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SOME PROPERTIES OF RELATIVE ROTA–BAXTER OPERATORS
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Abstract. We find connection between relative Rota–Baxter operators and usual
Rota–Baxter operators. We prove that any relative Rota–Baxter operator on a group
H with respect to (G,Ψ) defines a Rota–Baxter operator on the semi-direct product
H ⋊Ψ G. On the other side, we give condition under which a Rota–Baxter operator on
the semi-direct product H ⋊Ψ G defines a relative Rota–Baxter operator on H with
respect to (G,Ψ). We introduce homomorphic post-groups and find their connection
with λ-homomorphic skew left braces. Further, we construct post-group on arbitrary
group and a family post-groups which depends on integer parameter on any two-step
nilpotent group. We find all verbal solutions of the quantum Yang-Baxter equation on
two-step nilpotent group.
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1. Introduction

Rota–Baxter operators on groups were introduced in 2021 by L. Guo, H. Lang,
Y. Sheng [4], a group with a Rota–Baxter operator is called a Rota–Baxter group (RB-
group). Properties of RB-groups are actively studied in [5]. Connection between RB-
groups, the Yang–Baxter equation and skew braces was found in [6]. The concept of
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braces was introduced by Rump [12] in 2007 in connection with non-degenerate involu-
tive set theoretic solutions of the quantum Yang–Baxter equation. The concept of skew
braces was introduced by Guarnieri and Vendramin [3] in 2017 in connection with non-
involutive non-degenerate set theoretic solutions of the quantum Yang–Baxter equation.
In [10] the Rota–Baxter operator was defined in cocommutative Hopf algebras. Important
example of such algebras give group rings k[G] of group G over a field k.

In [9] relative Rota–Baxter operators (RRB-operators) and relative Rota–Baxter groups
(RRB-groups) were defined. In this case, the relative Rota–Baxter operator depends not
only on the group, but also on the group of its automorphisms. In the case when this
group of automorphisms is a group of inner automorphisms, we obtain the Rota–Baxter
operator. Some properties of relative Rota–Baxter operators are studied in [11]. Relative
Rota–Baxter operators on an arbitrary Hopf algebra were defined in [7]. In [8] Rota–
Baxter and averaging operators on racks and rack algebras were introduced.

In the present paper we prove some properties of relative Rota–Baxter operators on
groups. In particular, we are studying connections between relative Rota–Baxter opera-
tors and usual Rota–Baxter operators.

The paper is structured as follows. The next section is devoted to review some facts
about skew braces, λ-maps, post-groups, Rota–Baxter operators, relative Rot–Baxter
operators, and some connections between them.

In Section 3 we find connection between relative Rota–Baxter operators and usual
Rota–Baxter operators. We prove (see Proposition 3.1) that any relative Rota–Baxter
operator on a group H with respect to (G,Ψ) defines a Rota–Baxter operator on the
semi-direct product H ⋊Ψ G. On the another side, Theorem 3.2 gives condition under
which a Rota–Baxter operator on the semi-direct product H⋊ΨG defines a relative Rota–
Baxter operator on H with respect to (G,Ψ). An example shows that the construction of
this theorem can map different Rota–Baxter operators to the same relative Rota–Baxter
operator. Further, we introduce relative Rota–Baxter operator of weight −1 and find (see
Proposition 3.6) connection between relative Rota–Baxter operators of weight 1 and −1.
Corollary 3.7 gives a way to construct new RRB-operators from known RRB-operators.

It is known that if we have a RB-group or a RRB-group (G,B), then we can construct
a skew left brace (G, ·, ◦B). In Section 4 we give example (Example 4.3) which shows
that using RRB-operator B : Z4 → Z2 × Z2, it is possible to construct a non-trivial left
brace (Z4,+, ◦B), where (Z4,+) ∼= Z4 and (Z4, ◦B) ∼= Z2 × Z2. On the other side, any
Rota-Baxter left brace on Z4 is trivial. But Theorem 4.4 shows that we can not take a
prime number p > 2 instead 2. In this case any RRB-operator B : Zp2 → Zp × Zp is a
homomorphism and any relative Rota–Baxter left brace on Zp2 is trivial.

In Section 5 we introduce homomorphic post-groups and find (see Proposition 5.2)
their connection with λ-homomorphic skew left braces. Further, we construct post-group
on arbitrary group and a family of post-groups on any two-step nilpotent group which
depends on an integer parameter. By these post-groups we can construct skew left braces.
We show that new operation in these skew left braces defines a two-step nilpotent group,
which can be non isomorphic to the initial two-step nilpotent group. Moreover, it will be



SOME PROPERTIES OF RELATIVE ROTA–BAXTER OPERATORS ON GROUPS 3

proved (in Proposition 5.5) that any skew left brace constructed above is a λ-homomorphic
skew left brace.

As we have already mentioned above, any skew left braces gives a non-involutive non-
degenerate set theoretic solutions of the quantum Yang-Baxter equation (YBE) [3]. In
Theorem 5.13 we find all verbal solutions of the quantum Yang-Baxter equation on two-
step nilpotent group.

2. Preliminary results

Let (G, ·) and (G, ◦) be groups on a same set G. The triple (G, ·, ◦) is said to be a skew
left brace if

a ◦ (b · c) = (a ◦ b) · a−1 · (a ◦ c),

where a−1 is the inverse of a with respect to the operation ·. To get a skew right brace we
can take another axiom,

(b · c) ◦ a = (b ◦ a) · a−1 · (c ◦ a).

A skew left brace which is also a skew right brace is said to be a skew two-sided brace. If
(G, ·, ◦) is a skew left brace, then the map λ : (G, ◦) → Aut(G, ·), where

λa(b) = a−1 · (a ◦ b),

is called the λ-map of (G, ·, ◦). Here we denoted λa = λ(a) the image of the element a ∈ G.
A map of skew left braces ϕ : G → H is called a homomorphism of skew left braces if

ϕ(a · b) = ϕ(a) · ϕ(b) and ϕ(a ◦ b) = ϕ(a) ◦ ϕ(b).
The next definition was introduced in [1].

Definition 2.1. Let (G, ·) be a group and ⊲ : G × G → G be a binary operation on G.
The algebraic system (G, ·, ⊲) is called a post-group, if the operator L⊲a : G → G, where
L⊲a(b) = a ⊲ b, is an automorphism of the group (G, ·), and

a ⊲ (b ⊲ c) =
(

a · (a ⊲ b)
)

⊲ c.

It is easy to see that the axiom of post-group is equivalent to the statement that for
any a, b ∈ G the following holds:

L⊲aL
⊲
b = L⊲aL⊲

a(b).

Also remark that the condition that L⊲a is an automorphism of G means that

a ⊲ (b · c) = (a ⊲ b) · (a ⊲ c)

for any a, b, c ∈ G, which is left distributivity of the operation ⊲. Connection between
skew left braces and post-groups gives the following theorem.

Theorem 2.2 [1]. 1) For any skew left brace (G, ·, ◦) let a ⊲ b := λa(b). Then (G, ·, ⊲) is
a post-group.

2) For any post-group (G, ·, ⊲) let a ◦ b = a · (a ⊲ b). Then (G, ·, ◦) is a skew left brace.

In [4] were defined Rota–Baxter operators of weights ±1 on a group.
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Definition 2.3 [4]. Let G be a group.

(i) A map B : G→ G is called a Rota–Baxter operator of weight 1 if

B(g)B(h) = B
(

gB(g)hB(g)−1
)

, g, h ∈ G;

(ii) a map C : G→ G is called a Rota–Baxter operator of weight −1 if

C(g)C(h) = C
(

C(g)hC(g)−1g
)

, g, h ∈ G.

A group endowed with an RB-operator is called a Rota–Baxter group (RB-group).

When we say on a Rota–Baxter operator we say on a Rota–Baxter operator of weight 1.
For two Rota–Baxter groups (G,BG) and (H,BH) a group homomorphism ϕ : G→ H

is called a homomorphism of Rota–Baxter groups, if the following diagram commutes:

G
BG

//

ϕ
��

G

ϕ
��

H
BH

// H

It has been shown in [6], that for a Rota–Baxter group (G,B) and the binary operation
◦B, defined as

(2.1) a ◦B b = aB(a)bB(a)−1,

the triple (G, ·, ◦B) is a skew left brace, which is called by RB skew left brace.

Proposition 2.4. The map from the category of Rota–Baxter groups to the category
of skew left braces, given by equation (2.1), that acts trivially on homomorphisms, is a
functor.

Proof. Let G and H be RotaBaxter groups, and ϕ : G → H a homomorphism of Rota–
Baxter groups. For any a, b ∈ G we have

ϕ(a ◦G b) = ϕ(aBG(a)bBG(a)
−1) = ϕ(a)ϕBG(a)ϕ(b)

(

ϕBG(a)
)−1

=

= ϕ(a)BH

(

ϕ(a)
)

ϕ(b)BH

(

ϕ(a)
)−1

= ϕ(a) ◦H ϕ(b).

�

The next definition can be found in [9].

Definition 2.5. Let G and H be groups, and Ψ: G → AutH is an action of G on H.

A map B : H → G is called a relative Rota–Baxter operator (RRB-operator) on H with
respect to (G,Ψ) if

B(h)B(k) = B
(

hΨB(h)(k)
)

, h, k ∈ H.

The quadruple (H,G,Ψ, B) is called a relative Rota–Baxter group.

Example 2.6. If H = G and Ψ: G→ InnG, Ψg = Ψ(g) : x 7→ gxg−1, x ∈ G, then

B(h)B(k) = B
(

hB(h)kB(h)−1
)

, h, k ∈ H,

is the usual Rota–Baxter operator on G, and (G,B) is the Rota–Baxter group.



SOME PROPERTIES OF RELATIVE ROTA–BAXTER OPERATORS ON GROUPS 5

As in the case of Rota–Baxter groups, the operation

h ◦B k = hΨB(h)(k), h, k ∈ G,

is a group operation on G (see [9, Proposition 3.5]).
The next question comes.

3. Rota–Baxter and relative Rota–Baxter operators

3.1. Relative Rota–Baxter operators and semi-direct products. Recall that a
semi-direct product H ⋊Ψ G of groups G and H under the action Ψ: G → AutH is the
set of pairs

H ×G = {(h, a) | h ∈ H, a ∈ G}

with multiplication

(h, a)(k, b) = (hΨa(k), ab), h, k ∈ H, a, b ∈ G.

The following proposition shows that any RRB-operator defines RB-operator on a semi-
direct product.

Proposition 3.1. Let (H,G,Ψ, B) be a relative Rota–Baxter group. Then the operator

B′ : H ⋊Ψ G→ H ⋊Ψ G, B
′((h, a)) = (e, a−1B(h)), h ∈ H, a ∈ G,

is a Rota–Baxter operator on the semi-direct product H ⋊Ψ G.

Proof. We need to check the equality

B′(u)B′(v) = B′
(

uB′(u) v B′(u)−1
)

, u, v ∈ H ⋊Ψ G.

If u = (h, a), v = (k, b), h, k ∈ H , a, b ∈ G, then the left hand side,

B′(u)B′(v) = B′((h, a))B′((k, b)) = (e, a−1B(h)) (e, b−1B(k)) =

=
(

Ψa−1 B(h)(e), a
−1B(h) b−1B(k)

)

=
(

e, a−1B(h) b−1B(k)
)

.

The right hand side,

B′
(

uB′(u) v B′(u)−1
)

= B′
(

(h, a)B′((h, a)) (k, b)B′((h, a))−1
)

=

= B′
(

(hΨa(e), B(h)) (kΨb(e), b B(h)−1 a)
)

= B′
(

(hΨB(h)(kΨb(e)), B(h) bB(h)−1 a)
)

= B′
(

(hΨB(h)(k), B(h) bB(h)−1 a)
)

=
(

e, a−1B(h) b−1B(h)−1B(hΨB(h)(k))
)

.

Comparing the left hand side and right hand side, we get

a−1B(h) b−1B(k) = a−1B(h) b−1B(h)−1B(hΨB(h)(k)).

Hence,

B(h)B(k) = B(hΨB(h)(k)), h, k ∈ H.

Since B is a RRB-operator on H , this equality holds. �
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We will now present a construction that allows one to build relative Rota-Baxter oper-
ators using Rota–Baxter operators on semi-direct products.

Let H ⋊Ψ G be a semi-direct product of groups H and G with respect to some left
action Ψ of G on H. Let B : H ⋊Ψ G → H ⋊Ψ G be a Rota–Baxter operator. Consider
the projections πH : H ⋊Ψ G→ H and πG : H ⋊Ψ G→ G, as well as the restriction

B|H : H → H ⋊Ψ G

of B to H. Note that πH is not necessarily a group homomorphism and the image of B|H
does not necessary lie in H .

The next theorem gives possibilities to construct RRB-operators, using RB-operators
on semi-direct products. Constructions of RB-operators on semi-direct and, in particular,
on direct products of groups can be found in [6].

Theorem 3.2. Let B : H ⋊Ψ G → H ⋊Ψ G be a Rota–Baxter operator. If the image of
the map πHB|H lies in the center of H, then the composition

πGB|H : H → G

is a relative Rota–Baxter operator with respect to (G,Ψ).

Proof. Let h, k ∈ H. Since B is a Rota-Baxter operator, we have

B(h)B(k) = B
(

hB(h)kB(h)−1
)

.

Now, express B as a product of πHB and πGB. We have
(3.1)

B(h)B(k) = πHB(h)πGB(h)πHB(k)πGB(k) = πHB(h)πHB(k)

(

πGB(h)
)

−1

·πGB(h)πGB(k)

and
(3.2)
B(hB(h)kB(h)−1) = πHB

(

hB(h)kB(h)−1
)

·πGB
(

hπHB(h)πGB(h)kπGB(h)−1πHB(h)−1
)

.

Since a semi-direct product of groups is a direct product of sets, a = b if and only if
πH(a) = πH(b) and πG(a) = πG(b). By applying this reasoning to expressions (3.1) and
(3.2), we obtain:

πGB(h)πGB(k) = πGB
(

hπHB(h)πGB(h)kπGB(h)−1πHB(h)−1
)

.

Note that πHB(h) ∈ Z(H), and that πGB(h)kπGB(h)−1 = ΨπGB(h)(k) ∈ H. We can
now simplify:

πGB
(

hπHB(h)πGB(h)kπGB(h)−1πHB(h)−1
)

= πGB
(

hΨπGB(h)(k)
)

and obtain
πGB(h)πGB(k) = πGB

(

hΨπGB(h)(k)
)

,

which shows that πGB|H is indeed a relative Rota–Baxter operator. �

We will now provide an example that shows that a Rota–Baxter operator on H ⋊Ψ G

does not necessarily commute with the projection πG : H ⋊Ψ G→ G, and thus, does not
necessarily induce a Rota–Baxter operator on G.
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Example 3.3. For the group S3 = A3⋊〈s1〉 consider the Rota–Baxter operator B : S3 →
S3, defined as

B(1) = 1, B(s1) = s1s2, B(s2) = 1,

B(s1s2) = s2s1, B(s2s1) = s1s2, B(s1s2s1) = s2s1.

Note that π〈s1〉
(

B(s1)
)

= π〈s1〉(s1s2) = 1 and B
(

π〈s1〉(s1)
)

= B(s1) = s1s2, which means
that π〈s1〉B 6= Bπ〈s1〉.

We will now provide an example, that shows, the the construction of Theorem 3.2 can
map different Rota–Baxter operators to the same relative Rota–Baxter operator.

Example 3.4. Let G and H be groups, and H be abelian. Let Ψ be an action of G on H.
Define Rota–Baxter operators B−1 and Be on H⋊G by the following way: B−1(x) = x−1,

Be(x) = e. In general, the Rota–Baxter groups, defined by these operators, are not
isomorphic, which can be checked by applying Proposition 2.4. Note that the image of
πHB−1|H lies in the center of H, because H = Z(H), and the image of πHBe|H is trivial.
At the same time,

πGB−1(h) = πG(h
−1) = e = πGBe(h),

which means that the relative Rota–Baxter operators, obtained by applying Theorem 3.2
to operators B−1 and Be, are equal.

By analogy with RB-operators of weight −1 (see Definition 2.3) we introduce RRB-
operators of weight −1.

Definition 3.5. Let G and H be groups and Ψ: G → AutH be an action of G on H.
A map C : H → G is called a relative Rota–Baxter operator of weight −1 with respect to
(G,Ψ), if

C(h) · C(k) = C
(

ΨC(h)(k) · h
)

, h, k ∈ H.

Proposition 3.6. Let G and H be groups, Ψ: G→ AutH be an action, and B : H → G

be a relative Rota–Baxter operator. Then
1) the map C, defined as C(h) = B(h−1), h ∈ H is a relative Rota–Baxter operator of

weight −1.
2) If ϕ ∈ AutH, ψ ∈ AutG, and for any g ∈ G the following equality holds:

ϕ−1Ψgϕ = Ψψ(g),

then the composition ψBϕ is a relative Rota–Baxter operator.

Proof. 1) We can check directly: for any h, k ∈ H we have

C(h)C(k) = B(h−1)B(k−1) = B
(

h−1ΨB(h−1)(k
−1)

)

=
(

(ΨC(h)(k)h)
−1
)

= C
(

ΨC(h)(k)h
)

.

2) For any h, k ∈ H we have

ψBϕ(h)·ψBϕ(k) = ψB
(

ϕ(h)ΨBϕ(h)(ϕ(k))
)

= ψBϕ
(

hϕ−1ΨBϕ(h)(ϕ(k))
)

= ψBϕ
(

hΨψBϕ(h)(k)
)

.

�
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Corollary 3.7. Let (H,G,Ψ, B) be a relative Rota–Baxter group and ϕ ∈ Z
(

AutH
)

.

Then (H,G,Ψ, Bϕ) is a relative Rota–Baxter group.

Proof. For any g ∈ G the automorphism Ψg ∈ AutH commutes with ϕ, and we have
ϕ−1Ψϕ = Ψg. Therefore, ψBϕ is a relative Rota–Baxter operator, where ψ is the identity
automorphism. �

4. Skew braces from RB- and RRB-operators

As we know (see Section 2), if (G, ·) is a group, B : G → G is a RB-operator, then
(G, ·, ◦B) is a skew left brace, which is called a Rota-Baxter skew left brace, where

a ◦B b = aB(a)bB(a)−1, a, b ∈ G.

The following lemma is evident.

Lemma 4.1. If (G, ·) is an abelian group, then
1) any RB-operator on G is an endomorphism,
2) Any Rota–Baxter skew left brace (G, ·, ◦B) is trivial which means a ◦B b = a · b for

any a, b ∈ G.

Theorem 4.2 [1]. Let B : H → G be a relative Rota–Baxter operator with respect to
(G,Ψ). Put

h ⊲ k = ΨB(h)(k).

for any h, k ∈ H. Then (H, ·, ⊲) is a post-group.

From Theorem 4.2 and Theorem 2.2 (see, also [11, Proposition 3.5]) it follows that if
we define a new operation ◦B : H → H ,

h ◦B k = hΨB(h)(k), h, k ∈ H,

using a relative Rota–Baxter operator B : H → G with respect to (G,Ψ), then (H, ·, ◦B)
is a skew left brace. The following example compares construction of RB skew left braces
and RRB skew left braces.

Example 4.3. Let H = Z4 be a cyclic group of order 4. Then, by Lemma 4.1(1) there
are following RB-operators on Z4:

1) B0(h) = 0 for any h ∈ H ;
2) B−1, which acts by the rules 0 7→ 0, 1 7→ 3, 2 7→ 2, 3 7→ 1;
3) B2, which acts by the rules 0 7→ 0, 1 7→ 2, 2 7→ 0, 3 7→ 2.
By Lemma 4.1(2), on Z4 there exists only trivial RB skew left brace.
Now, let us construct relative Rota–Baxter skew left braces on H = Z4 with respect to

(G = Z2 × Z2,Ψ). Note that AutZ4 = {ε,−ε}, where ε = id and −ε(g) = −g for any
g ∈ Z4. Let Ψ: Z2 × Z2 → Z4 be defined by the following way:

Ψ(0, 0) = ε; Ψ(1, 0) = −ε; Ψ(0, 1) = ε; Ψ(1, 1) = −ε.
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Define B : Z4 → Z2 × Z2 as follows:

B(0) = (0, 0), B(1) = (1, 0), B(2) = (0, 1), B(3) = (1, 1).

One can check that B is a relative Rota–Baxter operator with respect to (G,Ψ) and by
applying Theorems 4.2 and 2.2 to the operator B, we get a skew left brace (Z4,+, ◦B),
where (Z4,+) ∼= Z4 and (Z4, ◦B) ∼= Z2 × Z2.

Hence, using RRB-operators we can construct more skew braces, than using only RB-
operators.

It is interesting to generalize this example, by taking H = Zp2 , G = Zp×Zp, where p is
a prime number. The following theorem shows that for p > 2 the set of skew left braces
which can be defined on H using RRB-operators of the form B : Zp2 → Zp × Zp is the
same as using RB-operators B′ : Zp2 → Zp2.

Theorem 4.4. Let p be a prime number and Ψ: Zp×Zp → AutZp2 be a group homomor-
phism. For any b1, bp ∈ Zp ×Zp, there is no more than one relative Rota-Baxter operator
B : Zp2 → Zp × Zp such that B(1) = b1 and B(p) = bp.

Moreover, if p > 2, then any relative Rota-Baxter operator B : Zp2 → Zp × Zp is a
homomorphism.

Proof. Since AutZp2 is a group of order p(p− 1), then AutZp2 ≃ Zp × A, where A is an
abelian group of order p− 1. Let us consider an automorphism χk of a group Zp2 defined
as

χk : 1 7→ kp+ 1

then χk is an element of order p i.e.

(kp+ 1)p = (kp)p + C1
p (kp)

p−1 + . . .+ Cp−2
p (kp)2 + Cp−1

p kp+ 1, where C l
m =

m!

l!(m− l)!
.

All elements of the sum above obviously divided by p2 except 1. Thus χk is an element
of order p. And there is only p such elements (we can take k = 0, 1, . . . , p− 1).

It follows that any action Ψ: Zp × Zp → AutZp2 has the form

Ψ(n1,n2)x =
(

p(k1n1 + k2n2) + 1
)

x,

where the numbers k1, k2 ∈ {0, 1, . . . , p− 1} define the action.
Now fix the action Ψ and suppose that B : Zp2 → Zp × Zp is a relative Rota–Baxter

operator, where B(x) = (x1, x2) for some x1, x2 ∈ Zp. Let · denote the scalar multipli-
cation of vectors from Z

2
p, i.e. (a1, a2) · (b1, b2) = a1b1 + a2b2. Also, define a function

t : Zp2 → pZp2 as
t(x) = pB(x) · (k1, k2) = p(k1x1 + k2x2).

Note that ΨB(x)y =
(

t(x) + 1
)

y and since B is a relative Rota–Baxter operator, we have

B(x) +B(y) = B
(

x+ΨB(x)y
)

= B
(

x+ y + t(x)y).

Using the fact that t(x) is divisible by p, we can write

B(x) +B(py) = B(x+ py + pt(x)y) = B(x+ py).
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It follows that the restriction B|pZ
p2

is a homomorphism.

We will now prove by induction over n that

nB(x) = B

(

(

t(x) + 1
)n

− 1

t(x)
x

)

.

Indeed, for n = 1 we have B(x) = B(x), and if the statement holds for n− 1, then

B(x) + (n− 1)B
(

x
)

= B

(

x+ (t(x) + 1)

(

t(x) + 1
)n−1

− 1

t(x)
x

)

=

= B

(

x+

(

t(x) + 1
)n

− t(x)− 1

t(x)
x

)

= B

(

x+

(

t(x) + 1
)n

− t(x)− 1

t(x)
x

)

=

= B

(

(

t(x) + 1
)n

− 1

t(x)
x

)

.

Now note that
(

1 + t(x)
)n

− 1

t(x)
= n+

n
∑

i=2

C i
nt(x)

i−1.

We now have

nB(x) = B(nx+ ps(x, n)x) = B(nx) +B(ps(x, n)x).

Note that B|pZ
p2

is a homomorphism of abelian groups, and we can by extension treat it

as a homomorphism of Zp2-modules. We can thus write

B(ps(x, n)x) = s(x, n)xB(p) and B(nx) = nB(x)− s(x, n)xB(p).

By substituting x = 1, we obtain

(4.1) B(n) = nB(1)− s(1, n)B(p).

Note that s(1, n) can be calculated knowing only B(1) and the action Ψ, so we have
proven that for any given action, the values of B(1) and B(p) define a unique relative
Rota–Baxter operator.

Now let p > 2. Note that C2
p = p!

2!(p−2)!
is divisible by p. Since t(x) is also divisible by p,

it follows that
p
∑

i=2

C i
pt(x)

i−1 is divisible by p2. On one hand, pB(x) = 0, and on the other

hand,

pB(x) = B
(

px+

p
∑

i=2

C i
pt(x)

i−1
)

= B(px).

It follows that B(px) = 0 for any x, so B|pZ
p2

is a zero homomorphism, and in turn,

nB(1) = B(n)− s(1, n)B(p) = B(n),

which means that B is a homomorphism. �
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Question 4.5. Let us define a Rota–Baxter operator (RB-operator) on a skew left brace
as a map which is a Rota–Baxter operator on both groups of skew left brace. Find Rota–
Baxter operators on skew left braces. If we are considering RB-operators on a left brace
(G,+, ◦), then on the group (G,+) it is an endomorphism.

5. Skew left braces, nilpotent groups and the YBE

5.1. λ-homomorphic skew left braces. Consider a particular type of skew left braces,
which was introduced in [2]. A skew left brace (G, ·, ◦) is called λ-homomorphic, if
λ : (G, ·) → Aut(G, ·) is a group homomorphism. The main idea for the introduction
of λ-homomorphic skew left braces is the following. If we take a group G with a generat-
ing set A, and define a map λ : A→ Aut(G), then we can extend it on all elements of G.
Under some conditions this map λ : G→ Aut(G) is a λ-map of a skew left brace (G, ·, ◦),
where the second operation is defined by the rule

a ◦ b = a · λa(b), a, b ∈ G.

Class of λ-homomorphic skew left braces is not a big class, but it has a good description.
More precisely, any λ-homomorphic skew left brace is metatrivial that means that it is
an extension of one trivial skew left brace by another trivial skew left brace (see [2]).

We introduce the following definition.

Definition 5.1. A post-group (G, ·, ⊲) is said to be a homomorphic post-group if it satisfies
the identity

(a · b) ⊲ c = (a ⊲ c) · (b ⊲ c)

for all a, b, c ∈ G.

Note that the condition (a · b) ⊲ c = (a ⊲ c) · (b ⊲ c) is the right distributivity.
By applying Theorem 2.2 to λ-homomorphic skew left braces we obtain the following

result.

Proposition 5.2. Let (G, ·, ◦) be a λ-homomorphic skew left brace. Then the post-group
(G, ·, ⊲) has the following properties:

1) (G, ·, ⊲) is a homomorphic post-group.
2) [a, b, c] = a ⊲ c, where [a, b, c] is the associator:

[a, b, c] :=
(

a ⊲ (b ⊲ c)
)

·
(

(a ⊲ b) ⊲ c
)−1

.

Proof. 1) Follows from

(a · b) ⊲ c = λa·b(c) = λa(c) · λb(c) = (a ⊲ c) · (b ⊲ c).

2) We have
(a ⊲ c) ·

(

(a ⊲ b) ⊲ c
)

=
(

a · (a ⊲ b)
)

⊲ c = a ⊲ (b ⊲ c),

where the first equality follows from the definition of a homomorphic post-group and the
second one follows from the definition of post-group (see Definition 2.1).

�
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We will now use Theorem 2.2 to construct a particular class of skew left braces on
two-step nilpotent groups.

Proposition 5.3. 1) For a group (G, ·) let a ⊲ b = a−1ba. Then (G, ·, ⊲) is a post-group.
2) For a two-step nilpotent group (G, ·) and n ∈ Z\{0} let a⊲b = a−nban. Then (G, ·, ⊲)

is a post-group.

Proof. Since conjugation by an element is always an automorphism of the group, we only
have to show that a ⊲ (b ⊲ c) =

(

a(a ⊲ b)
)

⊲ c.

1) If a ⊲ b = a−1ba, then

a ⊲ (b ⊲ c) = a−1b−1cba,

and
(

a(a ⊲ b)
)

⊲ c = (ba) ⊲ c = a−1b−1cba.

2) If G is a two-step nilpotent group and a ⊲ b = a−nban = b[b, a]n, then we have

a ⊲ (b ⊲ c) = a⊲
(

c[c, b]n
)

= c[c, b]n
[

c[c, b]n, a
]

= c[c, b]n[c, a]n
[

[c, b], a
]n

= c[c, b]n[c, a]n,

and
(

a(a ⊲ b)
)

⊲ c =
(

ab[b, a]n
)

⊲ c = c
[

c, ab[b, a]n
]n

= c[c, b]n[c, a]n
[

c, [b, a]n
]n

= c[c, b]n[c, a]n.

�

Let G be a two-step nilpotent group and a ⊲ b = a−nban for some integer n. By Propo-
sition 5.3, (G, ·, ⊲) is a post-group. By Theorem 2.2, (G, ·, ◦) is a skew left brace, where

a ◦ b = a · (a ⊲ b) = aa−nban = ab[b, a]n.

The following statement holds for the group (G, ◦)

Proposition 5.4. The group (G, ◦) defined above is two-step nilpotent.

Proof. Note that the inverse element with respect to the operation ◦ is the same element
as the inverse with respect to the operation ·. Indeed, a−1 ◦ a = a−1a[a, a−1]n = e. Denote
by [a, b]◦ the commutator with respect to the operation ◦:

[a, b]◦ = a−1 ◦ b−1 ◦ a ◦ b =
(

a−1b−1[b−1, a−1]n
)

◦
(

ab[b, a]n
)

=
(

a−1b−1[b, a]n
)

◦
(

ab[b, a]n
)

=

= a−1b−1[b, a]nab[b, a]n
[

ab[b, a]n, a−1b−1[b, a]n
]n

= [a, b][b, a]2n
[

ba[a, b], (ba)−1
]

= [b, a]2n−1.

Now we can see that
[

[a, b]◦, c
]

◦
=

[

c, [b, a]2n−1
]2n−1

=
[

c, [b, a]
](2n−1)2

= e for any a, b, c ∈
G, which means that the group (G, ◦) is two-step nilpotent. �

It is easy to show that (G, ◦) is not necessarily isomorphic to (G, ·). Indeed, if (G, ·)
satisfies the relation [a, b]2n−1 = e for any a and b, then [a, b]◦ = [a, b]1−2n = e, hence the
group (G, ◦) has to be abelian. With n not equal to 0 or 1, groups that satisfy the relation
[a, b]2n−1 = e do not have to be abelian.

Proposition 5.5. A skew left brace constructed above is a λ-homomorphic skew left
brace.
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Proof. We have to prove that the λ-map which corresponds to skew left brace (G, ·, ◦) is
a homomorphism λ : (G, ·) → Aut(G, ·). By the formula after Proposition 5.3, the new
product is

a ◦ b = aa−nban.

Hence, λa(b) = a−1 · (a ◦ b) = a−nban and we have

λa(λb(c)) = λa(b
−ncbn) = a−nb−ncbnan.

On the other side,

λab(c) = (ab)−nc(ab)n = a−nb−n[a, b]−n(n−1)/2cbnan[a, b]n(n−1)/2 = a−nb−ncbnan.

Comparing with the previous formula, we see that λaλb = λab for any a, b ∈ G. It means
that λ is a homomorphism. �

5.2. Verbal solutions of the Yang-Baxter equation. Let X be a nonempty set and
S : X2 → X2. The map S is called a solution of the Yang–Baxter equation on X, if

S1 S2 S1 = S2 S1 S2,

where S1 = S × Id, S2 = Id×S.
The following theorem allows us to use skew left braces in order to obtain solutions of

the Yang–Baxter equation.

Theorem 5.6 [3]. Let (G, ·, ◦) be a skew left brace. Then the map S : G2 → G2, defined
as

S(a, b) =
(

λa(b), λa(b) ◦ a ◦ b
)

,

where x is the inverse of x with respect to the operation ◦, is a solution of the Yang-Baxter
equation on the set G.

In the previous section we constructed some skew left braces on nilpotent groups. We
will now proceed to use Theorem 2.2, and 5.6 to construct solutions to the Yang–Baxter
equation on two-step nilpotent groups. We will now explore verbal solutions of the Yang–
Baxter equation on two-step nilpotent groups.

Definition 5.7. For a group G, a map ϕ : Gn → G is called a verbal map if there is
a group word w = w(x1, . . . , xn) on n letters such that for any g1, . . . , gn ∈ G we have
ϕ(g1, . . . , gn) = w(g1, . . . , gn).

For any group word w we will denote the verbal map obtained in this way by ϕw.

Definition 5.8. Let G be a group. A solution S of the Yang–Baxter equation on G is
called a verbal solution if there are group words w1 and w2 such that S = ϕw1

× ϕw2
.

Note that in a two-step nilpotent group G any verbal map ϕ has a nice standard form
ϕ(x, y) = xayb[y, x]m, and that even though it needs not be a group homomorphism, it
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has a well-defined abelianization ϕAb(x, y) = xayb, and the following diagram commutes:

G2 ϕ
//

��

G

��

(GAb)2
ϕAb

// GAb

The following proposition is immediate from this:

Proposition 5.9. If S = ϕw1
×ϕw2

is a verbal solution of the Yang–Baxter equation on a
two-step nilpotent group G, then SAb = ϕAbw1

×ϕAbw2
is a verbal solution of the Yang–Baxter

equation on GAb.

Verbal maps (GAb)2 → (GAb)2 can be represented as matrices with integer coefficients,
and for 2 × 2 matrices we can fully describe which of them satisfy the Yang–Baxter
equation:

Theorem 5.10. Let M be a 2× 2 matrix with coefficients in an integral domain R. The
map from R2 to R2 defined by left multiplication by M is a solution of the Yang-Baxter
equation on R if and only if M has at least one of the following forms:

(

1− bc b

c 0

)

;

(

0 b

c 1− bc

)

;

(

0 b

c 0

)

;

(

1 0
0 1

)

.

Proof. We can write down the Yang–Baxter equation in the following form:

0 =





a b 0
c d 0
0 0 1









1 0 0
0 a b

0 c d









a b 0
c d 0
0 0 1



−





1 0 0
0 a b

0 c d









a b 0
c d 0
0 0 1









1 0 0
0 a b

0 c d



 =

=





a(a + bc− 1) abd 0
acd ad(d− a) −abd
0 −acd −d(d+ bc− 1)





and obtain the following system of algebraic equations:

abd = 0;

acd = 0;

a(a+ bc− 1) = 0;

d(d+ bc− 1) = 0;

ad(d− a) = 0.
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Since the coefficients are taken from a ring with no zero divisors, the solution of the system
can be decomposed into a union of solutions of four simpler systems of equations:

1) a = 0, d = 1− bc;

2) d = 0, a = 1− bc;

3) a = 0, d = 0;

4) b = 0, c = 0, a(a− 1) = 0, d(d− 1) = 0.

Note that the solution of the system 4) is a union of 4 points, 3 of which are also solutions
of 1), 2) or 3). With this in mind, 4) can be reduced to a = 1, b = 1, c = 0, d = 0, which
completes the proof. �

We will now investigate verbal solutions of the Yang–Baxter equation on two-step nilpo-
tent groups. We are interested in such pairs of group words w1(x, y) = xayb[y, x]m,
w2(x, y) = xcyd[y, x]n that the map S = ϕw1

× ϕw2
is a solution of the Yang–Baxter

equation on any two-step nilpotent group G. If w1 and w2 are such words, then the maps
(S× Id)(Id×S)(S× Id) and (Id×S)(S× Id)(Id×S) from F 3 to F 3 must coincide for any
free two-step nilpotent group F .

Abelianization of a free two-step nilpotent group is a free abelian group, so SAb must

be a solution of the Yang–Baxter equation on Z, and as such, the matrix MS =

(

a b

c d

)

must be of at least one of the forms listed in theorem 5.10. We will denote S1 = S × Id,
S2 = Id×S and write down the corresponding Yang–Baxter equation for each of these
matrices with free parameters m and n.

Starting with MS =

(

1 0
0 1

)

, we have

S1S2S1





x

y

z



 = S1S2





x[y, x]m

y[y, x]n

z



 = S1





x[y, x]m

y[y, x]n[z, y]m

z[z, y]n



 =





x[y, x]2m

y[y, x]2n[z, y]m

z[z, y]n



 ;

S2S1S2





x

y

z



 = S2S1





x

y[z, y]m

z[z, y]n



 = S2





x[y, x]m

y[y, x]n[z, y]m

z[z, y]n



 =





x[y, x]m

y[y, x]n[z, y]2m

z[z, y]2n



 .

The Yang–Baxter equation here implies n = 0 and m = 0, so the only verbal solution
corresponding to this matrix is

S(x, y) = (x, y).

Now assume MS =

(

0 b

c 0

)

. We have
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S1S2S1





x

y

z



 = S1S2





yb[y, x]m

xc[y, x]n

z



 = S1





yb[y, x]m

zb[z, x]cm

xc
2

[y, x]cn[z, x]cn



 =





zb
2

[z, x]bcm[z, y]b
2m

ybc[y, x]cm[z, y]b
2n

xc
2

[y, x]cn[z, x]cn



 ;

S2S1S2





x

y

z



 = S2S1





x

zb[z, y]m

yc[z, y]n



 = S1





zb
2

[z, x]bm[z, y]bm

xc[z, x]bn

yc[z, y]n



 =





zb
2

[z, x]bm[z, y]bm

ybc[y, x]c
2m[z, y]bn

xc
2

[y, x]c
2n[z, x]bcn



 .

The Yang-Baxter equation in this case is equivalent to the following system of algebraic
equations:

b(c− 1)m = 0;

b(b− 1)m = 0;

c(c− 1)m = 0;

b(b− 1)n = 0;

c(c− 1)n = 0;

c(b− 1)n = 0.

For the sake of uniformity, we will rename the free parameters to u and v. With that in
mind, the set of solutions to the system of algebraic equations above and the corresponding
verbal solutions S is as follows:

b = 0, c = 0 : S(x, y) =
(

[y, x]u, [y, x]v
)

;

b = 0, c = 1, n = 0 : S(x, y) =
(

[y, x]u, x
)

;

b = 1, c = 1 : S(x, y) =
(

y[y, x]u, x[y, x]v
)

;

b = 1, c = 0, m = 0 : S(x, y) =
(

y, [y, x]u
)

;

m = 0, n = 0 : S(x, y) =
(

yu, xv
)

.

Now assume MS =

(

1− bc b

c 0

)

. Note that in a two-step nilpotent group the following

expression holds:

(xy)k = xkyk[y, x]
1

2
k(k−1),

which can be proven by induction. Indeed, for k = 0 the expression holds. If the expression
holds for k, then

(xy)k+1 = xkykxy[y, x]
1

2
k(k−1) = xk+1yk+1[y, x]

1

2
k(k−1)+k = xk+1yk+1[y, x]

1

2
(k+1)(k+1−1)

and

(xy)k−1 = xkyky−1x−1[y, x]
1

2
k(k−1) = xk−1yk−1[y, x]

1

2
k(k−1)−(k−1) = xk−1yk−1[y, x]

1

2
(k−1)(k−2).

Now, for the map S we have
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S1S2S1





x

y

z



 = S1S2





x1−bcyb[y, x]m

xc[y, x]n

z



 = S1





x1−bcyb[y, x]m

(xc[y, x]n)1−bczb[z, xc]m

xc
2

[y, x]cn[z, xc]n



 =

= S1





x1−bcyb[y, x]m

xc(1−bc)zb[y, x](1−bc)n[z, x]cm

xc
2

[y, x]cn[z, x]cn



 =

=





(x1−bcyb[y, x]m)1−bc(xc(1−bc)zb[y, x](1−bc)n[z, x]cm)b[xc(1−bc)zb, x1−bcyb]m

(x1−bcyb[y, x]m)c[xc(1−bc)zb, x1−bcyb]n

xc
2

[y, x]cn[z, x]cn



 =

=





x(1−bc)yb(1−bc)zb
2

[y, x](1−bc)m+ 1

2
b2c(1−bc)2+b(1−bc)n−bc(1−bc)m[z, x]bcm+ 1

2
b2c(1−bc)(b−1)+b(1−bc)m[z, y]b

2m

xc(1−bc)ybc[y, x]mc+
1

2
bc(1−bc)(c−1)−bc(1−bc)n[z, x]b(1−bc)n[z, y]b

2n

xc
2

[y, x]cn[z, x]cn



 ;

S2S1S2





x

y

z



 = S2S1





x

y1−bczb[z, y]m

yc[z, y]n



 = S2





x1−bc(y1−bczb[z, y]m)b[y1−bczb, x]m

xc[y1−bczb, x]n

yc[z, y]n



 =

= S2





x(1−bc)yb(1−bc)zb
2

[y, x](1−bc)m[z, x]bm[z, y]bm+ 1

2
b2(1−bc)(b−1)

xc[y, x](1−bc)n[z, x]bn

yc[z, y]n



 =

=





x(1−bc)yb(1−bc)zb
2

[y, x](1−bc)m[z, x]bm[z, y]bm+ 1

2
b2(1−bc)(b−1)

(xc[y, x](1−bc)n[z, x]bn)1−bc(yc[z, y]n)b[yc, xc]m

(xc[y, x](1−bc)n[z, x]bn)c[yc, xc]n



 =

=





x(1−bc)yb(1−bc)zb
2

[y, x](1−bc)m[z, x]bm[z, y]bm+ 1

2
b2(1−bc)(b−1)

xc(1−bc)y(bc)[y, x](1−bc)
2n+c2m[z, x]b(1−bc)n[z, y]bn

xc
2

[y, x]c(1−bc)n+c
2n[z, x]bcn



 .

The Yang–Baxter equation in this case is equivalent to the following system of algebraic
equations:
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1) (1− bc)m+
1

2
b2c(1− bc)2 + b(1 − bc)n− bc(1− bc)m− (1− bc)m = 0;

2) bcm+
1

2
b2c(1− bc)(b− 1) + b(1 − bc)m− bm = 0;

3) b2m− bm−
1

2
b2(1− bc)(b− 1) = 0;

4) cm+
1

2
bc(1− bc)(c− 1)− bc(1− bc)n = 0;

5) b2n− bn = 0;

6) cn− c(1− bc)n− c2n = 0;

7) cn− bcn = 0.

Or, in an alternative form,

1) b(1− bc)(
1

2
bc+ n− cm) = 0;

2) bc(b− 1)(m+
1

2
b(1− bc)) = 0;

3) b(b− 1)(m−
1

2
b(1− bc)) = 0;

4)
1

2
bc(1 − bc)(c− 1)− c(c− 1)m− (1− bc)n = 0;

5) b(b− 1)n = 0;

6) c2(b− 1)n = 0;

7) c(b− 1)n = 0.

Equations 5) – 7) all hold if and only if at least one of the following conditions is
satisfied: either b = c = 0, or b = 1, or n = 0. We will examine these three cases
separately, making corresponding substitutions into equations 1)–4).

Case b = c = 0. Equations 1)–3) hold automatically, and 4) is reduced to n = 0. We
have 1− bc = 1 and m a free parameter. This gives us the verbal solution

S(x, y) =
(

x[x, y]u, 1
)

.

Case b = 1. Equations 2) and 3) hold automatically, and we are left with the system

1) (1− c)(
1

2
c+ n− cm) = 0;

4) (c− 1)(−
1

2
c(c− 1) + n− cm)

If c = 1, then the case is reduced to the previously examined case with the matrix

(

0 1
1 0

)

.

If n = cm− 1
2
c and n = cm+ 1

2
c(c− 1), then we have c(c− 1) + c = 0, hence c = 0 and
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n = 0, and the case is reduced to a particular example of the case n = 0, which we will
examine next.

Case n = 0. By substituting n = 0 into equations 1)–4) we get the system

1) bc(1− bc)(
1

2
b−m) = 0;

2) bc(b− 1)(m+
1

2
b(1 − bc)) = 0;

3) b(b− 1)(m−
1

2
b(1− bc)) = 0;

4) − c(c− 1)(m−
1

2
b(1− bc)) = 0.

Equations 3) and 4) hold if and only if at least one of the following conditions holds:
either b, c ∈ {0, 1}, or m = 1

2
b(1− bc).

If b = c = 0 or b = c = 1, the case is reduced to one of the previously examined cases.
If b = c− 1 = 0 or c = b− 1 = 0, then equations 1) and 2) hold automatically, m stays a
free parameter, and we get two new verbal solutions:

S(x, y) = (x[y, x]u, x);

S(x, y) = (xy[y, x]u, 1).

If m = 1
2
b(1− bc), then the system is further reduced to

1)
1

2
b3c2(1− bc) = 0;

2) b2c(b− 1)(1− bc) = 0,

which holds if and only if b = 0 or c = 0 or 1− bc = 0. If 1− bc = 0, then m = 0, and the
case is reduced to a previously examined case. If b = 0, then m = 0, c is a free parameter,
and we have the verbal solution

S(x, y) = (x, xu).

Finally, if c = 0, then m is a free parameter, b = 2m, and we have the verbal solution

S(x, y) = (xy2u[y, x]u, 1).

As for the matrix

(

0 b

c 1− bc

)

, we will obtain the corresponding verbal solutions by

using the symmetries of the Yang–Baxter equation.

Lemma 5.11. Let X be a set and S : X2 → X2 is a solution of the Yang–Baxter equation
on X. Then Sσ = σSσ is a solution of the Yang–Baxter equation on X, where σ(x, y) =
(y, x).
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Proof. Define the map τ : X3 → X3 the following way: τ(x, y, z) = (z, y, x). We can
assume that S(x, y) = (f(x, y), g(x, y)). Then Sσ(x, y) = (g(y, x), f(y, x)). Note that

τ(S × Id)τ(x, y, z) = τ(f(z), g(y), x) = (x, g(y), f(z)) = (Id×Sσ)(x, y, z).

Similarly, we have τ(Id×S)τ = Sσ × Id . Now,

(Sσ × Id)(Id×Sσ)(Sσ × Id) = τ(Id×S)(S × Id)(Id×S)τ ;

(Id×Sσ)(Sσ × Id)(Id×Sσ) = τ(S × Id)(Id×S)(S × Id)τ,

and since S is a solution of the Yang–Baxter equation, the right sides of these equalities
coincide, and hence

(Sσ × Id)(Id×Sσ)(Sσ × Id) = (Id×Sσ)(Sσ × Id)(Id×Sσ).

�

Corollary 5.12. If S(x, y) =
(

xayb[y, x]m, xcyd[y, x]n
)

is a verbal solution of the Yang–

Baxter equation on a 2-step nilpotent group, then S̄(x, y) =
(

xdyc[y, x]dc−n, xbya[y, x]ab−m
)

is also a verbal solution.

Now, by combining all the solutions obtained and applying the symmetries, we can
finally formulate the theorem.

Theorem 5.13. If (w1, w2) is a pair of group words on two letters such that for any
two-step nilpotent group G the induced map S : G2 → G2, S(x, y) =

(

w1(x, y), w2(x, y)
)

is a solution of the Yang–Baxter equation, then there are u, v ∈ Z such that S(x, y) has
one (or more) of the following forms:

S(x, y) = (x, y);

S(x, y) =
(

[y, x]u, [y, x]v
)

;

S(x, y) =
(

y[y, x]u, x[y, x]v
)

;

S(x, y) =
(

yu, xv
)

;

S(x, y) =
(

[y, x]u, x
)

; S(x, y) =
(

y, [y, x]u
)

;

S(x, y) =
(

x[y, x]u, 1
)

; S(x, y) =
(

1, y[y, x]u
)

;

S(x, y) =
(

x[y, x]u, x
)

; S(x, y) =
(

y, y[y, x]u
)

;

S(x, y) =
(

xy[y, x]u, 1
)

; S(x, y) =
(

1, xy[y, x]u
)

;

S(x, y) = (x, xu); S(x, y) = (yu, y);

S(x, y) =
(

xy2u[y, x]u, 1
)

; S(x, y) =
(

1, x2uy[y, x]u
)

.

Conversely, all of the maps above define verbal solutions of the Yang–Baxter equation
on any two-step nilpotent group for any values of the parameters u, v ∈ Z.
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