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Hypotheses regarding Baxter’s T −Q relation for the periodic XYZ chain
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Baxter’s T − Q relation for the periodic spin- 1
2
XYZ chain is studied. We extensively perform

numerical calculations for the T − Q relation and the Bethe ansatz equations. Numerical based
hypotheses are then proposed to answer some open questions regarding Baxter’s T −Q relation and
the XYZ chain.

I. INTRODUCTION

The spin- 12 XYZ chain is a typical integrable model in statistical mechanics, condensed matter physics and quantum
information [1, 2]. It represents the most general form of the one-dimensional Heisenberg chain, where the exchange
coefficients along the x, y and z directions are distinct. The XYZ model exhibits rich behavior due to the variation in
exchange interactions along different axes. In the XYZ chain, the total magnetization

∑
j σ

z
j is no longer conserved,

implying significant difficulties in the study of this model.
Since Baxter’s groundbreaking work on the integrability of the XYZ chain, numerous analytic approaches have been

proposed for studying various aspects of the XYZ model, including the exact spectrum [1], the eigenvector [3–7], the
ground state, and the excited states [8, 9]. The typical methods include the T −Q relation [1, 10–13], the generalized
coordinate Bethe ansatz [3–5, 14], the generalized algebraic Bethe ansatz [6, 15–17], the thermodynamic Bethe ansatz
[18–20], and the off-diagonal Bethe ansatz [21–23].
In this communication, we study the generic periodic spin- 12 XYZ chain with an even site number (denoted by N).

The spectrum problem of this model was first solved by Baxter [1]. Although the XYZ does not have U(1) symmetry,
the eigenvalue of the quantum transfer matrix can still be parameterized by a homogeneous T − Q relation where
the number of Bethe roots is fixed to N/2. However, there are still some open questions. First, the Bethe vector
of XYZ chain contains infinite series [15, 17], and its convergence is problematic. Moreover, there exist a parameter
β in the T − Q relation and the corresponding Bethe vector, and deriving it value is always challenging. Another
fact is that researchers often focus on the Hermitian case, and the corresponding result may not be applicable to the
non-Hermitian scenario.
We extensively do numerical calculations across a range of XYZ models, exploring both the Hermitian and non-

Hermitian cases. Based on the numerical results, we propose some hypotheses, including the value of the parameter
β, the completeness of Baxter’s T − Q relation and the Bethe ansatz equations (BAEs), the existence of singular
Bethe ansatz solution, the triangular limit of the XYZ model, the phantom string structure in the XXZ chain. The
approach in our paper, i.e, proposing hypotheses based on convincing and enlightening numerical results, is common
in theoretical physics, particularly when exact analytical solutions are difficult to obtain. Our results will be helpful
to guide further theoretical and experimental investigations for the XYZ chain.
The paper is organized as follows. In Section II, we provide an introduction to the periodic spin- 12 XYZ chain and

establish the notation used throughout the paper. Section III is dedicated to demonstrating the integrability of the
XYZ chain and presenting Baxter’s T −Q relation. In Section IV, we put forth some hypotheses concerning Baxter’s
T −Q relation. We delve into the XXZ limit (or trigonometric limit) and put forward another hypotheses in Section
V.

II. PERIODIC XYZ CHAIN

The Hamiltonian of the periodic spin- 12 XYZ chain is

H =
N∑

n=1

(
Jx σ

x
nσ

x
n+1 + Jy σ

y
nσ

y
n+1 + Jz σ

z
nσ

z
n+1

)
. (1)

Here, N represents the length of the system and is assumed to be an even number, σx, σy, σz are the Pauli matrices
and the periodic boundary condition implies ~σN+1 ≡ ~σ1. The exchange coefficients {Jx, Jy, Jz} are parameterized
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by the crossing parameter η [21, 24]

Jx =
θ4(η)

θ4(0)
, Jy =

θ3(η)

θ3(0)
, Jz =

θ2(η)

θ2(0)
, (2)

where θα(u) ≡ ϑα(πu, e
iπτ ), α = 1, 2, 3, 4 are elliptic theta functions and τ is a complex number with a positive

imaginary part. We adopt the notations of elliptic theta functions ϑα(u, q) as introduced in Ref. [25]

ϑ1(u, q) = 2

∞∑

n=0

(−1)nq(n+
1

2
)2 sin[(2n+ 1)u],

ϑ2(u, q) = 2

∞∑

n=0

q(n+
1

2
)2 cos[(2n+ 1)u],

ϑ3(u, q) = 1 + 2
∞∑

n=1

qn
2

cos(2nu),

ϑ4(u, q) = 1 + 2

∞∑

n=1

(−1)nqn
2

cos(2nu).

(3)

In this paper, we will consider a generic XYZ model, where η is not a root of unity, as follows

η 6=
2K + 2Lτ

P
, P,K,L ∈ Z. (4)

Remark. When τ is purely imaginary and η is either real or purely imaginary, the Hamiltonian in (1) is Hermitian.
In the following text, we will consider some non-Hermitian cases with generic complex τ and η to validate the accuracy
of our numerical results.

III. INTEGRABILITY & BAXTER’S T −Q RELATION

The R-matrix of the XYZ model is [1]

R(u) =




α1(u) 0 0 α4(u)
0 α2(u) α3(u) 0
0 α3(u) α2(u) 0

α4(u) 0 0 α1(u)


 , (5)

where u is the spectral parameter and the non-zero entries in R(u) are

α1(u) =
θ̃4(u)θ̃1(u + η)

θ̃4(0)θ̃1(η)
, α2(u) =

θ̃1(u)θ̃4(u+ η)

θ̃4(0)θ̃1(η)
, (6)

α3(u) =
θ̃4(u)θ̃4(u + η)

θ̃4(0)θ̃4(η)
, α4(u) =

θ̃1(u)θ̃1(u+ η)

θ̃4(0)θ̃4(η)
. (7)

Here, θ̃α(u) ≡ ϑα(πu, e
2iπτ ), α = 1, 2, 3, 4.

The R-matrix in Eq. (5) satisfies the Yang-Baxter equation (YBE)

R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3) = R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2). (8)

Introduce the quantum transfer matrix of the periodic XYZ chain

t(u) = tr0{T0(u)}, T0(u) = R0,N (u) · · ·R0,1(u). (9)

The Hamiltonian is obtained in terms of the transfer matrix t(u) as

H = 2
θ1(η)

θ′1(0)

∂ ln t(u)

∂u

∣∣∣∣
u=0

−N
θ′1(η)

θ′1(0)
. (10)
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The eigenvalue of t(u), denoted by Λ(u), can be parameterized by Baxter’s homogeneous T −Q relation [1]

Λ(u) = eβγ
θN1 (u+ η)

θN1 (η)

Q(u− η)

Q(u)
+ e−βγ θN1 (u)

θN1 (η)

Q(u+ η)

Q(u)
, γ = iπη, (11)

Q(u) =
M∏

j=1

θ1(u− λj +
η
2 ), M = N

2 . (12)

To ensure that Λ(u) is an entire function of u, we get the following associated BAEs

e2βγ θN1 (λj +
η
2 )

M∏

k 6=j

θ1(λj − λk − η) = θN1 (λj −
η
2 )

M∏

k 6=j

θ1(λj − λk + η), (13)

or e2βγ
[
θ1(λj +

η
2 )

θ1(λj −
η
2 )

]N M∏

k 6=j

θ1(λj − λk − η)

θ1(λj − λk + η)
= 1, j = 1, 2, . . . ,M, M = N

2 . (14)

The valid Bethe roots should satisfy an additional sum rule [1, 12]

2

M∑

j=1

λj = k + pτ, k, p ∈ Z. (15)

The energy of the system in terms of Bethe roots is

E(λ1, . . . , λM ) = 2

M∑

j=1

[g(λj −
η
2 )− g(λj +

η
2 )] +Ng(η), g(u) =

θ1(η)θ
′
1(u)

θ′1(0)θ1(u)
. (16)

The Bethe vector of the XYZ model can be constructed as an infinite series using the generalized algebraic Bethe
ansatz method [6, 15]

|Ψβ(λ1, . . . , λM )〉 =

∞∑

l=−∞

e−lγβ Bl−1,l+1(λ1 −
η
2 ) · · · Bl−M,l+M (λM − η

2 ) |Ω
l−M 〉 , (17)

where Bl−1,l+1(λ1 −
η
2 ) is a non-diagonal element of the gauge-transformed monodromy matrix and |Ωl〉 represents a

l-dependent factorized reference vector. More details regarding the construction of the Bethe vector can be located
in Refs. [17, 26].
We solve the BAEs for various system parameters numerically. Once the Bethe roots are obtained, they can be

substituted into the T − Q relation (11) and the energy formula (16). We compare the results with those obtained
from exact diagonalization techniques. This helps us validate our numerical solutions of the BAEs. Based on the
convincing and enlightening numerical results, we present several interesting hypotheses in Sections IV and V..

Remark. It can be verified that {λ1, . . . , λM , β}, {λ1+1, . . . , λM , β} and {λ1+ τ, . . . , λM , β+2} represent equivalent
solutions. When λj → λj+τ , it can be proven that β → β+2, p → p+2. Therefore, there exists a direct correspondence
between the parameters β and p.

IV. HYPOTHESES FOR BAXTER’S T −Q RELATION

Hypothesis 1. For generic periodic XYZ chain, the parameter β in BAE (14) is equal to the integer p in the sum
rule (15). Therefore, we can rewrite the sum rule (15) as

sin




2

M∑

j=1

λj − βτ


 π


 = 0. (18)

The numerical results of small-size systems presented in Tables 1, 2, 3, 4.a, and 4.b provide compelling evidence
supporting the aforementioned hypothesis. Another argument is the analytic result forN = 2 case, where the solutions
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of BAE are [17]

λ1 = 0,
1

2
, β = 0,

λ1 =
τ

2
,
1

2
+

τ

2
, β = 1. (19)

The hypothesis in 1 also implies that the Bethe vector in Eq. (17) should converge when the Bethe roots
{λ1, . . . , λM} satisfy the BAEs and β equals p.

Remark. The M +1 unknowns {λ1, . . . , λM , β} are now completely determined by a set of M +1 equations, encom-
passing both the BAEs (13) and the additional sum rule (18).

λ1 λ2 β E

0.0877i −0.0877i 0 −7.8613

0 τ

2
1 −6.4147

0 1

2
+ τ

2
1 −2.6983

0 1

2
0 −2.0665

−0.1093i 1

2
+0.1093i 0 0.0000

0.1093i 1

2
−0.1093i 0 0.0000

0.1180i 1

2
+0.1820i 1 0.0000

−0.1180i 1

2
−0.1820i −1 0.0000

0.8505− τ

4
0.1495− τ

4
−1 0.0000

0.8505+ τ

4
0.1495+ τ

4
1 0.0000

η

2
−

η

2
0 0.0000

0.8229+ τ

2
0.1771+ τ

2
2 1.4107

τ

2

1

2
+ τ

2
2 2.0665

1

2

τ

2
1 2.6983

1

2

1

2
+ τ

2
1 6.4147

1

2
−0.1391i 1

2
+0.1391i 0 6.4506

λ1 λ2 β E

0.0876 0.9124 0 −9.2437

0 1

2
0 −6.8499

0 1

2
+ τ

2
1 −6.5659

1

2

1

2
+ τ

2
1 −0.4967

1

2
−0.1503i 1

2
+0.1503i 0 −0.4962

0.7500+0.1751i 0.7500−0.1751i 0 0.0000

0.2500+0.1751i 0.2500−0.1751i 0 0.0000

0.2735 0.2265+ τ

2
1 0.0000

0.7265 0.7735+ τ

2
1 0.0000

0.0840 0.9160+ τ

2
1 0.0000

0.9160 0.0840+ τ

2
1 0.0000

η

2
−

η

2
0 0.0000

0 τ

2
1 0.4967

1

2

τ

2
1 6.5659

τ

2

1

2
+ τ

2
2 6.8499

0.9194+ τ

2
0.0806+ τ

2
2 9.7400

Tab. 1. Left: Numerical solutions of BAEs (14) with N = 4, τ = 0.6i, η = π

10
. Right: Numerical solutions of BAEs (14) with

N = 4, τ = 0.6i η = iπ

10
.

Hypothesis 2. Baxter’s T −Q relation (11) and the corresponding BAEs (13) can give the complete spectrum of the
Hamiltonian H and the transfer matrix t(u). When N ≥ 4, the BAEs in (13) have singular physical solutions with
two Bethe roots forming a bound pair [12]

λ1 =
η

2
, λ2 = −

η

2
. (20)

The other Bethe roots {ν1, . . . , νM−2} ≡ {λ3, . . . , λM} satisfy the following BAEs

e2βγ
[
θ1(νj +

η
2 )

θ1(νj −
η
2 )

]N−1
θ1(νj −

3η
2 )

θ1(νj +
3η
2 )

M−2∏

k 6=j

θ1(νj − νk − η)

θ1(νj − νk + η)
= 1, j = 1, 2, . . . ,M − 2. (21)

sin







2

M−2∑

j=1

νj − βτ



 π



 = 0. (22)

By substituting the above proposed singular solutions into Eq. (13), one can readily demonstrate that they satisfy
the BAEs (13). The T −Q relation corresponding to these singular solutions thus has another deformed form

Λ(u) = eβγ
θN−1
1 (u + η)θ1(u − η)

θN1 (η)

M−2∏

j=1

θ1(u− νj −
η
2 )

θ1(u− νj +
η
2 )

+ e−βγ θ
N−1
1 (u)θ1(u+ 2η)

θN1 (η)

M−2∏

j=1

θ1(u − νj +
3η
2 )

θ1(u− νj +
η
2 )

. (23)



5

λ1 λ2 β E

0.9081+0.0942i 0.0919−0.0942i 0 −5.4687+4.7280i

0 1

2
+ τ

2
1 −4.4309+4.6335i

0 1

2
0 −2.9677+5.0873i

0 τ

2
1 −0.7807−4.5312i

0.4822−0.3074i 0.0178+0.3074i 0 0.0000

0.5178+0.3074i 0.9822−0.3074i 0 0.0000

0.3003+0.2579i 0.8997+0.0421i 1 0.0000

0.6997−0.2579i 0.1003−0.0421i −1 0.0000

0.6382+0.0369i 0.0618+0.2631i 1 0.0000

0.3618−0.0369i 0.9382−0.2631i −1 0.0000
η

2
−

η

2
0 0.0000

1

2

1

2
+ τ

2
1 0.7807+4.5312i

0.5885+0.1360i 0.4115−0.1360i 0 0.8989+4.5545i
τ

2

1

2
+ τ

2
2 2.9677−5.0873i

1

2

τ

2
1 4.4309−4.6335i

0.8829−0.3103i 0.1171+0.3103i 0 4.5698−9.2825i

Tab. 2. Numerical solutions of BAEs (14) with N = 4, τ = 0.4 + 0.6i, η = 1

e
+ iπ

10
.

A bound pair λ1 = −λ2 = η
2 contributes −4g(η) to the energy. With this contribution in mind, the energy can then

be expressed as a function of the remaining Bethe roots {ν1, . . . , νM−2} as follows

E(ν1, . . . , νM−2) = 2

M−2∑

j=1

[g(νj −
η
2 )− g(νj +

η
2 )] + (N − 4)g(η). (24)

Remark. When we substitute the singular solutions into Eq. (17), the Bethe vector becomes zero. To address this
issue, we must rescale the Bethe vector to eliminate the problematic overall factor.
For N = 2M = 4, 6, 8, the total number of the singular solution is 1, 4, 11 respectively. Such singular solutions also

exist in the periodic XXX and XXZ chains [27, 28].

V. XXZ LIMITS

In this section, we will demonstrate how the exact solution of the XXZ chain can be retrieved by taking the limit
τ → +i∞ of the XYZ model.
In the limit τ → +i∞, the XYZ model degenerates into XXZ model with

Jx,y → 1, Jz → cosh γ, (25)

and the R-matrix becomes the trigonometric one

R(u) =




sinh(u+γ)
sinhγ 0 0 0

0 sinhu
sinh γ 1 0

0 1 sinhu
sinh γ 0

0 0 0 sinh(u+γ)
sinh γ




. (26)

The T −Q relation in (11) thus reduces into

Λ̃(u) = eβγ
sinhN (u+ γ)

sinhN γ

Q̃(u− γ)

Q̃(u)
+ e−βγ sinhN u

sinhN γ

Q̃(u+ γ)

Q̃(u)
, (27)

Q̃(u) =
M∏

j=1

sinh(u− µj +
γ
2 ). (28)
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λ1 λ2 λ3 β E

0 −0.0991i 0.0991i 0 −10.3014
τ

2
−0.0383i 0.0383i 1 −8.0739

1

2
+ τ

2
0.0382i −0.0382i 1 −8.0306

1

2
0.0357i −0.0357i 0 −7.2138

η

2
−

η

2
0 0 −5.4956

0.0175i 0.1183i 1

2
−0.1358i 0 −4.7721

−0.0175i −0.1183i 1

2
+0.1358i 0 −4.7721

0.1462i 1

2
+0.7299i 0.0239i 1 −4.6690

−0.1462i 1

2
−0.7299i −0.0239i −1 −4.6690

−0.7263i −0.1495i −0.0242i −1 −4.6653

0.7263i 0.1495i 0.0242i 1 −4.6653

−0.0453i 0.1593i 0.7859i 1 −3.7781

0.0453i −0.1593i −0.7859i −1 −3.7781

0.1568i 1

2
+0.7886i −0.0453i 1 −3.7684

−0.1568i 1

2
−0.7886i 0.0453i −1 −3.7684

0.0464i −0.1291i 1

2
+0.0827i 0 −3.4956

−0.0464i 0.1291i 1

2
−0.0827i 0 −3.4956

0 0.2462+ τ

2
0.7538+ τ

2
2 −2.5054

0 τ

2

1

2
+ τ

2
2 −2.5048

0.1085i 0.8844−0.0542i 0.1156−0.0542i 0 −1.8716

−0.1085i 0.8844+0.0542i 0.1156+0.0542i 0 −1.8716

0 1

2

τ

2
1 −1.5201

0 1

2

1

2
+ τ

2
1 −1.4707

0 1

2
−0.2036i 1

2
+0.2036i 0 −1.1901

−0.0710i 0.2464−0.8645i 0.7536−0.8645i −2 −0.5051

0.0710i 0.2464+0.8645i 0.7536+0.8645i 2 −0.5051

−0.8647i 1

2
−0.8643i −0.0710i −2 −0.5048

0.8647i 1

2
+0.8643i 0.0710i 2 −0.5048

−0.0638i 1

2
+0.0375i −0.8738i −1 0.1682

0.0638i 1

2
−0.0375i 0.8738i 1 0.1682

0.0636i 1

2
+0.8737i 1

2
−0.0372i 1 0.2108

−0.0636i 1

2
−0.8737i 1

2
+0.0372i −1 0.2108

λ1 λ2 λ3 β E
1

2
−0.1436i 0.1436i 0 0.3661

1

2
+ τ

2
0.1678i −0.1678i 1 0.4154

τ

2
0.1691i −0.1691i 1 0.4170

0.0628i 1

2
−0.2291i 1

2
+0.1663i 0 0.5051

−0.0628i 1

2
+0.2291i 1

2
−0.1663i 0 0.5051

η

2
−

η

2

τ

2
1 1.4707

η

2
−

η

2

1

2
+ τ

2
1 1.5201

η

2
−

η

2

1

2
0 2.5048

1

2
−0.1907i 0.1162+0.0954i 0.8838+0.0954i 0 2.7721

1

2
+0.1907i 0.1162−0.0954i 0.8838−0.0954i 0 2.7721

1

2
+0.5844i 0.8773+0.1578i 0.1227+0.1578i 1 2.9806

1

2
−0.5844i 0.8773−0.1578i 0.1227−0.1578i −1 2.9806

−0.5624i 0.8734−0.1688i 0.1266−0.1688i −1 2.9837

0.5624i 0.8734+0.1688i 0.1266+0.1688i 1 2.9837

0 0.7672 0.2328 0 3.0057

0.2512i 0.7499+0.7744i 0.2501+0.7744i 2 3.4955

−0.2512i 0.7499−0.7744i 0.2501−0.7744i −2 3.4955

−0.2514i 1

2
−0.7765i −0.7721i −2 3.4956

0.2514i 1

2
+0.7765i 0.7721i 2 3.4956

−0.7855i 1

2
+0.0786i −0.1931i −1 3.7684

0.7855i 1

2
−0.0786i 0.1931i 1 3.7684

0.1895i 1

2
+0.7889i 1

2
−0.0784i 1 3.7781

−0.1895i 1

2
−0.7889i 1

2
+0.0784i −1 3.7781

−0.1672i 1

2
−0.0910i 1

2
+0.2582i 0 3.8717

0.1672i 1

2
+0.0910i 1

2
−0.2582i 0 3.8717

τ

2
0.6683+ τ

2
0.3317+ τ

2
3 4.4862

1

2
+ τ

2
0.8349+ τ

2
0.1651+ τ

2
3 4.4862

1

2
0.7562+ τ

2
0.2438+ τ

2
2 5.4942

1

2

τ

2

1

2
+ τ

2
2 5.4956

τ

2

1

2
+0.1363i 1

2
−0.1363i 1 6.1122

1

2
+ τ

2

1

2
+0.1347i 1

2
−0.1347i 1 6.1692

1

2

1

2
−0.2977i 1

2
+0.2977i 0 6.3631

Tab. 3. Numerical solutions of BAEs (14) with N = 6, τ = 1.8i, η = π

5e
.

The corresponding BAEs are

e2βγ
[
sinh(µj +

γ
2 )

sinh(µj −
γ
2 )

]N M∏

k 6=j

sinh(µj − µk − γ)

sinh(µj − µk + γ)
= 1, j = 1, . . . ,M. (29)

One can readily prove that the Bethe roots {λ1, . . . , λM} for the XYZ model and {µ1, . . . , µM} for the XXZ model
have the following one-to-one correspondence

lim
τ→+i∞

iπλj = µj , j = 1, . . . ,M. (30)

To understand how the XYZ model behaves as it approaches the XXZ limit, we first analyze the exact solution of
XYZ chain in the regime of large Im[τ ]. For convenience, we let all the Bethe roots lie within the rectangle

ǫ ≤ Re[λj ] < ǫ+ 1, −
Im[τ ]

2
+ ǫ′ ≤ Im[λj ] <

Im[τ ]

2
+ ǫ′, ǫ, ǫ′ ∈ R

where ǫ, ǫ′ are finite. From the numerical results illustrated in Tables 3 5 6, we observe that when Im[τ ] is large, in
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λ1 λ2 λ3 β E

0 0.1325−0.1429i 0.8675+0.1429i 0 −7.7107+6.8714i
1

2
+ τ

2
0.0546−0.0648i 0.9454+0.0648i 1 −7.2495+6.8431i

0.0581−0.0727i 0.9419+0.0727i 1

2
0 −5.5796+7.1659i

η

2
−

η

2
0 0 −4.0896+2.5948i

0.1418−0.1307i 0.6461−0.2161i 0.0121+0.0468i −1 −3.3265+4.4067i

0.8582+0.1307i 0.3539+0.2161i 0.9879−0.0468i 1 −3.3265+4.4067i

0 1

2

1

2
+ τ

2
1 −3.3089+7.1260i

0 0.5765+0.1293i 0.4235−0.1293i 0 −3.0088+7.1181i

0.4203+0.2320i 0.9328+0.0421i 0.5469+0.3259i 2 −2.9472+4.5576i

0.5797−0.2320i 0.0672−0.0421i 0.4531−0.3259i −2 −2.9472+4.5576i

0.0469+0.2719i 0.0059+0.0835i 0.6473−0.0554i 1 −2.8377+2.7624i

0.9531−0.2719i 0.9941−0.0835i 0.3527+0.0554i −1 −2.8377+2.7624i

0.6154+0.0470i 0.0695−0.0430i 0.0151+0.2960i 1 −2.6441+4.4197i

0.3846−0.0470i 0.9305+0.0430i 0.9849−0.2960i −1 −2.6441+4.4197i

0.9427−0.0919i 0.2411−0.1397i 0.3162+0.2316i 0 −2.5808+2.9434i

0.0573+0.0919i 0.7589+0.1397i 0.6838−0.2316i 0 −2.5808+2.9434i

0.1366−0.1023i 0.7274−0.2791i 0.9361+0.0814i −1 −2.3161+0.1055i

0.8634+0.1023i 0.2726+0.2791i 0.0639−0.0814i 1 −2.3161+0.1055i
τ

2
0.1077−0.0741i 0.8923+0.0741i 1 −2.1256−1.5823i

0.1656+0.0067i 0.8344−0.0067i τ

2
1 −1.9583+2.7888i

0.0336−0.1977i 0.4020−0.0552i 0.5644+0.2529i 0 −1.4460+4.6528i

0.9664+0.1977i 0.5980+0.0552i 0.4356−0.2529i 0 −1.4460+4.6528i

0.0171−0.1951i 0.4708+0.0810i 0.3121−0.1858i −1 −1.4378+4.6199i

0.9829+0.1951i 0.5292−0.0810i 0.6879+0.1858i 1 −1.4378+4.6199i

0.1034+0.2082i 0.7361−0.1064i 0.1605−0.1018i 0 −1.3950+3.4037i

0.8966−0.2082i 0.2639+0.1064i 0.8395+0.1018i 0 −1.3950+3.4037i

0.0530+0.0037i 0.7231−0.2704i 0.7239+0.2667i 0 −1.2051+0.5145i

0.9470−0.0037i 0.2769+0.2704i 0.2761−0.2667i 0 −1.2051+0.5145i

0 τ

2

1

2
+ τ

2
2 −1.1220−2.4925i

η

2
−

η

2

1

2
+ τ

2
1 −0.3412+2.0387i

0.5969−0.3263i 0.4031+0.3263i 1

2
0 −0.1009+0.8699i

1

2
+ τ

2
0.0050−0.3047i 0.5950−0.2953i −1 −0.0627+0.8090i

Tab. 4.a. Numerical solutions of BAEs (14) with N = 6, τ = 0.4 + 0.6i, η = 1

e
+ iπ

10
.

some solutions, part of the Bethe roots form a “quasi-string” as follows

{λl1 , . . . , λlm} ≈

{
±
τ

2
+ κ,±

τ

2
+ κ+

1

m
, . . . ,±

τ

2
+ κ+

m− 1

m

}
, κ ∈ C,

2
∑

k/∈{l1,...,lm}

λj + 2mκ = m′, m′ ∈ Z. (31)

Therefore, using Eq. (30), it can be deduced that the Bethe roots {µ1, . . . , µM} will divide into two distinct cate-
gories: the regular (finite) ones {u1, . . . , uM−m} and the phantom (infinite) ones [14, 29] {v1, . . . , vm} or {v′1, . . . , v

′
m}

where Re[vj ] = +∞, Re[v′j ] = −∞. The existence of phantom Bethe roots plays a crucial role in the reduction of the
XYZ chain to the XXZ chain.
The phantom Bethe roots generate an additional factor to each term in the T −Q relation (27). As a consequence,
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λ1 λ2 λ3 β E

0.9564−0.3600i 0.0436+0.3600i 0 0 0.2387+0.7843i

0 1

2

τ

2
1 0.3412−2.0387i

0.0640+0.0013i 0.7205−0.2688i 0.5154−0.0325i −1 0.3954+1.1998i

0.9360−0.0013i 0.2795+0.2688i 0.4846+0.0325i 1 0.3954+1.1998i
η

2
−

η

2

1

2
0 1.1220+2.4925i

1

2
+ τ

2
0.5518+0.0922i 0.4482−0.0922i 1 1.2769+6.7410i

0.3832−0.1908i 0.6168+0.1908i 1

2
0 1.2927+6.7368i

0.0786−0.0401i 0.2586+0.2953i 0.6628−0.2552i 0 1.4460−4.6528i

0.9214+0.0401i 0.7414−0.2953i 0.3372+0.2552i 0 1.4460−4.6528i

0.8848−0.1680i 0.6626−0.2779i 0.2526+0.1459i −1 1.4554−1.9007i

0.1152+0.1680i 0.3374+0.2779i 0.7474−0.1459i 1 1.4554−1.9007i

0.1081+0.2954i 0.3500−0.2926i 0.5419−0.0028i 0 2.2504−0.0822i

0.8919−0.2954i 0.6500+0.2926i 0.4581+0.0028i 0 2.2504−0.0822i

0 0.7545−0.2870i 0.2455+0.2870i 0 2.3015−9.5843i

0.8901−0.2940i 0.5462+0.1296i 0.3637−0.1356i −1 2.3161−0.1055i

0.1099+0.2940i 0.4538−0.1296i 0.6363+0.1356i 1 2.3161−0.1055i

0.4331+0.2763i 0.1239−0.2852i 0.7430−0.2911i −1 2.6441−4.4197i

0.5669−0.2763i 0.8761+0.2852i 0.2570+0.2911i 1 2.6441−4.4197i

0.3166−0.0393i 0.8325−0.2908i 0.9510−0.2699i −2 2.6640−5.9503i

0.6834+0.0393i 0.1675+0.2908i 0.0490+0.2699i 2 2.6640−5.9503i

0.7711−0.3016i 0.5811−0.2257i 0.9478+0.2273i −1 2.7835−6.0009i

0.2289+0.3016i 0.4189+0.2257i 0.0522−0.2273i 1 2.7835−6.0009i

0.9738−0.2679i 0.1440+0.3095i 0.3822−0.0416i 0 2.9472−4.5576i

0.0262+0.2679i 0.8560−0.3095i 0.6178+0.0416i 0 2.9472−4.5576i

0.6743−0.2666i 0.7836−0.2834i 0.1421−0.0500i −2 3.2342−5.9163i

0.3257+0.2666i 0.2164+0.2834i 0.8579+0.0500i 2 3.2342−5.9163i
η

2
−

η

2

τ

2
1 3.3089−7.1260i

1

2

τ

2

1

2
+ τ

2
2 4.0896−2.5948i

τ

2
0.5892+0.1294i 0.4108−0.1294i 1 4.2559−2.4972i

0.7525−0.2958i 0.2475+0.2958i 1

2
+ τ

2
1 5.3528−10.3157i

0.3231+0.2849i 0.6769−0.2849i τ

2
1 6.4458−12.9612i

1

2
0.2495+0.2973i 0.7505−0.2973i 0 6.6317−9.7876i

Tab. 4.b. Numerical solutions of BAEs (14) with N = 6, τ = 0.4 + 0.6i, η = 1

e
+ iπ

10
.

one can rewrite the T −Q relation (27) in terms of the finite Bethe roots as

Λ̃(u) = e(β±m)γ sinhN (u+ γ)

sinhN γ

M−m∏

j=1

sinh(u− uj −
γ
2 )

sinh(u− uj +
γ
2 )

+ e−(β±m)γ sinhN u

sinhN γ

M−m∏

j=1

sinh(u− uj +
3γ
2 )

sinh(u − uj +
γ
2 )

, m = 0, 1 . . . ,M, (32)

where +, − correspond to {vj} and {v′j} respectively.

Hypothesis 3. The total number of phantom Bethe roots, denoted by m, is related to the integer β in the T − Q
relation (27) as

β ±m = 0

where +, − correspond to {vj} and {v′j} respectively.
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Proof. As a polynomial of u, Λ̃(u) should satisfy the following asymptotic behavior

lim
u→+∞

Λ̃(u) =
eNu

(2 sinh γ)N

(
eNγ−m′γ + em

′γ
)
+ · · · , m′ = 0, 1, . . . , N. (33)

From Eq. (32), we have

lim
u→+∞

Λ̃(u) =
eNu

(2 sinh γ)N

(
e(β±m)ηe(N−M+m)γ + e−(β±m)ηe(M−m)γ

)
+ · · · . (34)

From Eqs. (33) and (34), one can prove that β ±m = 0.

The aforementioned T − Q relation (32) thus is exactly the conventional one given by the algebraic Bethe ansatz
method and the number of regular Bethe roots can range from 0 to N

2 [30]. The BAEs for the regular Bethe roots
{u1, . . . , uM−m} are

[
sinh(uj +

γ
2 )

sinh(uj −
γ
2 )

]N M−m∏

k 6=j

sinh(uj − uk − γ)

sinh(uj − uk + γ)
= 1, m = 0, . . . ,M. (35)

Hypothesis 4. The phantom Bethe roots {v1, . . . , vm} or {v′1, . . . , v
′
m} will form an equispaced string as follows:

vj = ∞+
iπj + ic

m
, v′j = −∞+

iπj + ic′

m
, j = 1, . . . ,m, c, c′ ∈ R. (36)

Proof. For phantom Bethe roots {vj} and {v′j}, the BAEs are satisfied automatically

e2(β+m)γ
m∏

k 6=j

sinh(vj − vk − γ)

sinh(vj − vk + γ)
= e2(β−m)γ

m∏

k 6=j

sinh(v′j − v′k − γ)

sinh(v′j − v′k + γ)
=

m∏

k 6=j

sinh(iπ j−k
m − γ)

sinh(iπ j−k
m + γ)

=

m−1∏

k=1

sinh( iπkm − γ)

sinh( iπkm + γ)
=

m−1∏

k=1

sinh( iπkm − γ)

sinh(iπ − iπk
m − γ)

= 1. (37)

The phantom Bethe roots do not contribute to the system’s energy, which depends solely on the regular Bethe roots
{u1, . . . , uM−m}

E(u1, . . . , uM−m) =

M−m∑

j=1

4 sinh2 γ

cosh(2uj)− cosh γ
+N cosh γ, (38)

Remark. When m = 0, the regular Bethe roots {u1, . . . , uM} need to satisfy the following sum rule

2

M∑

j=1

uj = iπl, l ∈ Z. (39)

The presence of the phantom Bethe roots leads to extra degeneracies in the spectrum of the XXZ Hamiltonian. For
more examples, see Tables 5 and 6.
We retrieve the conventional T −Q relation for the periodic XXZ in the limit τ → +i∞, however the trigonometric

limit of the Bethe vector constructed via the generalized algebraic Bethe ansatz method (17) does not coincide with the
well known Bethe vector of the XXZ model. The inconsistency arises from the degeneracy in the partial spectrum of
the transfer matrix t(u), which leads to the non-uniqueness of the corresponding eigenstate.
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λ1 λ2 β E

0.0903i −0.0903i 0 −6.8662

0 −
τ

2
−1 −4.0393

0 1

2
+ τ

2
1 −3.9613

0 1

2
0 −2.2048

−0.1208i 1

2
+0.1208i 0 0.0000

0.1208i 1

2
−0.1208i 0 0.0000

−0.1958i −
τ

2
+0.1958i −1 0.0000

0.1958i τ

2
−0.1958i 1 0.0000

1

2
+ τ

2
+0.1873i −0.1873i 1 0.0000

1−τ

2
−0.1873i 0.1873i −1 0.0000

η

2
−

η

2
0 0.0000

0.2475+ τ

2
0.7525+ τ

2
2 2.2042

−
τ

2

1

2
−

τ

2
−2 2.2048

1

2
−

τ

2
−1 3.9613

1

2

1

2
+ τ

2
1 4.0393

1

2
−0.1806i 1

2
+0.1806i 0 4.6620

µ1 µ2 β E

−0.2836 0.2836 0 −6.8657

0 ∞ −1 −4.0000

0 −∞+ iπ

2
1 −4.0000

0 iπ

2
0 −2.2049

0.3796 −0.3796+ iπ

2
0 0.0000

−0.3796 0.3796+ iπ

2
0 0.0000

0.6011 ∞ −1 0.0000

−0.6011 −∞ 1 0.0000

−∞−
iπ

2
0.6011 1 0.0000

∞+ iπ

2
−0.6011 −1 0.0000

γ

2
−

γ

2
0 0.0000

−∞+ iπ

4
−∞+ 3iπ

4
2 2.2049

∞ ∞+ iπ

2
−2 2.2049

iπ

2
∞ −1 4.0000

iπ

2
−∞+ iπ

2
1 4.0000

0.5675+ iπ

2
−0.5675+ iπ

2
0 4.6608

Tab. 5. Left: Numerical solutions of BAEs (14) with N = 4, τ = 1.8i, η = π

10
. Right: Numerical solutions of BAEs (29) with

N = 4, γ = iπ
2

10
.

λ1 λ2 β E

0.9079+0.1098i 0.0921−0.1098i 0 −6.6424+2.5971i

0 1

2
+ τ

2
1 −4.0385+0.1151i

0 −
τ

2
−1 −3.9598−0.1151i

0 1

2
0 −2.4648+4.2288i

0.4574+0.1857i 0.0426−0.1857i 0 0.0000

0.5426−0.1857i 0.9574+0.1857i 0 0.0000

−
τ

2
+0.2990+0.1119i 0.2010−0.1119i −1 0.0000

τ

2
−0.2990−0.1119i 0.7990+0.1119i 1 0.0000

−
τ

2
+0.1923−0.1081i 0.8077+0.1081i −1 0.0000

τ

2
+0.8077+0.1081i 0.1923−0.1081i 1 0.0000

η

2
−

η

2
0 0.0000

−
τ

2

1−τ

2
−2 2.4648−4.2288i

τ

2
+0.2447−0.0012i τ

2
+0.7553+0.0012i 2 2.4669−4.2324i

1

2

1

2
+ τ

2
1 3.9598+0.1151i

1

2
−

τ

2
−1 4.0385−0.1151i

0.4305−0.1932i 0.5695+0.1932i 0 4.1755+1.6352i

µ1 µ2 β E

−0.3451+2.8523i 0.3451+0.2893i 0 −6.6434+2.5956i

0 −∞+ iπ

2
1 −4.0000

0 ∞ −1 −4.0000

0 iπ

2
0 −2.4645+4.2284i

−0.5833+1.4370i 0.5833+0.1338i 0 0.0000

0.5833+1.7046i −0.5833+3.0078i 0 0.0000

∞+0.9533i 0.3457+0.6175i −1 0.0000

−∞−0.9533i −0.3457+2.5241i 1 0.0000

∞+0.6175i −0.3457+2.5241i −1 0.0000

−∞+2.5241i 0.3457+0.6175i 1 0.0000
γ

2
−

γ

2
0 0.0000

∞ ∞+ iπ

2
−2 2.4645−4.2284i

−∞+ iπ

4
−∞+ 3iπ

4
2 2.4645−4.2284i

iπ

2
−∞+ iπ

2
1 4.0000

iπ

2
∞ −1 4.0000

0.6072+1.3527i −0.6072+1.7889i 0 4.1789+1.6327i

Tab. 6. Left: Numerical solutions of BAEs (14) with N = 4, τ = 0.4 + 1.8i, η = 1

e
+ iπ

10
. Right: Numerical solutions of BAEs

(29) with N = 4, γ = iπ( 1
e
+ iπ

10
).

VI. CONCLUSION

In this paper, we study the generic spin- 12 XYZ chain under periodic boundary condition. From our numerical
data, we conclude that the parameter β in the T −Q relation (11) and the Bethe vector (17) is an integer, specifically
equal to p as indicated in the sum rule (15). Moreover, we demonstrate numerically that Baxter’s T − Q relation
(11) is complete and the corresponding BAEs (13) have some physical singular solutions, as shown in 2. Additionally,
we analyze the XXZ limit of the periodic XYZ chain. In this limit, certain Bethe roots form a phantom string, as
described in Eq. (36), and the T −Q relation becomes the conventional one for the XXZ model. Rigorous theoretical
analysis are required to substantiate our hypotheses, and this will be the objective in our forthcoming projects.
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It is noteworthy that under the following root of unity condition

Pη = 2K + 2Lτ, K,L ∈ Z, P ∈ N
+, (40)

the Bethe vector in (17) only contains P terms. The scalar product of the XYZ chain (with even N) at the root of
unity (40), which is independent on the integer P , has been thoroughly discussed in Ref. [17]. Since the generic case
can be seen as a limiting scenario with P → ∞, we suspect that the scalar product formulas still hold when η is not
a root of unity, provided that the Bethe roots and the parameter β satisfy the BAEs(13) and the sum rule (18).
When there exist another integer M0 ∈ [0, N ] which satisfies

(N − 2M0)η = 2K1 + 2L1τ, K1, L1 ∈ Z, M0 6= N
2 , (41)

a homogeneous T −Q relation with M0 Bethe roots exists and the generalized algebraic Bethe ansatz method remains
applicable, regardless of whether the total site number is odd or even. Under the condition (41), the hypotheses
presented in this paper might not hold validity. A straightforward argument is that the sum rule shown in (15) does
not exist when M0 6= N

2 [14].
For the generic periodic XYZ chain with odd site number, the exact spectrum of the transfer matrix t(u) can be

given by an inhomogenous T −Q relation [20, 21, 23]. However, constructing the corresponding Bethe vector remains
an unresolved open question within the field.
Another interesting issue is proposing a fast numerical method to solve the elliptic type BAEs (13). The corre-

spondence between the XYZ model and the XXZ model, as discussed in Section V, indeed makes it more practical to
solve the BAEs once we have the exact solution of the periodic XXZ model.
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