
the edge server’s channel as constraints. Zhan et al. [20]
modeled the offloading scheduling strategy as a Markov
decision process (MDP) and leveraged a DRL method called
proximal policy optimization (PPO) to solve this problem.
The proposed strategy learns the optimal offloading policy
with the aim of minimizing the weighted long-term cost in
terms of a tradeoff between task latency and energy
consumption. Cui et al. [21] designed an IoV edge
computing model and proposed an intelligent communication
and computation resource allocation (ICCRA) for task
offloading. They proposed a scheme combining multiple RL
strategies, which are communication and computing resource
allocation, to minimize the total system cost.

Zhou et al. [22] formulated a joint optimization of
offloading and resource allocation as a mixed-integer
nonlinear programming (MINLP) problem in a multiuser
MEC system with the objective of minimizing energy and
using a double-deep-Q-network (DDQN) method as a
solution. Waqar et al. [23] modeled an MEC-enabled
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TABLE I: Survey on offloading in different target networks using RL

Papers Target Network
Target Plane Offloading Direction Offloading Type Fog Type

Objective Constraints ApproachesManagement Control Vertical Horizontal 1 to 1 1 to n Static Dynamic

[19] V ↔ V, V ↑ RSU ✓ × ✓ ✓ ✓ × ✓ × Maximize QoE Caching and
Resource

DDPG

[20] V ↑ VEC ✓ × ✓ × ✓ × × ✓ Minimize Latency and
Energy

Resource PPO

[21] V ↑ E, V ↑ C ✓ × ✓ × ✓ × ✓ × Minimize Latency and
Reliability

Latency and
Reliability

RL

[22] UE ↑ MEC ✓ × ✓ × ✓ × ✓ × Minimize Energy Latency and
Reliability

Q-learning
Double-DQL

[23] V ↑ MEC ✓ × ✓ × ✓ × × ✓ Minimize Latency and
Energy

Latency and
Resource

Q-learning and
multi-agent

[24] UE ↑ VEC ✓ × ✓ × ✓ × ✓ × Maximize the long-term
utility of the network

Latency and
Resource

Q-learning and
DRL

[25] V ↔ V, V ↑ RSU ✓ × ✓ ✓ ✓ × × ✓ Minimize Energy Latency Edmonds-Karp
and DRL

[26] V ↑ MEC, V ↑ C ✓ × ✓ × ✓ × × ✓ Minimize Latency and
Energy

Resource DQN-based
JCOTM

[27] V ↔ V, V ↑ RSU ✓ × ✓ ✓ ✓ × × ✓ Maximize Capacity Resource Q-Leering based
CCSRL

[28] UE ↑ E, E ↔ E, E ↑ C ✓ × ✓ ✓ ✓ × × ✓ Minimize Energy Caching,
Latency and
Resource

DDPG

[29] UE ↔ VEC, UE ↑ MEC ✓ × ✓ ✓ ✓ × × ✓ Minimize Latency and
Energy

Latency SAC

Ours MEC ↔ MEC, MEC ↓ VF × ✓ ✓ ✓ × ✓ × ✓ Minimize Latency and
Energy

Resource Distributed-TD3

integrated aerial-terrestrial vehicular network to minimize the
overall computational overhead of the system. In this work, a
joint computation offloading and resource allocation problem
was formulated as a MINLP, and a multi-agent RL based on
a Deep Double Q-learning (DDQN) algorithm was proposed
to address this issue. Liu et al. [24] proposed a DRL
technique aimed at determining optimal resource allocation
and computation offloading policies. This approach takes
into account the potential for mobile vehicles to offer
computation services to user equipment (UE) within a
vehicle edge computing network.

Ning et al. [25] proposed a three-layer offloading
framework in the IoVs modeled to minimize the overall
energy consumption. Furthermore, their problem was divided
into two parts which are the flow direction and offloading
decision. They proposed the Edmonds-Karp algorithm to
address the flow direction and DRL for the offloading
decision. Wu et al. [26] proposed the Joint Computation
Offloading and Task Migration Optimization (JCOTM)
algorithm, based on the deep Q-network (DQN), to minimize
the total system cost in a vehicle-aware Mobile Edge
Computing Network (VAMECN). Xia et al. [27] proposed
maximizing the capacity of the vehicular network to achieve
efficient and reliable communication using cluster-enabled
cooperative scheduling based on the Q-learning algorithm.
Zhou et al. [28] investigated the problem of jointly
optimizing computation offloading, service caching, and
resource allocation in collaborative MEC systems. They
proposed a DDPG algorithm as a solution and formulated
the problem as an MINLP, aiming to minimize long-term
energy consumption. Budhiraja et al. [29] proposed a
latency-energy-aware task-offloading framework for
connected autonomous vehicular (CAV) networks. The
framework addresses the offloading of tasks and the
reduction of energy consumption within the
vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V)
communication links of CAV networks. They formulated the

problem as an MINLP and applied the soft actor-critic (SAC)
based algorithm to jointly minimize latency and energy.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a two-tier architecture
comprising MEC and dynamic parking-lot VFs with vehicle
arrivals and departures. The MEC sites are located behind
base stations on the top tier (as depicted in Figure 1), while
the VFs are positioned on the bottom tier. Table II provides
the notations used for modeling and problem formulation.
Each MEC is denoted as 𝐴𝑖 , where i = {1, 2, · · · , 𝑁}. We
modeled each MEC 𝐴𝑖 in the topology as an 𝑀/𝑀/1
queueing system, following a first-come-first-serve (FCFS)
manner. Each MEC 𝐴𝑖 is equipped with a single server
having a huge computational capacity with a mean service
rate 𝜇𝐴

𝑖
to process incoming traffic and a communication

capacity 𝐵𝐴→𝑉
𝑖,𝑘

to communicate with 𝑘 𝑡ℎ VFs. Moreover,
each MEC 𝐴𝑖 receives incoming hotspot traffic following a
Poisson process with a mean arrival rate of 𝜆𝑖 .

All the VFs of the 𝑖𝑡ℎ MEC site are denoted as 𝑉𝑖,𝑘 , where
k = {1, 2, · · · , 𝑀}. The total number of vehicles in a single
VF is denoted as 𝑏𝑘 , where 𝑏𝑚𝑖𝑛 ≤ 𝑏𝑘 ≤ 𝑏𝑚𝑎𝑥 . Here, 𝑏𝑚𝑖𝑛

is the minimum number of vehicles required to create a VF,
and a VF will be suspended if 𝑏𝑘 < 𝑏𝑚𝑖𝑛. Conversely, 𝑏𝑚𝑎𝑥

is the maximum number of vehicles allowed in a VF, and any
arrivals will be prevented from entering the VF if 𝑏𝑘 ≥ 𝑏𝑚𝑎𝑥 .
We modeled each VF of the 𝑖𝑡ℎ MEC site 𝑉𝑖,𝑘 as 𝑀/𝑀/𝑐
queueing system with an FCFS manner, where each vehicle
within the VF is considered as a single server with a mean
service rate 𝜇𝑘,𝑏, where b = {1, 2, · · · , 𝑏𝑘}. Each VF 𝑉𝑖,𝑘 of
the 𝑖𝑡ℎ MEC site has a computing capacity mean service rate
𝜇𝑉
𝑖,𝑘

= 𝑏𝑘 × 𝜇𝑘,𝑏 and a communication capacity 𝐵𝑉→𝐴
𝑖,𝑘

.
In this paper, we consider both vertical federation, which

involves the interaction between an MEC site and its
associated VFs, and horizontal federation among different
MEC sites. This implies that when incoming hotspot traffic
arrives at MEC 𝐴𝑖 , a portion of the traffic will be executed
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TABLE II: List of Commonly used Variables and Notations.

Notations Descriptions
𝐴𝑖 𝑖𝑡ℎ MEC site in tier-2, where i = {1, 2, · · · , 𝑁 }
𝑉𝑖,𝑘 𝑘𝑡ℎ VF node in tier-1, where k = {1, 2, · · · , 𝑀 }
𝑑𝐴→𝐴
𝑖, 𝑗

Distance between 𝑖𝑡ℎ MEC site and 𝑗𝑡ℎ MEC site
𝜇𝐴
𝑖

Computing Capacity of 𝑖𝑡ℎ MEC site
𝜇𝑉
𝑖,𝑘

Computing Capacity of 𝑘𝑡ℎ VF node of 𝑖𝑡ℎ MEC site
𝐵𝑉→𝐴
𝑖,𝑘

, 𝐵𝐴→𝑉
𝑖,𝑘

Communication capacity of 𝑘𝑡ℎ VF node of 𝑖𝑡ℎ MEC
site

𝜆𝑖 Arrival traffic at 𝑖𝑡ℎ MEC site
𝑃𝐴
𝑖

Arrival traffic being served at 𝑖𝑡ℎ MEC site
𝑃𝐴→𝐴
𝑖, 𝑗

Arrival traffic at 𝑖𝑡ℎ MEC site being served at 𝑗𝑡ℎ MEC
site

𝑃𝐴→𝑉
𝑖,𝑘

Arrival traffic being served at 𝑘𝑡ℎ VF node of 𝑖𝑡ℎ MEC
site

𝐿𝐴
𝑖

Latency when served by 𝑖𝑡ℎ MEC site
𝐿𝐴→𝐴
𝑖,𝑘

Latency when part of 𝑖𝑡ℎ MEC sit traffic served by 𝑗𝑡ℎ

MEC site
𝐿𝐴→𝑉
𝑖,𝑘

Latency when part of 𝑖𝑡ℎ MEC site traffic served by 𝑘𝑡ℎ

VF node
𝐿sys Average system latency
𝐷𝐴↔𝐴

𝑖,𝑘
Propagation delay between 𝑖𝑡ℎ and 𝑗𝑡ℎ MEC site vice
versa

𝐸𝐴→𝑉
𝑖,𝑘

Energy consumed when served by 𝑘𝑡ℎ VF node of 𝑖𝑡ℎ

MEC site
𝐸𝑖,𝑡𝑜𝑡𝑎𝑙 Energy consumed in 𝑖𝑡ℎ MEC site
𝐸sys Average system energy consumption

Fig. 1: MEC and vehicular-fog architecture.

locally at the host MEC site 𝐴𝑖 with an offloading ratio of
𝑃𝐴
𝑖

. Another portion of traffic will be offloaded horizontally
and executed at the neighbor MEC site 𝐴 𝑗 , where
∀𝐴 𝑗 ∈ 𝐴𝑁\{𝐴𝑖}, with an offloading ratio of 𝑃𝐴→𝐴

𝑖, 𝑗
.

Additionally, some amount of traffic will be vertically
offloaded and computed at the connected 𝑖𝑡ℎ MEC site VFs
𝑉𝑖,𝑘 with an offloading ratio of 𝑃𝐴→𝑉

𝑖,𝑘
. It is important to note

that the sum of these diverse offloading ratios must equal 1.

A. Local Execution model

For local execution, the traffic arriving at the MEC site 𝐴𝑖

comprises two types. The first type corresponds to a fraction of
incoming user hotspot traffic, designated for local computation
at MEC site 𝐴𝑖 . The second type encompasses all potential
incoming traffic from the neighboring MEC site 𝐴 𝑗 , intended
for computation at MEC site 𝐴𝑖 . So, the overall traffic load of
a single MEC site 𝐴𝑖 will be the sum of these distinct types of
arrival traffic, and it is denoted as 𝜆𝐴

𝑖
= 𝑃𝐴

𝑖
× 𝜆𝑖 +

∑
𝑗 𝑃

𝐴→𝐴
𝑗,𝑖
×

𝜆 𝑗 ,where ∀𝐴 𝑗 ∈ 𝐴𝑁\{𝐴𝑖}. The computational latency of the
locally executed traffic can be calculated as

𝐿𝐴
𝑖 =

𝜆𝐴
𝑖

𝜇𝐴
𝑖
(𝜇𝐴

𝑖
− 𝜆𝐴

𝑖
)
+ 1
𝜇𝐴
𝑖

, (1)

𝐿𝑖,𝑙𝑜𝑐𝑎𝑙 = 𝑃𝐴
𝑖 × 𝐿𝐴

𝑖 . (2)

We neglected to compute the energy consumption of the 𝑖𝑡ℎ

MEC servers under the assumption that they are connected to
the electrical network and have access to virtually unlimited
energy.

B. Horizontal Offloading Model
Since we are considering a horizontal federation among the

MEC sites, MEC site 𝐴𝑖 can offload a portion of its traffic
for computation at some of its neighbor MEC sites, such as
𝐴 𝑗 . This results in two forms of traffic that arrive at MEC site
𝐴 𝑗 . Firstly, a certain amount of incoming user hotspot traffic
arrives at MEC site 𝐴 𝑗 , designated for local computation at
that specific site. Secondly, all potential incoming traffic from
neighboring MEC sites 𝐴𝑖 is offloaded and processed at MEC
site 𝐴 𝑗 . The traffic load of a single MEC server 𝐴 𝑗 is the
summation of these different types of arrival traffic, denoted
as 𝜆𝐴

𝑗
= 𝑃𝐴

𝑗
× 𝜆 𝑗 +

∑
𝑖 𝑃

𝐴→𝐴
𝑖, 𝑗

× 𝜆𝑖 ,where ∀𝐴𝑖 ∈ 𝐴𝑁\{𝐴 𝑗 }.
The computational latency of the horizontally offloaded and
executed traffic can be calculated as

𝐿𝐴→𝐴
𝑖, 𝑗 =

𝜆𝐴
𝑗

𝜇𝐴
𝑗
(𝜇𝐴

𝑗
− 𝜆𝐴

𝑗
)
+ 1
𝜇𝐴
𝑗

+ 2 × 𝐷𝐴↔𝐴
𝑖, 𝑗 . (3)

where 𝐷𝐴↔𝐴
𝑖, 𝑗

=
𝑑𝐴↔𝐴
𝑖, 𝑗

𝑐
represents the propagation delay

between the 𝑖𝑡ℎ and 𝑗 𝑡ℎ MEC sites, and 𝑐 is the speed of
light. We assume that the host MEC site 𝐴𝑖 partially offloads
its traffic to ℎ number of its neighbor MEC sites, denoted as
h = {1, 2, · · · , 𝑁}, where ℎ ≤ 𝑁 to prevent unnecessary
delays that could occur by offloading to all 𝑁 neighbor MEC
sites. The horizontal latency can be calculated by considering
the maximum latency among the ℎ neighbor MEC sites,
which are computed as the 𝑖𝑡ℎ MEC traffic, and it is defined
as

𝐿𝑖,ℎ𝑜𝑟𝑖𝑧 = max(𝑃𝐴→𝐴
𝑖,1 × 𝐿𝐴→𝐴

𝑖,1 , · · · , 𝑃𝐴→𝐴
𝑖,ℎ × 𝐿𝐴→𝐴

𝑖,ℎ ). (4)

Here, we refrain from computing the energy consumption of
the 𝑗 𝑡ℎ MEC site as we assume it is connected to the electrical
network and has access to virtually unlimited energy.

C. Vertical Offloading Model
From the incoming user hotspot traffic 𝜆𝑖 that arrives at

the 𝑖𝑡ℎ MEC site, some portions of it will be offloaded to
be computed at the 𝑘 𝑡ℎ VF under the coverage of the same
MEC site. The offloading ratio for this process is denoted by
𝑃𝐴→𝑉
𝑖,𝑘

. The computational latency of vertically offloaded and
executed traffic at 𝑘 𝑡ℎ VF is given in the form of Erlang’s C
formula [30].

𝐶

(
𝑏𝑘 ,

𝜆𝑉
𝑖,𝑘

𝜇𝑉
𝑖,𝑘

)
=

1

1 + (1 − 𝜌)
(

𝑏𝑘 !
(𝑏𝑘×𝜌)𝑏𝑘

) ∑𝑏𝑘−1
𝑘=0

(𝑏𝑘×𝜌)𝑘
𝑘!

, (5)
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where 𝜆𝑉
𝑖,𝑘

= 𝑃𝐴→𝑉
𝑖,𝑘

× 𝜆𝑖 is the mean arrival rate of the 𝑘 𝑡ℎ

VF, 𝜇𝑉
𝑖,𝑘

is the mean service rate of 𝑘 𝑡ℎ VF and 𝜌 =
𝜆𝑉
𝑖,𝑘

(𝑏𝑘×𝜇𝑉
𝑖,𝑘
)

is the mean utilization. The transmission rate between the 𝑘 𝑡ℎ

VF and 𝑖𝑡ℎ MEC site is given as

𝐵𝐴→𝑉
𝑖,𝑘 = 𝑊 × log2 (1 +

𝐹𝑖 × 𝐺2

𝜔 ×𝑊 ), (6)

𝐵𝑉→𝐴
𝑖,𝑘 = 𝑊 × log2 (1 +

𝐹𝑘 × 𝐺2

𝜔 ×𝑊 ), (7)

where 𝐵𝐴→𝑉
𝑖,𝑘

is the downlink rate, 𝐵𝑉→𝐴
𝑖,𝑘

is uplink rate, 𝑊 is
the uplink and downlink channel bandwidth, 𝐹𝑖 and 𝐹𝑘 are
the transmission power of the 𝑘 𝑡ℎ VF and the 𝑖𝑡ℎ MEC site,
respectively. 𝜔 is the density of noise power, and 𝐺 is the
channel gain between the 𝑘 𝑡ℎ VF and 𝑖𝑡ℎ MEC site. The
latency of the vertically offloaded traffic will be the sum of
uplink, downlink, and computation delays, and it is defined
as

𝐿𝐴→𝑉
𝑖,𝑘 =

𝜆𝑉
𝑖,𝑘

𝐵𝐴→𝑉
𝑖,𝑘

+
(

𝐶

(
𝑏𝑘 ,

𝜆𝑉
𝑖,𝑘

𝜇𝑉
𝑖,𝑘

)
𝑏𝑘 × 𝜇𝑉

𝑖,𝑘
− 𝜆𝑉

𝑖,𝑘

+ 1
𝜇𝑉
𝑖,𝑘

)
+
𝜆𝑉
𝑖,𝑘
× 𝜖𝑘

𝐵𝑉→𝐴
𝑖,𝑘

, (8)

where 𝜖𝑘 is the ratio of return traffic form the 𝑘 𝑡ℎ VF to the
𝑖𝑡ℎ MEC site after completion of the execution. In this work,
instead of offloading to all 𝑀 number of VFs, we only
offload to 𝑞 number of VFs, which is denoted as
q = {1, 2, · · · , 𝑀}, where 𝑞 ≤ 𝑀 . We have considered the
maximum latency necessary for executing the offloaded
traffic and is computed as

𝐿𝑖,𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = max(𝑃𝐴→𝑉
𝑖,1 × 𝐿𝐴→𝑉

𝑖,1 , · · · , 𝑃𝐴→𝑉
𝑖,𝑞 × 𝐿𝐴→𝑉

𝑖,𝑞 ). (9)

The energy consumption involves both the computation of
all traffic arriving at the 𝑘 𝑡ℎ VF and the data transfer between
𝑖𝑡ℎ MEC site and 𝑘 𝑡ℎ VF, can be calculated as

𝐸𝑉
𝑘,𝑐𝑜𝑚𝑝 = 𝑥𝑘 × 𝑦𝑘 × 𝜆𝑉𝑖,𝑘 × 𝜗, (10)

𝐸𝐴→𝑉
𝑘,𝑑𝑜𝑤𝑛 = 𝐹𝑖

𝜆𝑉
𝑖,𝑘
× 𝜗

𝐵𝐴→𝑉
𝑖,𝑘

, (11)

𝐸𝑉→𝐴
𝑘,𝑑𝑜𝑤𝑛 = 𝐹𝑘

𝜆𝑉
𝑖,𝑘
× 𝜗 × 𝜖𝑘
𝐵𝑉→𝐴
𝑖,𝑘

, (12)

where 𝐸𝑉
𝑘,𝑐𝑜𝑚𝑝

is the 𝑘 𝑡ℎ VF computing energy, 𝐸𝐴→𝑉
𝑘,𝑑𝑜𝑤𝑛

is
the downlink energy consumption, 𝐸𝑉→𝐴

𝑘,𝑢𝑝
is the uplink energy

consumption, 𝑥𝑘 is the number of CPU cycles per bit, 𝑦𝑘 is the
energy consumption per CPU cycle and 𝜗 is the packet size of
the offloaded data. The total energy consumed at the 𝑘 𝑡ℎ VF
to compute the incoming traffic, is represented by the sum of
computing energy (Equation (10)), downlink energy (Equation
(11)) and uplink energy (Equation (12)), as in Equation (13).

𝐸𝐴→𝑉
𝑖,𝑘 = 𝐸𝐴→𝑉

𝑖,𝑑𝑜𝑤𝑛 + 𝐸
𝑉
𝑘,𝑐𝑜𝑚𝑝 + 𝐸

𝑉→𝐴
𝑘,𝑢𝑝 . (13)

D. Problem Formulation

The incoming user hotspot traffic that arrived at the 𝑖𝑡ℎ

MEC site is offloaded with some ratio and executed locally,
horizontally, and vertically before returning back. The total
latency of the task arrived at the 𝑖𝑡ℎ MEC site, and its
energy consumption is defined as

𝐿𝑖 = max(𝐿𝑖,𝑙𝑜𝑐𝑎𝑙 , 𝐿𝑖,ℎ𝑜𝑟𝑖𝑧 , 𝐿𝑖,𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙), (14)

𝐸𝑖,𝑡𝑜𝑡𝑎𝑙 =

𝑀∑︁
𝑘

𝐸𝐴→𝑉
𝑖,𝑘 . (15)

The average system latency (Equation (16)) and average
energy consumption (Equation (17)) will be calculated as

𝐿sys =
1
𝑁

𝑁∑︁
𝑖=1

𝐿𝑖 , (16)

𝐸sys =
1
𝑁

𝑁∑︁
𝑖=1

𝐸𝑖,𝑡𝑜𝑡𝑎𝑙 . (17)

Hence, we formulate the objective function with the aim of
minimizing the weighted sum of system cost, considering both
latency and energy. This objective function is defined as

𝐶sys = min(𝜎 × 𝐿sys + (1 − 𝜎) × 𝐸sys), (18)

where 𝜎 is the weighting parameter of execution latency and
energy consumption, and the objective function is subjected
to the following constraints:

𝜎 + (1 − 𝜎) = 1, (19)

𝑃𝐴
𝑖 +

∑︁
ℎ

𝑃𝐴→𝐴
𝑖,ℎ +

∑︁
𝑞

𝑃𝐴→𝑉
𝑖,𝑞 = 1, (20)

0 ≤ 𝑃𝐴
𝑖 , {𝑃𝐴→𝐴

𝑖,1 · · · 𝑃𝐴→𝐴
𝑖,ℎ }, {𝑃𝐴→𝑉

𝑖,1 · · · 𝑃𝐴→𝑉
𝑖,𝑞 } ≤ 1, (21)

𝑃𝐴
𝑖 × 𝜆𝐴

𝑖 +
∑︁
ℎ

𝑃𝐴→𝐴
𝑖,ℎ × 𝜆𝐴→𝐴

𝑖,ℎ +
∑︁
𝑞

𝑃𝐴→𝑉
𝑖,𝑞 × 𝜆𝐴→𝑉

𝑖,𝑞 ≤ 𝜆𝑖 ,

(22)

𝜆𝐴
𝑖 ≤ 𝜇𝐴

𝑖 , (23)

𝜆𝐴
𝑗 ≤ 𝜇𝐴

𝑗 , (24)

𝜆𝑉𝑖,𝑘 ≤ 𝜇𝑉𝑖,𝑘 . (25)

Equation (19) implies that the value of the weighted
parameter must be between [0,1] and should sum to 1.
Equation (20) and Equation (21) ensure that the offloading
ratio must be between [0,1] and should add up to 1.
Equation (22) ensures that the offloaded traffic doesn’t
exceed the incoming hotspot traffic. Equation (23), Equation
(24), and Equation (25) indicate that the offloaded traffic can
be handled using the available resources in the network.
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IV. OFFLOADING WITH DISTRIBUTED-TD3
The control plane in a two-tier MEC and VF system

determines the best offloading decision to minimize system
latency and energy consumption. RL is a potential method
for offloading optimization, as it learns the optimal solution
directly from the environment and can choose a sub-optimal
solution without waiting for the best one. This offloading
decision will be made using an RL agent. In RL strategy, an
agent interacts with an unknown dynamic environment and
takes different actions to maximize the total reward. At each
discrete time step 𝑡, an agent observes a state 𝑠𝑡 from a
given state space 𝑆 and selects an action 𝑎𝑡 from an action
space 𝐴 to transit from the current state 𝑠𝑡 to a new state
𝑠𝑡+1 following a policy 𝜋(𝑎𝑡 , 𝑠𝑡 ) and receives a reward 𝑟𝑡
based on the reward function 𝑅(𝑠𝑡 , 𝑎𝑡 ). This process is
continued until the agent reaches the terminal state, where
the main objective is to maximize the expected cumulative
rewards [31]. In this paper, we transform the two-tier MEC
and VF network into a MDP environment, and to determine
offloading decisions in the given network topology, we use a
Distributed-TD3 (DTD3) model as in Figure 2, based on
TD3 model [32].

A. Overview of TD3 Algorithm
Twin Delayed Deep Deterministic Policy Gradients (TD3)

[32] is a DRL algorithm designed for tasks with continuous
action spaces. It builds on the Deep Deterministic Policy
Gradients (DDPG) algorithm [33] to enhance stability,
learning efficiency, and reduce overestimation by introducing
the following key enhancements which make TD3 a valuable
tool for training DRL agents in complex and continuous
environments.

1) Clipped Double-Q Learning: It is a technique used to
address the problem of overestimation bias in value
estimation. In Double-Q Learning, two value functions
estimate the value of state-action pairs, and the minimum of
these two estimates is used as the target value during
updates. Clipping involves constraining the target value to be
within a certain range, mitigating overestimation issues
commonly observed in single Q-value estimators.

2) Delayed Policy Updates: It is a strategy employed to
improve training stability. Instead of updating the policy
after every time step, updates are delayed. This delay allows
the critic networks to provide more accurate and stable value
estimates, reducing the potential for harmful policy
oscillations and improving the overall efficiency of the
learning process.

3) Target Policy Smoothing: It is a technique used to
stabilize the training of TD3 agents. It involves adding a
small amount of noise to the target actions during the
learning process. This smoothing of the target policy helps
prevent the learning algorithm from becoming overly
sensitive to small changes in the policy, contributing to more
robust and conservative policy updates.

B. MEC and VF Environment
Offloading decisions in MEC and VF networks is a control

task problem in which an appropriate decision must be made

at each moment in time to achieve its objective. All control
task problems can be represented in a general template
called a MDP, which is a discrete-time stochastic control
process. Therefore, the offloading decision in the MEC and
VF network can be transformed into an MDP because it
satisfies the MDP properties: it is a control process based on
decision-making to achieve the objective, it is a stochastic
process because the agent’s actions partially affect the
evolution of the offloading decision, and it’s a discrete-time
process because the offloading decision progresses in a finite
interval of time. The details of the elements of the MDP for
the MEC and VF network (𝐴𝑖 , 𝑉𝑘) are presented as follows.

1) State: The state space represents all the relevant
information that describes the current condition of the MEC
and VF environment at a given moment in time. We
considered the following attributes to define the state space
of the ME and VF environment: 𝜆 = {𝜆𝑖}𝑁𝑖=1 which denotes a
set of arrival hotspot traffic rates at all MEC sites;
𝜇 =

{
{𝜇𝐴

𝑖
}𝑁
𝑖=1, {𝜇𝑖,𝑘}

𝑁,𝑀

𝑖=1,𝑘=1
}

is an array holding information
about the computing capability at the MEC and VF;
𝐵 =

{
𝐵𝑉→𝐴
𝑖,𝑘

, 𝐵𝐴→𝑉
𝑖,𝑘

}𝑁,𝑀

𝑖=1,𝑘=1 denotes a set of communication
capacities between MEC and vehicular-fog; the average
system latency 𝐿𝑠𝑦𝑠; and the average system energy
consumption 𝐸𝑠𝑦𝑠 . Thus, the state space 𝑠𝑡 at time 𝑡 is
donated as 𝑠𝑡 = [𝜆, 𝜇, 𝐵, 𝐿𝑠𝑦𝑠 , 𝐸𝑠𝑦𝑠] and can be observed by
the agent to take and action.

2) Action: The action space produces an effect on the
MEC and VF environment, leading to a modification of its
state. Since the offloading decisions (𝑃𝐴

𝑖
, 𝑃𝐴→𝐴

𝑖, 𝑗
, 𝑃𝐴→𝑉

𝑖,𝑘
) are

partial offloading decisions, the action space is continuous.
Thus, the action space used in this environment is a
combination of three different sets: 𝑙𝑎𝑡 ,𝑖 = {𝑃𝐴

𝑖
}𝑁
𝑖=1, which is

denotes a set of all actions decided to be computed in 𝑖𝑡ℎ

MEC; ℎ𝑎𝑡 ,𝑖 = {𝑃𝐴→𝐴
𝑖, 𝑗
}𝑁
𝑗=1, ,∀ 𝑗 ∈ 𝑁\𝑖 is a set of offloading

decisions to be computed at neighbor MEC; and
𝑣𝑎𝑡 ,𝑖 = {𝑃𝐴→𝑉

𝑖,𝑘
}𝑁
𝑖=1, ,∀𝑘 ∈ 𝑀 is a set of offloading decisions

to be computed at connected VF. The combination of these
three sets mentioned above will represent the 𝑖𝑡ℎ MEC site
action space 𝑎𝑡 ,𝑖 at time 𝑡 as 𝑎𝑡 ,𝑖 = [𝑙𝑎𝑡 ,𝑖 , ℎ𝑎𝑡 ,𝑖 , 𝑣𝑎𝑡 ,𝑖], where
𝑙𝑎𝑡 ,𝑖 + ℎ𝑎𝑡 ,𝑖 + 𝑣𝑎𝑡 ,𝑖 = 1.

3) Reward: Once an agent observes a state 𝑠𝑡 and takes an
action 𝑎𝑡 as a result, the agent will observe the new state
again and receive a reward from the MEC and VF
environment. The reward is the feedback that an agent gets
on the effect that the action 𝑎𝑡 had on the environment. In
this work, the reward function is related to the objective
function of our optimization problem 𝐶sys. The reward 𝑟𝑡 is
obtained by dividing the objective function 𝐶sys by some
large number Ω to convert its value into fractions because
neural networks work well with fractions rather than large
decimal numbers. The reward value will be positive if the
current value of the objective function 𝐶sys is less than or
equal to the previous value of the objective function 𝐶′sys,
and it will be negative if otherwise. The reward is defined as,

𝑟𝑡 =

{
𝐶sys
Ω

, 𝐶sys ≤ 𝐶′sys,
−𝐶sys
Ω

, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(26)
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Fig. 2: Distributed-TD3 model for MEC and VF architecture.

4) Done: The done element is another important aspect of
the MEC and VF environment that informs the agent
whether it has reached the terminal state or not. In this
environment, there are two ways the agent will know if it is
in the terminal state or not. The first one is after ten different
offloading decisions, the environment will reach the terminal
state, and the second one is if, at any point during the
simulation, the agent provides an offloading decision that
puts any of the MEC or VF resources into a busy state, the
environment will terminate automatically.

C. Proposed Distributed-TD3 Algorithm

In this paper, we propose the DTD3 algorithm (Algorithm
1), which builds on TD3. The DTD3 agent is deployed in
the control plane and is responsible for finding an optimal
offloading destination by taking actions (offloading decisions)
that maximize its expected reward.

In the MEC and VF environment, there are 𝑁 MEC sites
𝐴1, 𝐴2, · · · , 𝐴𝑁 that receive an incoming hotspot traffic
𝜆1, 𝜆2, · · · , 𝜆𝑁 from users. Hence, we need 𝑁 different
actions 𝑎1, 𝑎2, · · · , 𝑎𝑁 , where each action sums up to 1, and
they are merged together to form the action at time 𝑡,
𝑎𝑡 = [𝑎𝑡 ,1, 𝑎𝑡 ,2, · · · , 𝑎𝑡 ,𝑁 ]. To achieve this, we use a
distributed policy that enables us to take action for each
MEC site independently and then concatenate them together
to send to the environment to have an impact.

For this purpose, we employ 𝑁 actor policy networks
𝜋𝜙1 , · · · , 𝜋𝜙𝑁

with parameters 𝜙1, · · · , 𝜙𝑁 and actor-target
policy networks 𝜋𝜙′1

, · · · , 𝜋𝜙′
𝑁

with parameters 𝜙′1, · · · , 𝜙
′
𝑁

that work in parallel to find an optimal offloading decision
and merge their results at the end. Additionally, we use two
critic networks 𝑄 𝜃1 , 𝑄 𝜃2 with parameters 𝜃1, 𝜃2 and

critic-target networks 𝑄 𝜃 ′1
, 𝑄 𝜃 ′2

with parameters 𝜃′1, 𝜃
′
2 to

minimize and correct overestimation.
To optimize our neural networks, we use a replay buffer
B to store and sample experiences. At each time 𝑡, a DTD3
agent observes the state 𝑠𝑡 and takes an action 𝑎𝑡 using the
actor policy networks (Equation (27)) and (Equation (28)).

𝑎𝑖 (𝑠𝑡 ) = 𝑐𝑙𝑖𝑝(𝜋𝜙𝑖
(𝑠𝑡 ) + 𝜖, 𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥),

𝜖 ∼ 𝑁 (0, 𝜎) 𝑓 𝑜𝑟 𝑖 = 1, · · · , 𝑁. (27)

𝑎𝑡 (𝑠𝑡 ) = [𝑎𝑡 ,1 (𝑠𝑡 ), 𝑎𝑡 ,2 (𝑠𝑡 ), · · · , 𝑎𝑡 ,𝑁 (𝑠𝑡 )] . (28)

where 𝜖 is Gaussian noise, and 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 are the lower
and higher values of the action space that an agent can
choose from. After the action is executed in MEC and VF
environment, the agent will receive the next state 𝑠′𝑡 , reward
𝑟𝑡 , and done flag 𝑑𝑡 alongside the previous state 𝑠𝑡 and
action 𝑎𝑡 as a single transition (𝑠𝑡 , 𝑎𝑡 , 𝑠′𝑡 , 𝑟𝑡 , 𝑑𝑡 ), which is
store in replay buffer B.

Once we have enough experience in the buffer, we update
the neural network by taking a random mini-batch of 𝑀

transitions (𝑠, 𝑎, 𝑠′, 𝑟, 𝑑) from the buffer. To compute the
target value 𝑦 in Equation (31), we select the actions 𝑎′𝑡 that
can be taken in the next state 𝑠′ using the actor-target policy.
Subsequently, we apply clip noise to smooth the target
policy and ensure it never gets stuck selecting an
overestimating action as in Equations (29) and (30).

𝑎′𝑖 (𝑠′) = 𝑐𝑙𝑖𝑝(𝜋𝜙′
𝑖
(𝑠′) + 𝑐𝑙𝑖𝑝(𝜖,−𝑐, 𝑐), 𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥),
𝜖 ∼ 𝑁 (0, 𝜎) 𝑓 𝑜𝑟 𝑖 = 1, · · · , 𝑁. (29)

𝑎′𝑡 (𝑠′) = [𝑎′𝑡 ,1 (𝑠
′), 𝑎′𝑡 ,2 (𝑠

′), · · · , 𝑎′𝑡 ,𝑁 (𝑠′)] . (30)

We use both critic-target networks to estimate the Q-values
for the next state-action pairs, employing clipping to prevent
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Algorithm 1: Proposed Distributed-TD3 Algorithm
1 Input: Arrival hotspot traffic and No. of MEC 𝑁

2 Output: Offloading ratio
3 1. Initialization:
4 Initialize actor networks 𝜋 (𝜙1 ) , · · · , 𝜋 (𝜙𝑁 ) with random

parameters 𝜙1, · · · , 𝜙𝑁 ;
5 Initialize target actor networks 𝜋 (𝜙′1 ) , · · · , 𝜋 (𝜙′𝑁 ) with

random parameters 𝜙′1, · · · , 𝜙
′
𝑁

;
6 Initialize critic networks 𝑄 (𝜃1 ) , 𝑄 (𝜃2 ) with random

parameters 𝜃1, 𝜃2;
7 Initialize target critic networks 𝑄 (𝜃 ′1 ) , 𝑄 (𝜃 ′2 ) with random

parameters 𝜃′1, 𝜃′2;
8 Initialize replay buffer B;
9 for 𝑡 = 1 to 𝑇 do

10 2. Exploration and Generate training data: Observe
state 𝑠𝑡 ;

11 Select actions
𝑎𝑖 (𝑠𝑡 ) = 𝑐𝑙𝑖𝑝(𝜋𝜙𝑖

(𝑠𝑡 ) + 𝜖, 𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥), 𝜖 ∼ 𝑁 (0, 𝜎) for
𝑖 = 1, · · · , 𝑁;

12 𝑎𝑡 (𝑠𝑡 ) =
[
𝑎𝑡 ,1 (𝑠𝑡 ), 𝑎𝑡 ,2 (𝑠𝑡 ), · · · , 𝑎𝑡 ,𝑁 (𝑠𝑡 )

]
;

13 Observe next state 𝑠′𝑡 reward 𝑟𝑡 , and done flag 𝑑𝑡 to
indicate 𝑠′𝑡 is the terminal state save transition
(𝑠𝑡 , 𝑎𝑡 , 𝑠′𝑡 , 𝑟𝑡 , 𝑑𝑡 ) in replay buffer B;

14 3. Learning or Exploitation: Sample random
mini-batch of 𝑀 transitions (𝑠, 𝑎, 𝑠′, 𝑟, 𝑑) from B;

15 if 𝑑 = 0 then
16 reset environment state;
17 end
18 Select target actions: 𝑎′

𝑖
(𝑠′) =

𝑐𝑙𝑖𝑝(𝜋𝜙′
𝑖
(𝑠′) + 𝑐𝑙𝑖𝑝(𝜖,−𝑐, 𝑐), 𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥), 𝜖 ∼ 𝑁 (0, 𝜎)

for 𝑖 = 1, · · · , 𝑁;
19 𝑎′𝑡 (𝑠′) =

[
𝑎′
𝑡 ,1 (𝑠

′), 𝑎′
𝑡 ,2 (𝑠

′), · · · , 𝑎′
𝑡 ,𝑁
(𝑠′)

]
;

20 Compute target value 𝑦 = 𝑟 + 𝛾 min𝜃 𝑗=1,2 𝑄 𝜃 ′
𝑗
(𝑠′, 𝑎′𝑡 );

21 Update critic networks

22 𝜃 𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 𝑗=1,2
1
𝑀

∑ (
𝑦 −𝑄 𝜃 𝑗

(𝑠, 𝑎)
)2

;
23 if 𝑡 mod 𝑡′ = 0 then
24 Update actor networks using deterministic policy

gradient ∇𝜙𝑖
𝐽 (𝜙𝑖) = 1

𝑀

∑∇𝑎𝑄 𝜃1 (𝑠, 𝑎) | 𝑎
25 = 𝜋𝜙𝑖

(𝑠)∇𝜙𝑖
𝜋𝜙𝑖
(𝑠), for 𝑖 = 1, · · · , 𝑁;

26 Update target actor networks:
27 𝜙′

𝑖
← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙′𝑖 , for 𝑖 = 1, · · · , 𝑁;

28 Update target critic networks:
29 𝜃′

𝑗=1,2 ← 𝜏𝜃 𝑗 + (1 − 𝜏)𝜃′𝑗 ;
30 end
31 end

overestimation by selecting the value with the minimal
estimate. Once we have the target value 𝑦 as in Equation
(31), we update each of these critic networks 𝜃 𝑗 by
calculating the mean squared error of these batch of
observations and applying a step of gradient descent
(Equation (32)).

𝑦 = 𝑟 + 𝛾 min
𝜃 𝑗=1,2

𝑄 𝜃 ′
𝑗
(𝑠′, 𝑎′𝑡 ). (31)

𝜃 𝑗 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 𝑗=1,2

1
𝑀

∑︁
(𝑦 −𝑄 𝜃 𝑗

(𝑠, 𝑎))2. (32)

At every 𝑡′ time step, which corresponds to a delayed policy
update interval, we update the actor policy 𝜙𝑖 by estimating
the Q-value of the state and the action selected by the policy
using one of the critic networks. Subsequently, we

implement a gradient ascent step to adjust the parameters of
the neural network 𝜙𝑖 in the direction of maximizing the
Q-value (Equation (33)). After updating the neural networks
for the actor policy, we proceed to update the target
networks. For this, we use Equation (34) and Equation (35)
to update the target actor networks 𝜙′

𝑖
and target critic

networks 𝜃′
𝑗
, respectively, to achieve more stable and

effective learning.

∇𝜙𝑖
𝐽 (𝜙𝑖) =

1
𝑀

∑︁
∇𝑎𝑄 𝜃1 (𝑠, 𝑎) |𝑎 = 𝜋𝜙𝑖

(𝑠)∇𝜙𝑖
𝜋𝜙𝑖
(𝑠),

𝑓 𝑜𝑟 𝑖 = 1, · · · , 𝑁. (33)

𝜙′𝑖 ← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙′𝑖 𝑓 𝑜𝑟 𝑖 = 1, · · · , 𝑁. (34)

𝜃′𝑗=1,2 ← 𝜏𝜃 𝑗 + (1 − 𝜏)𝜃′𝑗 . (35)

This process will continuously repeat until the training epoch 𝑡

reaches 𝑇 . Along the way, the agent will be able to provide the
optimal offloading decisions that satisfy the requirements of
the objective function in the given MEC and VF environment.

V. RESULTS AND DISCUSSIONS

In this section, we provide a comprehensive overview of our
experimental setup for the simulation and conduct an in-depth
analysis of the obtained results.

A. Simulation Parameter Settings

In this simulation, we have created an MEC and VF
network environment along with its DTD3 agent, which is
deployed on the control plane to determine the optimal
offloading decision. The MEC and VF networks consist of
four MEC sites, each connected to five VFs. Each VF
represents a group of 5 to 25 parked vehicles. To ensure a
realistic layout, the MEC sites are evenly distributed between
distances of 1 to 10 km, utilizing the random geographic
coordinate sampling application [34]. The computing
capacity of each MEC site is set to 30 MIPS, while the
computational capacity of the VF varies based on the number
of vehicles, ranging from 3 to 15 MIPS. The transmission
and reception power of the MEC and VF networks are set to
24 dBm, and the system bandwidth is 50 MHz. Incoming
traffic from users arrives at each MEC site as either normal
traffic (with rates of 10M, 20M, and 30M packets per
second) or hotspot traffic (with rates of 40M, 60M, and 80M
packets per second). For simplicity, we consider one million
instructions per second (MIPS) and one million packets per
second (MPPS) as equivalent. We developed the MEC and
VF environment following the standards set by OpenAI Gym
[35]. Through rigorous testing, we assessed the
environment’s effectiveness and ensured its satisfaction with
all necessary criteria for an RL environment, utilizing
Stable-Baselines3 [36]. This enabled us to conduct a
comprehensive assessment of the system’s performance and
confirm its suitability for comparing various DRL algorithms.

To evaluate the performance of the proposed DTD3
algorithm, we conducted a comparison with four other
algorithms. These include two from a DRL-based method,
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TABLE III: Parameter settings

Parameters Value
Number of MEC (𝐴𝑖 ) 4
Number of VF node of per MEC (𝑉𝑖,𝑘 ) 5
Number of vehicles per VF (𝑏𝑘 ) 5 to 25
Distance between MECs (𝑑𝐴→𝐴

𝑖, 𝑗
) 1km to 10km

System Bandwidth (𝑊 ) 50 MHz
Background noise (𝜔) -110dBm
VF transmission and reception power (𝐹𝑖 , 𝐹𝑘 ) 24dBm
The capacity of MEC server (𝜇𝐴

𝑖
) 30 MIPS

The capacity of 𝑘𝑡ℎ VF per MEC site (𝜇𝑉
𝑖,𝑘
) 3 to 15 MIPS

CPU cycles per bit (𝑥𝑘 ) 1900 cycles/bit
Energy consumption per CPU cycle (𝑦𝑘 ) 0.1 joule/cycle
Normal traffic rate Poisson-Dist (𝜆𝑖 ) [10M, 20M, 30M p/s]
Hotspot traffic rate Poisson-Dist (𝜆𝑖 ) [40M, 60M, 80M p/s]
Learning rate (𝛼) 0.0003
Update rate (𝜏 ) 0.005
Discount factor (𝛾) 0.99
Batch Size (𝑀 ) 100
Number of hidden layers 2
Number of neurons in hidden layer 256

namely TD3 [32] and DDPG [33], and two from traditional
optimization approaches, Simulated Annealing (SA) [37] and
Particle Swarm Optimization (PSO) [38]. TD3 extends the
original DDPG algorithm to address specific challenges and
enhance stability during training. On the other hand, SA and
PSO emerge as the preferred solutions for optimizing the
offloading problem due to their adeptness in navigating local
optima and exploring various regions within the solution
space. Given the significance of hyperparameters in RL and
their impact on the learning process, selecting appropriate
values is crucial. To address this, we employed Optuna [39],
an automatic hyperparameter optimization software
framework, to determine the right hyperparameter values for
our simulation. In the DTD3 model, several actors and target
networks were employed, contrasting with the TD3 model
that utilized a single actor and target network for action
selection. Both algorithms incorporated two critics and target
networks, dedicated to evaluating the actor and its respective
target networks. The number of hidden layers and neurons in
each network was kept the same. For the simulation, we set
the episode size, memory size, and mini-batch size to 10000,
100000, and 100, respectively. The learning rate, update rate,
discount factor, number of hidden layers, and number of
neurons in each hidden layer of the actor and critic networks
were all set to 0.0003, 0.005, 0.99, 2, and 256, respectively.
To implement the simulation MEC and VF environments, we
utilized Python, Gym, Pytorch, and NumPy. The essential
parameter settings are summarized in Table III.

Figure 3, illustrates the relationship between the average
system cost, average system latency, and average system
energy. To determine the best-weighted parameter value for
the simulation, we conducted an experiment using several
weighting parameter values (0, 0.25, 0.5, 0.75, and 1) plotted
on the x-axis. The figure uses three color-coded y-axis bars
to represent the three performance attributes: the left bar in
purple represents the average system cost, the middle bar in
light blue represents the average system latency, and the
right bar in green represents the average system energy. The

Fig. 3: Performance with change in weighting parameter (𝜎).

graph shows that when the weighting parameter value is
between 0 and 0.5, the average system cost and energy
values decrease, while the average system latency value
rises. This indicates that the average system cost value is
more influenced by the average system energy value. On the
other hand, when the weighting parameter value is between
0.5 and 1, the average system cost and latency values
decrease, and the average system energy value increases,
indicating that the average system cost value is more
influenced by the average system latency value than the
average system energy value. In this experiment, we set the
weighting parameter (𝜎) to 0.65, as indicated by a red arrow
in Figure 3. The decision is based on the fact that, at this
juncture, both the average system latency and energy make
equal contributions to the overall system cost.

B. Performance Analysis

In this subsection, we evaluated the performance of the
algorithms in terms of convergence, arrival traffic rate, and
number of vehicles to form VFs.

1) DTD3 Agent Performance Evaluation: We present the
learning progress of a DTD3 algorithm in a single-run
experiment, as illustrated in Figure 4. The main objective of
the agent is to maximize the long-term cumulative reward,
achieved through the reward function defined in Equation
(26). Specifically, Figure 4a displays the episode reward,
Figure 4b shows the maximum reward achieved, and Figure
4c illustrates the average episode reward of the agent over
the previous 100 runs during the learning process. In
general, this figure shows how the agent has been learning
progressively by receiving higher and higher rewards over
time. This learning trend demonstrates the effectiveness of
the DTD3 algorithm in optimizing the offloading
decision-making process and achieving better overall
performance as the number of episodes increases.

In Figure 5, we consider running ten experiments and
averaging the results due to the randomness in the MEC and
VF networks to showcase the performance of the DTD3
model. It illustrates the average reward with respect to the
episodes for different arrival traffic rates. We can see that the
agent is learning over time for normal traffic at 10M and
20M packets/s; however, the result is unstable and cannot
converge. As the arrival traffic exceeds 30M packets/s, the
agent learns very well by receiving higher average rewards
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(a) DTD3 model episode reward. (b) DTD3 model maximum episode reward. (c) DTD3 model mean episode reward.

Fig. 4: DTD3 model performance in a single run.

Fig. 5: DTD3 model performance with different arrival traffic.

Fig. 6: The convergence performance of DTD3, TD3, DDPG,
SA, and PSO algorithms.

throughout training, and after it reaches around 2K episodes,
the difference in reward value becomes lower. As a result,
the DTD3 agent converges to its optimal value for arrival
hotspot traffic after 8K episodes.

In Figure 6, we present the convergence curves of the
above-mentioned five algorithms. For the DRL-based
approaches (DTD3, TD3, and DDPG), the total number of
episodes used in the experiment is 10K, whereas the total
number of episodes for the traditional approaches (SA and
PSO) is 100K. Initially, both DTD3 and TD3 performed
poorly in the first 100 episodes, receiving lower average
rewards, and DDPG also performed poorly in the first 2K

episodes. However, after this initial phase, all three
algorithms start to learn successfully and receive higher
rewards as the number of episodes increases. Between 1K to
2K episodes, TD3 begins to achieve significantly higher
rewards compared to both DTD3 and DDPG. Then, between
2K to 3K episodes, both TD3 and DTD3 perform similarly.
Between 3K to around 4K episodes, DDPG begins to
achieve significantly higher rewards compared to both TD3
and DTD3. However, after 4K episodes, DTD3 surpasses
both TD3 and DDPG in terms of rewards, and all three
eventually stop growing and converge to their optimal values
around 8K episodes. As the number of episodes increases,
both the SA and PSO algorithm’s rewards also improve and
converge to their optimal value after 90K episodes. However,
PSO performs less effectively compared to SA because of its
tendency to settle in suboptimal solutions. As depicted in
Figure 6, all approaches improve their rewards and converge
to their optimal values by making optimal offloading
decisions. Notably, the DRL-based algorithms converge
approximately ten times faster than the traditional
optimization algorithms. Furthermore, DTD3 outperforms
TD3 and DDPG, converging slightly faster.

2) Performance Analysis with Change in Arrival Traffic:
Figure 7 shows the performance of the algorithms as the
number of arrival traffic rates increases in terms of average
system cost, energy consumption, latency, and utilization, as
shown in Figures 7a, 7b, 7c, and 7d, respectively.

Figure 7a shows that as the number of arrival traffic rates
increases, the average system cost increases for all
algorithms. In the scenario of normal traffic, TD3
outperformed other algorithms including DTD3.
Additionally, both DTD3 and DDPG surpassed SA and PSO.
However, when considering hotspot traffic, DTD3 emerged
as the top performer among all approaches. This is because
TD3 and DTD3 can make more effective offloading
decisions for incoming normal and hotspot traffic,
respectively, to achieve a minimum average system cost.

Figure 7b shows that TD3 achieves lower average system
energy consumption when handling normal traffic compared
to DTD3, DDPG, SA, and PSO. However, when the arrival
traffic exceeds 30M packets/s, the energy consumption in
TD3 continues to increase, while that of DTD3 becomes the
lowest. Specifically, when the arrival traffic reaches 80M
packets/s or higher, TD3, DDPG, and PSO consume more
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(a) Average system cost. (b) Average system energy consumption.

(c) Average system latency. (d) Average system utilization.

Fig. 7: The evaluations of system performance with change in traffic.

average system energy than SA and DTD3 remains the most
efficient among all algorithms. As shown in Figure 7b, in the
case of normal traffic, DTD3 and DDPG consume slightly
more energy compared to TD3, however, it is relatively less
than SA and PSO. Conversely, in the case of hotspot traffic,
the energy consumption in DTD3 continues to be the least
among all algorithms.

Figure 7c shows that the average system latency increases
for all algorithms as the number of arriving traffic packets
increases. Initially, the latency appears similar across all
algorithms until the arrival traffic reaches 30M packets/s.
However, when the arrival traffic exceeds 30M packets/s,
DTD3, TD3, and PSO outperform both DDPG and SA.
Specifically, when the hotspot traffic exceeds 60M packets/s,
DTD3 executes the traffic with a lower average system
latency than both SA and TD3. Additionally, as the traffic
approaches 80M packets/s, DTD3 outperforms both DDPG
and PSO.

Figure 7d shows that SA and PSO utilize more
computational resources than DRL-based methods for
computing normal traffic. Conversely, for processing hotspot
traffic, DDPG, SA, and PSO consume more resources. This
is because all algorithms offload most of the traffic to the
VFs rather than the MECs to utilize the distributed resource.
While TD3, DDPG, SA, and PSO effectively manage normal
traffic, as the arrival traffic increases, the VFs also become
overloaded. This leads to higher average system energy
consumption and system latency when handling hotspot
traffic, resulting in a higher average system cost. However,

DTD3 avoids this issue by offering better offloading
decisions, which yield comparable performance in normal
traffic scenarios and superior performance in handling
hotspot traffic compared to others across all cases.

3) Performance Analysis with Change in Number of
Vehicles in the VFs: Figure 8 illustrates the performance of
algorithms as the number of vehicles in the VFs increases in
terms of average system cost, energy consumption, latency,
and utilization, as shown in Figures 8a, 8b, 8c, and 8d,
respectively.

Figure 8a shows the relationship between the number of
vehicles in the VF and the average system cost for both normal
and hotspot traffic. When the number of vehicles in the VF is
less than 300, traditional methods outperform the DRL-based
methods. Conversely, when the number of vehicles exceeds
300, both TD3 and DTD3 perform better than DDPG, SA,
and PSO. For hotspot traffic, DTD3 surpasses TD3 when the
number of vehicles in the VF exceeds 300. Moreover, when
the number of vehicles exceeds 400, DTD3 outperforms both
SA and PSO.

Figure 8b shows the relationship between the number of
vehicles in VF and average system energy consumption for
both normal and hotspot traffic. SA and PSO consume less
average system energy than DRL-based methods when
executing normal traffic until the number of vehicles reaches
400. However, once the number of vehicles exceeds 400,
both TD3 and DTD3 consume less average system energy
than DDPG, SA, and PSO. The energy consumption by SA
for computing hotspot traffic increases linearly. In contrast,
DTD3 initially performs worse than PSO until the number of
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(a) Average system cost. (b) Average system energy consumption.

(c) Average system latency. (d) Average system utilization.

Fig. 8: The evaluations of system performance with changes in the number of vehicles.

vehicles exceeds 200 and SA until the number of vehicles in
the VF exceeds 400, at which point it starts consuming less
energy. However, both TD3 and DDPG perform less
effectively compared to SA, PSO, and DTD3.

In Figure 8c, as the number of parked vehicles increases,
the processing capability of the VFs becomes more powerful.
Consequently, the average system latency decreases with the
growing number of vehicles in the park. DTD3 achieves
lower average system latency than others as the number of
vehicles increases when computing normal traffic. However,
for hotspot traffic, TD3, DDPG, and PSO outperform DTD3
and SA in minimizing the average system latency. Initially,
DTD3 exhibits superior performance with a smaller number
of vehicles, but as the number of vehicles increases, SA
surpasses DTD3 in performance.

Figure 8d shows that the average system utilization of the
system resource improves as the number of vehicles
increases. DTD3 utilizes the resource more effectively than
other algorithms when computing normal traffic. However, in
the case of hotspot traffic, PSO and SA utilize the resource
better than DTD3 until the number of vehicles reaches 200
and 400, respectively. Once the number of vehicles in VFs
reaches 400, DTD3, SA, and PSO exhibit almost the same
system resource utilization rate, with DTD3 slightly
outperforming the others. These plots indicate that DTD3
outperforms others in both normal and hotspot traffic
scenarios when there is a large number of vehicles in the VF.

However, SA and PSO perform better than DTD3 when the
number of vehicles in the VF is small. In contrast, TD3,
DDPG, and PSO outperform SA and DTD3 in terms of
average system latency in hotspot traffic scenarios.

VI. CONCLUSIONS

In this paper, we considered the computational offloading
of arrival hotspot traffic in MEC and VF networks. We
formulated a multi-objective optimization problem with the
objective of minimizing the average system latency and
energy consumption. To find the solution to this optimization
problem, we developed an equivalent RL environment
representation of the MEC and VF network topology.
Furthermore, we proposed a Distributed-TD3 algorithm to
determine nearly optimal computational offloading decisions.
The simulation results demonstrate that our approach
achieves faster convergence with better performance
compared to other benchmark solutions.

In the future, we plan to expand our studies to cover the
optimization of offloading hotspot traffic and also investigate
the influence of vehicle mobility on the completion of
offloaded traffic. Additionally, we will conduct a real-world
experiment to validate our findings and further enhance the
robustness of our approach.
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