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Quantum computers have evolved from the theoretical realm into a race to large-scale implementations. This is
due to the promise of revolutionary speedups, where achieving such speedup requires designing an algorithm
that harnesses the structure of a problem using quantum mechanics. Yet many quantum programming
languages today require programmers to reason at a low level of quantum gate circuitry. This presents a
significant barrier to entry for programmers who have not yet built up an intuition about quantum gate
semantics, and it can prove to be tedious even for those who have. In this paper, we present Qwerty, a new
quantum programming language that allows programmers to manipulate qubits more expressively than gates,
relegating the tedious task of gate selection to the compiler. Due to its novel basis type and easy interoperability
with Python, Qwerty is a powerful framework for high-level quantum–classical computation.

1 INTRODUCTION
Quantum computers have evolved from the theoretical realm into an active and highly competitive
commercial race to large-scale implementations. This is due to the promise of revolutionary
speedups for important problems such as unstructured search and factoring large integers [19, 30,
45]. Achieving such speedup requires designing an algorithm that harnesses the structure of a
problem using quantum mechanics [1, 46]. Yet even if a programmer understands how a quantum
algorithm operates, realizing the algorithmusing existing quantumprogramming languages requires
a mastery of quantum gate engineering. This significant, abrupt gap between algorithms and low-
level quantum gates suggests a need for a quantum programming language beyond gates.

Table 1 summarizes the computational constructs and key features of existing quantum program-
ming languages. The “computational construct” column is meant as the main tool programmers
realistically employ to express quantum operations. For instance, the theoretical work QuantumΠ
explores a novel quantum programming language design. Ultimately though, after defining gates
in terms of these new features, the paper’s example programs are presented in terms of gates [9,
§9]. A few prior languages allow quantum programming without gates: Tower [57], Oqimp [22],
Neko [38], and Aleph [36]. However, these languages are not suitable for efficient general-purpose
quantum programming. Tower focuses only on data structures; Oqimp is designed specifically
for synthesizing oracles (Quipper [17] contains similar functionality); Neko requires that the al-
gorithm is compatible with a map-filter-reduce structure; and Aleph synthesizes only amplitude
amplification and thus cannot achieve exponential speedup for factoring, for instance.

In this paper, we present Qwerty, a new quantum programming language. Thanks to Qwerty’s
novel basis type and its ability to embed classical computation in quantum code, Qwerty allows
programmers to implement algorithms with prospective quantum advantage without low-level
gate engineering. Because Qwerty is embedded as a Python DSL, interoperability between Python
and Qwerty is easy, making Qwerty a robust framework for mixed quantum–classical computation.

Qwerty is introduced through examples, first via the Bernstein–Vazirani algorithm (Section 3.1)
and then many prominent quantum algorithms (Section 4). An introduction to quantum notation is
provided for the non-expert (Section 2). Appendix A presents the soundness of the semantics and
type system of Qwerty.

Website: qwerty.cc.gatech.edu. Contact: aja@gatech.edu.
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Table 1. Comparison with Prior Work on AdvancingQuantum Programming

Name Computational
construct Key feature(s)

QCL [33] Gates First quantum programming language
Scaffold [2, 23] Gates Integration with C++, oracle synthesis
Quipper [17] Gates Functional circuit construction
Qiskit [40] Gates Convenient Python integration, rich tooling
Q# [24, 50] Gates Standard library and functional programming
QCOR [27, 28] Gates C++ integration, physics features
OpenQASM 3 [11] Gates Adds structured control flow to circuits
Qwire [35] Gates Linear qubit types
Silq [6], Qiskit++ [34] Gates Simplifies managing uncomputation efficiently
Qunity [52] Gates Unifies quantum and classical programming
Twist [58] Gates Prevents accidental entanglement bugs
Tower [57] Linked lists Quantum data structures
quAPL [32] Gates Introduces a quantum array language
QuantumΠ [9] Gates Defines a quantum PL using classical PLs
Oqasm [22] Gates Basis-aware circuit-level programming
Oqimp [22] Classical code Verified synthesis of black-box oracles
Neko [38] MapReduce Programs have map-filter-reduce structure
Aleph [36] Universes User-friendly amplitude amplification

Qwerty (this work)
Basis

Translations Gate-free programming, Python integration

2 INTRODUCTION TO QUANTUM NOTATION
(This section introduces quantum computing notation. Readers who are familiar already can safely
skip to the next section of the paper.)
The state of a qubit is a unit vector in a 2D complex vector space with an inner product — a

Hilbert space — which we will write asH2. In bra–ket (or Dirac) notation, |𝜓 ⟩ denotes a vector in
H2. The inner product of |𝜙⟩ and |𝜓 ⟩ is written as ⟨𝜙 |𝜓 ⟩. Given two qubits with states |𝜓 ⟩ and |𝜙⟩,
the state of the two-qubit system is written with the tensor product ⊗ as |𝜓 ⟩ ⊗ |𝜙⟩; this product is a
unit vector in a four-dimensional Hilbert spaceH2⊗H2. (It is common to write |𝜓 ⟩ |𝜙⟩ as shorthand
for |𝜓 ⟩ ⊗ |𝜙⟩.) This pattern continues, with every additional qubit doubling the dimension of the
state space, i.e., doubling the number of complex numbers (amplitudes) needed to describe a state.

The vectors |0⟩ and |1⟩ represent the standard basis for a one-qubit (2D) space. For a two-qubit
(4D) space, the vectors |00⟩, |01⟩, |10⟩, and |11⟩ are the standard basis. In general, the 2𝑛 standard
basis vectors for an 𝑛-qubit state are labeled with 𝑛-bit bitstrings. Typical measurement projects
onto one of these standard basis states, with the bits labeling the basis state being the measurement
outcome, and the likelihood being proportional to the norm of the projection. (Note that in fact,
measurement can be performed in any basis, although this may not be convenient in hardware.)
For example, the state

√︁
9/10 |00⟩ +

√︁
1/10 |11⟩ is most likely to produce the measurement 00 when

measuring in the standard basis, since the projection onto |00⟩ has a larger norm than the projection
onto |11⟩.

Qubit state must evolve reversibly, which can be expressed as requiring it to evolve by a 2𝑛×2𝑛
unitary operator𝑈 , like |𝜓 ′⟩ = 𝑈 |𝜓 ⟩. The unitary condition is that𝑈 is invertible and | |𝑈 |𝜓 ⟩ | | =
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for index in IndexRange(secretString) {
if (secretString[index]) {

CNOT(queryRegister[index], target);
}

}

return (secret_string & x) \
       .xor_reduce()

return '+'[N] | f.phase         \
              | pm[N] >> std[N] \
              | std[N].measure

Q#
State Preparation:

Measure:

Basis Translation from                to              :

Apply           Black Box: 

antum Algorithm Qwerty (Our Work)
use queryRegister = Qubit[n];
use target = Qubit();
X(target);
H(target);
within {

ApplyToEachA(H, queryRegister);
} apply {

Uf(queryRegister, target);
}
let resultArray = ForEach(MResetZ,

queryRegister);
Reset(target);
return resultArray;

Q# Classical Logic Qwerty (Our Work)

Fig. 1. A comparison between Q# and Qwerty implementations of the Bernstein–Vazirani algorithm [37],
which finds a secret string 𝑠 with only one invocation of black-box implementation of a classical function
𝑓 (𝑥) = 𝑥 · 𝑠 .

| | |𝜓 ⟩ | | [3], i.e., that 𝑈 −1 exists and that 𝑈 always preserves the norm of any input |𝜓 ⟩. By the
spectral decomposition, any unitary can be expressed as a diagonal matrix𝑈 =

∑
𝜆 𝜆 |𝜆⟩ ⟨𝜆 | [30].

For example, the Pauli X matrix 𝜎𝑥 =

[
0 1
1 0

]
can be diagonalized as 𝜎𝑥 =

[
1 0
0 −1

]
if the rows

and columns are written in terms of the basis |+⟩ , |−⟩ rather than the standard |0⟩ , |1⟩ basis. (The
vectors |+⟩ ≜ 1√

2
( |0⟩ + |1⟩) and |−⟩ ≜ 1√

2
( |0⟩ − |1⟩). Both are eigenvectors of 𝜎𝑥 .)

For a more thorough introduction to quantum computing and its notation, we direct readers to
Chapters 1 and 2, respectively, of Nielsen and Chuang [30].

3 INTRODUCTION TO QWERTY
3.1 Motivating Example: Bernstein–Vazirani
To introduce Qwerty, we begin with an example using the well-known Bernstein–Vazirani algo-
rithm [5, 14]. Assume there is a secret 𝑛-bit bitstring 𝑠 and a “black-box” function that performs
𝑓 (𝑥) = 𝑥1𝑠1 ⊕ 𝑥2𝑠2 ⊕ · · · ⊕ 𝑥𝑛𝑠𝑛 . (Here, ⊕ denotes XOR, and 𝑥𝑖𝑠𝑖 denotes ANDing 𝑥𝑖 with 𝑠𝑖 .) The
Bernstein–Vazirani algorithm returns 𝑠 using only a single invocation of 𝑓 (𝑥) — a classical solution
would need 𝑛 invocations (𝑓 (100 · · · 0) to get 𝑠1, 𝑓 (010 · · · 0) to get 𝑠2, etc.).

The steps in the Bernstein–Vazirani algorithm are shown mathematically in the center column
of Fig. 1. Each of the four steps corresponds to a key primitive (or feature) of Qwerty: (1) qubit
state preparation (i.e., initialization), (2) application of the reversible version of 𝑓 (𝑥), (3) basis
translation, and (4) measurement. The first step prepares the initial state |++ · · · +⟩. Then, when
𝑓 (𝑥) is applied in the next step, each |+⟩ in this state is changed to a |−⟩ state if the corresponding
bit of 𝑠 is 1. The next step is the most pivotal step, where all qubits undergo the transformation
𝛼 |+⟩ + 𝛽 |−⟩ → 𝛼 |0⟩ + 𝛽 |1⟩. In Qwerty, this transformation is called a basis translation from the
basis |+⟩ , |−⟩ to the basis |0⟩ , |1⟩. We call this a translation because when representing the input
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use q = Qubit ();

H(q);

(a) Q#: Preparing |+⟩

'+'

(b) Qwerty: Preparing |+⟩

use q = Qubit [3];

X(q[0]);

X(q[2]);

(c) Q#: Preparing |101⟩

'101'

(d) Qwerty: Preparing |101⟩

Fig. 2. Side-by-side comparison of state preparation in traditional gate-based languages versus in Qwerty.

state as a linear combination of basis vectors, it translates the basis vectors element-wise into a
different basis without touching the coefficients (i.e., the amplitudes)1.

The right-hand column of Fig. 1 shows Bernstein–Vazirani written in Qwerty. Contrast this with
the left-hand column of Fig. 1, which shows the same algorithm written in Q# [37], a prominent
quantum programming language. Not only is Qwerty more concise, but it is also more expressive.
For example, the highlighted Q# lines in Fig. 1 perform both routine state preparation and also the
most crucial part of the algorithm, basis translation. By contrast, Fig. 1 shows that the Qwerty code
has explicit syntax for both steps: preparing |+⟩⊗𝑛 (written as '+'[N]) and translating from the
𝑛-qubit plus/minus basis to the 𝑛-qubit standard basis (written as pm[N] >> std[N]). Compared
to the mere H used in the Q# code, which represents a low-level Hadamard gate, these Qwerty
constructs allow programmers to better express intent.
Quantum algorithms aimed at classical problems typically invoke classical functions on qubits,

so language support for expressing this classical logic intuitively is just as important as convenient
expression of quantum logic. The bottom of Fig. 1 compares expressions of such classical logic
in Q# versus Qwerty. Even though the Bernstein–Vazirani black-box function 𝑓 (𝑥) can be easily
expressed with well-known classical logic gates, Q# requires either programming in quantum gates
(bottom left of Fig. 1) or calling library functions that apply quantum gates. In Qwerty, on the
other hand, programmers can express classical functions directly as classical logic, as shown in the
bottom right of Fig. 1. Such classical functions can be invoked directly from Python and execute
in the Python interpreter, or they can be instantiated inside quantum code (top right of Fig. 1)
and lowered to quantum gates by the compiler. Combined with the aforementioned mechanisms
for state preparation and basis translation, this functionality allows programmers to implement
well-known quantum algorithms such as Grover’s or Shor’s efficiently without writing a single
quantum gate.

3.2 Overview of Qwerty
In this section, we present the key Qwerty features that enable more expressive quantum program-
ming.

3.2.1 The qubit type. The qubit type in Qwerty is linear [35, 43], meaning that every qubit
must be used exactly once. This prevents attempting to duplicate qubit states, which violates the
no-cloning theorem [30], or accidentally discarding a qubit entangled with other qubits, causing
unexpected behavior [58].
1Traditionally in quantum computing, this operation might be called a “change of basis”, but we have found this term is too
easily confused with the linear algebra procedure [3] that changes only the representation of a vector, not its value.
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ApplyToEach(H, q);

(a) Q#: Converting many qubits
from the |0⟩ /|1⟩ basis to the
|+⟩ /|−⟩ basis

std[N] >> pm[N]

(b) Qwerty: Converting N qubits
from the |0⟩ /|1⟩ basis to the
|+⟩ /|−⟩ basis

within {

ApplyToEachA(H, q);

ApplyToEachA(X, q);

} apply {

Controlled Z(Most(q),

Tail(q));

}

(c) Q#: The diffuser in Grover’s algo-
rithm [51], which multiplies all |+⟩ /|−⟩ ba-
sis states by a negative phase except |+⟩⊗𝑛

-('+'[N] >> -'+'[N])

(d) Qwerty: The diffuser in Grover’s algo-
rithm, which multiplies all |+⟩ /|−⟩ basis
states by a negative phase except |+⟩⊗𝑛

Fig. 3. Side-by-side comparison of typical operations in gate-oriented languages versus their more expressive
equivalents in Qwerty.

Qubit literals. Programmers can introduce qubits using qubit literals, which efficiently prepare
a subset of qubit states. For example, '-' prepares the state |−⟩, '110' prepares the state |110⟩,
and so on. Fig. 2 demonstrates how Qwerty qubit literals are more succinct and expressive than
equivalent code in gate-oriented languages.

Tensor product. In general, one can (loosely) view the tensor product as concatenating vectors or
vector spaces [3, 30]. Thus, given that a string-like syntax is used for qubit literals, the typical string
concatenation operator + is a natural fit for the tensor product. For instance, '1' + '0' + '1' is
equivalent to '101'. Repeated tensor product is accomplished with '0'[N], which is equivalent to
'0'+'0'+ · · ·+'0'︸                  ︷︷                  ︸

N

.

3.2.2 The basis type. The heart of Qwerty is the basis type, which facilitates intuitive, higher-level
programming without sacrificing efficiency. A basis in Qwerty represents exactly the straigh-
forward concept of an orthonormal basis taught in undergraduate linear algebra courses [3], and
Qwerty primitives for state evolution and measurement are defined in terms of a basis.

Basis literals. Qwerty includes built-in bases such as the standard |0⟩ /|1⟩ basis (std), the |+⟩ /|−⟩
basis (pm), the |+𝑖⟩ /|−𝑖⟩ basis (ij)2, and the N-qubit Fourier basis (fourier[N]) [30]. Programmers
can construct more sophisticated bases by wrapping lists of qubit literals in curly brackets; for
example, {'0','1'} is equivalent to std. On the other hand, {'0', phase(theta)*'1'} is not,
instead representing the basis consisting of |0⟩ and 𝑒𝑖𝜃 |1⟩.

Translation. Unitary state evolution in Qwerty is written using a basis translation, written
basisin >> basisout. Fig. 3 shows some examples. For two bases basisin and basisout that span
the same (sub)space of𝑚 qubits, the basis translation basisin >> basisout performs the following

2In deference to electrical engineers, Qwerty uses the literal 'j' to represent |−𝑖 ⟩.
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MResetZ(q);

(a) Q#: Measuring in the |0⟩ /|1⟩
basis

std.measure

(b) Qwerty: Measuring in the
|0⟩ /|1⟩ (std) basis

Adjoint QFT(q);

ForEach(MResetZ , q);

(c) Q#: Measuring in the Fourier basis

fourier[N]. measure

(d) Qwerty: Measuring in the
Fourier basis

Fig. 4. Side-by-side comparison of measurements traditional languages versus their equivalents in Qwerty.

transformation:

𝛼1

���basis(1)in

〉
+ 𝛼2

���basis(2)in

〉
+ · · · + 𝛼𝑛

���basis(𝑛)in

〉
⇓

𝛼1

���basis(1)out

〉
+ 𝛼2

���basis(2)out

〉
+ · · · + 𝛼𝑛

���basis(𝑛)out

〉
Basis translations can operate on subspaces, as shown in Fig. 3d, where the basis {'+'[N]} (written
without braces as '+'[N] as syntactic sugar) indicates that the translation '+'[N] >> -'+'[N]
acts only on the subspace spanned by |+⟩⊗𝑁 — specifically, it maps |+⟩⊗𝑁 ↦→ − |+⟩⊗ and leaves
other pm[N] basis states alone.
The basis translation primitive in Qwerty simplifies many popular operations in quantum

algorithms — for instance, quantum Fourier transform (QFT) is performed with simply std[N]
>> fourier[N]. Furthermore, this abstraction is cheap because translations map well to multi-
controlled gates. (For a rigorous definition of the semantics of basis translations, see Appendix A.)

Translation syntactic sugar. For convenience, Qwerty includes 𝑏.flip and 𝑏.rotate(𝜃) con-
structs for every basis 𝑏 that spans the full one-qubit space. 𝑏.flip swaps the basis vectors
of 𝑏, and 𝑏.rotate(𝜃) rotates around 𝑏 by 𝜃 radians. For example, std.flip is equivalent to
std >> {'1','0'}, and std.rotate(theta) is compiled to std >> {phase(-theta/2)*'0',
phase(theta/2)*'1'}. Both examples coincide exactlywith the𝑋 and𝑅𝑧 (𝜃 ) gates, respectively [30].
To facilitate further expressiveness, Qwerty also includes 𝑞ℓ.prep, where 𝑞ℓ is a qubit literal

(Section 3.2.1). This construct allows access to the plumbing by which the compiler lowers qubit
literals. For example, an ordinary qubit literal '10+' is equivalent to '000' | '10+'.prep, which
in turn is equivalent to '000' | std.flip+id+(std>>pm). Observe that '10+'.prep is much
easier to read than std.flip+id+(std>>pm), and the expected input state ('000') is more explicit.

Measurement. It is common to view qubit measurement as being performed in some basis [30,
§2.2.5], e.g., the standard basis or the |+⟩ /|−⟩ basis. Rather than hard-coding bases in the names
of bespoke standard library functions for measurement as languages like Q# do (with MResetZ,
MResetX, etc.), Qwerty defines measurement as an operation on a basis. Fig. 4 compares measure-
ment in Qwerty with measurement in traditional gate-oriented languages.

3.2.3 Reversible quantum functions. Many quantum subroutines such as phase estimation (Sec-
tion 4.2.1) take black-box quantum operations as input, eventually executing them backwards or in
a subspace. Qwerty includes features that facilitate this kind of modular programming. However,
these features require that the quantum operation includes no qubit allocation, discarding, or
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1 import sys
2 from qwerty import *
3
4 def bv(secret_string ):
5 @classical[N]( secret_string)
6 def f(secret_string: bit[N], x: bit[N]) -> bit:
7 return (secret_string & x). xor_reduce ()
8
9 @qpu[N](f)
10 def kernel(f: cfunc[N,1]) -> bit[N]:
11 return '+'[N] | f.phase \
12 | pm[N] >> std[N] \
13 | std[N]. measure
14
15 return kernel ()
16
17 secret_string = bit.from_str(sys.argv [1])
18 print(bv(secret_string ))

Fig. 5. A full Python module including the Qwerty Bernstein–Vazirani code from Fig. 1.

measurement3. (This is because it is absurd to un-measure a qubit, for example.) We call such
operations reversible quantum functions.

Execution in a subspace. If 𝑏 is a basis and 𝑓 is a reversible quantum function, then the syntax
𝑏 & 𝑓 (or 𝑓 & 𝑏) yields a new function that executes 𝑓 in the subspace identified by 𝑏. For example,
the basis translation '1' + std >> '1' + {'1','0'} can be written slightly more succinctly as
'1' & std >> {'1','0'} instead, as if the '1' portion of each basis was factored out. (Note that
& has lower precedence than >>.)

Running code backwards. If 𝑓 is a reversible quantum function, then ~𝑓 is a function that runs 𝑓
backwards. For example, ~std.rotate(pi/4) is equivalent to std.rotate(-pi/4).

3.2.4 Quantum kernels. Using Qwerty, quantum kernels4 are written as Python functions with
the @qpu annotation. Fig. 5 shows a full example of Bernstein–Vazirani written in Qwerty. The
contents of @qpu kernels use Qwerty syntax and are sent through the Qwerty compiler. Specifically,
they run on a quantum accelerator (or simulator), not in the Python interpreter. Drawing such a
separation between Python and Qwerty code sidesteps complexities in analysis of Qwerty [35] and
maintains the convenience of existing classical libraries for e.g. numerical optimization.

Dimension variables. Quantum kernels may have dimension variables (e.g., the N on line 9 of
Fig. 5) to make them polymorphic in the number of qubits on which they operate. The compiler
attempts to infer dimension variable based on the type of captured objects (e.g., the capture f of
kernel(), specified on line 9 and whose type is declared on line 10 of Fig. 5). When the compiler
cannot infer a dimension variable, such as N on line 5 of Fig. 6, the programmer must specify it using
[[. . .]] notation as shown on line 10 of Fig. 6. (Instantiation with [[. . .]] can also be performed
inside a quantum kernel, as used in line 12 of Fig. 13a.)

3Qubit allocation is permitted in reversible quantum functions if allocated temporary qubits (ancilla qubits) are discarded
cleanly with discardz; see Section A.5 in Appendix A.
4Here, “kernel” is meant in the sense of an accelerator kernel such as a CUDA kernel.
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1 import sys
2 from qwerty import *
3
4 def ghz(n_qubits ):
5 @qpu[N]
6 def kernel () -> bit[N]:
7 return '+' + '0'[N-1] | '1' & std.flip[N-1] \
8 | std[N]. measure
9
10 return kernel [[ n_qubits ]]( histogram=True ,
11 shots =2048)
12
13 n_qubits = int(sys.argv [1])
14 print_histogram(ghz(n_qubits ))
15 # Prints:
16 # 00000000 -> 49.37%
17 # 11111111 -> 50.63%

Fig. 6. Preparing the Greenberger–Horne–Zeilinger (GHZ) state [18] in Qwerty. Measuring this entangled
state yields either all 0s (line 16) or all 1s (line 17).

Controlled Z(Most(q),Tail(q));

(a) Q#: Flag 11 · · · 1 (all ones) as the answer
using a multi-controlled 𝑍 gate [51]

return x.and_reduce ()

(b) Qwerty: Flag 11 · · · 1 (all ones) as the
answer by ANDing together all input bits

Fig. 7. Side-by-side comparison of a Grover’s oracle (criteria) that flags 11 · · · 1 as the answer written in both
Q# versus Qwerty.

3.2.5 Classical embedding. Typically, quantum algorithms that solve classical problems execute
classical logic on qubits. For example, Bernstein–Vazirani (Section 3.1) invokes 𝑓 (𝑥) on a special
superposition, and Grover’s algorithm queries the search criteria, a classical black box, on a
superposition of possible answers [19, 30]. Although it is obvious that classical logic is most easily
programmed classically, gate-oriented programming languages often require writing such classical
logic as low-level quantum gates. Fig. 7 compares a Grover’s oracle written in Qwerty with one
written in Q#. Note that x in Fig 7b has type bit[N] (N classical bits), not qubit[N] (N qubits).

Classical functions. Classical functions are defined similarly to @qpu kernels and may also have
dimension variables and captures as seen on lines 5-7 of Fig. 5. Functions decoratedwith @classical
can be invoked from Python code to run them classically inside the Python interpreter rather than
on qubits.

Instantiation. To invoke a @classical function f on qubits, a quantum kernel must instantiate
f. The syntax f.xor_embed realizes f as a Bennett embedding [4], which has the well-known form
𝐵𝑓 |𝑥⟩ |𝑦⟩ ≜ |𝑥⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩. However, many algorithms expect some 𝑃𝑓 |𝑥⟩ ≜ (−1) 𝑓 (𝑥 ) |𝑥⟩ instead,
which the syntax f.phase summons. (This abstracts away the implementation detail of converting
a Bennett embedding into this form using |−⟩ ancillas [30, §6.1.1].) Finally, if f is already reversible,
as in the case of the multiplier used in Shor’s [30, 41], writing f.inplace(f_inv) applies f in-place,
i.e,. 𝑈𝑓 |𝑥⟩ ≜ |𝑓 (𝑥)⟩. Note that an implementation of 𝑓 −1 (named f_inv for example) is currently
required [4].
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4 ALGORITHMS EXPRESSED IN QWERTY
This section shows Qwerty more concretely via Qwerty implementations of well-known algorithms.
All examples compile and run as-is using the Qwerty compiler and runtime. However, some
examples may contain more line breaks than typical Python code in order to fit within page
margins.

This section presents Qwerty implementations of the following algorithms:
• §4.1: Oracle-based quantum algorithms

– §4.1.1: Deutsch’s algorithm
– §4.1.2: Deutsch–Jozsa algorithm
– §4.1.3: Bernstein–Vazirani algorithm
– §4.1.4: Quantum period finding
– §4.1.5: Simon’s algorithm

• §4.2: Algorithms for factoring integers
– §4.2.1: Quantum phase estimation
– §4.2.2: Quantum order finding
– §4.2.3: Shor’s algorithm

• §4.3: Quantum search algorithms
– §4.3.1: Grover’s unstructured search
– §4.3.2: Yoder–Low–Chuang fixed-point amplitude amplification
– §4.3.3: Niroula–Nam string matching

(Examples begin on the next page and are intentionally laid out as one algorithm per page for easier
reader navigation.)
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4.1 Oracle-Based Algorithms
Many quantum algorithms designed to solve clas-
sical problems operate by running a classical
black-box function (known as an oracle) on a
superposition state and measuring the outcome.
We begin with some well-known members of
this group of algorithms because they include
the most approachable examples.

4.1.1 Deutsch’s algorithm. Deutsch’s algorithm
takes a black box function 𝑓 : {0, 1} → {0, 1}
as input and determines whether 𝑓 is constant
using a single invocation of 𝑓 [10, 13, 30]. Specif-
ically, the algorithm returns 𝑓 (0) ⊕ 𝑓 (1). Fig. 8a
shows Deutsch’s algorithm and some example
black boxes implemented in Qwerty.

Wrapping algorithms in Python functions such
as deutsch() on line 3 of Fig. 8a is idiomatic Qw-
erty. This way, quantumkernels such as kernel()
on line 5 of Fig. 8a can capture algorithm inputs
(e.g., f in Fig. 8a) or the results of classical pre-
processing.Wrapper functions may also perform
classical post-processing before returning (e.g.,
Deutsch–Jozsa in Section 4.1.2).

The notation cfunc on line 5 of Fig. 8a is short-
hand for the type of a function from bit to bit
(func[[bit],bit]). Currently, Qwerty requires
specifying the type of all captures (f in this case).

Line 6 of Fig. 8a performs the following steps:

(1) Prepare |+⟩ via the qubit literal '+'.
(2) Apply |𝑥⟩ ↦→ (−1) 𝑓 (𝑥 ) |𝑥⟩, where 𝑥 ∈

{0, 1}, using f.phase (see Section 3.2.5).
(3) Measure in the |+⟩ /|−⟩ (plus/minus) ba-

sis with pm.measure. Measuring |+⟩ or
|−⟩ yields classical bits 0 and 1, respec-
tively.

The | operator used on line 6 of Fig. 8a is a pipe,
analogous to a Unix shell pipe. Qubits flow left-
to-right through Qwerty pipelines.

Fig. 8b shows some Python code for invoking
the Qwerty code from Fig. 8a. Line 1 of Fig. 8b
defines naive_classical(), an equivalent clas-
sical implementation that performs two invo-
cations of f rather than the single invocation
required by the quantum algorithm. This demon-
strates that Qwerty @classical functions (e.g.,

1 from qwerty import *
2
3 def deutsch(f):
4 @qpu(f)
5 def kernel(f: cfunc) -> bit:
6 return '+' | f.phase | pm.measure
7
8 return kernel ()
9
10 @classical
11 def balanced(x: bit) -> bit:
12 return ~x
13
14 @classical
15 def constant(x: bit) -> bit:
16 return bit [1](0b1)

(a) Qwerty code for Deutsch’s algorithm

1 def naive_classical(f):
2 return f(bit [1](0b0)) \
3 ^ f(bit [1](0b1))
4
5 print('Balanced f:')
6 print('Classical: f(0) xor f(1) =',
7 naive_classical(balanced ))
8 print('Quantum: f(0) xor f(1) =',
9 deutsch(balanced ))
10
11 print('\nConstant f:')
12 print('Classical: f(0) xor f(1) =',
13 naive_classical(constant ))
14 print('Quantum: f(0) xor f(1) =',
15 deutsch(constant ))

(b) Python for testing Deutsch’s algorithm

Fig. 8. Deutsch’s algorithm in Qwerty

lines 11 and 15 of Fig. 8a) may be invoked classi-
cally from Python, which is useful for testing.



Qwerty: A Basis-OrientedQuantum Programming Language 11

4.1.2 Deutsch–Jozsa algorithm. The Deutsch–
Jozsa algorithm is a generalization of Deutsch’s
algorithm (Section 4.1.1). The input remains a
black-box classical function 𝑓 , except 𝑓 has 𝑁
input bits instead of 1. 𝑓 is assumed to be either
constant or balanced (returning 0 for exactly half
its domain) [10, 12, 30]; the algorithm determines
whether 𝑓 is constant or balanced using a single
invocation of 𝑓 .

Compared to line 4 of Fig. 8a, line 4 of Fig. 9a
introduces the syntax [N] in @qpu[N]. Here, N
is a dimension variable allowing the program-
mer to specify dimensions in terms of N rather
than hard-coding fixed numbers. For example,
on line 7 of Fig. 9a, the syntax '+'[N] prepares
N duplicate |+⟩ states side-by-side. If N = 3, for
instance, then this expression would expand to
'+'[3] or equivalently '+++'.
However, the code in Fig. 9a never explic-

itly specifies N, because the compiler can infer
N. Specifically, the portion f: cfunc[N,1] of
line 5 of Fig. 9a instructs the compiler to infer 𝑁
from the number of input bits of the capture f.
(The type cfunc[N,1] is syntactic sugar for the
more verbose func[[bit[N]],bit[1]], which
means a function whose arguments are only a
bit[N] and whose result is a bit[1].)
Lines 7-8 of Fig. 9a are the quantum portion

of the algorithm. The pipeline shown does the
following:

(1) Prepare |+⟩⊗𝑁 .
(2) Apply |𝑥⟩ ↦→ (−1) 𝑓 (𝑥 ) |𝑥⟩, where 𝑥 ∈

{0, 1}𝑁 (see Section 3.2.5).
(3) Measure in the 𝑁 -qubit plus/minus

(|+⟩ /|−⟩) basis, called pm in Qwerty.
In the last step, measuring |+⟩⊗𝑁 yields classical
bits 00 · · · 0. (Measuring in pm[N] aligns with
Deutsch and Jozsa’s original formulation [12].)

The x.xor_reduce() operation on line 24 of
Fig. 9a XORs all bits of x together, producing a
single-bit result.
Fig. 9b shows Python code for invoking the

Qwerty Deutsch–Jozsa code written in Fig. 9a.
For brevity, we assume all of Fig. 9 resides in
the same Python module (.py file), but Fig. 9b
could also import Fig. 9a if desired, as both can
be typical Python modules.

1 from qwerty import *
2
3 def deutsch_jozsa(f):
4 @qpu[N](f)
5 def kernel(f: cfunc[N,1]) \
6 -> bit[N]:
7 return '+'[N] | f.phase \
8 | pm[N]. measure
9
10 if int(kernel ()) == 0:
11 return 'constant '
12 else:
13 return 'balanced '
14
15 @classical
16 def constant(x: bit [4]) -> bit:
17 # f(x) = 1
18 return bit [1](0b1)
19
20 @classical
21 def balanced(x: bit [4]) -> bit:
22 # f(x) = 1 for half the inputs
23 # and f(x) = 0 for the other half
24 return x.xor_reduce ()

(a) Qwerty code for the Deutsch–Jozsa algorithm

1 def naive_classical(f, n_bits ):
2 answers = [0, 0]
3 for i in range (2**( n_bits -1)+1):
4 answer = int(f(bit[n_bits ](i)))
5 answers[answer] += 1
6
7 if 0 in answers:
8 return 'constant '
9 else:
10 return 'balanced '
11
12 print('Constant test:')
13 print('Classical:',
14 naive_classical(constant , 4))
15 print('Quantum:',
16 deutsch_jozsa(constant ))
17
18 print('\nBalanced test:')
19 print('Classical:',
20 naive_classical(balanced , 4))
21 print('Quantum:',
22 deutsch_jozsa(balanced ))

(b) Python for testing the Deutsch–Jozsa algorithm

Fig. 9. Deutsch–Jozsa algorithm in Qwerty
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4.1.3 Bernstein–Vazirani algorithm. Section 3.1
describes Bernstein–Vazirani [5, 14], with Fig. 1
showing the steps of the algorithm.
Unlike the previous examples of Deutsch’s

(Fig. 8a) and Deutsch–Jozsa (Fig. 9a), Fig. 10a
shows the use of a basis translation on line 8.
The syntax pm[N] >> std[N] performs a basis
translation from the 𝑁 -qubit plus/minus basis
(pm[N]) to the 𝑁 -qubit standard basis (std[N]).
For each qubit, this performs the mapping |+⟩ ↦→
|0⟩ and |−⟩ ↦→ |1⟩.
Writing pm is shorthand for the basis literal

{'+','-'}, and similarly std is syntactic sugar
for {'0','1'}. Thus, pm[N] >> std[N] behaves
identically to {'+','-'}[N] >> {'0','1'}[N],
a more verbose form where the element-wise
translation '+' ↦→'0' and '-'↦→'1' is more ex-
plicit.

The [N] suffix takes the repeated tensor prod-
uct of an expression (such as a basis) N times. For
example, if N = 2, then {'0','1'}[N] becomes
{'0','1'}+{'0','1'} . This [N] syntax applies
to functions as well: the code ({'+','-'} >>
{'0','1'})[N] is also equivalent to the opera-
tion performed by line 8 of Fig. 10a, as would be
(pm >> std)[N].

Furthermore, lines 8 and 9 in Fig. 10a are ex-
actly equivalent to pm[N].measure in Deutsch–
Jozsa (line 8 of Fig. 9a). This is true because any
𝑏.measure where 𝑏 is an N-qubit non-std basis
compiles to (𝑏>>std[N]) | std[N].measure.
Fig. 10b shows Python code for invoking the

Qwerty code in Fig. 10a, including a naïve clas-
sical implementation (line 3) which requires 𝑁
invocations of the black box f rather than just
one. The classical code demonstrates that the
bit class included in the Qwerty Python runtime
can conveniently be sliced like a list (line 7 of
Fig. 10b) or manipulated with bitwise operations
like an int (line 8 of Fig. 10b).

1 from qwerty import *
2
3 def bv(f):
4 @qpu[N](f)
5 def kernel(f: cfunc[N,1]) \
6 -> bit[N]:
7 return '+'[N] | f.phase \
8 | pm[N] >> std[N] \
9 | std[N]. measure
10
11 return kernel ()
12
13 def get_black_box(secret_string ):
14 @classical[N]( secret_string)
15 def f(secret_string: bit[N],
16 x: bit[N]) -> bit:
17 return (secret_string & x) \
18 .xor_reduce ()
19
20 return f

(a) Qwerty code for the Bernstein–Vazirani algorithm

1 import sys
2
3 def naive_classical(f, n_bits ):
4 secret_found = bit[n_bits ](0b0)
5 x = bit[n_bits ](0b1 << (n_bits -1))
6 for i in range(n_bits ):
7 secret_found[i] = f(x)
8 x = x >> 1
9 return secret_found
10
11 secret_str = \
12 bit.from_str(sys.argv [1])
13 n_bits = len(secret_str)
14 black_box = get_black_box(secret_str)
15
16 print('Classical:',
17 naive_classical(black_box ,
18 n_bits ))
19 print('Quantum:', bv(black_box ))

(b) Python for testing the Bernstein–Vazirani algo-
rithm

Fig. 10. Bernstein–Vazirani algorithm in Qwerty
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4.1.4 Period finding. Given a black box function
𝑓 : {0, 1}𝑀 → {0, 1}𝑁 as input, the quantum
period finding algorithm returns the smallest
positive 𝑟 such that 𝑓 (𝑥) = 𝑓 (𝑥 + 𝑟 ), i.e., the
period of 𝑓 [29, 30].
Lines 8-11 of Fig. 11a specify the quantum

subroutine. The pipeline does the following:

(1) Prepare |+⟩⊗𝑀 |0⟩⊗𝑁 .
(2) Apply |𝑥⟩ |𝑦⟩ ↦→ |𝑥⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩. (Observe

the XOR, ⊕, that is the namesake for the
syntax f.xor_embed used.)

(3) Measure the first register in the𝑀-qubit
Fourier basis [30, §5.1] and discard the
second register.

By explicitly requesting to project the first reg-
ister to an𝑀-qubit Fourier basis state, line 10 is
more expressive than gate-oriented code, which
would manually invoke the inverse quantum
Fourier transform (IQFT) and measure in the
|0⟩ /|1⟩ basis. By contrast, the Qwerty compiler
automatically synthesizes the same code (specif-
ically fourier[N]>>std[N]|std[N].measure)
as discussed in Section 4.1.3.

Qwerty allows taking tensor products of func-
tions, such as fourier[M].measure (line 10 of
Fig. 11a) and discard[N] (line 11 of Fig. 11a).
Calling the resulting function, written as
fourier[M].measure + discard[N], does the
following: (1) splits the input tuple of 𝑀 + 𝑁
qubits into two tuples of 𝑀 and 𝑁 bits, respec-
tively; (2) runs both functions independently;
and (3) merges their result tuples: in this exam-
ple, the tuple with𝑀 bits (returned by
fourier[M].measure) is concatenated with the
empty tuple () (returned by discard[N]). The
resulting value is a tuple of 𝑀 bits, which ex-
plains why the return value of kernel()written
on line 7 of Fig. 11a is bit[M].
The Qwerty Python runtime contains some

convenience functions for post-processing. For
example, bit[M].as_bin_frac() (used on lines
14 and 15 of Fig. 11a) returns a Python fractions.
Fraction instance [39] representing the bits in-
terpreted as a binary fraction [30, §5.1].
Fig. 11b shows classical Python code that in-

vokes the Qwerty code in Fig. 11a. The partic-
ular 𝑓 used in this example (line 24 of Fig. 11a)

1 import math
2 from qwerty import *
3
4 def period_finding(black_box ):
5 @qpu[M,N]( black_box)
6 def kernel(black_box: cfunc[M,N]) \
7 -> bit[M]:
8 return '+'[M] + '0'[N] \
9 | black_box.xor_embed \
10 | fourier[M]. measure \
11 + discard[N]
12
13 result1 , result2 = kernel(shots =2)
14 l_over_r1 = result1.as_bin_frac ()
15 l_over_r2 = result2.as_bin_frac ()
16 r = math.lcm(l_over_r1.denominator ,
17 l_over_r2.denominator)
18 return r
19
20 def get_black_box(n_bits_in ,
21 n_bits_out ,
22 n_mask_bits ):
23 @classical[M,N,K]
24 def f(x: bit[M]) -> bit[N]:
25 return bit[N-K](0b0), x[M-K:]
26
27 return f[[n_bits_in ,
28 n_bits_out ,
29 n_mask_bits ]]

(a) Qwerty code for period finding

1 n_bits_in = int(sys.argv [1])
2 n_bits_out = int(sys.argv [2])
3 n_masked = int(sys.argv [3])
4 black_box = get_black_box(n_bits_in ,
5 n_bits_out ,
6 n_masked)
7 if period_finding(black_box) \
8 == 2** n_masked:
9 print('success!')
10 else:
11 print('oops ...')

(b) Python for testing period finding

Fig. 11. Period finding in Qwerty

returns the zero-extended lower 𝐾 bits of the
input string, making the period 2𝐾 . The [[· · · ]]
syntax on lines 27-29 of Fig. 11a instantiates f
with its dimension variables M, N, and K set to the
desired values (see Section 3.2.4).
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4.1.5 Simon’s algorithm. Suppose a 2-to-1 clas-
sical function 𝑓 : {0, 1}𝑁 → {0, 1}𝑁 satisfies
𝑓 (𝑥) = 𝑓 (𝑦) ⇒ 𝑥 = 𝑦 ⊕ 𝑠 when 𝑥 ≠ 𝑦. Given
a black-box implementation of 𝑓 , Simon’s algo-
rithm returns the secret string 𝑠 [47, 48].
Fig. 12a is the first example shown making

use of id, the identity operation on a qubit. It
has the type of a function from one qubit to one
qubit, so id[N] has the type of a function from
qubit[N] to qubit[N].
Also in contrast with previous examples pre-

sented, Simon’s algorithm requires multiple in-
vocations of the quantum kernel (kernel() on
lines 6-13 of Fig. 12a). Specifically, each nonzero
measurement becomes a row of an (𝑁−1)×𝑁
matrix of bits (lines 15-22 of Fig. 12a). For the
sake of brevity, we relegate the Python code per-
forming Gaussian elimination on this matrix to
a different module not shown here (imported on
line 2 of Fig. 12a). This post-processing can be
implemented efficiently using existing highly-
optimized Python libraries such as numpy [21].

The whole algorithm may need to be retried if
this classical post-processing fails; this is accom-
plished by simon_post() throwing a Retry ex-
ception and line 25 catching it. Ordinary Python
exception handling works here, with no new
quantum-specific features needed.
The classical logic on lines 32-34 of Fig. 12a

was determined by writing out the truth table
for an example function obeying the property
stated at the beginning of this section and solv-
ing 3 Karnaugh maps. Writing this black box
as classical logic only once is more convenient
than hand-writing separate quantum and classi-
cal oracles and manually proving their behavior
matches.

The Python code invoking Simon’s in Fig. 12b
includes a classical solution that demonstrates —
at least informally — the exponential speedup of
Simon’s algorithm over classical algorithms [47]:
compare the 𝑂 (2𝑁 ) classical loop on line 3 of
Fig. 12b with the polynomial-time quantum code
(Fig. 12a).

1 from qwerty import *
2 from simon_post import simon_post , \
3 Retry
4
5 def simon(f):
6 @qpu[N](f)
7 def kernel(f: cfunc[N]) -> bit[N]:
8 return '+'[N] + '0'[N] \
9 | f.xor_embed \
10 | (std[N] >> pm[N]) \
11 + id[N] \
12 | std[N]. measure \
13 + discard[N]
14
15 while True:
16 rows = []
17 while True:
18 row = kernel ()
19 if int(row) != 0:
20 rows.append(row)
21 if len(rows) >= row.n_bits -1:
22 break
23 try:
24 return simon_post(rows)
25 except Retry:
26 print('retrying ...')
27 continue
28
29 @classical
30 def black_box(q: bit [3]) -> bit [3]:
31 return \
32 (~q[0]& q[2]|q[0]&~q[2]|~q[1],
33 ~q[0]&~q[2]|q[0]& q[2],
34 ~q[0]&~q[2]|q[0]& q[2]|~q[1])

(a) Qwerty code for Simon’s algorithm

1 def naive_classical(f, n_bits ):
2 out_to_x = {}
3 for i in range (2** n_bits ):
4 x = bit[n_bits ](i)
5 out = f(x)
6 if out in out_to_x:
7 return x ^ out_to_x[out]
8 out_to_x[out] = x
9
10 print('Classical:',
11 naive_classical(black_box , 3))
12 print('Quantum:', simon(black_box ))

(b) Python for testing Simon’s algorithm

Fig. 12. Simon’s algorithm in Qwerty
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4.2 Factoring
The excitement sparked by Shor’s 1994 discov-
ery of an efficient quantum algorithm for factor-
ing integers [44, 45] still fuels interest in quan-
tum computing today. This section shows how
to factor in Qwerty using phase estimation as
described by Cleve et al. [10] and Nielsen and
Chuang [30].

4.2.1 Quantum phase estimation. Unlike previ-
ous examples, quantum phase estimation (QPE)
is primarily a building block on which other al-
gorithms are built. QPE finds an eigenvalue of a
provided operator (up to some precision); specif-
ically, provided a unitary 𝑈 and state |𝑢⟩ such
that𝑈 |𝑢⟩ = 𝑒𝑖𝜑 |𝑢⟩, QPE estimates 𝜑 [10, 30].

The parameter prep_eigvec (lines 3 and 7 of
Fig. 13a) is a function responsible for preparing
the eigenvector |𝑢⟩. The syntax prep_eigvec()
used on line 10 of Fig. 13a is syntactic sugar for
calling prep_eigvec with an empty tuple as an
argument, i.e., () | prep_eigvec.

QPE repeatedly applies𝑈 raised to increasing
powers of 2, i.e., 𝑈 20 , then 𝑈 21 , then 𝑈 22 , and
so on. An efficient 𝑈 will effect this exponenti-
ation without exponential cost (e.g., line 15 of
Fig. 13b). The Qwerty formulation facilitates this
by making the exponent 𝑗 of 𝑈 2𝑗 a dimension
variable of op (see Section 3.2.4), specifically a
free dimension variable. The syntax [[...]] on
line 8 of Fig. 13a indicates that op (𝑈 ) has a free
dimension variable, and line 12 uses [[j]] to in-
stantiate op with the free dimension variable set
to j, thus instantiating 𝑈 2𝑗 efficiently. Lines 10-
15 of Fig. 13b show how op could be implemented
— note that J is a free dimension variable.

To achieve repeated applications of𝑈 2𝑗 with-
out hard-coding some fixed number of them, Qw-
erty supports loop-like repeated applications as
written in line 11-13 in Fig. 13a. The point of
these repeated applications is to approximate a
Fourier basis state which line 14 of Fig. 13a will
identify. Yet to accomplish this,𝑈 2𝑗 must be ap-
plied in different subspaces. Because op (𝑈 ) is a
black box, though, typical syntax for restricting
a basis translation to a subspace (e.g., Fig. 3d) is
not applicable. Thus, as discussed in Section 3.2.3,

1 from qwerty import *
2
3 def qpe(precision , prep_eigvec , op,
4 n_shots ):
5 @qpu[M,T]( prep_eigvec , op)
6 def kernel(
7 prep_eigvec: qfunc[0,M],
8 op: rev_qfunc[M][[...]]) \
9 -> bit[T]:
10 return '+'[T] + prep_eigvec () \
11 | (std[T-1-j]+'1'+std[j]
12 & op[[j]]
13 for j in range(T)) \
14 | fourier[T]. measure \
15 + discard[M]
16
17 k_inst = kernel [[ precision ]]
18 for meas in k_inst(shots=n_shots ):
19 yield meas.as_bin_frac ()

(a) Qwerty code for quantum phase estimation

1 import sys
2
3 phi = float(sys.argv [1])
4 precision = int(sys.argv [2])
5
6 @qpu
7 def prep1() -> qubit:
8 return '1'
9
10 @qpu[J](phi)
11 @reversible
12 def rot(phi: angle ,
13 q: qubit) -> qubit:
14 return q | std >> \
15 {'0', phase (2*pi*phi *2**J)*'1'}
16
17 print('Expected:', phi)
18 phi_got , = qpe(precision , prep1 , rot ,
19 n_shots =1)
20 print('Actual:', float(phi_got ))

(b) Qwerty for testing quantum phase estimation

Fig. 13. Quantum phase estimation in Qwerty

the operator & used in lines 11-12 of Fig. 13a runs
𝑈 2𝑗 in individual '1' subspaces from right to left.
Note that the std[· · · ]s on line 11 are effectively
padding, since running in both the '0' and '1'
subspaces means running on the whole space.
Fig. 13b shows an example of using QPE.
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4.2.2 Order finding. A key ingredient of Shor’s
factoring algorithm, quantum order finding de-
termines the multiplicative order of 𝑥 modulo 𝑁 ,
which is defined as the smallest positive integer
𝑟 such that 𝑥𝑟 ≡ 1 (mod 𝑁 ). Here, 𝑥 and 𝑁 are
coprime positive integers [30, 42].
Although it is possible to implement order

finding using period finding (Section 4.1.4) in-
stead [30, 44, 45], the Qwerty code in Fig. 15 calls
out to QPE (Section 4.2.1) on line 22. The opera-
tor mult passed to QPE is an in-place multiplier
|𝑦⟩ ↦→ |𝑥𝑦 mod 𝑁 ⟩ (line 21), and the eigenvec-
tor is an intricate superposition that (incredi-
bly) is equal to |00 · · · 0⟩ ⊗ |1⟩ (lines 10-12 in
Fig. 15) [10, 30]. (The calculations for necessary
QPE precision and qubit count on lines 6-8 of
Fig. 15 are due to Nielsen and Chuang [30].)
The in-place multiplier is straightforward to

define in Qwerty. Lines 14-16 of Fig. 15 define a
classical function xymodN that multiplies its in-
put𝑦 times 𝑥2𝑗 modulo 𝑁 (𝑥 , 𝑗 , and 𝑁 are dimen-
sion variables defined on line 14). Assuming the
input 𝑦 is already a least positive residue mod-
ulo 𝑁 , xymodN is reversible because it permutes
the least positive residues modulo 𝑁 . Thus, it
can be instantiated in-place as desired (line 21 of
Fig. 15). As noted in Section 3.2.5, though, Qw-
erty currently requires a reverse implementation
as well. Thankfully, undoing the multiplication
by 𝑥 only means multiplying by the modular

1 import sys
2
3 def naive_classical(x, modN):
4 for r in range(1, modN):
5 if x**r % modN == 1:
6 return r
7
8 err = 0.2
9 x = int(sys.argv [1])
10 modN = int(sys.argv [2])
11 if math.gcd(x, modN) != 1:
12 raise ValueError('invalid x, modN')
13
14 print('Classical:',
15 naive_classical(x, modN))
16 print('Quantum:',
17 order_finding(err , x, modN))

Fig. 14. Python for testing order finding

1 import math
2 from qwerty import *
3 from qpe import qpe
4
5 def order_finding(epsilon , x, modN):
6 L = math.ceil(math.log2(modN))
7 t = 2*L + 1 + math.ceil(
8 math.log2 (2+1/(2* epsilon )))
9
10 @qpu[M]
11 def one() -> qubit[M]:
12 return '0'[M-1] + '1'
13
14 @classical[X,N,M,J]
15 def xymodN(y: bit[M]) -> bit[M]:
16 return X**2**J * y % N
17
18 x_inv = pow(x, -1, modN)
19 fwd = xymodN [[x,modN ,L ,...]]
20 rev = xymodN [[x_inv ,modN ,L ,...]]
21 mult = fwd.inplace(rev)
22 frac1 , frac2 = qpe(t, one , mult , 2)
23
24 def denom(frac):
25 cf = cfrac.from_fraction(frac)
26 for c in reversed(
27 cf.convergents ()):
28 if c.denominator < modN:
29 return c.denominator
30
31 return math.lcm(denom(frac1),
32 denom(frac2))

Fig. 15. Qwerty code for order finding

inverse 𝑥−1 instead. Lines 19 and 20 instantiate
the forward and reverse multipliers, respectively
(see Section 3.2.4). The ellipses ... on each line
ask Qwerty to leave J as a free dimension vari-
able as qpe() expects (Section 4.2.1).
The classical post-processing makes use of

the cfrac (continued fraction) type included
in the Qwerty Python runtime to convert the
fractions.Fraction [39] returned by qpe() to
a continued fraction and choose a convergent.
Choosing the last convergent whose denomina-
tor is less than 𝑁 (lines 24-29 of Fig. 15) is due
to Watkins [54], and taking the least common
multiple (line 31 of Fig. 15) is due to Nielsen and
Chuang [30].

Fig. 14 shows some Python code for invoking
the order_finding() subroutine from Fig. 15.
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4.2.3 Shor’s algorithm. Shor’s algorithm finds
a nontrivial factor of a positive integer 𝑁 (i.e., a
factor other than 1 or 𝑁 ). It achieves this using
a reduction from factoring to order finding (Sec-
tion 4.2.2) [30, 45]. In other words, Shor’s algo-
rithm is typically classical code that calls out to a
quantum order finding subroutine (Section 4.2.2).
Consequently, Fig. 16a is purely Python code,
although it calls order_finding() (Fig. 15) on
line 18.

Because it consists entirely of Python, this im-
plementation of Shor’s itself resembles the pseu-
docode from Nielsen and Chuang [30, §5.3.2].
Also in Python is Fig. 16b, an example command-
line program invoking the algorithm.

1 import math
2 import random
3 from qwerty import *
4
5 from order_finding import \
6 order_finding
7
8 def shors(epsilon , num):
9 if num % 2 == 0:
10 return 2
11
12 x = random.randint(2, num -1)
13 if (y := math.gcd(x, num)) > 1:
14 print('Got lucky! Skipping '
15 'quantum subroutine ...')
16 return y
17
18 r = order_finding(epsilon , x, num)
19
20 if r % 2 == 0 \
21 and pow(x, r//2, num) != -1:
22 if (gcd := math.gcd(x**(r//2)-1,
23 num)) > 1:
24 return gcd
25 if (gcd := math.gcd(x**(r//2)+1 ,
26 num)) > 1:
27 return gcd
28
29 raise Exception("Shor's failed")

(a) Python code for Shor’s algorithm

1 import sys
2
3 err = 0.2
4 num = int(sys.argv [1])
5 print('Nontrivial factor of', num ,
6 'is', shors(err , num))

(b) Python for testing Shor’s algorithm

Fig. 16. Shor’s algorithm in Qwerty
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4.3 Search
Often, a strategy to take advantage of program
structure using quantum mechanical properties
is unknown — this is where unstructured search
is most useful [1]. This section shows how search
can be implemented in Qwerty and ends with
an example of unstructured search in action.

4.3.1 Grover’s algorithm. Given a black box im-
plementing 𝑓 : {0, 1}𝑁 → {0, 1} (i.e., an oracle),
Grover’s algorithm finds all 𝑥 ∈ {0, 1}𝑁 such
that 𝑓 (𝑥) = 1 (i.e., all answers to the oracle). The
algorithm consists of many iterations, each of
which consists of the oracle followed by a special
reflection called the Grover diffuser. Applying
the right number of iterations is crucial and de-
pends on the number of answers [7, 19, 20, 30].

A single Grover iteration is shown on lines 5-
10 of Fig. 17a. Line 9 of Fig. 17a applies the trans-
formation |𝑥⟩ ↦→ (−1) 𝑓 (𝑥 ) |𝑥⟩ (see Section 3.2.5),
and line 10 performs the diffuser from Fig. 3d.
Lines 16-17 of Fig. 17a apply I iterations of

Grover’s starting with the equal superposition
'+'[N]. (In Python, _ is common variable name
for an unused value, such as the loop variable in
this case.) The [[n_iter]] syntax on line 20 of
Fig. 17a instantiates kernel() with the proper
number of iterations, which may be calculated
with the Python code starting at line 25 of Fig. 17a
(an implementation of a formula due to Nielsen
and Chuang [30, §6.1.4]). The measurements are
post-processed on lines 22-23 of Fig. 17a by in-
voking the oracle classically to filter out incor-
rect output.

Fig. 17b shows an example of runningGrover’s
algorithm. The oracle all_ones() on lines 3-5
of Fig. 17b ANDs all bits of the input x together,
thus outputting 1 only for the input 11 · · · 1.

1 import math
2 from qwerty import *
3
4 def grover(oracle , n_iter , n_shots ):
5 @qpu[N]( oracle)
6 def grover_iter(oracle: cfunc[N,1],
7 q: qubit[N]) \
8 -> qubit[N]:
9 return q | oracle.phase \
10 | -('+'[N] >> -'+'[N])
11
12 @qpu[N,I]( grover_iter)
13 def kernel(grover_iter: qfunc[N]) \
14 -> bit[N]:
15 return \
16 '+'[N] | (grover_iter
17 for _ in range(I)) \
18 | std[N]. measure
19
20 kern_inst = kernel [[ n_iter ]]
21 results = kern_inst(shots=n_shots)
22 return {r for r in set(results)
23 if oracle(r)}
24
25 def get_n_iter(n_qubits , n_answers ):
26 n = 2** n_qubits
27 m = n_answers
28 theta = 2*math.acos(
29 math.sqrt((n-m)/n))
30 rnd = lambda x: math.ceil(x-0.5)
31 return rnd(math.acos(
32 math.sqrt(m/n))/ theta)

(a) Qwerty code for Grover’s algorithm

1 import sys
2
3 @classical[N]
4 def all_ones(x: bit[N]) -> bit:
5 return x.and_reduce ()
6 n_ans = 1
7
8 n_qubits = int(sys.argv [1])
9 oracle = all_ones [[ n_qubits ]]
10 n_iter = get_n_iter(n_qubits , n_ans)
11 answers = grover(oracle , n_iter ,
12 n_shots =32)
13 for answer in answers:
14 print(answer)

(b) Qwerty for testing Grover’s algorithm

Fig. 17. Grover’s algorithm in Qwerty
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4.3.2 Fixed-point amplitude amplification. De-
spite its historical significance, Grover’s algo-
rithm suffers from practical difficulties: first, it
may malfunction if more than half of the search
space are answers [30]. Second, implementers
are struck with a “soufflé problem” [8]: it is easy
to ‘overcook’ the delicate state by applying too
many Grover iterations or ‘undercook’ it by ap-
plying too few. Applying the right number of
iterations requires knowing the number of an-
swers, which may be impractical. Yoder, Low,
and Chuang propose a fixed-point search algo-
rithm [55] that addresses these issues.
The algorithm is perhaps most easily under-

stood as a special case of the quantum singular
value transform (QSVT) [16, 26]. Lines 18-21 of
Fig. 19 rotate around the space of answers, and
lines 22-27 rotate around the initial state (which
a prepares). The particular rotation angles are
quite technical and depend on the lower bound
for the number of answers and the acceptable
error; the separate fix_pt_phases module (im-
ported on line 2 of Fig 19) uses the existing pyqsp
Python library to generate these phases [26].

1 import sys
2
3 @qpu[N]
4 @reversible
5 def a(q: qubit[N]) -> qubit[N]:
6 return q | '+'[N].prep
7
8 @classical[N]
9 def oracle_(x: bit[N]) -> bit:
10 return ~x[:N-1]. and_reduce ()
11
12 n_qubits = int(sys.argv [1])
13 oracle = oracle_ [[ n_qubits ]]
14 orig_prob = 1/2** n_qubits
15 res = fix_pt_amp(a, oracle ,
16 orig_prob , 0.98,
17 histogram=True)
18 print_histogram(res)
19 # Prints:
20 # 00 -> 48.93%
21 # 01 -> 49.46%
22 # 10 -> 0.44%
23 # 11 -> 1.17%

Fig. 18. Qwerty for testing fixed-point amplitude am-
plification

1 from qwerty import *
2 from fix_pt_phases import get_phases
3
4 def fix_pt_amp(a, oracle , orig_prob ,
5 new_prob =0.98,
6 n_shots =2048,
7 histogram=False):
8 phis = get_phases(orig_prob ,
9 new_prob)
10
11 @qpu[N,K,D](phis , a, oracle)
12 def amp_iter(phis: angle [2*D],
13 a: rev_qfunc[N],
14 oracle: cfunc[N,1],
15 q: qubit[N+1]) \
16 -> qubit[N+1]:
17 return \
18 q | oracle.xor_embed \
19 | id[N] + \
20 std.rotate(phis [[2*K]]) \
21 | oracle.xor_embed \
22 | ~a + id \
23 | '0'[N] & std.flip \
24 | id[N] + \
25 std.rotate(phis [[2*K+1]]) \
26 | '0'[N] & std.flip \
27 | a + id
28
29 @qpu[N,D](phis , a, amp_iter)
30 def kernel(
31 phis: angle [2*D], a: qfunc[N],
32 amp_iter: qfunc[N+1][[...]]) \
33 -> bit[N]:
34 return '0'[N+1] \
35 | a + id \
36 | (amp_iter [[k]]
37 for k in range(D)) \
38 | std[N]. measure + discard
39
40 return kernel(shots=n_shots ,
41 histogram=histogram)

Fig. 19. Qwerty code for fixed-point amplitude am-
plification

Line 22 of Fig. 19 uses ~a to un-prepare the ini-
tial state. The @reversible decorator on line 4
of Fig. 18 facilitates this by requiring that a()
has no irreversible operations (Section 3.2.3).
Fig. 18 shows a test invocation of the algo-

rithm with an oracle identifying states whose
first𝑁−1 bits are not all 1s. The original probabil-
ity on line 14 is a drastic under-estimate, yet the
result is not overcooked (lines 20-23 of Fig. 18).
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4.3.3 Niroula–Nam substring matching. Niroula
and Nam propose a quantum algorithm capable
of finding indices of a substring in𝑂 (

√
𝑁 (log2 𝑁+

log𝑀)) time (compare with the best known clas-
sical time complexity Θ(𝑁 + 𝑀)) [31]. The al-
gorithm works by preparing a superposition of
all possible cyclic bit rotations of the haystack
string and amplifying cases where the needle
matches the beginning of the haystack. Measur-
ing the rotation offset register yields the indices.

Fig. 20a shows an implementation of substring
matching in Qwerty. (It assumes the length of
both the string and pattern are powers of 2.) The
K(k) syntax seen on line 9 is syntactic sugar for
explicitly setting a dimension variable K using a
Python int variable named k; this is equivalent
to using [[· · · ]] when inference fails, as seen
on e.g. line 13 of Fig. 18.
The shift_and_cmp() operation (lines 9-16

of Fig. 20a) is the heart of Niroula–Nam: taking in
the three registers of the algorithm, it cyclically
left-shifts the haystack as mentioned and XORs
the beginning of it with the needle (line 16). If
the needle was found, then the last portion of the
output of shift_and_cmp() should be all zeros.
This is precisely what the oracle (lines 31-35 of
Fig. 20a) is built to identify.
This example uses fixed-point amplitude am-

plification (Section 4.3.2) to amplify the cases
where the substring is found (line 37 of Fig. 20a).
The input a, defined on lines 18-29 of Fig. 20a,
prepares the state on which to perform the am-
plification assuming the input is |00 · · · 0⟩. The
.prep keyword described in Section 3.2.2 is use-
ful here (lines 26-27) to encode the needle and
haystack as qubits. shift_and_cmp() is then ex-
ecuted in-place (Section 3.2.5). (shift_and_cmp
is written a second time on line 29 because it is
its own inverse.)

For convenience, Qwerty allows the operand
of .prep (Section 3.2.2) to be a bit[N], as in
pat.prep on line 27 of Fig. 20a. If patwere 1011,
for example, then pat.prep would behave ex-
actly as as '1011'.prep.
Fig. 20b calls match() (from Fig. 20a) inside

typical Python code. Line 7 shows an abbreviated
example output given an example input.

1 import math
2 from qwerty import *
3 from fix_pt_amp import fix_pt_amp
4
5 def match(string , pat):
6 n, m = len(string), len(pat)
7 k = math.ceil(math.log2(n))
8
9 @classical[K(k),N(n),M(m)]
10 def shift_and_cmp(off: bit[K],
11 string: bit[N],
12 pat: bit[M]) \
13 -> bit[K+N+M]:
14 return off , \
15 string , \
16 string.rotl(off)[:M] ^ pat
17
18 @qpu[K(k),N,M](string , pat ,
19 shift_and_cmp)
20 @reversible
21 def a(string: bit[N], pat: bit[M],
22 shift_and_cmp: cfunc[K+N+M],
23 q: qubit[K+N+M]) \
24 -> qubit[K+N+M]:
25 return \
26 q | '+'[K].prep + string.prep \
27 + pat.prep \
28 | shift_and_cmp \
29 .inplace(shift_and_cmp)
30
31 @classical[K(k),N(n),M(m)]
32 def oracle(off: bit[K],
33 string: bit[N],
34 pat: bit[M]) -> bit:
35 return (~pat). and_reduce ()
36
37 ret = fix_pt_amp(a, oracle , 1/n)
38 return {int(result [:k])
39 for result in set(ret)
40 if oracle(result )}

(a) Qwerty code for Niroula–Nam substringmatching

1 import sys
2 string = bit.from_str(sys.argv [1])
3 pat = bit.from_str(sys.argv [2])
4 print('Matching indices:')
5 for index in match(string , pat):
6 print(index)
7 # Output for inputs 1010 and 10: 0, 2

(b) Python for testing Niroula–Nam substring match-
ing

Fig. 20. Niroula–Nam substring matching in Qwerty



Qwerty: A Basis-OrientedQuantum Programming Language 21

5 CONCLUSION
Qwerty is focused on algorithms for quantum information processing as opposed to quantum
physical system modeling (e.g., Hamiltonian simulation) [15, 25]. Our goal in creating Qwerty is to
help non-experts reason about quantum computation while abstracting away the complexity of
gate engineering. Qwerty achieves this through abstractions such as qubit literals based on a string
analogy, embedding of classical functions in quantum kernels, and particularly the basis type.
These constructs provide a programmer with a rich suite of primitives to realize algorithms as code.
Embedding Qwerty in Python achieves both approachability and convenience for the classical
component of quantum–classical programs. This is demonstrated through Qwerty implementations
of significant quantum algorithms such as Grover’s and Shor’s.
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A MINI-QWERTY LANGUAGE
In this appendix, we present the soundness of the semantics and type system of Qwerty. In order
to do so, we define Mini-Qwerty, a formalized subset of Qwerty. We define the core features of the
Mini-Qwerty language, including syntax (Section A.1), typing (Section A.2), semantics (Section A.3),
and type safety (Section A.4). The language formalization below draws from Selinger and Valiron’s
quantum 𝜆-calculus [43], the 𝜇Q language due to Yuan et al. [58], and the formalization of Q# by
Singhal et al. [49].

(Types) 𝜏 ::= 𝜏1 → 𝜏2 | 𝜏1
rev−−→ 𝜏2 | 𝜏1 ⊗ 𝜏2 | ( ) | qubit | bit | basis

(Terms) 𝑡 ::= 𝑒 | 𝑏
(Values) 𝑣 ::= 𝑞𝑖 | 𝑥 | 0 | 1 | 𝑏𝑓 | 𝑣 + 𝑣
(Expressions) 𝑒 ::= 𝑒1𝑒2 | 𝑏𝑓 | 𝑥 | ℓ | 𝑒 + 𝑒 | 𝑒 [𝑛] | ( ) | phase(𝜃 ) ∗ 𝑒
(Built-In Functions) 𝑏𝑓 ::= 𝑏.measure | 𝑏1 >> 𝑏2 | 𝑏 & 𝑒 | ∼𝑒 | id | discard
(Literals) ℓ ::= 0 | 1 | 𝑞𝑖 | 𝑞ℓ
(Qubit Literal) 𝑞ℓ ::= q[𝑛]
(Basis) 𝑏 ::= 𝑏1 + 𝑏2 | 𝑏 [𝑛] | std | pm | ij | fourier[𝑛] | {𝑏𝑣1, 𝑏𝑣2, · · · , 𝑏𝑣𝑚 }
(Basis Vector) 𝑏𝑣 ::= 𝑞ℓ | phase(𝜃 ) ∗ 𝑏𝑣

Fig. 21. Mini-Qwerty syntax. Henceforth, 𝑛 ≥ 0,𝑚 > 0, and 𝜃 ∈ R.

A.1 Mini-Qwerty Syntax
Fig. 21 defines Mini-Qwerty types and syntax. (Section A.5 discusses how this syntax is realized in
the Python DSL.) Similar to prior work [35, 58], Mini-Qwerty has both linear types and nonlinear
types. In particular, functions and classical types (namely the bit type) are nonlinear, but any type
holding a qubit (i.e., a qubit or a tuple including qubits) is linear.

In Mini-Qwerty, the tensor product is associative for both terms and types; for example, the type
qubit ⊗ (qubit ⊗ qubit) is identical to the type (qubit ⊗ qubit) ⊗ qubit, and the term 𝑡1 + (𝑡2 + 𝑡3)
is exactly the term (𝑡1 + 𝑡2) + 𝑡3. We show later that this facilitates taking the tensor product of
functions, a major Qwerty idiom. We denote ( ) as an empty tensor product for both expressions
and types. For a type 𝜏 , we write 𝜏 [𝑛] as shorthand for an 𝑛-fold tensor product of 𝜏 , i.e.,

⊗𝑛

𝑖=1 𝜏 .
For simplicity, we assume a Mini-Qwerty program is an expression, although Mini-Qwerty can

be easily extended to represent a program with multiple functions and embeddings of classical
functions (Section 3.2.5). The expressions are built on typical expressions like applications and
variables alongside specific quantum expressions like bases and built-in functions. Our built-in
functions are either categorized as reversible or not, where reversible generally means no qubits are
measured or discarded5. The reversible distinction for functions (called “adjointable” by Singhal et al.
[49]) is important for the Mini-Qwerty & and ∼ operators (the predicator and reverser, respectively),
which can only act on reversible functions; we elaborate in Section A.3.
5For simplicity, Mini-Qwerty also requires that reversible functions return all input qubits in exactly the same order they
were passed.

https://doi.org/10.1145/3563297
https://doi.org/10.1145/3498691
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𝑥 : 𝜏 ⊢∅ 𝑥 : 𝜏 Tvar · ⊢∅ 0 : bit T0 · ⊢∅ 1 : bit T1 · ⊢∅ q[𝑚] : qubit[𝑚 |q|]
Tqlit

· ⊢{𝑖 } 𝑞𝑖 : qubit
Tq

Γ ⊢∅ ( ) : ( )
Tunit · ⊢∅ std : basis

Tstd · ⊢∅ pm : basis Tpm · ⊢∅ ij : basis
Tij

· ⊢∅ fourier[𝑛] : basis[𝑛] Tfourier · ⊢∅ id : qubit
rev−−→ qubit

Tid
· ⊢∅ discard : qubit → ( )

Tdiscard

Γ1 ⊢Δ1 𝑏𝑣1 : qubit[𝑚1] Γ2 ⊢Δ2 𝑏𝑣2 : qubit[𝑚1] · · · Γ𝑚 ⊢Δ𝑚2
𝑏𝑣𝑚2 : qubit[𝑚1]

∀𝑚2
𝑖=1 |𝑏𝑣𝑖 | =𝑚1 ∃𝜎∈{𝜎𝑥 ,𝜎𝑦 ,𝜎𝑧 }∀

𝑚2
𝑖=1 𝜎

⊗𝑛 |𝑏𝑣𝑖 ⟩ = 𝜆𝑖 |𝑏𝑣𝑖 ⟩ ∀𝑚2
𝑖≠𝑗=1 ∀𝜃 ∈ R, 𝑒𝑖𝜃 |𝑏𝑣𝑖 ⟩ ≠

��𝑏𝑣 𝑗 〉
Γ1, Γ2, · · · , Γ𝑚2 ⊢∅ {𝑏𝑣1, · · · , 𝑏𝑣𝑚2 } : basis[𝑚1]

Tbasis

Fig. 22. Mini-Qwerty type rules for values and bases

Γ1 ⊢Δ1 𝑡1 : 𝜏1 Γ2 ⊢Δ2 𝑡2 : 𝜏2
Γ1, Γ2 ⊢Δ1⊔Δ2 𝑡1 + 𝑡2 : 𝜏1 ⊗ 𝜏2

Ttensor
Γ ⊢∅ 𝑡 : 𝜏 𝜏 ≠ 𝜏1 ⊗ qubit ⊗ 𝜏2

Γ ⊢∅ 𝑡 [𝑛2] : 𝜏 [𝑛2]
TnFold

Γ ⊢Δ 𝑒 : qubit[𝑚]
Γ ⊢Δ phase(𝜃 ) ∗ 𝑒 : qubit[𝑚] Tphase

Γ1 ⊢Δ1 𝑒1 : 𝜏1 → 𝜏2 Γ2 ⊢Δ2 𝑒2 : 𝜏1
Γ1, Γ2 ⊢Δ1⊔Δ2 𝑒1𝑒2 : 𝜏2

Tapp

Γ ⊢∅ 𝑏 : basis[𝑚] span(𝑏) = H2⊗𝑚

Γ ⊢∅ 𝑏.measure : qubit[𝑚] → bit[𝑚] Tmeasure

Γ1 ⊢∅ 𝑏1 : basis[𝑚] Γ2 ⊢∅ 𝑏2 : basis[𝑚]
span(𝑏1) = span(𝑏2)

Γ1, Γ2 ⊢∅ 𝑏1 >> 𝑏2 : qubit[𝑚] rev−−→ qubit[𝑚]
Tbtrans

Γ1 ⊢∅ 𝑏 : basis[𝑚1] Γ2 ⊢Δ 𝑒 : qubit[𝑚2]
rev−−→ qubit[𝑚2]

Γ1, Γ2 ⊢Δ 𝑏 & 𝑒 : qubit[𝑚1 +𝑚2]
rev−−→ qubit[𝑚1 +𝑚2]

Tpred
Γ ⊢Δ 𝑒 : qubit[𝑚] rev−−→ qubit[𝑚]

Γ ⊢Δ ∼𝑒 : qubit[𝑚] rev−−→ qubit[𝑚]
Trev

Fig. 23. Mini-Qwerty type rules for operations

𝜏1 <: 𝜏2 Γ ⊢Δ 𝑒 : 𝜏1
Γ ⊢Δ 𝑒 : 𝜏2

Tsub
𝜏1

rev−−→ 𝜏2 <: 𝜏1 → 𝜏2
Srev

(
(
⊗𝑛1

𝑖=1 𝜏𝑖 ) → (
⊗𝑛2

𝑗=1 𝜏 𝑗 )
)
⊗

(
(
⊗𝑛3

𝑘=1 𝜏𝑘 ) → (
⊗𝑛4

ℓ=1 𝜏ℓ )
)

<:
(
(
⊗𝑛1

𝑖=1 𝜏𝑖 ) ⊗ (
⊗𝑛3

𝑘=1 𝜏𝑘 )
)
→

(
(
⊗𝑛2

𝑗=1 𝜏 𝑗 ) ⊗ (
⊗𝑛4

ℓ=1 𝜏ℓ )
)

StensFunc

Fig. 24. Mini-Qwerty subtyping rules

Bit literals are 0 and 1 as usual. id is the single-qubit identity function and is useful for padding
functions out to apply tomore qubits. The syntax >> performs the crucial basis translation introduced
in Section 3.2.2. (We describe bases in more detail in the next section.) The operator phase(𝜃 )∗
imparts a phase 𝑒𝑖𝜃 on qubits or basis vectors.

Although qubit literals are written as string literals in the Python DSL per Section 3.2.1, we avoid
overspecializing for Python and permit a more abstract form q of qubit literals in Mini-Qwerty. We
assume each q is a nonempty sequence of the symbols 0, 1, +, -, i, and j. The notation |q| denotes
the length of this sequence. |q⟩ denotes the quantum state that q represents — for example, if
q = +10-, then |q⟩ = |+⟩ ⊗ |10⟩ ⊗ |−⟩. The [𝑛] suffix following q prepares 𝑛 duplicate versions of q.

Finally, 𝑞𝑖 , which represents a reference to the qubit at index 𝑖 , is not written by programmers; it
is used only during evaluation [58].
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( |𝜓𝑖 ⟩)𝑛1𝑖=1 ⊗
(��𝜙 𝑗 〉)𝑛2𝑗=1 ≜ (

|𝜓𝑖 ⟩ ⊗
��𝜙 𝑗 〉)𝑖=1,2,...,𝑛1; 𝑗=1,2,...,𝑛2

veclist(𝑏1 + 𝑏2) ≜ veclist(𝑏1) ⊗ veclist(𝑏2)
veclist(𝑏 [𝑛]) ≜ veclist(+𝑛

𝑖=1𝑏)
veclist(std) ≜ |0⟩ , |1⟩
veclist(pm) ≜ |+⟩ , |−⟩
veclist(ij) ≜ |+𝑖⟩ , |−𝑖⟩

veclist(fourier[𝑛]) ≜ |𝐹0⟩ , |𝐹1⟩ , . . . , |𝐹2𝑛−1⟩

with
��𝐹 𝑗 〉 ≜ 1

√
2𝑛

∑2𝑛−1
𝑘=0 𝑒𝑖2𝜋 𝑗𝑘/2

𝑛 |𝑘⟩

vec(phase(𝜃 ) ∗ 𝑏𝑣) ≜ 𝑒𝑖𝜃vec(𝑏𝑣)
vec(q[𝑛]) ≜

⊗𝑛
𝑖=1 |q⟩

veclist({𝑏𝑣1, 𝑏𝑣2, . . . , 𝑏𝑣𝑚 }) ≜ vec(𝑏𝑣1), vec(𝑏𝑣2), . . . , vec(𝑏𝑣𝑚)��𝑏1〉 , ��𝑏2〉 , . . . , ��𝑏𝑚〉
≜ veclist(𝑏)

span(𝑏) ≜ span
(��𝑏1〉 , ��𝑏2〉 , . . . , ��𝑏𝑚〉)

|𝑏 | ≜ 𝑚 for which
��𝑏1〉 ∈ H2

⊗𝑚

Fig. 25. Definition of properties of a basis 𝑏, including the number of qubits across which it is defined (written
|𝑏 |) and the list of vectors it represents. This list is an orthonormal basis if 𝑏 is well-typed. The notation (·)𝑛

𝑖=1
denotes a comma-separated list of length 𝑛.

A.2 Mini-Qwerty Type System
Fig. 22 and Fig. 23 show the typing rules for Mini-Qwerty. In our typing rules, a term (𝒕) with type
(𝝉 ) based on context (𝚪) and qubit index context (𝚫) is well-typed in the given judgement: Γ ⊢Δ 𝑡 : 𝜏 .
The qubit index context Δ is a set of positive integers representing the set of all qubit indices 𝑖 in
all 𝑞𝑖 values in the expression. We write 𝐴 ⊔ 𝐵 to denote the union of disjoint sets 𝐴 and 𝐵, and [𝑛]
is defined as the set {1, 2, . . . , 𝑛}. When the type is linear (qubits, or tensor product holding qubits),
we only allow exchange rules on the context Γ to maintain linearity [35, 43, 53, 58]. In the other
cases (for non-quantum types), we also allow weakening and contraction.
Fig. 24 defines the subtyping rules for Mini-Qwerty. Srev exists for programmer convenience,

since a reversible function should be usable anywhere an ordinary irreversible function could be.
The StensFunc rule facilitates a unique feature of Qwerty: the ability to use the tensor product of
functions (i.e., tuples of functions) in an application. For example, applying (id + discard + id) to
three qubits would preserve the leftmost and rightmost qubits, but discard the middle qubit.

The rule Tbasismandates that a basis literal {𝑏𝑣1,𝑏𝑣2, · · · ,𝑏𝑣𝑚} meets all the following conditions,
which guarantee that it satisfies the linear algebraic definition of an orthonormal basis [3]:

(1) All 𝑏𝑣𝑖 must have the same number of qubits (denoted |𝑏𝑣𝑖 |).
(2) No𝑏𝑣𝑖s are expressed as a mixture of symbols from the pairs 0/1, +/-, and i/j. In mathematical

terms, either all |𝑏𝑣𝑖⟩ are eigenstates of 𝜎⊗|𝑏𝑣1 |
𝑥 , or all are eigenstates of 𝜎⊗|𝑏𝑣1 |

𝑦 instead, or
all are eigenstates of 𝜎⊗|𝑏𝑣1 |

𝑧 instead. This helps ensure all 𝑞𝑖s are linearly independent; for
example, the list of vectors |0⟩ , |1⟩ , |+⟩ is linearly dependent.

(3) 𝑏𝑣𝑖s cannot be repeated, even with a different phase. Mathematically, for any 1 ≤ 𝑖, 𝑗 ≤ 𝑚
such that 𝑖 ≠ 𝑗 , there exists no 𝜃 ∈ R such that 𝑒𝑖𝜃 |𝑏𝑣𝑖⟩ =

��𝑏𝑣 𝑗 〉. This also helps guarantee
linear independence.



Qwerty: A Basis-OrientedQuantum Programming Language 27

[|𝜓 ⟩ , id 𝑞𝑖 ] −→ [|𝜓 ⟩ , 𝑞𝑖 ]
Eid [|𝜓 ⟩ , discard 𝑞𝑖 ] −→ [|𝜓 ⟩ , ( )] Ediscard

[|𝜓 ⟩ ,q[𝑚]] −→ [|𝜓 ⟩ ⊗
⊗𝑚

𝑖=1 |q⟩ ,+𝑚 |q |
𝑗=1 𝑞𝑖 𝑗 ]

Eqlit

|𝑏1 | = |𝑏2 | =𝑚

[|𝜓 ⟩ , (𝑏1 >> 𝑏2) (+𝑚
𝑗=1 𝑞𝑖 𝑗 )] −→ [𝑈 ®𝑖

𝑏1→𝑏2 |𝜓 ⟩ ,+𝑚
𝑗=1 𝑞𝑖 𝑗 ]

Ebtrans

|𝑏 | =𝑚

[|𝜓 ⟩ , 𝑏.measure(+𝑚
𝑗=1 𝑞𝑖 𝑗 )]

𝑝
®𝑖
𝑏,𝑗

( |𝜓 ⟩)
−−−−−−−−→ [

𝑀
®𝑖
𝑏,𝑗√︃

𝑝
®𝑖
𝑏,𝑗

( |𝜓 ⟩)
|𝜓 ⟩ ,B𝑚−1

𝑚,𝑗
+ B𝑚−2

𝑚,𝑗
+ · · · + B0

𝑚,𝑗
]

Emeasure

[|𝜓 ⟩ , 𝑒 [𝑛]] −→ [|𝜓 ⟩ ,+𝑛
𝑗=1 𝑒]

EnFold
[|𝜓 ⟩ , 𝑒] −→ [|𝜓 ′⟩ , 𝑒′]

[|𝜓 ⟩ , phase(𝜃 ) ∗ 𝑒] −→ [|𝜓 ′⟩ , phase(𝜃 ) ∗ 𝑒′] Ephase1

[|𝜓 ⟩ , phase(𝜃 ) ∗ (+𝑚
𝑗=1 𝑞𝑖 𝑗 )] −→ [𝑒𝑖𝜃 |𝜓 ⟩ ,+𝑚

𝑗=1 𝑞𝑖 𝑗 ]
Ephase2

[|𝜓 ′⟩ , 𝑒 (+𝑚
𝑗=1 𝑞𝑖 𝑗 )] −→ [𝑈 ®𝑖 |𝜓 ′⟩ ,+𝑚

𝑗=1 𝑞𝑖 𝑗 ] |𝜓 ⟩ , |𝜓 ′⟩ ∈ H2⊗𝑛

[|𝜓 ⟩ , (∼𝑒) (+𝑚
𝑗=1 𝑞𝑖 𝑗 )] −→ [(𝑈 ®𝑖 )† |𝜓 ⟩ ,+𝑚

𝑗=1 𝑞𝑖 𝑗 ]
Erev

|𝑏 | =𝑚2 [|𝜓 ′⟩ , 𝑒 (+𝑚1
𝑗=1 𝑞𝑖 𝑗 )] −→ [𝑈 ®𝑖 |𝜓 ′⟩ ,+𝑚1

𝑗=1 𝑞𝑖 𝑗 ] |𝜓 ⟩ , |𝜓 ′⟩ ∈ H2⊗𝑛

[|𝜓 ⟩ , (𝑏 & 𝑒) ((+𝑚2
𝑘=1 𝑞𝑖𝑝𝑘

) + (+𝑚1
𝑗=1 𝑞𝑖 𝑗 ))] −→ [𝐶𝑏𝑈

®𝑖𝑝 ,®𝑖 |𝜓 ⟩ , (+𝑚2
𝑘=1 𝑞𝑖𝑝𝑘

) + (+𝑚1
𝑗=1 𝑞𝑖 𝑗 )]

Epred

[|𝜓 ⟩ , 𝑒1] −→ [|𝜓 ′⟩ , 𝑒′1] 𝑛1 + 𝑛2 > 0

[|𝜓 ⟩ , (+𝑛1
𝑗=1 𝑣 𝑗 ) + 𝑒1 + (+𝑛2

𝑘=2 𝑒𝑘 )] −→ [|𝜓 ′⟩ , (+𝑛1
𝑗=1 𝑣 𝑗 ) + 𝑒

′
1 + (+𝑛2

𝑘=2 𝑒𝑘 )]
Etensor

[|𝜓 ⟩ , 𝑣1 (+𝑛1
𝑗=1 𝑣

′
𝑗
)] −→ [|𝜓 ′⟩ , 𝑒] 𝑛1 ≤ 𝑛2

[|𝜓 ⟩ , (+𝑚
𝑘=1 𝑣𝑘 ) (+𝑛2

𝑗=1 𝑣
′
𝑗
)] −→ [|𝜓 ′⟩ , 𝑒 + ((+𝑚

𝑘=2 𝑣𝑘 ) (+𝑛2
𝑗=𝑛1+1 𝑣

′
𝑗
))]

EtensApp

[|𝜓 ⟩ , 𝑒1]
𝑝
−−→ [|𝜓 ′⟩ , 𝑒′1]

[|𝜓 ⟩ , 𝑒1 𝑒2]
𝑝
−−→ [|𝜓 ′⟩ , 𝑒′1 𝑒2]

Eapp1
[|𝜓 ⟩ , 𝑒]

𝑝
−−→ [|𝜓 ′⟩ , 𝑒′]

[|𝜓 ⟩ , 𝑣 𝑒]
𝑝
−−→ [|𝜓 ′⟩ , 𝑣 𝑒′]

Eapp2

Fig. 26. Mini-Qwerty evaluation rules

The Tmeasure rule requires that the operand 𝑏 of 𝑏.measure is a basis for the full 𝑛-qubit
Hilbert space (H2

⊗𝑛). The judgment of 𝑏 as well-typed ensures that 𝑏 is an orthonormal list; if this
orthonormal list spansH2

⊗𝑛 , then𝑏 represents an𝑛-qubit basis, meaning the resulting measurement
operators (Section A.3) satisfy the completeness equation [30, §2.2.3]. A basis translation 𝑏1 >> 𝑏2,
on the other hand, mandates that 𝑏1 and 𝑏2 span the same spaces (Tbtrans), preserving unitarity.
(Fig. 25 formally defines the span of a basis 𝑏.)

The predicator operator 𝑏 & 𝑒 returns a new function which runs the function 𝑒 only in the
subspace 𝑏. Here, 𝑒 must be a reversible function — specifically, this means it must have the effect
of a unitary on the state, meaning it cannot perform measurements or discard qubits [49].

A.3 Mini-Qwerty Semantics
Fig. 26 shows the evaluation rules for Mini-Qwerty. Because classical control hardware executes a
Mini-Qwerty program, causing side effects on a quantum state, we represent the state of a Mini-
Qwerty program as a pair [|𝜓 ⟩ , 𝑒] of a quantum state |𝜓 ⟩ and a Mini-Qwerty expression 𝑒 [43, 57].
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The initial quantum state may be chosen as |⟩ =
[
1
]
, a 1×1 matrix. (For notational convenience, we

denote span( |⟩) as H2
⊗0.)

The evaluation relation [|𝜓 ⟩ , 𝑒]
𝑝
−−→ [|𝜓 ′⟩ , 𝑒′] includes a probability 𝑝 to account for quantum

nondeterminism [43, 57]. Often 𝑝 is omitted, as in [|𝜓 ⟩ , 𝑒] −→ [|𝜓 ′⟩ , 𝑒′], which should be read as
letting 𝑝 = 1. Currently, due to the possibility of different measurement results, only Emeasure
introduces a probability 𝑝 which may not be equal to 1.
The rule Ediscard permits the programmer to explicitly discard a qubit reference 𝑞𝑖 . The

hardware or runtime may reset 𝑞𝑖 to |0⟩ for later use, but Mini-Qwerty does not implement this
for simplicity. Conversely, rule Eqlit prepares 𝑛 copies of the requested state |q⟩; a runtime may
repurpose previously discarded qubits, but for notational simplicity we simply expand |𝜓 ⟩ to include
the new qubits. If |𝜓 ⟩ ∈ H2

⊗𝑛 , then the indices 𝑖 𝑗 in Eqlit are defined as 𝑖 𝑗 ≜ 𝑛 + 𝑗 to ensure the
new 𝑞𝑖 𝑗 point to the fresh qubits.

Ebtrans describes the behavior of basis translations, introduced in Section 3.2.2. (In all rules, the
notation𝑈 𝑖1,𝑖2,...,𝑖𝑛 , abbreviated as𝑈 ®𝑖 , means𝑈 should be applied to the qubits at indices 𝑖1, 𝑖2, . . . , 𝑖𝑛 .)
In essence, 𝑈𝑏1→𝑏2 is diag(1, 1, . . . , 1) where the columns are written in the basis 𝑏1, and the rows
are written in the basis 𝑏2. To define this more rigorously, first suppose span(𝑏1) = span(𝑏2)
(defined in Fig. 25) and the vectors of the bases they represent are

��𝑏𝑘𝑖 〉, 𝑖 ∈ {1, 2} (defined formally
in Fig 25). If

��𝑏𝑘1 〉 is extended to an orthonormal basis
��𝑒𝑘1 〉 of H2

⊗𝑛 with Gram–Schmidt [3, 30],
then let

��𝑒𝑘2 〉 be ��𝑏𝑘2 〉 extended with the same vectors by which
��𝑏𝑘1 〉 was extended. Then we define

𝑈𝑏1→𝑏2 =
∑
𝑘

��𝑒𝑘2 〉 〈𝑒𝑘1 ��.
Measurement, defined by Emeasure, also takes a basis operand. If |𝑏 | =𝑚, then measurement

operators 𝑀𝑏,𝑖 ≜
��𝑏𝑖 〉〈𝑏𝑖 �� are projectors onto the 2𝑚 basis states of 𝑏. The notation 𝑝®𝑖

𝑏,𝑗
( |𝜓 ⟩) =

⟨𝜓 |𝑀®𝑖
𝑏,𝑗

|𝜓 ⟩ describes the probability of observing outcome 1 ≤ 𝑗 ≤ 2𝑚 on the qubits at indices ®𝑖 of
|𝜓 ⟩. We represent the measurement outcome itself as𝑚-bit binary: B𝑚,𝑗 is 𝑗−1 expressed in𝑚-bit
binary, and B𝑘𝑚,𝑗 is bit 𝑘 , where B

0
𝑚,𝑗 is the least significant.

Epred defines the behavior of the predicator (&), which predicates a function running on a set
of qubits (𝑞𝑖 𝑗 ) on a subspace of predicate qubits (𝑞𝑖𝑝

𝑘
). Here we describe the 𝐶𝑏𝑈 notation used in

the rule. Using Gram–Schmidt, extend
��𝑏𝑘 〉, the basis represented by 𝑏, to an orthonormal basis of

H2
⊗𝑛2 , denoting vectors by which

��𝑏𝑘 〉 would be extended as
��𝑒ℓ 〉 [3, 30]. Then if𝑈 is an 𝑛-qubit

unitary, let 𝐶𝑏𝑈 =
(∑

ℓ

��𝑒ℓ 〉 〈𝑒ℓ ��) ⊗ 𝐼2𝑛 +
(∑

𝑘

��𝑏𝑘 〉 〈𝑏𝑘 ��) ⊗ 𝑈 .
Besides the aforementioned basis-oriented quantum primitives, EtensApp defines how exactly

tensor products of functions are applied in Mini-Qwerty. The functions in the tensor product are
evaluated left-to-right. The number of values to peel off and pass to the leftmost function (𝑛1 in
EtensApp) is determined based on the prototype of the function, which must specify the number
of inputs; for example, extending Fig. 21 to include lambdas would require an annotation to specify
the number of input values, like 𝜆(𝑥1: 𝜏1, 𝑥2: 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛).𝑒 .

A.4 Mini-Qwerty Properties
As with any new language, we need to prove progress and preservation. These properties prove
the type safety of Mini-Qwerty. Progress states a type-safe expression means it is either a value or
can do one step of evaluation. Preservation states a type-safe expression with an evaluation step to
a new expression should be type-safe. We state the mathematical formulas as Theorem A.1 and
Theorem A.2 respectively.

Theorem A.1. (Progress) If · ⊢Δ 𝑒 : 𝜏 , either e is a value or ∀ |𝜓 ⟩ ∈ H2
⊗𝑛 where Δ ⊆ [𝑛],

[|𝜓 ⟩ , 𝑒]
𝑝
−−→ [|𝜓 ′⟩ , 𝑒′].
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Theorem A.2. (Preservation) If Γ ⊢𝑛 𝑒 : 𝜏 and [|𝜓 ⟩ , 𝑒]
𝑝
−−→ [|𝜓 ′⟩ , 𝑒′] and |𝜓 ⟩ ∈ H2

⊗𝑛 with
Δ ⊆ [𝑛], then Γ ⊢Δ′ 𝑒′ : 𝜏 and |𝜓 ′⟩ ∈ H2

⊗𝑛′ where Δ′ ⊆ [𝑛′].

Progress can be proved by induction on derivation of · ⊢Δ 𝑒 : 𝜏 . Preservation is an induction on
derivation of [|𝜓 ⟩ , 𝑒]

𝑝
−−→ [|𝜓 ′⟩ , 𝑒′] [58].

Theorem A.3. (Universality) Mini-Qwerty is universal.

Proof. The following basis translation performs a unitary transformation exactly equal to an
𝑅𝑧 (𝜃 ):

{ 0[1], 1[1]} >> {phase(−𝜃/2) ∗ 0[1], phase(𝜃/2) ∗ 1[1]}

Similarly, the following acts exactly as an 𝑅𝑦 (𝜃 ):

{ 𝑖 [1], 𝑗 [1]} >> {phase(−𝜃/2) ∗ 𝑖 [1], phase(𝜃/2) ∗ 𝑗 [1]}

Additionally, the following applies a global phase of 𝜃 :

{ 0[1], 1[1]} >> {phase(𝜃 ) ∗ 0[1], phase(𝜃 ) ∗ 1[1]}

Then using a ZYZ decomposition [30, §4.2], Mini-Qwerty is capable of executing any one-qubit
unitary by applying the aforementioned 3 functions with different choices of 𝜃 .
Furthermore, a CNOT can be performed in Mini-Qwerty with the following basis translation:

{1[1]} + {0[1], 1[1]} >> {1[1]} + {1[1], 0[1]}

Thus, by the universality of single qubit gates and CNOTs [30, §4.5.2], Mini-Qwerty is universal.
□

A.5 Realization in the Python DSL
Syntax differences. Qwerty is largely an embedding of Mini-Qwerty in Python, but there are

some departures from the syntax in Fig. 21. The most notable is that application in Qwerty is
written as 𝑒2 | 𝑒1 rather than 𝑒1𝑒2 as in Mini-Qwerty (Fig. 21) — that is, the order is reversed from
before, with the input first and the function second. This change makes Qwerty code read from
left-to-right like a Unix shell pipeline, where earlier operations are written before later operations.
This pipeline-like style of programming avoids the tedious repeated variable definitions common
in languages with linear qubit types [35, 58]. Fig. 27 shows an example of this.
Otherwise, Mini-Qwerty syntax is materialized in Qwerty using common Python syntax: for

example, the sequence q is a Python string literal containing only '0', '1', '+', '-', 'i', and 'j'.
(As discussed in Section 3.2.1, combined with qubit literals as string literals, the choice of + lines up
with intuition of the tensor product as concatenation.) In Qwerty, the types in Figure 21 are written
similarly to typical Python type annotations: qubit[𝑛1] → qubit[𝑛2] is written as qfunc[𝑛1,𝑛2],
qubit[𝑛1]

rev−−→ qubit[𝑛2] as rev_qfunc[𝑛1,𝑛2], and bit[𝑛1] → bit[𝑛2] as cfunc[𝑛1,𝑛2].

Syntactic sugar. There are also several cases of syntactic sugar in Qwerty versus Mini-Qwerty: in
Qwerty, the unary operator - is equivalent to phase(𝜋)∗, and programmers can write q instead of
q[𝑛] to imply 𝑛 = 1. Furthermore, a qubit literal q[𝑛] can be used wherever a basis can be used and
will automatically be promoted to a singleton basis literal {q[𝑛]}. Qwerty also supports writing a
predicator as 𝑒 & 𝑏 in addition to the 𝑏 & 𝑒 syntax supported by Mini-Qwerty.
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(* ... *)

let (p0 : qubit <M>,

p1 : qubit <M>) = p in

let (p0 : qubit <M>,

p1 : qubit <M>) = (H p0, H p1) in

let (p0 : qubit <M>,

p1 : qubit <M>) = (Z p0, Z p1) in

let (p0 : qubit <M>,

p1 : qubit <M>) = CZ (p0, p1) in

let (p0 : qubit <M>,

p1 : qubit <M>) = (H p0, H p1) in

(* ... *)

(a) Twist: The diffuser in Grover’s algo-
rithm [58]

# ...

q | pm[N] >> std[N]

| -('0'[N] >> -'0'[N])

| std[N] >> pm[N]

# ...

(b) Qwerty: The diffuser in Grover’s algo-
rithm written more verbosely than in Fig. 3d

Fig. 27. Side-by-side comparison of the Grover diffuser in Twist versus Qwerty to demonstrate the succinctness
afforded by the pipe | operator.

Classical functions. Mini-Qwerty focuses on code decorated with @qpu (Section 3.2.4), but as
discussed in Section 3.2.5, Qwerty also supports classical code decorated with @classical. The
type system for the @classical DSL is straightforward, guaranteeing that e.g. binary bitwise
operations are performed on bitvectors with the same dimension. In the Qwerty @qpu DSL, a
classical function f can be instantiated using f.xor_embed, f.phase, or f.inplace(f_inv) as
Section 3.2.5 describes. This means Qwerty extends Mini-Qwerty with more type rules in the spirit
of the following:

Γ ⊢0 𝑓 : bit[𝑛1] → bit[𝑛2]

Γ ⊢0 𝑓 .xor_embed(𝑒) : qubit[𝑛1 + 𝑛2]
rev−−→ qubit[𝑛1 + 𝑛2]

TxorEmbed

Qwerty type checking. When type-checking the body of a Qwerty @qpu kernel, the type context
Γ is initialized with the types of captures and arguments, and the resulting type of the expression
should match the result type defined by the function signature. Type checking fails when a @qpu
kernel calls a non-reversible function yet is decorated with @reversible to indicate its type is
𝜏1

rev−−→ 𝜏2 (e.g., line 4 of Fig. 18 in Section 4.3.2). Note that while naïvely implementing basis-related
checks based on definitions in Fig. 25 could cause type checking to take time exponential in the
number of qubits, the Qwerty compiler uses straightforward optimizations to prevent this.

Semantic differences. In Qwerty, phase(𝜃 )∗ can be applied to functions (e.g., phase(𝜃 ) ∗ id),
whereas phase(𝜃 )∗ can only be applied to qubits in Mini-Qwerty (e.g., phase(𝜃 ) ∗ 0[1]). More
significantly, the Ediscard rule in Fig. 26 describes the intent of discard faithfully in abandoning
its qubit operand, but in a realistic, efficient implementation, reusing discarded qubits is crucial.
There are two situations where a programmer would discard a qubit: (1) at the end of an algorithm
when the measurement result of a dirty qubit is unneeded, as seen in many of the examples in
Section 4; and (2) returning a clean (|0⟩) qubit to the pool of ancilla qubits maintained by the
quantum runtime. In Qwerty, the discard built-in function handles case (1) and resets a qubit to
|0⟩ using measurement; the discardz built-in handles case (2) and returns the qubit to the ancilla
pool without measurement.
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