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Abstract
Virtual network embedding (VNE) is an essential
resource allocation task in network virtualization,
aiming to map virtual network requests (VNRs)
onto physical infrastructure. Reinforcement learn-
ing (RL) has recently emerged as a promising solu-
tion to this problem. However, existing RL-based
VNE methods are limited by the unidirectional ac-
tion design and one-size-fits-all training strategy,
resulting in restricted searchability and general-
izability. In this paper, we propose a FLexible
And Generalizable RL framework for VNE, named
FlagVNE. Specifically, we design a bidirectional
action-based Markov decision process model that
enables the joint selection of virtual and physical
nodes, thus improving the exploration flexibility of
solution space. To tackle the expansive and dy-
namic action space, we design a hierarchical de-
coder to generate adaptive action probability dis-
tributions and ensure high training efficiency. Fur-
thermore, to overcome the generalization issue for
varying VNR sizes, we propose a meta-RL-based
training method with a curriculum scheduling strat-
egy, facilitating specialized policy training for each
VNR size. Finally, extensive experimental results
show the effectiveness of FlagVNE across multiple
key metrics. Our code is available at GitHub1.

1 Introduction
Network virtualization (NV) emerges as a pioneering tech-
nology that facilitates dynamic management of Internet archi-
tecture, which finds applications in 5G networks and cloud
computing [Zhuang et al., 2020]. Through network slicing
and shared infrastructure, NV enables the deployment of mul-
tiple user-submitted virtual network requests (VNRs) within

∗Chao Wang and Hui Xiong are both corresponding authors
1https://github.com/GeminiLight/flag-vne

the same physical network, thereby accommodating diverse
network service requirements of users [Yang et al., 2021;
Chen et al., 2022b]. The primary challenge in NV involves
the embedding of VNRs within a physical network, known as
virtual network embedding (VNE), an NP-hard combinatorial
optimization problem [Rost and Schmid, 2020].

Effective resource allocation for VNRs is essential to im-
prove the quality of service and the revenue of Internet service
providers (ISPs) [Wang et al., 2021b; Chen et al., 2022a].
Regrettably, it is hard to address the VNE problem involv-
ing tackling combinatorial explosion and differentiated de-
mands [Fischer et al., 2013; Yang et al., 2022b]. On the one
hand, the solution space of VNE is extensive, encompass-
ing vast permutations of VNRs within the underlying phys-
ical network. Consequently, a comprehensive exploration of
this expansive solution space becomes imperative to deter-
mine superior solutions. On the other hand, due to specific
requirements of user service, the integration of diverse VNR
topologies and their associated resource demands is dynamic.
VNRs of varying sizes manifest unique complexities, render-
ing a one-size-fits-all strategy inadequate to effectively man-
age the inherent variability in such circumstances.

Recently, reinforcement learning (RL) has shown promis-
ing potential for the VNE problem [Yan et al., 2020; He et
al., 2023b; Zhang et al., 2023]. RL approaches model the
solution construction process of each VNR as Markov deci-
sion processes (MDPs), which can automatically build effi-
cient solving policies. Unlike supervised learning relying on
labeled data, RL facilitates the learning of effective heuristics
through interactions with the environment. However, most
existing RL-based VNE approaches are still plagued with
some significant issues. Firstly, these approaches commonly
adhere to a unidirectional action design within the MDP, i.e.,
presupposing a fixed decision sequence for virtual nodes, and
subsequently designating a physical node to host each virtual
node sequentially. Such unidirectional action schema signif-
icantly limits the available action space, consequently con-
straining the searchability of the agent and impeding the effi-
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cacy of exploring solution space. Secondly, conventional RL-
based methods usually just train a single general policy, dis-
regarding the distinctive complexities of VNRs with varying
sizes in practice. Treating variable-sized VNRs equally poses
challenges in achieving balanced learning of cross-size strate-
gic knowledge and hinders the ability to generalize across
VNRs of differing sizes. Thirdly, the direct training of mul-
tiple policies tailored to different VNR sizes slowly adapts
to unseen distributions. In particular, training specific poli-
cies for large-sized VNRs from scratch tends to be stuck in
the local optimum, due to the high complexity and challenges
in exploring feasible solutions. These difficulties inevitably
exert negative impacts on overall system performance. We
conduct a preliminary study to highlight our motivations and
latent challenges, which is detailed in Appendix A.

In this paper, we propose a novel FLexible And
Generalizable RL framework for the VNE problem, named
FlagVNE. Our framework aims to enhance the searchability
and generalizability of RL-based VNE methods while achiev-
ing rapid adaption to the unseen distribution of VNR sizes.
Specifically, our contributions are summarized as follows.
(1) We propose a bidirectional action-based MDP modeling
approach to enable the joint selection of virtual and physi-
cal nodes, enhancing the flexibility of agent exploration and
exploitation. This method offers superior searchability and
is proven theoretically. To handle the resulting large and
changeable action space, we abstract it as two dependent as-
pects and design a hierarchical decoder with a bilevel pol-
icy, ensuring adaptive action probability distribution gener-
ation and high training efficiency. (2) We propose a meta-
RL-based training method to enable efficient acquisition of
multiple size-specific policies and quick adaptation to new
sizes. A meta-policy is trained to grasp cross-size knowl-
edge for different VNR sizes and then fastly fine-tuned to
develop size-specific policies for each VNR size, even un-
seen sizes. Specially, due to difficult exploration and prone to
suboptimal convergence, using large-sized VNRs for initial
meta-learning yields inferior knowledge, impairing the meta-
policy and generalization. Thus, we develop a curriculum
scheduling strategy that gradually incorporates larger VNRs,
alleviating suboptimal convergence. (3) Finally, we conduct
experiments on the simulation platform to mimic various net-
work systems and extensive results demonstrate the superior-
ity of FlagVNE in terms of multiple key indicators, compared
to state-of-the-art (SOTA) heuristics and RL-based methods.

2 Related Work
In this section, we review the related work on VNE.

Traditional Methods for VNE. Initially, the VNE prob-
lem was tackled using exact methods such as integer lin-
ear programming [Shahriar et al., 2018], which provides
optimal solutions through exact solvers. However, these
exact algorithms proved impractical for real-world scenar-
ios due to their time-consuming nature. Thus, numerous
heuristic algorithms have been proposed to find solutions
in an acceptable time [Su et al., 2014; Jin et al., 2020;
Fan et al., 2023]. Among these approaches, node ranking is
a prevalent strategy, which ranks virtual and physical nodes
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Figure 1: An example of the VNE problem with multidimensional
resources. The numbers denote the unit counts of resources.

to determine the decision sequence and the matching prior-
ity, respectively. For example, [Zhang et al., 2018] ranked
nodes based on a node resource management (NRM) metric,
and [Fan et al., 2023] proposed a node essentiality assess-
ment (NEA) metric considering topology connectivity. Addi-
tionally, [Dehury and Sahoo, 2019] designed VNE algorithms
based on metaheuristics, such as particle swarm optimization
(PSO). However, these algorithms heavily rely on manual de-
signs and are usually tailored to specific scenarios, limiting
their performance in general cases.

Learning-based Methods for VNE. Recently, machine
learning techniques have been used to solve VNE, leading
to faster and more efficient solutions [Blenk et al., 2018;
Geng et al., 2023; He et al., 2023b]. Particularly, RL has
demonstrated significant potential as an intelligent decision-
making framework [Liu et al., 2023; Yang et al., 2022a],
which can effectively solve VNE with MDP modeling. In this
paper, we unify most existing RL-based methods [Xiao et al.,
2019; Wang et al., 2021c; Yan et al., 2020; Yao et al., 2020;
Zhang et al., 2022; Zhang et al., 2023] into a general frame-
work comprised of three key components: MDP modeling,
policy architecture, and training methods. These methods
model the process of VNE solution construction as unidi-
rectional action-based MDPs, where a physical node is cho-
sen to host a be-placing virtual node, and the decision se-
quence of virtual nodes is fixed. Then they build policy mod-
els with various neural networks and train a single general
policy to deal with VNRs of varying sizes. For instance,
[Xiao et al., 2019] used multilayer perception (MLP) as a
policy model and trained it with policy gradient (PG) algo-
rithm, [Zhang et al., 2023] designed a policy model with MLP
and graph convolutional network (GCN) [Kipf and Welling,
2017] and trained it with asynchronous advantage actor-critic
(A3C) [Mnih et al., 2016]. However, existing RL-based VNE
methods suffer from limited searchability and generalizability
due to their unidirectional action design and one-size-fits-all
training policy, ultimately affecting overall performance.

3 Preliminaries
3.1 Problem Definition
As shown in Fig. 1, in a practical network system, users’ ser-
vice requests arriving continuously are represented as VNRs.
We collect all VNRs with a set V . Mapping these VNRs onto



physical networks managed by ISPs is known as VNE, crucial
in managing the quality of various network services [Chen et
al., 2020; Wang et al., 2023a; Chen et al., 2022c].

System Modeling. Physical network is formulated as a
weighted undirected graph Gp = (N p,Lp), where N p is the
set of physical nodes, Lp is the set of physical links. Each
physical node np ∈ N p is equipped with multiple resource
capacities {C(np),∀C ∈ C}, where C is the set of node re-
source types, and each physical link lp ∈ Lp has bandwidth
capacity B(lp). In this paper, we consider multidimensional
node resources, including the central processing unit (CPU),
storage resource, and graphics processing unit (GPU). Sim-
ilarly, each VNR is modeled as a weighted undirected graph
Gv = (N v,Lv, dv), whereN v is the set of virtual nodes and
Lv is the set of virtual links, and dv denotes the lifetime of
VNR. Once the VNR is accepted, it will be maintained for dv
time slots. Each virtual node nv ∈ N v represents a virtual
machine with resource demands {C(nv),∀C ∈ C} and each
virtual link lv ∈ Lv indicates the bandwidth demand B(lv).

Objective. Acknowledging the stochastic nature of online
networking, most existing methods and this work aim to min-
imize the embedding cost of each VNR onto the physical net-
work, which facilitates long-term performance. The quality
of solutions is assessed using the revenue-to-cost ratio (R2C):

R2C (Gv) = (Ψ · REV (Gv)) /COST (Gv) . (1)

Here, REV(Gv) denotes the revenue of the VNR Gv (i.e.,
the sum of VNR’s resource requirements) and COST(Gv) de-
notes the embedding cost resulting from the solution (i.e., the
sum of ISP’ resource consumption). Ψ is the binary variable
that indicates the feasibility of a solution.

Constraints. The VNR embedding consists of two sub-
processes. (1) Node mapping entails assigning each vir-
tual node to a physical node with adequate resources, i.e.,
C(np) ≥ C(nv),∀C ∈ C, while ensuring one-to-one place-
ment and mutual exclusivity. (2) Link mapping involves find-
ing a physical path for each virtual link, ensuring that the path
connects the physical nodes hosting the virtual link endpoints
and that each physical link lp in the path has sufficient band-
width, i.e., B(lp) ≥ B(lv). A solution is deemed feasible
(Ψ = 1) only when all these constraints are satisfied.

Due to the space limit, we place detailed formulations of
VNE’s objective and constraints in Appendix B.

3.2 Motivations and Challenges
We conduct a preliminary study placed in Appendix A, and
motivate our framework from the following two aspects.

Flexibility of Action Space. Most existing RL-based VNE
approaches employ a unidirectional action design, assuming
that the decision sequence of virtual nodes is predetermined.
However, our analysis in Appendix A.1 reveals that varying
the decision sequences of virtual nodes significantly impacts
performance. This underscores the necessity of exploring dif-
ferent decision sequences for optimal solutions. Moreover,
the fixed decision sequence of virtual nodes lacks the flexi-
bility needed to adapt to the dynamic nature of exploration
process. Thus, to enhance the flexibility of exploration and
exploitation, we aim to achieve a joint selection of both physi-
cal and virtual nodes to eliminate the fixed decision sequence.

Nevertheless, it will pose some challenges, such as the dif-
ficulty of variable action probability distribution generation
and the training efficiency issue caused by large action space.

Generalization of Solving Policy. VNRs of different
sizes exhibit distinct complexities, necessitating varied solv-
ing strategies. Existing RL-based methods typically use a
one-size-fits-all policy to tackle VNRs of varying sizes, lead-
ing to generalization issues. To address this, an intuitive ap-
proach might be to develop size-specific policies for different
VNR sizes. Yet, as observed in Appendix A.2, specific poli-
cies for large-sized VNRs trained from scratch often get stuck
in local optima due to their high complexity and the difficulty
in exploring viable solutions. Their performance is even in-
ferior to that of the general policy for all sizes. Furthermore,
this strategy lacks the quick adaptability to handle previously
unseen VNR sizes, since it requires extensive data demand.

4 FlagVNE Framework
In this section, we present the proposed RL-based framework
for VNE, FlagVNE. As illustrated in Fig. 2, FlagVNE is
designed to improve searchability and generalizability while
achieving rapid adaptation to unseen distribution.

4.1 Bidirectional Action-based MDP
We formulate the solution construction process of each VNR
as a bidirectional action-based MDP, allowing joint selection
of virtual nodes and physical nodes. Specifically, at each de-
cision timestep t, observing the state st of the environment,
the agent takes an action at ∼ π(·|st) according to the policy
π. Then, the environment will feedback a reward R(st, at)
and transit to a new state st+1 ∼ P (st, at) following the tran-
sition probability function. During interactions, a trajectory
memory D = {s1, a1, s2, a2, · · · } collects state-action pairs.
We present these notations in VNE as follows.

State represents the status of the network system at a spe-
cific decision timestep t, consisting of the current situation of
VNR svt and physical network spt , i.e., st = (svt , s

p
t ), st ∈ S,

where S is the state space.
Action is defined as a pair of a virtual node to be placed

and a physical node to host, denoted at = (nv, np), at ∈ A,
where nv ∈ N v , np ∈ N p, and A is the action space.

Transition P (st+1 | st, at) refers to the process of placing
the virtual node nv to the physical node np and routing the
virtual links, resulting in the changes of state from st to st+1.
Based on the selected bidirectional action, the environment
attempts to place the virtual node nv to the physical node
np. If the node placement is successful, the link routing is
executed based on the breadth-first search algorithm that finds
the shortest physical paths meeting bandwidth demands from
np to other physical nodes hosting the virtual node neighbors
of nv . If node placement and link routing are successful, the
available resource of the physical network is updated with the
VNR requirement. Otherwise, the current VNR is rejected.

Reward R measures the quality of agent’s action at a given
state. We define the reward function R as follows:

R(st, at) =


R2C(Gv), if Gv is accepted at t,
−1/|N v|, if Gv is rejected at t,
1/|N v|, otherwise.

(2)
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as different tasksMi ∼ p(M) based on their size. We first train a meta-policy πϕ with cross-task knowledge in the meta-learning process,
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process of each VNR as a bidirectional action-based MDP, which enables the joint selection of virtual and physical nodes. We also design a
hierarchical encoder with a bilevel policy to adaptively generate action probability distributions and ensure high training efficiency.

We design implicit rewards to encourage successful place-
ment with 1/|N v| and punish failure with −1/|N v|. Once
the Gv is completed embedding, we return R2C(Gv).

Policy is parameterized by θ, which denotes the distribu-
tions over the action space under a given state st:

πθ(at|st) = P (at|st). (3)

Discount factor λ ∈ (0, 1) balances the importance of im-
mediate rewards versus future rewards. Overall, the optimiza-
tion objective of RL is to maximize the expected return, i.e.,
cumulative discounted rewards over timesteps T :

Jπ = E(st,at)∼D[

T∑
t=0

λtR(st, at)]. (4)

If Jπ ≥ Jπ′ , then we denote it as π ⪰ π′.

Theorem 1. Given two MDPs with bidirectional and uni-
directional action, Mb = ⟨Sb,Ab, P b, R, λ⟩ and Mu =
⟨Su,Au, Pu, R, λ⟩, and their optimal policies denoted as
π⋆,b and π⋆,u, respectively, we have π⋆,b ⪰ π⋆,u.

See Appendix C for its proof. Our bidirectional action en-
hances flexibility and significantly expands the search space,
allowing for a more comprehensive exploration of possible
solutions, which offers superior MDP Optimality.

4.2 Hierarchical Policy Architecture
We construct raw features, encode them with a GCN-based
encoder, and design a hierarchical decision module to ensure
adaptive probability output and training efficiency.

Feature Constructor. We build the feature input for the
subsequent encoder from the current state st, which includes
the processing status of VNR svt and the current physical net-
work situation spt . With comprehensive information on the
current state, the agent gains deeper environmental insight,
resulting in better decisions. For the VNR Gv

t , the feature
constructor takes into account not only various node resource
requirements denoted Xv

t,N , but also aggregates bandwidth
resource requirements into the node features, represented as
Xv

t,L. These features include essential bandwidth metrics,
such as maximum, mean, and sum of bandwidth requirements
of virtual links adjacent to one node. To indicate the em-
bedding status, a placement flag Xv

t,P is designed for virtual
nodes, with a value of 1 indicating that the virtual node has
been placed and 0 otherwise. The VNR features Xv

t are or-
ganized as follows: Xv

t = (Xv
t,N , Xv

t,L, X
v
t,P ) ∈ R|Nv|×7.

Similarly, the physical network features Xp
t are con-

structed as follows: Xp
t = (Xp

t,N , Xp
t,L, X

p
t,S) ∈ R|Np|×7,

where Xp
t,N denotes available resources of physical nodes,

Xp
t,L similar to Xv

t,L denotes aggregated bandwidth availabil-



ity, and Xp
t,S is a selection flag indicating the status of physi-

cal nodes. A selection flag value of 1 indicates that a physical
node has been selected to host a virtual node and 0 otherwise.

GNN-based Encoder. To encode the features of the virtual
network Xv

t and the physical network Xp
t , into latent repre-

sentations, Zv
t and Zp

t , respectively, we adopt a graph neural
network (GNN) encoder. First, both Xv

t and Xp
t undergo the

MLP to obtain the initial node representations, denoted Ivt
and Ipt , respectively: Ivt = MLP(Xv

t ), I
p
t = MLP(Xp

t ).
Then, we consider multiple GCN [Kipf and Welling, 2017]

layers as the GNN modules to obtain the latent represen-
tations of virtual nodes Z̃v

t and physical nodes Z̃p
t : Z̃v

t =

GNN(Ivt , A
v), Z̃p

t = GNN(Ipt , A
p), where Av and Ap is ad-

jacency matrixes of virtual and physical networks.
Furthermore, to enhance the feature representation ability,

we also employ the residual connection method to combine
the output of the GNN module with the initial representation:
Zv
t = Z̃v

t + Ivt , Z
p
t = Z̃p

t + Ipt . Finally, we obtain the repre-
sentation of each virtual and physical node.

Hierarchical Decoder with Bilevel Policy. In our bidi-
rectional action-based MDP, the action space is represented
by the matrix size |N v| × |N p|, reflecting the number of vir-
tual and physical nodes. The variable and often large size
of VNRs contribute to the expansive and dynamic nature of
the space. To effectively manage this, we develop a hierar-
chical decoder with a bilevel policy, ensuring high training
efficiency and adaptive action probability generation. Specifi-
cally, we abstract this task into two dependent aspects: virtual
node ordering and physical node placement. Our bilevel pol-
icy, π(at|st) = πH(nv|st) · πL(np|st, nv), consist of a high-
level ordering policy πH(nv|st) and a low-level placement
policy πL(np|st, nv). This hierarchical approach reduces the
size of policy distribution from |N v| × |N p| to |N v|+ |N p|,
thus significantly enhancing training efficiency.

High-level ordering policy selects the appropriate virtual
node nv

t for placement. Concretely, we use an MLP-based
compatibility scoring network to calculate the fitness be-
tween each virtual node representation and the graph-level
representation of the physical network Gp

t = GMP(Zp
t ).

Here, GMP(Z) = 1
|Z|

∑
z∈Z z denotes graph mean pooling

(GMP), averaging all node representations. Then an MLP is
applied to generate compatibility scores for each virtual node:

Ỹ H = MLP(Zv
t +Gp

t ) ∈ R1×|Nv|. (5)

Although the VNR’s sizes are variable, this layer adaptively
generates scores with the shape of (1, |N v|). After masking
virtual nodes already placed (i.e., setting their scores to −∞
on Ỹ H ), we apply a softmax function to the resultant score
Y H to produce the high-level action probability distribution.

πH(nv
t |st) = softmax(YH). (6)

Low-level placement policy identifies a suitable physical
node np

t for accommodating the to-be-placed virtual node nv
t ,

which is selected by πH . Similarly, we adopt an MLP-based
compatibility scoring network to calculate the fitness between
the representation of each physical node and the current con-
text representation of virtual network, including the graph-
level representation of virtual network Gv

t = GMP(Zv
t ) and

to-be-placed virtual node’s representation znv
t
:

Ỹ L = MLP(Zp
t +Gv

t + znv
t
) ∈ R1×|Np|. (7)

To avoid unnecessary exploration, we mask the physical
nodes that do not have enough resources or have been se-
lected to obtain the final scores Y L. Then, the low-level ac-
tion probability distribution is generated:

πL(np
t |st, nv

t ) = softmax(YL). (8)

For both two-level probability distributions, we employ
the sampling and greedy strategy to select actions during the
training and inference phases, respectively.

4.3 Generalizable Training Method
Training a general policy for VNRs of varying sizes leads
to imbalanced learning of cross-size strategy and generaliza-
tion issues. Conversely, individualized training of multiple
policies for each size is slow to adapt to new sizes, in which
policies for large-sized VNRs are prone to suboptimal. To
address this, we develop a meta-RL-based training method
with a curriculum scheduling strategy. As illustrated in Algo-
rithm 1 (see Appendix D), our method enables efficient train-
ing of multiple size-specific policies and quick adaptation to
new sizes, while balancing the learning process across tasks
of varying difficulty and avoiding suboptimal convergence.

Meta-RL for VNE. We treat VNRs of different sizes as
distinct tasks and formulate them as multiple MDPs follow-
ing a distribution Mi ∼ p(M). Note that this distribution
of VNR size is bounded and always obviously smaller than
the number of physical nodes, following the network ser-
vice orchestration standards [Zhuang et al., 2020]. We adopt
model-agnostic meta-learning (MAML) as the basic training
method [Finn et al., 2017]. MAML facilitates the learning
of a meta-policy that can be swiftly fine-tuned on new tasks
with only a few training samples, which improves general-
izability and adaptability. This training process comprises
two stages as follows. Firstly, during the meta-learning pro-
cess, we iteratively execute the inner loops and outer loops to
derive a well-trained meta-policy πϕ with cross-task knowl-
edge. Secondly, in the fine-tuning process, we leverage task-
specific experiences to fine-tune the meta-policy to a set of
size-specific policies πθi solely through inner loops.

Concretely, in the inner loop, the meta-policy πϕ is updated
to accommodate a specific task Mi by performing gradient
descents with the learning rate α and task-specific data Di:

θi = f (ϕ,Di) = ϕ− α∇ϕLDi(ϕ). (9)

Here, L(·) follows the objective of proximal policy optimiza-
tion (PPO) algorithm [Schulman et al., 2017]:

LDi(ϕ) = E(st,at)∼Di

[
min

(
rϕÂ, clip (rϕ, ϵ) Â)

)]
, (10)

where Â denotes the estimated advantage of taking an action.
rϕ =

πϕ(at|st)
πϕold (at|st) denotes the ratio between the current policy

πϕ and the last updated policy πϕold . The clip function with
a hyperparameter ϵ is used to limit rϕ within the range of
[1−ϵ, 1+ϵ], improving the stability of policy updates. In PPO,



the critic uses a GNN-based encoder and GMPs, then inputs
concatenated virtual and physical graph representations into
an MLP-based decoder to estimate value.

In the outer loop, our objective is to find a meta-policy πϕ

that learns balanced strategy knowledge required by VNRs of
different sizes and exhibits superior generalizability, enabling
it to quickly learn optimal task-specific policies:

Jϕ = EMi∼p(M)

[
E
[∑T

t=0
λtR(st, at)|θi,Di

]]
. (11)

We update ϕ with a meta-learning rate β according to av-
erage second-order meta-gradient over task-specific policies:

ϕ← ϕ− β∇ϕ

(
1

|M|
∑|M|

i=1
L(θi)

)
. (12)

Curriculum Scheduling Strategy. In our preliminary
study (see Appendix A.2), we observed that training specific
policies for large VNRs often leads to suboptimal conver-
gence. This issue stems from the complexity of large-sized
VNRs and the challenges of exploring the solution space to
find feasible solutions. This tendency also towards local op-
tima adversely impacts the meta-learning process. Specifi-
cally, using large-sized VNRs in the initial stages of meta-
learning results in low-quality gradients, which negatively af-
fects the convergence and generalizability of the meta-policy.

To address this challenge, we draw inspiration from cur-
riculum learning [Wang et al., 2021d] and propose a curricu-
lum scheduling strategy to gradually integrate larger VNRs
into the meta-learning process. This strategy enables high-
quality initializations for sub-policies of large-sized VNRs,
alleviating the problems of suboptimal convergence and com-
promising meta-policy. We implement this by maintaining a
training task list I, initially containing the smallest VNR size.
The meta-learning process begins by focusing on tasks with
smaller VNR sizes, which are inherently easier and provide
beneficial foundational knowledge for tackling more complex
tasks. Policies adeptly trained on these smaller tasks serve as
effective initializations for larger VNR tasks, facilitating to
mitigating local optima issues.

To achieve a gradual increase in task complexity, we use
the entropy metric H(π) to evaluate the stability of pol-
icy. For our bilevel policy, we approximate it with H(π) =
H(πH)+H(πL). A lower entropy suggests that the policy is
making more confident decisions. When the policy entropy
H(πθk) for the largest size k = max(I) currently on the
training task list falls below a specified threshold δ, we con-
sider the policy ready to handle more complex tasks. At this
point, we introduce the next larger VNR size to the training
task list I. This progressive approach allows the meta-policy
to adapt and generalize effectively to larger VNRs.

5 Performance Evaluation
In this section, we evaluate the effectiveness of FlagVNE.

5.1 Experiment Setup
Simulations. Following the latest works [He et al., 2023b;
Wang et al., 2023b], we conduct experiments on the simu-
lation platform to mimic various realistic network systems.

We adopt two topologies, GEANT (40 nodes and 61 links)
and WX100 (100 nodes and 500 links) [Waxman, 1988], as
physical networks. See Appendix E.1 for these topologies’
descriptions. The multiple-type resources (i.e., CPU, storage,
GPU) of physical nodes and bandwidth resources of physical
links are uniformly generated within the range of [50, 100]
units. In each simulation run, we randomly generate 1000
VNRs with varying sizes ranging from 2 to 10. The virtual
nodes within each VNR are randomly interconnected with a
probability of 50%. Additionally, resource demands of each
VNR’s node and link requirements are uniformly generated
within the range of [0, 20] and [0, 50] units, respectively. The
lifetime of each VNR is exponentially distributed with an av-
erage of 500 time units. The arrival of these VNRs follows
a Poisson process with an average rate η, wherein η VNRs
are received per unit of time. In subsequent experiments, we
first train models with η = 0.001 on GEANT and η = 0.08
on WX100, due to their different capacities of physical re-
sources. Then we manipulate the value of η to emulate net-
work systems with different traffic throughputs and infer with
trained models to study the sensitivity of algorithms.

Implementations. During training, we first conduct meta-
learning in the initial 20 simulations and then focus on fine-
tuning in the subsequent 10 simulations. We set the policy en-
tropy threshold δ to 2. We implement neural network models
with PyTorch and decide reasonable values for hyperparame-
ters following the guide of related studies [Huang et al., 2022;
Zhou et al., 2023; Wang et al., 2021a; He et al., 2023a;
Kingma and Ba, 2014; Joshi et al., 2022]. See Appendix E.2
for hyperparameter settings on neural networks and meta-RL.

Baselines. To validate the effectiveness of FlagVNE, we
compare it with the following SOTA heuristics (NRM-VNE
[Zhang et al., 2018]; NEA-VNE [Fan et al., 2023]; PSO-VNE
[Jiang and Zhang, 2021]) and RL-based baselines (MCTS-
VNE [Haeri and Trajković, 2017]; PG-CNN [Zhang et al.,
2022]; A3C-GCN [Zhang et al., 2023]; DDPG-Attention [He
et al., 2023b]). See Appendix E.3 for their descriptions.

Metrics. The following metrics are widely used to evaluate
the long-term operational status of network systems over a pe-
riod T [Fischer et al., 2013]: request acceptance rate (RAC),
long-term average revenue (LAR) and long-term revenue-to-
cost (LT-R2C). See Appendix E.3 for their definitions.

5.2 Results and Analysis
Overall Performance. To simulate diverse and complex sce-
narios with varying traffic throughputs, we manipulate the ar-
rival rate of VNRs in two settings due to the difference in
physical resource capacity: in GEANT, we explore a range
of [0.001, 0.006] with a step of 0.001, and in WX100, we
investigate a range of [0.08, 0.18] stepped by 0.02.

Fig. 3(a)(b)(c) and (d)(e)(f) illustrate the performance of
all algorithms in GEANT and WX100, respectively. As the
arrival rate η increases, all algorithms experience a decline
in RAC on both topologies, attributed to heightened competi-
tion for limited physical resources among VNRs. Despite the
variability in algorithm performance across different network
topologies, influenced by the varying abundance of physical
bandwidth resources, FlagVNE consistently achieves the best
performance in all scenarios. We observe that the improve-
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Figure 3: Experimental results in traffic throughput test.

GEANT WX100
RAC ↑ LAR ↑ LT-R2C ↑ RAC ↑ LAR ↑ LT-R2C ↑

FlagVNE-UniActionNEA 0.781 475.335 0.637 0.724 14334.671 0.493
FlagVNE-MetaFree-SinglePolicy 0.758 472.455 0.614 0.712 14170.514 0.501
FlagVNE-MetaFree-MultiPolicy 0.746 435.502 0.593 0.685 14069.938 0.472

FlagVNE-MetaPolicy 0.773 478.646 0.634 0.717 14292.962 0.485
FlagVNE-NoCurriculum 0.787 485.267 0.643 0.708 14144.234 0.509

FlagVNE 0.804 499.303 0.668 0.754 14769.080 0.526

Table 1: Results on ablation study. (η = 0.006 on GEANT and η = 0.18 on WX100).

ments of FlagVNE are more pronounced at higher values of η,
corresponding to heightened resource competition. This un-
derscores the importance of searchability and generalizability
in network environments with limited resources. Specifically,
at η = 0.006 on GEANT, FlagVNE surpasses A3C-GCN,
NEA-VNE and NRM-VNE by margins of 10.4%, 20.7% and
27.9% on RAC, 10.5%, 28.1%, and 44.2% on LAR, and
12.8%, 28.4%, and 45.1% on LT-R2C. On WX100, compared
to A3C-GCN, NEA-VNE and NRM-VNE, FlagVNE shows
average improvements over different η of 12.4%, 12.5% and
17.4% in RAC, 12.8%, 10.4% and 24.3% on LAR, and 9.1%,
6.7% and 36.7% on LT-R2C, respectively. Overall, FlagVNE
demonstrates exceptional performance across various net-
work system conditions.

Ablation Study. To verify the effectiveness of each pro-
posed component, we build several variations of FlagVNE:
(1) FlagVNE-UniActionNEA replaces the bidirectional ac-
tion with the unidirectional one and sorts the decision se-
quence of virtual nodes with NEA [Fan et al., 2023]. (2)
FlagVNE-MetaFree-SinglePolicy trains a single general pol-
icy with valina PPO, without the help of Meta-RL. (3)
FlagVNE-MetaFree-MultiPolicy directly trains a set of sub-
policies from scratch, without using Meta-RL. (4) FlagVNE-
MetaPolicy only uses the meta-policy to handle variable-sized
VNRs. (5) FlagVNE-NoCurriculum discards the curriculum
scheduling strategy during the meta-learning process.

We examine their performance under arrival rate settings
of η = 0.006 on GEANT and η = 0.18 on WX100. These
cases exhibit more intense competition for resources, accen-
tuating the performance differentials stemming from the al-
gorithms’ searchability and generalizability. As shown in
Table 1, FlagVNE outperforms all variations on three met-
rics, demonstrating that each component of FlagVNE con-
tributes to the improvement in the final performance. Notably,
we observe significant performance declines in FlagVNE-

MetaFree-MultiPolicy and FlagVNE-MetaFree-SinglePolicy
compared to FlagVNE, which shows the effectiveness of our
meta-RL training method with a curriculum scheduling strat-
egy in achieving generalization.

Additional Evaluation. Due to the space limit, we place
more experiments and analyses in Appendix F. Concretely,
in Appendix F.1, we conduct the running time test to ver-
ify the efficiency of FlagVNE, and the results show that
FlagVNE strikes a better balance between performance and
running time. We also provide the adaptation and conver-
gence analysis in Appendix F.2. Results show that FlagVNE
can efficiently learn a meta-policy with cross-size knowl-
edge in known distributions and quickly adapt to unseen sizes
through fine-tuning. Besides, in Appendix F.3, we evaluate
FlagVNE’s scalability on large-scale network systems, and
results demonstrate that FlagVNE consistently outperforms
all baseline models, even in this large-scale network system
scenario. Finally, in Appendix F.4, we explore the impact of
the key hyperparameter ϵ on the performance of FlagVNE.

6 Conclusion
In this paper, we proposed FlagVNE, a flexible and gener-
alizable RL framework for VNE. Specifically, we developed
a bidirectional action MDP modeling approach to enable the
joint selection of virtual nodes and physical nodes, which ex-
pands the agent’s search space. Additionally, we designed
a hierarchical recorder with a bilevel policy to ensure adap-
tive output and high training efficiency. Furthermore, we pre-
sented a generalizable training method based on meta-RL that
efficiently trains a set of size-specific policies to tackle VNRs
of varying scales. We also developed a curriculum scheduling
strategy that gradually incorporates larger VNRs, thus allevi-
ating suboptimal convergence. Finally, we conducted exten-
sive experiments to verify the effectiveness of FlagVNE.
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Figure 4: Comparative performance of A3C-GCN variants on three
metrics: Impact of decision sequence and size-specific policies on
VNE. (We conduct experiments using WX100 as the physical net-
work, with a VNR arrival rate of 0.18. All other settings remained
consistent with those described in Section 5.)

A Preliminary Study
We conduct a preliminary analysis to reveal the limitations
of existing RL-based works and highlight our motivations
and latent challenges. Concretely, we investigate a widely
adopted RL-based VNE algorithm, A3C-GCN, used in [Yan
et al., 2020; Zhang et al., 2023]. We extend its capabilities
by incorporating several methods. Instead of using the de-
fault decision sequence based on virtual node ID numbers,
we introduce two variants: A3C-GCN-NRM and A3C-GCN-
NEA. These variants utilize NRM [Zhang et al., 2018] and
NEA [Fan et al., 2023] metrics, respectively, to rank virtual
nodes and rearrange the decision sequence. Furthermore, we
develop A3C-GCN-MultiPolicy that fine-tune the pretrained
A3C-GCN model to obtain multiple policies tailored to dif-
ferent VNR sizes, rather than use a single one-size-fits-all to
accommodate all sizes. Through the analysis of experimen-
tal results, our motivations are attributed to the following two
key aspects.

A.1 The Flexibility of Action Space

Most existing approaches based on RL suffer from a unidi-
rectional action design, assuming that the decision sequence
of virtual nodes is fixed. They severely limit the action search
space from |N p|×|N v| to |N p|×1, where |N p| and |N v| de-
note the number of physical nodes and virtual nodes, respec-
tively. However, as shown in Fig. 4, A3C-GCN, A3C-GCN-
NRM and A3C-GCN-NEA exhibit different performance due
to their distinct decision sequence of virtual nodes, which
highlights the importance of sufficiently exploring different
decision sequences to achieve better solutions. Moreover, the
fixed decision sequence of virtual nodes fails to perceive the
dynamic nature of the environment and the potential inter-
dependencies between decisions made at distinct time steps.
Therefore, due to this action design, the exploration and ex-
ploitation of the solution space by the RL agent are inflexible,
which restricts the searchability of the algorithm and reduces
the probability of discovering high-quality solutions.

To enhance exploration and exploitation and consider the
dynamic nature of solving process, an accessible way is to
achieve a joint selection of physical and virtual nodes to elim-
inate the fixed decision sequence. But it will pose some
challenges, such as the difficulty of variable action proba-
bility distribution generation and the training efficiency issue
caused by large action space.
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Figure 5: Average returns of the one-fits-all-size policy and each
size-specific policy on all testing VNR sizes. The red boxes indi-
cate the best performance results for test sizes. In the horizontal
axis, [2-10] indicates a well-trained A3C-GCN policy while a single
number represents a size-specific policy derived from well-trained
A3C-GCN-MultiPolicy. (We use WX100 as the physical network
and all training settings are the same as those mentioned in Section 5.
For testing data of each VNR size, to exclude network system dy-
namics for a fairer comparison, we randomly generated 1000 static
instances, including VNR and physical networks, as the benchmark.
The performance metric is defined as the average episode return over
1000 instances.)

A.2 The Generalization of Solving Policy

As revealed in studies [Joshi et al., 2022; Zhou et al., 2023],
combinatorial optimization problems on graphs demonstrate
variable complexity as graph sizes change. A one-size-fits-
all strategy for handling these instances across different sizes
often leads to generalization issues. VNE is no exception.
Existing methods ignore this diversity and train a universal
solving policy with vanilla RL approaches, which fails to ef-
fectively balance the strategic knowledge required for varying
sizes of VNRs. Additionally, training within a limited range
of VNR sizes also incurs a deficiency in generalization and
adaptability for previously unseen VNR sizes. Furthermore,
training a universal solving policy may perform reasonably
well on average but not be optimal for specific VNR sizes.
This lack of specialization for different sizes results in sub-
optimal solutions when dealing with VNRs of varying sizes.
Therefore, addressing this generalization problem is crucial
to achieving high-quality solutions.

One intuitive solution is to train a set of sub-policies di-
rectly to handle VNRs of different sizes. However, as shown
in Fig. 4, A3C-GCN-MultiPolicy that have multiple size-
specific policies are even inferior to A3C-GCN on some per-
formance metrics. To further explore this phenomenon, we
test the performance of each size-specific strategy on differ-
ent sizes and provide the results in Fig. 5. We can observe that
specific policies trained for VNRs of small sizes often achieve
the best performance in their corresponding testing dataset of
the same size. Meanwhile, the specific policies of large-sized
VNRs exhibit unsatisfactory performance on nearly all test-
ing sizes. Even on the same test size as the training size, their
performance is worse than the general policy. This indicates



they are stuck in local optima.
This issue arises due to the more complex solution spaces

and stringent constraints associated with larger VNRs, which
significantly complicate the exploration of high-reward states
and the discovery of feasible solutions. Consequently, when
these sub-policies for large-sized VNRs are trained from
scratch, they tend to settle into suboptimal solutions and lead
to diminished performance. Furthermore, this method based
on direct training from scratch lacks quick adaptability to
handle situations where unseen VNR sizes occur. When faced
with new sizes, the system needs to collect ample data to train
policies for the new sizes from scratch, which significantly
increases the demand for data.

B Problem Formulation
B.1 Optimization Objectives
Acknowledging the stochastic nature of online networking,
most existing methods and this work aim to minimize the em-
bedding cost of each arriving VNR onto the physical network.
This facilitates the improvement of resource utilization and
VNR acceptance rate. To evaluate the quality of solutions,
the revenue-to-cost ratio (R2C) serves as a crucial indicator,
defined as follows:

R2C (Gv) = (Ψ · REV (Gv)) /COST (Gv) . (13)

Here, Ψ is the binary variable that indicates the feasibil-
ity of a solution. Ψ = 1 if the solution of Gv is accepted,
and Ψ = 0 if it is not. REV(Gv) denotes the revenue of the
VNR Gv and COST(Gv) denotes the embedding cost result-
ing from the solution, which are calculated as follows:

REV(Gv) = 1

|C|
∑

nv∈Nv

∑
C∈C

C(nv) +
∑

lv∈Lv

B(lv), (14)

COST(Gv) = 1

|C|
∑

nv∈Nv

∑
C∈C

C(nv) +
∑

lv∈Lv

HlvB(lv),

(15)
where Hlv denotes the hop count of the physical path that
routes the virtual link lv .

B.2 Constraint Conditions
The process of embedding one VNR Gv ∈ V onto the phys-
ical network is formulated as a mapping function f : Gv →
Gp. This process utilizes two types of boolean variables to
make decisions: (1) xm

i = 1 indicating that virtual node nv
m is

placed in physical node np
i , and 0 otherwise; (2) ym,w

i,j = 1 in-
dicating that virtual link lvm,w = (nv

m, nv
w) traverses through

physical link lpi,j = (np
i , np

j ), and 0 otherwise. Here, we use
the m and w as identifiers of physical nodes and i and j as
identifiers of virtual nodes. A VNR is successfully embedded
when a feasible mapping solution is found, i.e., the following
constraints are satisfied:∑

np
i ∈Np

xm
i = 1,∀nv

m ∈ N v, (16)

∑
nv
m∈Nv

xm
i ≤ 1,∀np

i ∈ N
p, (17)

xm
i C(nv

m) ≤ C(np
i ),∀n

v
m ∈ N v, np

i ∈ N
p, C ∈ C, (18)∑

np
i ∈Ω(np

k)

ym,w
i,k −

∑
np
j∈Ω(np

k)

ym,w
k,j = xm

k −xw
k ,∀lvm,w∈Lv, nv

k ∈N p,

(19)

ym,w
i,j + ym,w

j,w ≤ 1,∀lvm,w ∈ Lv, lpi,j ∈ L
p, (20)∑

lvm,w∈Lv

(ym,w
i,j +ym,w

j,i )B(lvm,w) ≤ B((lpi,j)),∀(l
p
i,j) ∈ L

p.

(21)

Here, Ω(np
k) denotes the neighbors of np

k. Constraint (16)
ensures that each virtual node is assigned to exactly one phys-
ical node, while the constraint (17) ensures that each physical
node accommodates at most one virtual node, thus enforcing
a one-to-one mapping between them. Constraint (18) ensures
that each virtual node is assigned to a physical node with suf-
ficient resources where available resources of all types exceed
the demands. Constraint (19) ensures that each virtual link
(nv

m, nv
w) is routed through a connective physical path from

the physical node np
i (where virtual node nv

m is mapped, i.e.,
xm
i = 1) to the physical node np

j (where virtual node nv
w

is mapped, i.e., xw
j = 1). This constraint follows the flow

conservation law. Constraint (20) prevents routing loops and
guarantees acyclic routing of physical paths for virtual links.
Constraint (21) ensures that the bandwidth consumption of
each physical link does not exceed its available capacity.

C Proof of the Superiority of MDP Optimality
Theorem. Given two MDPs with the bidirectional and uni-
directional action, Mb = ⟨Sb,Ab, P,R, λ⟩ and Mu =
⟨Su,Au, P,R, λ⟩, and their optimal policy denote as π⋆,b

and π⋆,u, respectively, we have π⋆,b ⪰ π⋆,u.

Proof. InMb, the bidirectional action at the timestep t, at =
(np

t , n
v
t ), is the joint selection of virtual and physical nodes.

The optimal policy forMb can be defined as:

π⋆,b(at|st) = πH,⋆(nv
t |st) · πL,⋆(np|st, nv

t ), (22)

where πH,⋆(nv
t |st) optimally orders virtual nodes and

πL,⋆(np|st, nv
t ) optimally selects physical nodes given the

virtual node selection.
InMu, the predefined policy πH,u(nv

t |st) governs the de-
cision sequence of virtual nodes. Similarly, The optimal pol-
icy forMu can be similarly defined as

π⋆,u(at|st) = πH,u(nv
t |st) · πL,⋆(np|st, nv

t ). (23)

Notably, πH,u may not be optimal.
Following the standard reinforcement learning frame-

work [Sutton and Barto, 2018], the value of a state s under
a policy π, denoted Vπ(s) is the expected return when start-
ing in s and following π thereafter. For our bilevel policy,
Vπ(s) can be formulated as:

Vπ(s) = Env∼πH ,np∼πL [

T∑
t=0

λtR(st, at)|s0 = s]. (24)

If and only if Vπ(s) ≥ Vπ′(s) for all state, π ⪰ π′.



Algorithm 1: Training Process of FlagVNE

Input : Initial meta-policy ϕ; Policy set Θ = {ϕ};
Meta learning rate β; Task learning rate α;
Policy entropy threshold δ

Output : Trained policies set Θ;

1 // Meta-learning Process
2 Initialize the training task ID list I = {1};
3 while not done do
4 Collect the trajectory memory D by interactions;
5 Split D into {D1, · · · ,D|M|} based on VNR’ size;
6 Analyze the task distributionMi ∼ p(M);
7 for i = 1, 2, · · · , |M| do
8 if i /∈ I then
9 continue

10 end
11 θi ← DeepCopy(ϕ);
12 Update θi with Eq. (9) and (10); // Inner loop
13 end
14 Update ϕ with Eq. (12); // Outer loop
15 // Curriculum Scheduling Strategy
16 Get the current most complex task ID k = max(I);
17 if H(πθk ) < δ and k < |M| then
18 I ← I ∪ {k + 1}
19 end
20 end
21 // Fine-tuning Process
22 for i = 1, 2, · · · , |M| do
23 θi ← DeepCopy(ϕ);
24 end
25 while not done do
26 Collect task trajectory memories {D1, · · · ,D|M|};
27 for i = 1, 2, · · · , |M| do
28 Update θi with Eq. (9) and (10); // Inner loop
29 end
30 end
31 for i = 1, 2, · · · , |M| do
32 Θ← Θ ∪ {θi};
33 end

Since πH,u in π⋆,u is not necessarily optimal, for some
states, it might not maximize the expected return, i.e.,
πH,u(nv|st) ̸= πH,⋆(nv|st). In contrast, πH,⋆ in π⋆,b is op-
timal by definition. Thus, for some states, we have

Vπ⋆,b(s) > Vπ⋆,u(s). (25)

This inequality demonstrates the potential sub-optimality of
π⋆,u compared to π⋆,b.

Given the above, we conclude that π⋆,b ⪰ π⋆,u.

D Pseudocode of FlagVNE Training
We describe FlagVNE’s training process in Algorithm 1.

E Experimental Details
E.1 Topology Descriptions
The descriptions of used realistic topologies are as follows:

• GEANT is a network infrastructure linking Europe’s na-
tional research and education networks. It acts as a pan-
European backbone, connecting European researchers,

academics, and students, and extends globally to over
half the world’s countries. This network topology has
40 nodes and 64 lines, with a density of 0.0821.

• WX100 is generated following the Waxman graph
method [Waxman, 1988]. The Waxman graph is a type
of random graph model, widely used in the field of com-
munication and network simulation. WX100 has 100
nodes and 500 links, with a density of 0.1010.

E.2 Implementation Details
Detailed hyperparameter settings are as follows: each neu-
ral network has a hidden dimension H of 128 and the GNN
module consists of K = 3 GCN layers. We train this model
using Adam optimizer [Kingma and Ba, 2014], with learning
rates α and β of 0.001 and a batch size of 128. In PPO, the
RL discounted factor λ is set to 0.99, the coefficient of critic
loss is set to 0.5, and the number of repeat times is set to 10.
All experiments are carried out on a server equipped with 24
Intel Xeon E5-2650 v4 @ 2.20GHz CPUs and 4 V100 GPUs.

E.3 Baseline Descriptions
The descriptions of compared baselines are as follows:

• NRM-VNE [Zhang et al., 2018] sorts virtual and physi-
cal nodes based on a node resource management metric.
Greedy matching and breadth-first search are then used
for node mapping and link mapping, respectively.

• NEA-VNE [Fan et al., 2023] ranks virtual and phys-
ical nodes with an essentiality assessment metric and
then performs node mapping and link mapping similar
to [Zhang et al., 2018].

• PSO-VNE [Jiang and Zhang, 2021] uses particle swarm
optimization (PSO) to explore the VNE’s solution space.

• MCTS-VNE [Haeri and Trajković, 2017] uses the
Monte Carlo tree search algorithm to search solutions.

• PG-CNN [Zhang et al., 2022] builds a policy network
with convolutional neural network (CNN) and trains it
with PG algorithm.

• A3C-GCN [Zhang et al., 2023] constructs a policy net-
work with GCN and MLP and uses A3C algorithm as
the training method. It extends the method proposed in
[Yan et al., 2020] with an action mask mechanism.

• DDPG-Attention [He et al., 2023b] builds an attention-
based policy and trains it with DDPG algorithm.

E.4 Performance Metrics
The following metrics are widely used to evaluate the long-
term operational status of the network system over a period
T [Fischer et al., 2013; Yan et al., 2020]:

Request Acceptance Rate (RAC) quantifies the ratio of ac-
cepted VNRs to the total number of VNRs arrived, indicating
the system’s ability to meet user service demands, defined as:

RAC =

∑T
t=0 |Vs(t)|∑T
t=0 |V(t)|

, (26)

where V(t) and Vs(t) denote the set of totally arrived and
accepted VNRs at the unit of time slot t, respectively.



Average Running Time (s) ↓
GEANT WX100

NRM-VNE 10.079 28.079
NEA-VNE 31.011 238.403
PSO-VNE 1330.706 1516.340

MCTS-VNE 240.195 679.007
PG-CNN 75.259 203.965

A3C-GCN 47.079 204.073
DDPG-Attention 81.713 164.355

FlagVNE 84.987 239.251
* The average simulation time (seconds) over various η

Table 2: Average running time in traffic throughput test.
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(a) Learning Curve on GEANT
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(b) Learning Curve on WX100
Figure 6: Learning curves over simulations. Within each simulation,
there are 1000 VNRs, i.e., 1000 episodes and we average their re-
turns. (η = 0.001 on GEANT and η = 0.06 on WX100.)

Long-term Average Revenue (LAR) quantifies the total
gained revenue, directly assessing the financial performance
of the ISP, defined as:

LAR =

 T∑
t=0

∑
Gv∈Vs(t)

REV(Gv)× dv

 /T . (27)

where dv denotes the lifetime of VNR Gv . Long-term R2C
(LT-R2C) quantifies the overall revenue-to-cost ratio, evalu-
ating the solution quality of all accepted VNRs and resource
utilization, defined as:

LT-R2C =

∑T
t=0

∑
Gv∈Vs(t)

REV(Gv)× dv∑T
t=0

∑
Gv∈Vs(t)

COST(Gv)× dv
. (28)

F Additional Validation
F.1 Running Time Test
Due to the low-latency requirements of network systems,
VNE algorithms should provide solutions within an accept-
able time. The average running time over different traffic
throughputs same to the above settings of each algorithm is
illustrated in Table 2. Compared to PSO-VNE and MCTS-
VNE which are quite time-consuming, FlagVNE and other
algorithms can offer solutions more efficiently. While NRM-
VNE achieves the fastest solving speeds, it is noteworthy that
FlagVNE markedly outperforms NRM-VNE on evaluation
metrics. Overall, FlagVNE strikes a better balance between
performance and running time.

F.2 Adaptation and Convergence Analysis
We provide the analysis of learning curves on both known
distribution and unseen size.
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Figure 7: Learning curves for the unseen size. (There are 100 VNRs
in one simulation and each VNR’s size is set to 12).

Training on Known Distribution. Fig. 6 presents the
learning curves of FlagVNE alongside three other variations,
trained on a known distribution of VNR’s size [2-10]. We ob-
serve that FlagVNE achieves higher average returns at con-
vergence compared to both FlagVNE-MetaFree-SinglePolicy
and FlagVNE-MetaFree-MultiPolicy. This outcome high-
lights the significance of generalization in training methods
and validates the efficacy of our generalizable training ap-
proach. Additionally, FlagVNE’s superior performance over
FlagVNE-NoCurriculum underscores the effectiveness of our
curriculum scheduling strategy in mitigating suboptimal con-
vergence and enhancing the overall learning process.

Adaptation to Unseen Size. To assess FlagVNE’s
adaptability to previously unseen VNR sizes, we conduct
experiments with all incoming VNRs in the network sys-
tem set to size 12, a size not included in earlier training
phases. Given the heightened resource demands of these
larger-sized VNRs, we limited the number of simultane-
ous VNRs to 1 per simulation, maintaining all other simu-
lation parameters as described in Section 5.1. During this
phase, we fine-tuned the meta-policies of both FlagVNE
and FlagVNE-NoCurriculum, as well as FlagVNE-MetaFree-
SinglePolicy. Meanwhile, FlagVNE-MetaFree-MultiPolicy
underwent training to develop a new size-specific policy from
scratch. As shown in Fig. 7, FlagVNE achieves rapid conver-
gence within a small amount of training data, significantly
reducing the data requirements. This highlights the bene-
fits of utilizing the initial meta-policy that acquires cross-
task knowledge, which enables FlagVNE to rapidly adapt
to unseen-size-specific sub-policies. Notably, in the case of
GEANT, FlagVNE-MetaFree-MultiPolicy fails to converge
within 5000 epochs. This outcome is mainly due to GEANT’s
smaller topology and constrained resources, which limit the
exploration of feasible solutions. Such conditions pose sig-
nificant challenges for a policy that lacks prior experience or
foundational knowledge, further emphasizing the effective-
ness of our meta-learning approach in environments with lim-
ited resource scenarios.

F.3 Scalability Valadition
To further validate the effectiveness of FlagVNE in large-
scale network systems, we study the performance of all
algorithms in large-scale networks. Following previous
works [Yan et al., 2020; Geng et al., 2023], we generate a
random Waxman topology with 500 nodes and nearly 13000
links, named WX500 [Waxman, 1988]. We also increase the
VNE size distribution to a uniform distribution from 2 to 20,



Table 3: Results on Scalability Validation.

Algorithm RAC ↑ LAR (×106) ↑ LT-R2C ↑
NRM-VNE 0.631 0.710772 0.507
NEA-VNE 0.857 1.186615 0.690
PSO-VNE 0.805 1.042604 0.537

MCTS-VNE 0.782 0.968175 0.563
PG-CNN 0.851 1.046523 0.548

A3C-GCN 0.869 1.147116 0.715
DDPG-Attention 0.796 1.013670 0.617

FlagVNE 0.932 1.347162 0.744
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Figure 8: The impact of δ on FlagVNE’s performance. (η = 0.001
on GEANT and η = 0.06 on WX100.)

and the arrival rate of VNR η is set to 3. For the training of
FlagVNE, we execute the meta-learning in the initial 40 sim-
ulations and then conduct the fine-tuning with 10 simulations.
All other simulation and hyperparameter settings remain con-
sistent with those outlined in Section 5.1. The results of all
algorithms are shown in Table 3. We observe that FlagVNE
and NRM-VNE achieve the best and worst performance, re-
spectively. Compared to other baselines, FlagVNE presents
clear performance advantages, which demonstrates its effec-
tiveness in large-scale network systems.

F.4 Hyperparameter Sensitivity
We investigate the impact of the policy stability threshold δ
on FlagVNE’s performance. We keep all other simulation
and training parameters consistent with those detailed in Sec-
tion 5.1. The experimental results are shown in Fig. 8, where
(a)(b)(c) and (e)(f)(g) show the testing results on GEANT at
η = 0.001 and WX100 at η = 0.18, respectively. We ob-
serve that FlagVNE exhibit relative stability within a δ range
of [1.0, 2.5]. This stability is attributed to the higher δ value
signals more consistent and confident decision-making by the
current meta-policy for the currently largest size VNRs. Such
policies can serve as a better initialization of specific poli-
cies tailored to larger VNRs. To trade off performance and
efficiency, we set this parameter to 2. Notably, FlagVNE’s
performance on WX100 demonstrates a higher sensitivity to
δ compared to GEANT. This increased sensitivity can be as-
cribed to the more challenging exploration environment in
WX100, where the policy is more prone to suboptimal con-

vergence. This observation underscores the value of our cur-
riculum scheduling strategy, which aids in mitigating the is-
sues associated with such exploration challenges by gradually
increasing task complexity.
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