SOME PROPERTIES OF RELATIVE ROTA-BAXTER OPERATORS ON GROUPS

VALERIY G. BARDAKOV, TATYANA A. KOZLOVSKAYA, PAVEL P. SOKOLOV, KSENIA V. ZIMIREVA, MATVEI N. ZONOV

Abstract

We find connection between relative Rota-Baxter operators and usual Rota-Baxter operators. We prove that any relative Rota-Baxter operator on a group H with respect to (G, Ψ) defines a Rota-Baxter operator on the semi-direct product $H \rtimes_{\Psi} G$. On the other side, we give condition under which a Rota-Baxter operator on the semi-direct product $H \rtimes_{\Psi} G$ defines a relative Rota-Baxter operator on H with respect to (G, Ψ). We introduce homomorphic post-groups and find their connection with λ-homomorphic skew left braces. Further, we construct post-group on arbitrary group and a family post-groups which depends on integer parameter on any two-step nilpotent group. We find all verbal solutions of the quantum Yang-Baxter equation on two-step nilpotent group.

Keywords: Group, nilpotent group, semi-direct product, skew brace, Rota-Baxter operator, relative Rota-Baxter operator, Yang-Baxter equation.

Mathematics Subject Classification 2020: 17B38, 16 T25.

Contents

1. Introduction 1
2. Preliminary results 3
3. Rota-Baxter and relative Rota-Baxter operators 5
3.1. Relative Rota-Baxter operators and semi-direct products 5
4. Skew braces from RB- and RRB-operators 8
5. Skew left braces. nilpotent groups and the YBE 11
5.1. λ-homomorphic skew left braces 11
5.2. Verbal solutions of the Yang-Baxter equation 13
References 21

1. Introduction

Rota-Baxter operators on groups were introduced in 2021 by L. Guo, H. Lang, Y. Sheng [4, a group with a Rota-Baxter operator is called a Rota-Baxter group (RBgroup). Properties of RB-groups are actively studied in [5]. Connection between RBgroups, the Yang-Baxter equation and skew braces was found in [6]. The concept of

[^0]braces was introduced by Rump [12] in 2007 in connection with non-degenerate involutive set theoretic solutions of the quantum Yang-Baxter equation. The concept of skew braces was introduced by Guarnieri and Vendramin [3] in 2017 in connection with noninvolutive non-degenerate set theoretic solutions of the quantum Yang-Baxter equation. In [10] the Rota-Baxter operator was defined in cocommutative Hopf algebras. Important example of such algebras give group rings $\mathbb{k}[G]$ of group G over a field \mathbb{k}.

In [9] relative Rota-Baxter operators (RRB-operators) and relative Rota-Baxter groups (RRB-groups) were defined. In this case, the relative Rota-Baxter operator depends not only on the group, but also on the group of its automorphisms. In the case when this group of automorphisms is a group of inner automorphisms, we obtain the Rota-Baxter operator. Some properties of relative Rota-Baxter operators are studied in [11]. Relative Rota-Baxter operators on an arbitrary Hopf algebra were defined in [7]. In [8] RotaBaxter and averaging operators on racks and rack algebras were introduced.

In the present paper we prove some properties of relative Rota-Baxter operators on groups. In particular, we are studying connections between relative Rota-Baxter operators and usual Rota-Baxter operators.

The paper is structured as follows. The next section is devoted to review some facts about skew braces, λ-maps, post-groups, Rota-Baxter operators, relative Rot-Baxter operators, and some connections between them.

In Section 3 we find connection between relative Rota-Baxter operators and usual Rota-Baxter operators. We prove (see Proposition 3.1) that any relative Rota-Baxter operator on a group H with respect to (G, Ψ) defines a Rota-Baxter operator on the semi-direct product $H \rtimes_{\Psi} G$. On the another side, Theorem 3.2 gives condition under which a Rota-Baxter operator on the semi-direct product $H \rtimes_{\Psi} G$ defines a relative RotaBaxter operator on H with respect to (G, Ψ). An example shows that the construction of this theorem can map different Rota-Baxter operators to the same relative Rota-Baxter operator. Further, we introduce relative Rota-Baxter operator of weight -1 and find (see Proposition (3.6) connection between relative Rota-Baxter operators of weight 1 and -1 . Corollary 3.7 gives a way to construct new RRB-operators from known RRB-operators.

It is known that if we have a RB-group or a RRB-group (G, B), then we can construct a skew left brace $\left(G, \cdot, \circ_{B}\right)$. In Section 4 we give example (Example 4.3) which shows that using RRB-operator $B: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, it is possible to construct a non-trivial left brace $\left(\mathbb{Z}_{4},+, o_{B}\right)$, where $\left(\mathbb{Z}_{4},+\right) \cong \mathbb{Z}_{4}$ and $\left(\mathbb{Z}_{4}, \circ_{B}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. On the other side, any Rota-Baxter left brace on \mathbb{Z}_{4} is trivial. But Theorem 4.4 shows that we can not take a prime number $p>2$ instead 2 . In this case any RRB-operator $B: \mathbb{Z}_{p^{2}} \rightarrow \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ is a homomorphism and any relative Rota-Baxter left brace on $\mathbb{Z}_{p^{2}}$ is trivial.

In Section 5 we introduce homomorphic post-groups and find (see Proposition 5.2) their connection with λ-homomorphic skew left braces. Further, we construct post-group on arbitrary group and a family of post-groups on any two-step nilpotent group which depends on an integer parameter. By these post-groups we can construct skew left braces. We show that new operation in these skew left braces defines a two-step nilpotent group, which can be non isomorphic to the initial two-step nilpotent group. Moreover, it will be
proved (in Proposition 5.5) that any skew left brace constructed above is a λ-homomorphic skew left brace.

As we have already mentioned above, any skew left braces gives a non-involutive nondegenerate set theoretic solutions of the quantum Yang-Baxter equation (YBE) [3]. In Theorem 5.13 we find all verbal solutions of the quantum Yang-Baxter equation on twostep nilpotent group.

2. Preliminary results

Let (G, \cdot) and (G, \circ) be groups on a same set G. The triple (G, \cdot, \circ) is said to be a skew left brace if

$$
a \circ(b \cdot c)=(a \circ b) \cdot a^{-1} \cdot(a \circ c),
$$

where a^{-1} is the inverse of a with respect to the operation \cdot. To get a skew right brace we can take another axiom,

$$
(b \cdot c) \circ a=(b \circ a) \cdot a^{-1} \cdot(c \circ a)
$$

A skew left brace which is also a skew right brace is said to be a skew two-sided brace. If (G, \cdot, \circ) is a skew left brace, then the map $\lambda:(G, \circ) \rightarrow \operatorname{Aut}(G, \cdot)$, where

$$
\lambda_{a}(b)=a^{-1} \cdot(a \circ b),
$$

is called the λ-map of (G, \cdot, \circ). Here we denoted $\lambda_{a}=\lambda(a)$ the image of the element $a \in G$.
A map of skew left braces $\varphi: G \rightarrow H$ is called a homomorphism of skew left braces if $\varphi(a \cdot b)=\varphi(a) \cdot \varphi(b)$ and $\varphi(a \circ b)=\varphi(a) \circ \varphi(b)$.

The next definition was introduced in [1].
Definition 2.1. Let (G, \cdot) be a group and $\triangleright: G \times G \rightarrow G$ be a binary operation on G. The algebraic system $(G, \cdot, \triangleright)$ is called a post-group, if the operator $L_{a}^{\triangleright}: G \rightarrow G$, where $L_{a}^{\triangleright}(b)=a \triangleright b$, is an automorphism of the group (G, \cdot), and

$$
a \triangleright(b \triangleright c)=(a \cdot(a \triangleright b)) \triangleright c .
$$

It is easy to see that the axiom of post-group is equivalent to the statement that for any $a, b \in G$ the following holds:

$$
L_{a}^{\triangleright} L_{b}^{\triangleright}=L_{a L_{a}^{\triangleright}(b) .}^{\triangleright}
$$

Also remark that the condition that L_{a}^{\triangleright} is an automorphism of G means that

$$
a \triangleright(b \cdot c)=(a \triangleright b) \cdot(a \triangleright c)
$$

for any $a, b, c \in G$, which is left distributivity of the operation \triangleright. Connection between skew left braces and post-groups gives the following theorem.

Theorem 2.2 [1]. 1) For any skew left brace (G, \cdot, \circ) let $a \triangleright b:=\lambda_{a}(b)$. Then $(G, \cdot, \triangleright)$ is a post-group.
2) For any post-group $(G, \cdot, \triangleright)$ let $a \circ b=a \cdot(a \triangleright b)$. Then (G, \cdot, \circ) is a skew left brace.

In [4] were defined Rota-Baxter operators of weights ± 1 on a group.

Definition 2.3 [4]. Let G be a group.
(i) A map $B: G \rightarrow G$ is called a Rota-Baxter operator of weight 1 if

$$
B(g) B(h)=B\left(g B(g) h B(g)^{-1}\right), g, h \in G ;
$$

(ii) a map $C: G \rightarrow G$ is called a Rota-Baxter operator of weight -1 if

$$
C(g) C(h)=C\left(C(g) h C(g)^{-1} g\right), g, h \in G .
$$

A group endowed with an RB-operator is called a Rota-Baxter group (RB-group).
When we say on a Rota-Baxter operator we say on a Rota-Baxter operator of weight 1.
For two Rota-Baxter groups $\left(G, B_{G}\right)$ and $\left(H, B_{H}\right)$ a group homomorphism $\varphi: G \rightarrow H$ is called a homomorphism of Rota-Baxter groups, if the following diagram commutes:

It has been shown in [6], that for a Rota-Baxter group (G, B) and the binary operation \circ_{B}, defined as

$$
\begin{equation*}
a \circ_{B} b=a B(a) b B(a)^{-1} \tag{2.1}
\end{equation*}
$$

the triple $\left(G, \cdot, \circ_{B}\right)$ is a skew left brace, which is called by RB skew left brace.
Proposition 2.4. The map from the category of Rota-Baxter groups to the category of skew left braces, given by equation (2.1), that acts trivially on homomorphisms, is a functor.

Proof. Let G and H be RotaBaxter groups, and $\varphi: G \rightarrow H$ a homomorphism of RotaBaxter groups. For any $a, b \in G$ we have

$$
\begin{gathered}
\varphi\left(a \circ_{G} b\right)=\varphi\left(a B_{G}(a) b B_{G}(a)^{-1}\right)=\varphi(a) \varphi B_{G}(a) \varphi(b)\left(\varphi B_{G}(a)\right)^{-1}= \\
=\varphi(a) B_{H}(\varphi(a)) \varphi(b) B_{H}(\varphi(a))^{-1}=\varphi(a) \circ_{H} \varphi(b)
\end{gathered}
$$

The next definition can be found in 9].
Definition 2.5. Let G and H be groups, and $\Psi: G \rightarrow$ Aut H is an action of G on H. A map $B: H \rightarrow G$ is called a relative Rota-Baxter operator (RRB-operator) on H with respect to (G, Ψ) if

$$
B(h) B(k)=B\left(h \Psi_{B(h)}(k)\right), \quad h, k \in H
$$

The quadruple (H, G, Ψ, B) is called a relative Rota-Baxter group.
Example 2.6. If $H=G$ and $\Psi: G \rightarrow \operatorname{Inn} G, \Psi_{g}=\Psi(g): x \mapsto g x g^{-1}, x \in G$, then

$$
B(h) B(k)=B\left(h B(h) k B(h)^{-1}\right), \quad h, k \in H,
$$

is the usual Rota-Baxter operator on G, and (G, B) is the Rota-Baxter group.

As in the case of Rota-Baxter groups, the operation

$$
h \circ_{B} k=h \Psi_{B(h)}(k), \quad h, k \in G,
$$

is a group operation on G (see [9, Proposition 3.5]).
The next question comes.

3. Rota-Baxter and Relative Rota-Baxter operators

3.1. Relative Rota-Baxter operators and semi-direct products. Recall that a semi-direct product $H \rtimes_{\Psi} G$ of groups G and H under the action $\Psi: G \rightarrow$ Aut H is the set of pairs

$$
H \times G=\{(h, a) \mid h \in H, a \in G\}
$$

with multiplication

$$
(h, a)(k, b)=\left(h \Psi_{a}(k), a b\right), h, k \in H, a, b \in G
$$

The following proposition shows that any RRB-operator defines RB-operator on a semidirect product.

Proposition 3.1. Let (H, G, Ψ, B) be a relative Rota-Baxter group. Then the operator

$$
B^{\prime}: H \rtimes_{\Psi} G \rightarrow H \rtimes_{\Psi} G, B^{\prime}((h, a))=\left(e, a^{-1} B(h)\right), h \in H, a \in G,
$$

is a Rota-Baxter operator on the semi-direct product $H \rtimes_{\Psi} G$.
Proof. We need to check the equality

$$
B^{\prime}(u) B^{\prime}(v)=B^{\prime}\left(u B^{\prime}(u) v B^{\prime}(u)^{-1}\right), u, v \in H \rtimes_{\Psi} G .
$$

If $u=(h, a), v=(k, b), h, k \in H, a, b \in G$, then the left hand side,

$$
\begin{aligned}
& B^{\prime}(u) B^{\prime}(v)=B^{\prime}((h, a)) B^{\prime}((k, b))=\left(e, a^{-1} B(h)\right)\left(e, b^{-1} B(k)\right)= \\
& \quad=\left(\Psi_{a^{-1} B(h)}(e), a^{-1} B(h) b^{-1} B(k)\right)=\left(e, a^{-1} B(h) b^{-1} B(k)\right) .
\end{aligned}
$$

The right hand side,

$$
\begin{gathered}
B^{\prime}\left(u B^{\prime}(u) v B^{\prime}(u)^{-1}\right)=B^{\prime}\left((h, a) B^{\prime}((h, a))(k, b) B^{\prime}((h, a))^{-1}\right)= \\
=B^{\prime}\left(\left(h \Psi_{a}(e), B(h)\right)\left(k \Psi_{b}(e), b B(h)^{-1} a\right)\right)=B^{\prime}\left(\left(h \Psi_{B(h)}\left(k \Psi_{b}(e)\right), B(h) b B(h)^{-1} a\right)\right) \\
=B^{\prime}\left(\left(h \Psi_{B(h)}(k), B(h) b B(h)^{-1} a\right)\right)=\left(e, a^{-1} B(h) b^{-1} B(h)^{-1} B\left(h \Psi_{B(h)}(k)\right)\right) .
\end{gathered}
$$

Comparing the left hand side and right hand side, we get

$$
a^{-1} B(h) b^{-1} B(k)=a^{-1} B(h) b^{-1} B(h)^{-1} B\left(h \Psi_{B(h)}(k)\right) .
$$

Hence,

$$
B(h) B(k)=B\left(h \Psi_{B(h)}(k)\right), h, k \in H .
$$

Since B is a RRB-operator on H, this equality holds.

We will now present a construction that allows one to build relative Rota-Baxter operators using Rota-Baxter operators on semi-direct products.

Let $H \rtimes_{\Psi} G$ be a semi-direct product of groups H and G with respect to some left action Ψ of G on H. Let $B: H \rtimes_{\Psi} G \rightarrow H \rtimes_{\Psi} G$ be a Rota-Baxter operator. Consider the projections $\pi_{H}: H \rtimes_{\Psi} G \rightarrow H$ and $\pi_{G}: H \rtimes_{\Psi} G \rightarrow G$, as well as the restriction

$$
\left.B\right|_{H}: H \rightarrow H \rtimes_{\Psi} G
$$

of B to H. Note that π_{H} is not necessarily a group homomorphism and the image of $\left.B\right|_{H}$ does not necessary lie in H.

The next theorem gives possibilities to construct RRB-operators, using RB-operators on semi-direct products. Constructions of RB-operators on semi-direct and, in particular, on direct products of groups can be found in [6].

Theorem 3.2. Let $B: H \rtimes_{\Psi} G \rightarrow H \rtimes_{\Psi} G$ be a Rota-Baxter operator. If the image of the map $\left.\pi_{H} B\right|_{H}$ lies in the center of H, then the composition

$$
\left.\pi_{G} B\right|_{H}: H \rightarrow G
$$

is a relative Rota-Baxter operator with respect to (G, Ψ).
Proof. Let $h, k \in H$. Since B is a Rota-Baxter operator, we have

$$
B(h) B(k)=B\left(h B(h) k B(h)^{-1}\right) .
$$

Now, express B as a product of $\pi_{H} B$ and $\pi_{G} B$. We have
$B(h) B(k)=\pi_{H} B(h) \pi_{G} B(h) \pi_{H} B(k) \pi_{G} B(k)=\pi_{H} B(h) \pi_{H} B(k)^{\left(\pi_{G} B(h)\right)^{-1}} \cdot \pi_{G} B(h) \pi_{G} B(k)$ and
$B\left(h B(h) k B(h)^{-1}\right)=\pi_{H} B\left(h B(h) k B(h)^{-1}\right) \cdot \pi_{G} B\left(h \pi_{H} B(h) \pi_{G} B(h) k \pi_{G} B(h)^{-1} \pi_{H} B(h)^{-1}\right)$.
Since a semi-direct product of groups is a direct product of sets, $a=b$ if and only if $\pi_{H}(a)=\pi_{H}(b)$ and $\pi_{G}(a)=\pi_{G}(b)$. By applying this reasoning to expressions (3.1) and (3.2), we obtain:

$$
\pi_{G} B(h) \pi_{G} B(k)=\pi_{G} B\left(h \pi_{H} B(h) \pi_{G} B(h) k \pi_{G} B(h)^{-1} \pi_{H} B(h)^{-1}\right) .
$$

Note that $\pi_{H} B(h) \in Z(H)$, and that $\pi_{G} B(h) k \pi_{G} B(h)^{-1}=\Psi_{\pi_{G} B(h)}(k) \in H$. We can now simplify:

$$
\pi_{G} B\left(h \pi_{H} B(h) \pi_{G} B(h) k \pi_{G} B(h)^{-1} \pi_{H} B(h)^{-1}\right)=\pi_{G} B\left(h \Psi_{\pi_{G} B(h)}(k)\right)
$$

and obtain

$$
\pi_{G} B(h) \pi_{G} B(k)=\pi_{G} B\left(h \Psi_{\pi_{G} B(h)}(k)\right),
$$

which shows that $\left.\pi_{G} B\right|_{H}$ is indeed a relative Rota-Baxter operator.
We will now provide an example that shows that a Rota-Baxter operator on $H \rtimes_{\Psi} G$ does not necessarily commute with the projection $\pi_{G}: H \rtimes_{\Psi} G \rightarrow G$, and thus, does not necessarily induce a Rota-Baxter operator on G.

Example 3.3. For the group $S_{3}=A_{3} \rtimes\left\langle s_{1}\right\rangle$ consider the Rota-Baxter operator $B: S_{3} \rightarrow$ S_{3}, defined as

$$
\begin{array}{rrrl}
B(1)=1, & B\left(s_{1}\right)=s_{1} s_{2}, & B\left(s_{2}\right)=1, \\
B\left(s_{1} s_{2}\right)=s_{2} s_{1}, & B\left(s_{2} s_{1}\right)=s_{1} s_{2}, & B\left(s_{1} s_{2} s_{1}\right)=s_{2} s_{1} .
\end{array}
$$

Note that $\pi_{\left\langle s_{1}\right\rangle}\left(B\left(s_{1}\right)\right)=\pi_{\left\langle s_{1}\right\rangle}\left(s_{1} s_{2}\right)=1$ and $B\left(\pi_{\left\langle s_{1}\right\rangle}\left(s_{1}\right)\right)=B\left(s_{1}\right)=s_{1} s_{2}$, which means that $\pi_{\left\langle s_{1}\right\rangle} B \neq B \pi_{\left\langle s_{1}\right\rangle}$.

We will now provide an example, that shows, the the construction of Theorem 3.2 can map different Rota-Baxter operators to the same relative Rota-Baxter operator.
Example 3.4. Let G and H be groups, and H be abelian. Let Ψ be an action of G on H. Define Rota-Baxter operators B_{-1} and B_{e} on $H \rtimes G$ by the following way: $B_{-1}(x)=x^{-1}$, $B_{e}(x)=e$. In general, the Rota-Baxter groups, defined by these operators, are not isomorphic, which can be checked by applying Proposition 2.4. Note that the image of $\left.\pi_{H} B_{-1}\right|_{H}$ lies in the center of H, because $H=Z(H)$, and the image of $\left.\pi_{H} B_{e}\right|_{H}$ is trivial. At the same time,

$$
\pi_{G} B_{-1}(h)=\pi_{G}\left(h^{-1}\right)=e=\pi_{G} B_{e}(h),
$$

which means that the relative Rota-Baxter operators, obtained by applying Theorem 3.2 to operators B_{-1} and B_{e}, are equal.

By analogy with RB-operators of weight -1 (see Definition 2.3) we introduce RRBoperators of weight -1 .

Definition 3.5. Let G and H be groups and $\Psi: G \rightarrow$ Aut H be an action of G on H. A map $C: H \rightarrow G$ is called a relative Rota-Baxter operator of weight -1 with respect to (G, Ψ), if

$$
C(h) \cdot C(k)=C\left(\Psi_{C(h)}(k) \cdot h\right), h, k \in H
$$

Proposition 3.6. Let G and H be groups, $\Psi: G \rightarrow$ Aut H be an action, and $B: H \rightarrow G$ be a relative Rota-Baxter operator. Then

1) the map C, defined as $C(h)=B\left(h^{-1}\right), h \in H$ is a relative Rota-Baxter operator of weight -1 .
2) If $\varphi \in \operatorname{Aut} H, \psi \in \operatorname{Aut} G$, and for any $g \in G$ the following equality holds:

$$
\varphi^{-1} \Psi_{g} \varphi=\Psi_{\psi(g)}
$$

then the composition $\psi B \varphi$ is a relative Rota-Baxter operator.
Proof. 1) We can check directly: for any $h, k \in H$ we have

$$
C(h) C(k)=B\left(h^{-1}\right) B\left(k^{-1}\right)=B\left(h^{-1} \Psi_{B\left(h^{-1}\right)}\left(k^{-1}\right)\right)=\left(\left(\Psi_{C(h)}(k) h\right)^{-1}\right)=C\left(\Psi_{C}(h)(k) h\right) .
$$

2) For any $h, k \in H$ we have

$$
\psi B \varphi(h) \cdot \psi B \varphi(k)=\psi B\left(\varphi(h) \Psi_{B \varphi(h)}(\varphi(k))\right)=\psi B \varphi\left(h \varphi^{-1} \Psi_{B \varphi(h)}(\varphi(k))\right)=\psi B \varphi\left(h \Psi_{\psi B \varphi(h)}(k)\right) .
$$

Corollary 3.7. Let (H, G, Ψ, B) be a relative Rota-Baxter group and $\varphi \in Z($ Aut $H)$. Then $(H, G, \Psi, B \varphi)$ is a relative Rota-Baxter group.

Proof. For any $g \in G$ the automorphism $\Psi_{g} \in \operatorname{Aut} H$ commutes with φ, and we have $\varphi^{-1} \Psi \varphi=\Psi_{g}$. Therefore, $\psi B \varphi$ is a relative Rota-Baxter operator, where ψ is the identity automorphism.

4. Skew braces from RB- and RRB-operators

As we know (see Section (2), if (G, \cdot) is a group, $B: G \rightarrow G$ is a RB-operator, then $\left(G, \cdot, \circ_{B}\right)$ is a skew left brace, which is called a Rota-Baxter skew left brace, where

$$
a \circ_{B} b=a B(a) b B(a)^{-1}, a, b \in G .
$$

The following lemma is evident.
Lemma 4.1. If (G, \cdot) is an abelian group, then

1) any RB-operator on G is an endomorphism,
2) Any Rota-Baxter skew left brace (G, \cdot, \circ_{B}) is trivial which means $a \circ_{B} b=a \cdot b$ for any $a, b \in G$.

Theorem 4.2 [1]. Let $B: H \rightarrow G$ be a relative Rota-Baxter operator with respect to (G, Ψ). Put

$$
h \triangleright k=\Psi_{B(h)}(k) .
$$

for any $h, k \in H$. Then $(H, \cdot, \triangleright)$ is a post-group.
From Theorem 4.2 and Theorem 2.2 (see, also [11, Proposition 3.5]) it follows that if we define a new operation $\circ_{B}: H \rightarrow H$,

$$
h \circ_{B} k=h \Psi_{B(h)}(k), h, k \in H,
$$

using a relative Rota-Baxter operator $B: H \rightarrow G$ with respect to (G, Ψ), then $\left(H, \cdot, \circ_{B}\right)$ is a skew left brace. The following example compares construction of RB skew left braces and RRB skew left braces.

Example 4.3. Let $H=\mathbb{Z}_{4}$ be a cyclic group of order 4. Then, by Lemma 4.1(1) there are following RB-operators on \mathbb{Z}_{4} :

1) $B_{0}(h)=0$ for any $h \in H$;
2) B_{-1}, which acts by the rules $0 \mapsto 0,1 \mapsto 3,2 \mapsto 2,3 \mapsto 1$;
3) B_{2}, which acts by the rules $0 \mapsto 0,1 \mapsto 2,2 \mapsto 0,3 \mapsto 2$.

By Lemma 4.1(2), on \mathbb{Z}_{4} there exists only trivial RB skew left brace.
Now, let us construct relative Rota-Baxter skew left braces on $H=\mathbb{Z}_{4}$ with respect to $\left(G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \Psi\right)$. Note that Aut $\mathbb{Z}_{4}=\{\varepsilon,-\varepsilon\}$, where $\varepsilon=\mathrm{id}$ and $-\varepsilon(g)=-g$ for any $g \in \mathbb{Z}_{4}$. Let $\Psi: \mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4}$ be defined by the following way:

$$
\Psi(0,0)=\varepsilon ; \Psi(1,0)=-\varepsilon ; \Psi(0,1)=\varepsilon ; \Psi(1,1)=-\varepsilon
$$

Define $B: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ as follows:

$$
B(0)=(0,0), B(1)=(1,0), B(2)=(0,1), B(3)=(1,1)
$$

One can check that B is a relative Rota-Baxter operator with respect to (G, Ψ) and by applying Theorems 4.2 and 2.2 to the operator B, we get a skew left brace $\left(\mathbb{Z}_{4},+, \circ_{B}\right)$, where $\left(\mathbb{Z}_{4},+\right) \cong \mathbb{Z}_{4}$ and $\left(\mathbb{Z}_{4}, \circ_{B}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Hence, using RRB-operators we can construct more skew braces, than using only RBoperators.

It is interesting to generalize this example, by taking $H=\mathbb{Z}_{p^{2}}, G=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, where p is a prime number. The following theorem shows that for $p>2$ the set of skew left braces which can be defined on H using RRB-operators of the form $B: \mathbb{Z}_{p^{2}} \rightarrow \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ is the same as using RB-operators $B^{\prime}: \mathbb{Z}_{p^{2}} \rightarrow \mathbb{Z}_{p^{2}}$.
Theorem 4.4. Let p be a prime number and $\Psi: \mathbb{Z}_{p} \times \mathbb{Z}_{p} \rightarrow$ Aut $\mathbb{Z}_{p^{2}}$ be a group homomorphism. For any $b_{1}, b_{p} \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}$, there is no more than one relative Rota-Baxter operator $B: \mathbb{Z}_{p^{2}} \rightarrow \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ such that $B(1)=b_{1}$ and $B(p)=b_{p}$.

Moreover, if $p>2$, then any relative Rota-Baxter operator $B: \mathbb{Z}_{p^{2}} \rightarrow \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ is a homomorphism.
Proof. Since Aut $\mathbb{Z}_{p^{2}}$ is a group of order $p(p-1)$, then Aut $\mathbb{Z}_{p^{2}} \simeq Z_{p} \times A$, where A is an abelian group of order $p-1$. Let us consider an automorphism χ_{k} of a group $\mathbb{Z}_{p^{2}}$ defined as

$$
\chi_{k}: 1 \mapsto k p+1
$$

then χ_{k} is an element of order p i.e.

$$
(k p+1)^{p}=(k p)^{p}+C_{p}^{1}(k p)^{p-1}+\ldots+C_{p}^{p-2}(k p)^{2}+C_{p}^{p-1} k p+1, \text { where } C_{m}^{l}=\frac{m!}{l!(m-l)!}
$$

All elements of the sum above obviously divided by p^{2} except 1 . Thus χ_{k} is an element of order p. And there is only p such elements (we can take $k=0,1, \ldots, p-1$).

It follows that any action $\Psi: \mathbb{Z}_{p} \times \mathbb{Z}_{p} \rightarrow$ Aut $\mathbb{Z}_{p^{2}}$ has the form

$$
\Psi_{\left(n_{1}, n_{2}\right)} x=\left(p\left(k_{1} n_{1}+k_{2} n_{2}\right)+1\right) x
$$

where the numbers $k_{1}, k_{2} \in\{0,1, \ldots, p-1\}$ define the action.
Now fix the action Ψ and suppose that $B: \mathbb{Z}_{p^{2}} \rightarrow \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ is a relative Rota-Baxter operator, where $B(x)=\left(x_{1}, x_{2}\right)$ for some $x_{1}, x_{2} \in \mathbb{Z}_{p}$. Let • denote the scalar multiplication of vectors from \mathbb{Z}_{p}^{2}, i.e. $\left(a_{1}, a_{2}\right) \cdot\left(b_{1}, b_{2}\right)=a_{1} b_{1}+a_{2} b_{2}$. Also, define a function $t: \mathbb{Z}_{p^{2}} \rightarrow p \mathbb{Z}_{p^{2}}$ as

$$
t(x)=p B(x) \cdot\left(k_{1}, k_{2}\right)=p\left(k_{1} x_{1}+k_{2} x_{2}\right)
$$

Note that $\Psi_{B(x)} y=(t(x)+1) y$ and since B is a relative Rota-Baxter operator, we have

$$
B(x)+B(y)=B\left(x+\Psi_{B}(x) y\right)=B(x+y+t(x) y)
$$

Using the fact that $t(x)$ is divisible by p, we can write

$$
B(x)+B(p y)=B(x+p y+p t(x) y)=B(x+p y)
$$

It follows that the restriction $\left.B\right|_{p \mathbb{Z}_{p^{2}}}$ is a homomorphism.
We will now prove by induction over n that

$$
n B(x)=B\left(\frac{(t(x)+1)^{n}-1}{t(x)} x\right)
$$

Indeed, for $n=1$ we have $B(x)=B(x)$, and if the statement holds for $n-1$, then

$$
\begin{gathered}
B(x)+(n-1) B(x)=B\left(x+(t(x)+1) \frac{(t(x)+1)^{n-1}-1}{t(x)} x\right)= \\
=B\left(x+\frac{(t(x)+1)^{n}-t(x)-1}{t(x)} x\right)=B\left(x+\frac{(t(x)+1)^{n}-t(x)-1}{t(x)} x\right)= \\
=B\left(\frac{(t(x)+1)^{n}-1}{t(x)} x\right) .
\end{gathered}
$$

Now note that

$$
\frac{(1+t(x))^{n}-1}{t(x)}=n+\sum_{i=2}^{n} C_{n}^{i} t(x)^{i-1} .
$$

We now have

$$
n B(x)=B(n x+p s(x, n) x)=B(n x)+B(p s(x, n) x)
$$

Note that $\left.B\right|_{p_{\mathbb{Z}_{p^{2}}}}$ is a homomorphism of abelian groups, and we can by extension treat it as a homomorphism of $\mathbb{Z}_{p^{2}}$-modules. We can thus write

$$
B(p s(x, n) x)=s(x, n) x B(p) \text { and } B(n x)=n B(x)-s(x, n) x B(p)
$$

By substituting $x=1$, we obtain

$$
\begin{equation*}
B(n)=n B(1)-s(1, n) B(p) \tag{4.1}
\end{equation*}
$$

Note that $s(1, n)$ can be calculated knowing only $B(1)$ and the action Ψ, so we have proven that for any given action, the values of $B(1)$ and $B(p)$ define a unique relative Rota-Baxter operator.

Now let $p>2$. Note that $C_{p}^{2}=\frac{p!}{2!(p-2)!}$ is divisible by p. Since $t(x)$ is also divisible by p, it follows that $\sum_{i=2}^{p} C_{p}^{i} t(x)^{i-1}$ is divisible by p^{2}. On one hand, $p B(x)=0$, and on the other hand,

$$
p B(x)=B\left(p x+\sum_{i=2}^{p} C_{p}^{i} t(x)^{i-1}\right)=B(p x)
$$

It follows that $B(p x)=0$ for any x, so $\left.B\right|_{p \mathbb{Z}_{p^{2}}}$ is a zero homomorphism, and in turn,

$$
n B(1)=B(n)-s(1, n) B(p)=B(n)
$$

which means that B is a homomorphism.

Question 4.5. Let us define a Rota-Baxter operator (RB-operator) on a skew left brace as a map which is a Rota-Baxter operator on both groups of skew left brace. Find RotaBaxter operators on skew left braces. If we are considering RB-operators on a left brace $(G,+, \circ)$, then on the group $(G,+)$ it is an endomorphism.

5. Skew left braces, nilpotent groups and the YBE

5.1. λ-homomorphic skew left braces. Consider a particular type of skew left braces, which was introduced in [2]. A skew left brace (G, \cdot, \circ) is called λ-homomorphic, if $\lambda:(G, \cdot) \rightarrow \operatorname{Aut}(G, \cdot)$ is a group homomorphism. The main idea for the introduction of λ-homomorphic skew left braces is the following. If we take a group G with a generating set A, and define a map $\lambda: A \rightarrow \operatorname{Aut}(G)$, then we can extend it on all elements of G. Under some conditions this map $\lambda: G \rightarrow \operatorname{Aut}(G)$ is a λ-map of a skew left brace (G, \cdot, \circ), where the second operation is defined by the rule

$$
a \circ b=a \cdot \lambda_{a}(b), a, b \in G .
$$

Class of λ-homomorphic skew left braces is not a big class, but it has a good description. More precisely, any λ-homomorphic skew left brace is metatrivial that means that it is an extension of one trivial skew left brace by another trivial skew left brace (see [2]).

We introduce the following definition.
Definition 5.1. A post-group $(G, \cdot, \triangleright)$ is said to be a homomorphic post-group if it satisfies the identity

$$
(a \cdot b) \triangleright c=(a \triangleright c) \cdot(b \triangleright c)
$$

for all $a, b, c \in G$.
Note that the condition $(a \cdot b) \triangleright c=(a \triangleright c) \cdot(b \triangleright c)$ is the right distributivity.
By applying Theorem 2.2 to λ-homomorphic skew left braces we obtain the following result.

Proposition 5.2. Let (G, \cdot, \circ) be a λ-homomorphic skew left brace. Then the post-group $(G, \cdot, \triangleright)$ has the following properties:

1) $(G, \cdot, \triangleright)$ is a homomorphic post-group.
2) $[a, b, c]=a \triangleright c$, where $[a, b, c]$ is the associator:

$$
[a, b, c]:=(a \triangleright(b \triangleright c)) \cdot((a \triangleright b) \triangleright c)^{-1} .
$$

Proof. 1) Follows from

$$
(a \cdot b) \triangleright c=\lambda_{a \cdot b}(c)=\lambda_{a}(c) \cdot \lambda_{b}(c)=(a \triangleright c) \cdot(b \triangleright c) .
$$

2) We have

$$
(a \triangleright c) \cdot((a \triangleright b) \triangleright c)=(a \cdot(a \triangleright b)) \triangleright c=a \triangleright(b \triangleright c),
$$

where the first equality follows from the definition of a homomorphic post-group and the second one follows from the definition of post-group (see Definition 2.1).

We will now use Theorem 2.2 to construct a particular class of skew left braces on two-step nilpotent groups.

Proposition 5.3. 1) For a group (G, \cdot) let $a \triangleright b=a^{-1} b a$. Then $(G, \cdot, \triangleright)$ is a post-group.
2) For a two-step nilpotent group (G, \cdot) and $n \in \mathbb{Z} \backslash\{0\}$ let $a \triangleright b=a^{-n} b a^{n}$. Then $(G, \cdot, \triangleright)$ is a post-group.

Proof. Since conjugation by an element is always an automorphism of the group, we only have to show that $a \triangleright(b \triangleright c)=(a(a \triangleright b)) \triangleright c$.

1) If $a \triangleright b=a^{-1} b a$, then

$$
a \triangleright(b \triangleright c)=a^{-1} b^{-1} c b a,
$$

and

$$
(a(a \triangleright b)) \triangleright c=(b a) \triangleright c=a^{-1} b^{-1} c b a .
$$

2) If G is a two-step nilpotent group and $a \triangleright b=a^{-n} b a^{n}=b[b, a]^{n}$, then we have

$$
a \triangleright(b \triangleright c)=a \triangleright\left(c[c, b]^{n}\right)=c[c, b]^{n}\left[c[c, b]^{n}, a\right]=c[c, b]^{n}[c, a]^{n}[[c, b], a]^{n}=c[c, b]^{n}[c, a]^{n},
$$

and

$$
(a(a \triangleright b)) \triangleright c=\left(a b[b, a]^{n}\right) \triangleright c=c\left[c, a b[b, a]^{n}\right]^{n}=c[c, b]^{n}[c, a]^{n}\left[c,[b, a]^{n}\right]^{n}=c[c, b]^{n}[c, a]^{n} .
$$

Let G be a two-step nilpotent group and $a \triangleright b=a^{-n} b a^{n}$ for some integer n. By Proposition 5.3, $(G, \cdot, \triangleright)$ is a post-group. By Theorem [2.2, (G, \cdot, \circ) is a skew left brace, where

$$
a \circ b=a \cdot(a \triangleright b)=a a^{-n} b a^{n}=a b[b, a]^{n} .
$$

The following statement holds for the group (G, \circ)
Proposition 5.4. The group (G, \circ) defined above is two-step nilpotent.
Proof. Note that the inverse element with respect to the operation o is the same element as the inverse with respect to the operation \cdot. Indeed, $a^{-1} \circ a=a^{-1} a\left[a, a^{-1}\right]^{n}=e$. Denote by $[a, b]$ 。 the commutator with respect to the operation \circ :
$[a, b]_{\circ}=a^{-1} \circ b^{-1} \circ a \circ b=\left(a^{-1} b^{-1}\left[b^{-1}, a^{-1}\right]^{n}\right) \circ\left(a b[b, a]^{n}\right)=\left(a^{-1} b^{-1}[b, a]^{n}\right) \circ\left(a b[b, a]^{n}\right)=$ $=a^{-1} b^{-1}[b, a]^{n} a b[b, a]^{n}\left[a b[b, a]^{n}, a^{-1} b^{-1}[b, a]^{n}\right]^{n}=[a, b][b, a]^{2 n}\left[b a[a, b],(b a)^{-1}\right]=[b, a]^{2 n-1}$.
Now we can see that $\left[[a, b]_{\circ}, c\right]_{\circ}=\left[c,[b, a]^{2 n-1}\right]^{2 n-1}=[c,[b, a]]^{(2 n-1)^{2}}=e$ for any $a, b, c \in$ G, which means that the group (G, \circ) is two-step nilpotent.

It is easy to show that (G, \circ) is not necessarily isomorphic to (G, \cdot). Indeed, if (G, \cdot) satisfies the relation $[a, b]^{2 n-1}=e$ for any a and b, then $[a, b]_{\circ}=[a, b]^{1-2 n}=e$, hence the group (G, \circ) has to be abelian. With n not equal to 0 or 1 , groups that satisfy the relation $[a, b]^{2 n-1}=e$ do not have to be abelian.

Proposition 5.5. A skew left brace constructed above is a λ-homomorphic skew left brace.

Proof. We have to prove that the λ-map which corresponds to skew left brace (G, \cdot, \circ) is a homomorphism $\lambda:(G, \cdot) \rightarrow \operatorname{Aut}(G, \cdot)$. By the formula after Proposition 5.3, the new product is

$$
a \circ b=a a^{-n} b a^{n} .
$$

Hence, $\lambda_{a}(b)=a^{-1} \cdot(a \circ b)=a^{-n} b a^{n}$ and we have

$$
\lambda_{a}\left(\lambda_{b}(c)\right)=\lambda_{a}\left(b^{-n} c b^{n}\right)=a^{-n} b^{-n} c b^{n} a^{n} .
$$

On the other side,

$$
\lambda_{a b}(c)=(a b)^{-n} c(a b)^{n}=a^{-n} b^{-n}[a, b]^{-n(n-1) / 2} c b^{n} a^{n}[a, b]^{n(n-1) / 2}=a^{-n} b^{-n} c b^{n} a^{n}
$$

Comparing with the previous formula, we see that $\lambda_{a} \lambda_{b}=\lambda_{a b}$ for any $a, b \in G$. It means that λ is a homomorphism.
5.2. Verbal solutions of the Yang-Baxter equation. Let X be a nonempty set and $S: X^{2} \rightarrow X^{2}$. The map S is called a solution of the Yang-Baxter equation on X, if

$$
S_{1} S_{2} S_{1}=S_{2} S_{1} S_{2}
$$

where $S_{1}=S \times \mathrm{Id}, S_{2}=\mathrm{Id} \times S$.
The following theorem allows us to use skew left braces in order to obtain solutions of the Yang-Baxter equation.

Theorem 5.6 [3]. Let (G, \cdot, \circ) be a skew left brace. Then the map $S: G^{2} \rightarrow G^{2}$, defined as

$$
S(a, b)=\left(\lambda_{a}(b), \overline{\lambda_{a}(b)} \circ a \circ b\right)
$$

where \bar{x} is the inverse of x with respect to the operation \circ, is a solution of the Yang-Baxter equation on the set G.

In the previous section we constructed some skew left braces on nilpotent groups. We will now proceed to use Theorem [2.2, and 5.6 to construct solutions to the Yang-Baxter equation on two-step nilpotent groups. We will now explore verbal solutions of the YangBaxter equation on two-step nilpotent groups.

Definition 5.7. For a group G, a map $\varphi: G^{n} \rightarrow G$ is called a verbal map if there is a group word $w=w\left(x_{1}, \ldots, x_{n}\right)$ on n letters such that for any $g_{1}, \ldots, g_{n} \in G$ we have $\varphi\left(g_{1}, \ldots, g_{n}\right)=w\left(g_{1}, \ldots, g_{n}\right)$.

For any group word w we will denote the verbal map obtained in this way by φ_{w}.
Definition 5.8. Let G be a group. A solution S of the Yang-Baxter equation on G is called a verbal solution if there are group words w_{1} and w_{2} such that $S=\varphi_{w_{1}} \times \varphi_{w_{2}}$.

Note that in a two-step nilpotent group G any verbal map φ has a nice standard form $\varphi(x, y)=x^{a} y^{b}[y, x]^{m}$, and that even though it needs not be a group homomorphism, it
has a well-defined abelianization $\varphi^{A b}(x, y)=x^{a} y^{b}$, and the following diagram commutes:

The following proposition is immediate from this:
Proposition 5.9. If $S=\varphi_{w_{1}} \times \varphi_{w_{2}}$ is a verbal solution of the Yang-Baxter equation on a two-step nilpotent group G, then $S^{A b}=\varphi_{w_{1}}^{A b} \times \varphi_{w_{2}}^{A b}$ is a verbal solution of the Yang-Baxter equation on $G^{A b}$.

Verbal maps $\left(G^{A b}\right)^{2} \rightarrow\left(G^{A b}\right)^{2}$ can be represented as matrices with integer coefficients, and for 2×2 matrices we can fully describe which of them satisfy the Yang-Baxter equation:

Theorem 5.10. Let M be a 2×2 matrix with coefficients in an integral domain R. The map from R^{2} to R^{2} defined by left multiplication by M is a solution of the Yang-Baxter equation on R if and only if M has at least one of the following forms:

$$
\left(\begin{array}{cc}
1-b c & b \\
c & 0
\end{array}\right) ;\left(\begin{array}{cc}
0 & b \\
c & 1-b c
\end{array}\right) ;\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right) ;\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Proof. We can write down the Yang-Baxter equation in the following form:

$$
\begin{aligned}
0=\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & a & b \\
0 & c & d
\end{array}\right)\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right)-\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & a & b \\
0 & c & d
\end{array}\right)\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & a & b \\
0 & c & d
\end{array}\right)= \\
& =\left(\begin{array}{ccc}
a(a+b c-1) & a b d & 0 \\
a c d & a d(d-a) & -a b d \\
0 & -a c d & -d(d+b c-1)
\end{array}\right)
\end{aligned}
$$

and obtain the following system of algebraic equations:

$$
\begin{aligned}
& a b d=0 ; \\
& a c d=0 ; \\
& a(a+b c-1)=0 ; \\
& d(d+b c-1)=0 ; \\
& a d(d-a)=0
\end{aligned}
$$

Since the coefficients are taken from a ring with no zero divisors, the solution of the system can be decomposed into a union of solutions of four simpler systems of equations:

1) $a=0, d=1-b c$;
2) $d=0, a=1-b c$;
3) $a=0, d=0$;
4) $b=0, c=0, a(a-1)=0, d(d-1)=0$.

Note that the solution of the system 4) is a union of 4 points, 3 of which are also solutions of 1), 2) or 3). With this in mind, 4) can be reduced to $a=1, b=1, c=0, d=0$, which completes the proof.

We will now investigate verbal solutions of the Yang-Baxter equation on two-step nilpotent groups. We are interested in such pairs of group words $w_{1}(x, y)=x^{a} y^{b}[y, x]^{m}$, $w_{2}(x, y)=x^{c} y^{d}[y, x]^{n}$ that the map $S=\varphi_{w_{1}} \times \varphi_{w_{2}}$ is a solution of the Yang-Baxter equation on any two-step nilpotent group G. If w_{1} and w_{2} are such words, then the maps $(S \times \operatorname{Id})(\operatorname{Id} \times S)(S \times \operatorname{Id})$ and $(\operatorname{Id} \times S)(S \times \operatorname{Id})(\operatorname{Id} \times S)$ from F^{3} to F^{3} must coincide for any free two-step nilpotent group F.

Abelianization of a free two-step nilpotent group is a free abelian group, so $S^{A b}$ must be a solution of the Yang-Baxter equation on \mathbb{Z}, and as such, the matrix $M_{S}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ must be of at least one of the forms listed in theorem 5.10. We will denote $S_{1}=S \times \mathrm{Id}$, $S_{2}=\mathrm{Id} \times S$ and write down the corresponding Yang-Baxter equation for each of these matrices with free parameters m and n.
Starting with $M_{S}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, we have

$$
\begin{aligned}
& S_{1} S_{2} S_{1}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=S_{1} S_{2}\left(\begin{array}{c}
x[y, x]^{m} \\
y[y, x]^{n} \\
z
\end{array}\right)=S_{1}\left(\begin{array}{c}
x[y, x]^{m} \\
y[y, x]^{n}[z, y]^{m} \\
z[z, y]^{n}
\end{array}\right)=\left(\begin{array}{c}
x[y, x]^{2 m} \\
y[y, x]^{2 n}[z, y]^{m} \\
z[z, y]^{n}
\end{array}\right) ; \\
& S_{2} S_{1} S_{2}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=S_{2} S_{1}\left(\begin{array}{c}
x \\
y[z, y]^{m} \\
z[z, y]^{n}
\end{array}\right)=S_{2}\left(\begin{array}{c}
x[y, x]^{m} \\
y[y, x]^{n}[z, y]^{m} \\
z[z, y]^{n}
\end{array}\right)=\left(\begin{array}{c}
x[y, x]^{m} \\
y[y, x]^{n}[z, y]^{2 m} \\
z[z, y]^{2 n}
\end{array}\right) .
\end{aligned}
$$

The Yang-Baxter equation here implies $n=0$ and $m=0$, so the only verbal solution corresponding to this matrix is

$$
S(x, y)=(x, y)
$$

Now assume $M_{S}=\left(\begin{array}{ll}0 & b \\ c & 0\end{array}\right)$. We have

$$
\begin{aligned}
& S_{1} S_{2} S_{1}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=S_{1} S_{2}\left(\begin{array}{c}
y^{b}[y, x]^{m} \\
x^{c}[y, x]^{n} \\
z
\end{array}\right)=S_{1}\left(\begin{array}{c}
y^{b}[y, x]^{m} \\
z^{b}[z, x]^{c m} \\
x^{c^{2}}[y, x]^{c n}[z, x]^{c n}
\end{array}\right)=\left(\begin{array}{c}
z^{b^{2}}[z, x]^{b c m}[z, y]^{b^{2} m} \\
y^{b c}[y, x]^{c m}[z, y]^{b^{2} n} \\
x^{c^{2}}[y, x]^{c n}[z, x]^{c n}
\end{array}\right) ; \\
& S_{2} S_{1} S_{2}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=S_{2} S_{1}\left(\begin{array}{c}
x \\
z^{b}[z, y]^{m} \\
y^{c}[z, y]^{n}
\end{array}\right)=S_{1}\left(\begin{array}{c}
z^{b^{2}}[z, x]^{b m}[z, y]^{b m} \\
x^{c}[z, x]^{b n} \\
y^{c}[z, y]^{n}
\end{array}\right)=\left(\begin{array}{c}
z^{b^{2}}[z, x]^{b m}[z, y]^{b m} \\
y^{b c}[y, x]^{c^{2} m}[z, y]^{b n} \\
x^{c^{2}}[y, x]^{c^{2} n}[z, x]^{b c n}
\end{array}\right) .
\end{aligned}
$$

The Yang-Baxter equation in this case is equivalent to the following system of algebraic equations:

$$
\begin{aligned}
b(c-1) m & =0 ; \\
b(b-1) m & =0 ; \\
c(c-1) m & =0 ; \\
b(b-1) n & =0 ; \\
c(c-1) n & =0 ; \\
c(b-1) n & =0 .
\end{aligned}
$$

For the sake of uniformity, we will rename the free parameters to u and v. With that in mind, the set of solutions to the system of algebraic equations above and the corresponding verbal solutions S is as follows:

$$
\begin{aligned}
& b=0, c=0: S(x, y)=\left([y, x]^{u},[y, x]^{v}\right) ; \\
& b=0, c=1, n=0: S(x, y)=\left([y, x]^{u}, x\right) \text {; } \\
& b=1, c=1: S(x, y)=\left(y[y, x]^{u}, x[y, x]^{v}\right) ; \\
& b=1, c=0, m=0: S(x, y)=\left(y,[y, x]^{u}\right) \text {; } \\
& m=0, n=0: S(x, y)=\left(y^{u}, x^{v}\right) .
\end{aligned}
$$

Now assume $M_{S}=\left(\begin{array}{cc}1-b c & b \\ c & 0\end{array}\right)$. Note that in a two-step nilpotent group the following expression holds:

$$
(x y)^{k}=x^{k} y^{k}[y, x]^{\frac{1}{2} k(k-1)},
$$

which can be proven by induction. Indeed, for $k=0$ the expression holds. If the expression holds for k, then

$$
(x y)^{k+1}=x^{k} y^{k} x y[y, x]^{\frac{1}{2} k(k-1)}=x^{k+1} y^{k+1}[y, x]^{\frac{1}{2} k(k-1)+k}=x^{k+1} y^{k+1}[y, x]^{\frac{1}{2}(k+1)(k+1-1)}
$$

and
$(x y)^{k-1}=x^{k} y^{k} y^{-1} x^{-1}[y, x]^{\frac{1}{2} k(k-1)}=x^{k-1} y^{k-1}[y, x]^{\frac{1}{2} k(k-1)-(k-1)}=x^{k-1} y^{k-1}[y, x]^{\frac{1}{2}(k-1)(k-2)}$.
Now, for the map S we have

$$
\begin{gathered}
S_{1} S_{2} S_{1}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=S_{1} S_{2}\left(\begin{array}{c}
x^{1-b c} y^{b}[y, x]^{m} \\
x^{c}[y, x]^{n} \\
z
\end{array}\right)=S_{1}\left(\begin{array}{c}
x^{1-b c} y^{b}[y, x]^{m} \\
\left(x^{c}[y, x]^{n}\right)^{1-b c} z^{b}\left[z, x^{c}\right]^{m} \\
x^{c^{2}}[y, x]^{c n}\left[z, x^{c}\right]^{n}
\end{array}\right)= \\
=S_{1}\left(\begin{array}{c}
x^{1-b c} y^{b}[y, x]^{m} \\
x^{c(1-b c)} z^{b}[y, x]^{(1-b c)^{n}}[z, x]^{c m} \\
x^{c^{2}}[y, x]^{c n}[z, x]^{c n}
\end{array}\right)= \\
=\left(\begin{array}{c}
\left(x^{1-b c} y^{b}[y, x]^{m}\right)^{1-b c}\left(x^{c(1-b c)} z^{b}[y, x]^{(1-b c) n}[z, x]^{c m}\right)^{b}\left[x^{c(1-b c)} z^{b}, x^{1-b c} y^{b}\right]^{m} \\
\left(x^{1-b c} y^{b}[y, x]^{m}\right)^{c}\left[x^{c(1-b c)} z^{b}, x^{1-b c} y^{b}\right]^{n} \\
x^{c^{2}}[y, x]^{c n}[z, x]^{n n}
\end{array}\right)= \\
=\left(\begin{array}{c}
x^{(1-b c)} y^{b(1-b c)} z^{b^{2}}[y, x]^{(1-b c) m+\frac{1}{2} b^{2} c(1-b c)^{2}+b(1-b c) n-b c(1-b c) m}[z, x]^{b c m+\frac{1}{2} b^{2} c(1-b c)(b-1)+b(1-b c) m}[z, y]^{b^{2} m} \\
x^{c(1-b c)} y^{b c}[y, x]^{m c+\frac{1}{2} b c(1-b c)(c-1)-b c(1-b c) n}[z, x]^{b(1-b c) n}[z, y]^{b^{2} n} \\
x^{c^{2}}[y, x]^{c n}[z, x]^{c n}
\end{array}\right) ;
\end{gathered}
$$

$$
\begin{aligned}
& S_{2} S_{1} S_{2}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=S_{2} S_{1}\left(\begin{array}{c}
x \\
y^{1-b c} z^{b}[z, y]^{m} \\
y^{c}[z, y]^{n}
\end{array}\right)=S_{2}\left(\begin{array}{c}
x^{1-b c}\left(y^{1-b c} z^{b}[z, y]^{m}\right)^{b}\left[y^{1-b c} z^{b}, x\right]^{m} \\
x^{c}\left[y^{1-b c} z^{b}, x\right]^{n} \\
y^{c}[z, y]^{n}
\end{array}\right)= \\
&= S_{2}\left(\begin{array}{c}
x^{(1-b c)} y^{b(1-b c)} z^{b^{2}}[y, x]^{(1-b c) m}[z, x]^{b m}[z, y]^{b m+\frac{1}{2} b^{2}(1-b c)(b-1)} \\
x^{c}[y, x]^{(1-b c) n}[z, x]^{b n} \\
y^{c}[z, y]^{n}
\end{array}\right)= \\
&=\left(\begin{array}{c}
x^{(1-b c)} y^{b(1-b c)} z^{b^{2}}[y, x]^{(1-b c) m}[z, x]^{b m}[z, y]^{b m+\frac{1}{2} b^{2}(1-b c)(b-1)} \\
\left(x^{c}[y, x]^{(1-b c) n}[z, x]^{b n}\right)^{1-b c}\left(y^{c}[z, y]^{n}\right)^{b}\left[y^{c}, x^{c}\right]^{m} \\
\left(x^{c}[y, x]^{(1-b c) n}[z, x]^{b n}\right)^{c}\left[y^{c}, x^{c}\right]^{n}
\end{array}\right)= \\
&=\left(\begin{array}{c}
x^{(1-b c)} y^{b(1-b c)} z^{b^{2}}[y, x]^{(1-b c) m}[z, x]^{b m}[z, y]^{b m+\frac{1}{2} b^{2}(1-b c)(b-1)} \\
x^{c(1-b c)} y^{(b c)}[y, x]^{(1-b c)^{2} n+c^{2} m}[z, x]^{b(1-b c) n}[z, y]^{b n} \\
x^{c^{2}}[y, x]^{c(1-b c) n+c^{2} n}[z, x]^{b c n}
\end{array}\right) .
\end{aligned}
$$

The Yang-Baxter equation in this case is equivalent to the following system of algebraic equations:

1) $(1-b c) m+\frac{1}{2} b^{2} c(1-b c)^{2}+b(1-b c) n-b c(1-b c) m-(1-b c) m=0$;
2) $b c m+\frac{1}{2} b^{2} c(1-b c)(b-1)+b(1-b c) m-b m=0 ;$
3) $b^{2} m-b m-\frac{1}{2} b^{2}(1-b c)(b-1)=0 ;$
4) $c m+\frac{1}{2} b c(1-b c)(c-1)-b c(1-b c) n=0$;
5) $b^{2} n-b n=0 ;$
6) $c n-c(1-b c) n-c^{2} n=0$;
7) $c n-b c n=0$.

Or, in an alternative form,

1) $b(1-b c)\left(\frac{1}{2} b c+n-c m\right)=0$;
2) $b c(b-1)\left(m+\frac{1}{2} b(1-b c)\right)=0$;
3) $b(b-1)\left(m-\frac{1}{2} b(1-b c)\right)=0$;
4) $\frac{1}{2} b c(1-b c)(c-1)-c(c-1) m-(1-b c) n=0$;
5) $b(b-1) n=0$;
6) $c^{2}(b-1) n=0$;
7) $c(b-1) n=0$.

Equations 5) - 7) all hold if and only if at least one of the following conditions is satisfied: either $b=c=0$, or $b=1$, or $n=0$. We will examine these three cases separately, making corresponding substitutions into equations 1)-4).

Case $b=c=0$. Equations 1)-3) hold automatically, and 4) is reduced to $n=0$. We have $1-b c=1$ and m a free parameter. This gives us the verbal solution

$$
S(x, y)=\left(x[x, y]^{u}, 1\right)
$$

Case $b=1$. Equations 2) and 3) hold automatically, and we are left with the system

$$
\begin{aligned}
& \text { 1) }(1-c)\left(\frac{1}{2} c+n-c m\right)=0 \\
& \text { 4) }(c-1)\left(-\frac{1}{2} c(c-1)+n-c m\right)
\end{aligned}
$$

If $c=1$, then the case is reduced to the previously examined case with the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. If $n=c m-\frac{1}{2} c$ and $n=c m+\frac{1}{2} c(c-1)$, then we have $c(c-1)+c=0$, hence $c=0$ and
$n=0$, and the case is reduced to a particular example of the case $n=0$, which we will examine next.

Case $n=0$. By substituting $n=0$ into equations 1) -4) we get the system

$$
\begin{aligned}
& \text { 1) } b c(1-b c)\left(\frac{1}{2} b-m\right)=0 \\
& \text { 2) } b c(b-1)\left(m+\frac{1}{2} b(1-b c)\right)=0 \\
& \text { 3) } b(b-1)\left(m-\frac{1}{2} b(1-b c)\right)=0 \\
& \text { 4) }-c(c-1)\left(m-\frac{1}{2} b(1-b c)\right)=0
\end{aligned}
$$

Equations 3) and 4) hold if and only if at least one of the following conditions holds: either $b, c \in\{0,1\}$, or $m=\frac{1}{2} b(1-b c)$.

If $b=c=0$ or $b=c=1$, the case is reduced to one of the previously examined cases. If $b=c-1=0$ or $c=b-1=0$, then equations 1) and 2) hold automatically, m stays a free parameter, and we get two new verbal solutions:

$$
\begin{aligned}
& S(x, y)=\left(x[y, x]^{u}, x\right) \\
& S(x, y)=\left(x y[y, x]^{u}, 1\right)
\end{aligned}
$$

If $m=\frac{1}{2} b(1-b c)$, then the system is further reduced to

$$
\begin{aligned}
& \text { 1) } \frac{1}{2} b^{3} c^{2}(1-b c)=0 \\
& \text { 2) } b^{2} c(b-1)(1-b c)=0
\end{aligned}
$$

which holds if and only if $b=0$ or $c=0$ or $1-b c=0$. If $1-b c=0$, then $m=0$, and the case is reduced to a previously examined case. If $b=0$, then $m=0, c$ is a free parameter, and we have the verbal solution

$$
S(x, y)=\left(x, x^{u}\right)
$$

Finally, if $c=0$, then m is a free parameter, $b=2 m$, and we have the verbal solution

$$
S(x, y)=\left(x y^{2 u}[y, x]^{u}, 1\right)
$$

As for the matrix $\left(\begin{array}{cc}0 & b \\ c & 1-b c\end{array}\right)$, we will obtain the corresponding verbal solutions by using the symmetries of the Yang-Baxter equation.
Lemma 5.11. Let X be a set and $S: X^{2} \rightarrow X^{2}$ is a solution of the Yang-Baxter equation on X. Then $S^{\sigma}=\sigma S \sigma$ is a solution of the Yang-Baxter equation on X, where $\sigma(x, y)=$ (y, x).

Proof. Define the map $\tau: X^{3} \rightarrow X^{3}$ the following way: $\tau(x, y, z)=(z, y, x)$. We can assume that $S(x, y)=(f(x, y), g(x, y))$. Then $S^{\sigma}(x, y)=(g(y, x), f(y, x))$. Note that

$$
\tau(S \times \mathrm{Id}) \tau(x, y, z)=\tau(f(z), g(y), x)=(x, g(y), f(z))=\left(\operatorname{Id} \times S^{\sigma}\right)(x, y, z)
$$

Similarly, we have $\tau(\operatorname{Id} \times S) \tau=S^{\sigma} \times \mathrm{Id}$. Now,

$$
\begin{aligned}
& \left(S^{\sigma} \times \mathrm{Id}\right)\left(\mathrm{Id} \times S^{\sigma}\right)\left(S^{\sigma} \times \mathrm{Id}\right)=\tau(\mathrm{Id} \times S)(S \times \mathrm{Id})(\mathrm{Id} \times S) \tau ; \\
& \left(\mathrm{Id} \times S^{\sigma}\right)\left(S^{\sigma} \times \mathrm{Id}\right)\left(\mathrm{Id} \times S^{\sigma}\right)=\tau(S \times \mathrm{Id})(\mathrm{Id} \times S)(S \times \mathrm{Id}) \tau,
\end{aligned}
$$

and since S is a solution of the Yang-Baxter equation, the right sides of these equalities coincide, and hence

$$
\left(S^{\sigma} \times \mathrm{Id}\right)\left(\operatorname{Id} \times S^{\sigma}\right)\left(S^{\sigma} \times \mathrm{Id}\right)=\left(\operatorname{Id} \times S^{\sigma}\right)\left(S^{\sigma} \times \mathrm{Id}\right)\left(\operatorname{Id} \times S^{\sigma}\right) .
$$

Corollary 5.12. If $S(x, y)=\left(x^{a} y^{b}[y, x]^{m}, x^{c} y^{d}[y, x]^{n}\right)$ is a verbal solution of the YangBaxter equation on a 2-step nilpotent group, then $\bar{S}(x, y)=\left(x^{d} y^{c}[y, x]^{d c-n}, x^{b} y^{a}[y, x]^{a b-m}\right)$ is also a verbal solution.

Now, by combining all the solutions obtained and applying the symmetries, we can finally formulate the theorem.

Theorem 5.13. If $\left(w_{1}, w_{2}\right)$ is a pair of group words on two letters such that for any two-step nilpotent group G the induced map $S: G^{2} \rightarrow G^{2}, S(x, y)=\left(w_{1}(x, y), w_{2}(x, y)\right)$ is a solution of the Yang-Baxter equation, then there are $u, v \in \mathbb{Z}$ such that $S(x, y)$ has one (or more) of the following forms:

$$
\begin{array}{ll}
S(x, y)=(x, y) ; & \\
S(x, y)=\left([y, x]^{u},[y, x]^{v}\right) ; & \\
S(x, y)=\left(y[y, x]^{u}, x[y, x]^{v}\right) ; & \\
S(x, y)=\left(y^{u}, x^{v}\right) ; & S(x, y)=\left(y,[y, x]^{u}\right) ; \\
S(x, y)=\left([y, x]^{u}, x\right) ; & S(x, y)=\left(y, y[y, x]^{u}\right) ; \\
S(x, y)=\left(x[y, x]^{u}, 1\right) ; & S(x, y)=\left(1, x y[y, x]^{u}\right) ; \\
S(x, y)=\left(x[y, x]^{u}, x\right) ; & S(x, y)=\left(y^{u}, y\right) ; \\
S(x, y)=\left(x y[y, x]^{u}, 1\right) ; & S(x, y)=\left(1, x^{2 u} y[y, x]^{u}\right) .
\end{array}
$$

Conversely, all of the maps above define verbal solutions of the Yang-Baxter equation on any two-step nilpotent group for any values of the parameters $u, v \in \mathbb{Z}$.

Acknowledgement. This work is supported by the Theoretical Physics and Mathematics Advancement Foundation BASIS No 23-7-2-14-1. The first author was supported by the state contract of the Sobolev Institute of Mathematics, SB RAS (No. I.1.5, project FWNF-2022-0009).

The authors thank V. Gubarev for useful discussions and suggestions.

REFERENCES

[1] C. Bai, L. Guo, Y. Sheng, R. Tang, Post-groups, (Lie-)Butcher groups and the Yang-Baxter equation, Mathematische Annalen, 2023, 1-41.
[2] V. G. Bardakov, M. V. Neshchadim, M. K. Yadav, On λ-homomorphic skew braces, Journal of Pure and Applied Algebra, 226(6) (2022), 106961.
[3] L. Guarnieri, L. Vendramin, Skew braces and the Yang-Baxter equation, Mathematics of Computation, 86(307) (2017), 2519-2534.
[4] L. Guo, H. Lang, and Yu. Sheng, Integration and geometrization of Rota-Baxter Lie algebras, Adv. Math., 387 (2021), 107834.
[5] V. G. Bardakov, V. Gubarev, Rota-Baxter operators on groups, Proc. Indian Acad. Sci. (Math. Sci.), 133, no. 4 (2023).
[6] V. G. Bardakov, V. Gubarev, Rota-Baxter groups, skew left braces, and the Yang-Baxter equation, J. Algebra, 596 (2022), 328-351.
[7] V. G. Bardakov, I. M. Nikonov, Relative Rota-Baxter operators on groups and Hopf algebras, arXiv:2311.09311.
[8] V. G. Bardakov, V. A. Bovdi, Rota-Baxter and Averaging operators on racks and rack algebras, Preprint, 2024.
[9] J. Jiang, Y. Sheng and C. Zhu, Lie theory and cohomology of relative Rota-Baxter operators, J. London Math. Soc., 109, no. 2 (2024).
[10] M. Goncharov, Rota-Baxter operators on cocommutative Hopf algebras, J. Algebra, 582, no. 1 (2021), 39-56.
[11] N. Rathee, M. Singh, Relative Rota-Baxter groups and skew left braces, arXiv:2305.00922v1.
[12] W. Rump, Braces, radical rings and the quantum Yang-Baxter equations, J. Algebra, 307 (2007), 153-170.

[^0]: Date: April 22, 2024.

