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ON THE IWASAWA THEORY OF ELLIPTIC CURVES AT

EISENSTEIN PRIMES

FRANCESC CASTELLA

Abstract. These are expanded notes for the mini-course given by the author at the 2022 ICTS
workshop ‘Elliptic curves and the special values of L-functions’.
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Introduction

Let E/Q be an elliptic curve and let L(E, s) be its Hasse–Weil L-series. The latter is defined
by an Euler product absolutely convergent for complex s in the right-half plane Re(s) > 3/2, but
by modularity it can be analytically continued to all s ∈ C.

By the Mordell–Weil theorem, the group of rational points E(Q) is finitely generated, so

E(Q) ≃ Zr ⊕ E(Q)tors,

for some r = rankZE(Q) ≥ 0. The Birch–Swinnerton-Dyer conjecture (BSD) is the statement that

ords=1L(E, s)
?
= rankZE(Q).

After the groundbreaking works of Coates–Wiles, Rubin, Gross–Zagier, and Kolyvagin in the 1970s
and 1980s, the conjecture is known when either L(E, 1) 6= 0 or L′(E, 1) 6= 0. In these cases, their
results also establish finiteness of the Tate–Shafarevich group

X(E/Q) := ker

{

H1(Q, E)→
∏

v

H1(Qv, E)

}

,

a statement that is also widely believed to hold in general.
More recently, further progress on the BSD conjecture, and on its refined form predicting an

exact formula for the leading Taylor coefficient of L(E, s) around s = 1 in terms of arithmetic
invariants of E, has been obtained largely through the use of p-adic methods; more specifically,
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2 FRANCESC CASTELLA

through various incarnations of Iwasawa theory. More specifically, a large body of work has gone
into the proof of the following three implications, which are expected to hold for any prime number
p:

(1) p-part of the BSD formula in analytic rank 0:

L(E, 1) 6= 0 =⇒ ordp

(

L(E, 1)

ΩE

)

= ordp

(

#X(E/Q) · Tam(E/Q)

(#E(Q)tors)2

)

,

where ΩE is the positive Néron period of E, and Tam(E/Q) =
∏

ℓ|N cℓ(E/Q) is the product

of the Tamagawa factors of E/Q.
(2) p-converse to the theorem of Gross–Zagier and Kolyvagin:

corankZp
Selp∞(E/Q) = 1 =⇒ ords=1L(E, s) = 1,

where Selp∞(E/Q) is the p∞-Selmer group fitting into the descent exact sequence

0→ E(Q) ⊗ Qp/Zp → Selp∞(E/Q)→X(E/Q)[p∞]→ 0.

(3) p-part of the BSD formula in analytic rank 1:

ords=1L(E, s) = 1 =⇒ ordp

(

L′(E, 1)

ΩE ·RegE

)

= ordp

(

#X(E/Q) · Tam(E/Q)

(#E(Q)tors)2

)

,

where RegE is the regulator of the Néron–Tate canonical height pairing on E(Q) ⊗ R.

The goal of these lectures is to explain the proof of (1)–(3) for good ordinary primes, with a
special emphasis in the case of (the most recently established) Eisenstein primes p, i.e. primes p
for which E admits a rational p-isogeny, or equivalently, such that E[p] is reducible as a GQ-module.

Acknowledgements. It is a pleasure to heartily thank the organizers of the 2022 ICTS workshop
‘Elliptic curves and the special values of L-functions’—Ashay Burungale, Haruzo Hida, Somnath
Jha, and Ye Tian—for their invitation to deliver these lectures, and the opportunity to contribute
to these proceedings. The author was partially supported by the NSF grant DMS-2101458.

1. Lecture 1: Main conjectures and applications

The purpose of this lecture is to explain how, for any good ordinary prime (either Eisenstein or
not) the implications (1), (2), and (3) from the Introduction follow from certain (three different,
but not completely unrelated) “main conjectures” in Iwasawa theory.

1.1. Mazur’s main conjecture. Let p > 2 be a good ordinary prime for E. Let Q(µp∞) be the
field obtained by adjoining to Q of p-power roots of unity; then

Gal(Q(µp∞)/Q) = ∆× Γ

with ∆ ≃ Gal(Q(µp)/Q) a cyclic group of order p− 1, and Γ ≃ Zp. Let Q∞/Q be the cyclotomic
Zp-extension of Q, defined as the fixed of Q(µp∞) by ∆.

For every n ≥ 0, denote by Qn the unique subfield of Q∞ with [Qn : Q] = pn. Let Selp∞(E/Qn)
be the usual p∞-Selmer group, defined as

Selp∞(E/Qn) = ker

{

H1(Qn, E[p∞])→
∏

v

H1(Qv, E)

}

,

where v runs over all primes of Q, and put Selp∞(E/Q∞) = lim
−→n

Selp∞(E/Qn).

The following is a special case of Mazur’s control theorem (which applies to abelian varieties
defined over a number field F more generally, and arbitrary Zp-extensions F∞/F ).

Theorem 1.1 (Mazur). The restriction maps

Selp∞(E/Qn)→ Selp∞(E/Q∞)Gal(Q∞/Qn)

have finite kernel and cokernel, of order bounded as n→∞.
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The original proof of Theorem 1.1 can be found in [Maz72]; an alternative and highly influential
proof of the same result is given (for elliptic curves) in [Gre99].

Let Λ = Zp[[Γ]] be the cyclotomic Iwasawa algebra. It follows easily from Theorem 1.1 together
with the weak Mordell–Weil theorem, that Selp∞(E/Q∞) is cofinitely generated over Λ, i.e. the
Pontryagin dual

X(E/Q∞) := HomZp
(Selp∞(E/Q∞),Qp/Zp)

is finitely generated over Λ. Mazur further conjectured that X(E/Q∞) is Λ-torsion (see Conjec-
ture 1.2 below), a condition that can be easily verified (using a topological version of Nakayama’s
lemma) when the classical Selmer group Selp∞(E/Q) is finite (so in particular, E(Q) is finite), but
which lies much deeper in general.

On the analytic side, using modular symbols (assuming E is parametrized by modular functions)
Mazur and Swinnerton-Dyer [MSD74] attached to E a p-adic L-function LMSD

p (E/Q) ∈ Λ ⊗ Qp
characterized by the property that for every finite order character χ : Γ→ µp∞ :

(1) LMSD
p (E/Q)(χ) =

{

(1− α−1
p )2 · L(E,1)ΩE

if χ = 1,
pn

τ(χ)αn
p
· L(E,χ,1)ΩE

if cond(χ) = pn > 1,

where αp is the p-adic unit root of x2 − ap(E)x + p and τ(χ) is the Gauss sum.
Motivated by Iwasawa’s main conjecture for class groups of number fields, Mazur formulated

the following (see [MSD74, §9.5, Conj. 3]). Note that implicit in the conjecture is the statement
that LMSD

p (E/Q) is integral, i.e. lies in Λ.

Conjecture 1.2 (Mazur’s main conjecture). X(E/Q∞) is Λ-torsion, with

charΛ(X(E/Q∞)) =
(

LMSD
p (E/Q)

)

.

As usual, we identify the Iwasawa algebra Λ with the one-variable power series ring Zp[[T ]]
upon the choice of a topological generator γ ∈ Γ by setting T = γ − 1. Under this identification,
the evaluation of an element L ∈ Λ at a character χ : Γ→ C×

p corresponds to the specialization of
the power series expression of L at T = χ(γ)− 1. In particular, evaluation at χ = 1 corresponds
to specialization at T = 0.

Henceforth we shall use a ∼p b to denote the equality a = ub with u ∈ Zp.

Proposition 1.3. Assume Conjecture 1.2. Then the p-part of the BSD formula holds in analytic
rank 0, i.e.

L(E, 1) 6= 0 =⇒ ordp

(

L(E, 1)

ΩE

)

= ordp

(

#X(E/Q) · Tam(E/Q)

(#E(Q)tors)2

)

.

Proof. Suppose L(E, 1) 6= 0. Then LMSD
p (E/Q)(0) 6= 0 by the interpolation property. By Mazur’s

main conjecture, it follows that the Γ-coinvariantsX(E/Q∞)Γ are finite, and so #Selp∞(E/Q) <∞
by Pontryagin duality and Mazur’s control theorem. In particular, #Selp∞(E/Q) = #X(E/Q)[p∞].

Let F(E/Q∞) ∈ Λ be a characteristic power series of X(E/Q∞), i.e. a generator of the principal
ideal charΛ(X(E/Q∞)). Then by the work of Schneider [Sch85] and Perrin-Riou [PR92] one has

(2) F(E/Q∞)(0) ∼p (1− α
−1
p )2 ·#Selp∞(E/Q) ·

Tam(E/Q)

(#E(Q)tors)2
.

Since by Conjecture 1.2 the left-hand side of (2) has the same p-adic valuation as LMSD
p (E/Q)(0),

the combination of (1) and (2) yields the result. �

1.2. Perrin-Riou’s main conjecture. We keep the assumption that p is an odd prime of good
ordinary reduction for E. LetK/Q be an imaginary quadratic field satisfying the following Heegner
hypothesis :

(Heeg) every prime ℓ|N splits in K.

Let K−
∞/K be the anticyclotomic Zp-extension, characterized as the unique Zp-extension of K that

is Galois over Q with τστ = σ−1 for all σ ∈ Gal(K−
∞/K), where τ is the non-trivial automorphism

of K/Q. Let K−
n be the unique subextension of K−

∞ with [K−
n : K] = pn.



4 FRANCESC CASTELLA

Via a fixed modular parametrization

ϕ : X0(N)→ E,

the Kummer images of Heegner points of p-power conductor yield classes

xn ∈ Sel(K−
n , TpE) := lim

←−
m

Selpm(E/K−
n ),

where TpE is the p-adic Tate module of E. Using the ordinary hypotheses on p, these classes can

be made compatible under the corestriction maps Sel(K−
n+1, TpE)→ Sel(K−

n , TpE), hence yielding
an element

κHg
∞ ∈ Š(E/K

−
∞) := lim

←−
n

Sel(K−
n , TpE).

Denote by X(E/K−
∞) the Pontryagin dual of Selp∞(E/K−

∞); this is a finitely generated module
over the anticyclotomic Iwasawa algebra Λ− = Zp[[Γ

−]], where we put Γ− = Gal(K−
∞)/K).

Conjecture 1.4 (Perrin-Riou’s main conjecture). X(E/K−
∞) has Λ−-rank 1, with

charΛ−(X(E/K−
∞)tors) = charΛ−

(

Š(E/K−
∞)

Λ− · κHg
∞

)2

·
1

u2Kc
2
,

where the subscript tors denotes the maximal Λ−-torsion submodule, uK := 1
2#(O×

K), and c ∈ Q×

is the Manin constant1 attached to ϕ.

Proposition 1.5. Assume Conjecture 1.4. Then

corankZp
Selp∞(E/Q) = 1 =⇒ ords=1L(E, s) = 1,

i.e. the p-converse to the theorem of Gross–Zagier and Kolyvagin holds.

Proof. Suppose corankZp
Selp∞(E/Q) = 1, and choose an imaginary quadratic field K such that:

(i) Hypothesis (Heeg) holds;
(ii) L(EK , 1) 6= 0,

where EK/Q is the twist of E by the quadratic character corresponding to K. By Kato’s work
[Kat04], condition (ii) implies that #Selp∞(EK/Q) <∞, and so

corankZp
Selp∞(E/K) = corankZp

Selp∞(E/Q) = 1.

By a variant of Theorem 1.1 for the extensionK−
∞/K, it follows that the corankZp

(X(E/K−
∞)Γ−) =

1. By Conjecture 1.4, this implies that

(γ − 1) ∤ charΛ−

(

Š(E/K−
∞)

Λ− · κHg
∞

)

,

where γ ∈ Γ− is any topological generator (otherwise one would get corankZp
(X(E/K−

∞)Γ−) ≥ 3),

and so κHg
∞ has non-torsion image κHg

0 under the natural map

Š(E/K−
∞) ։ Š(E/K−

∞)Γ− →֒ Sel(K,TpE).

But by construction κHg
0 is the Kummer image of the classical Heegner point yK ∈ E(K) in the

Gross–Zagier formula [GZ86], and therefore L′(E/K, 1) 6= 0. Finally, the factorizationL(E/K, s) =
L(E, s)L(EK , s) together with condition (ii) implies that ords=1L(E, s) = 1, as desired. �

Remark 1.6. The first general p-converse to the theorem of Gross–Zagier and Kolyvagin for
good ordinary primes p is due to Skinner [Ski20] and independently W. Zhang [Zha14]. The above
proof of Proposition 1.5 is closely related to the approach in [Ski20] and is essentially contained
in the work of X. Wan [Wan21a], which by using the Iwasawa theory of Heegner points (and their
ensuing Λ−-adic extension of the BDP formula [CH18]) allows one to dispense with the assumption
#X(E/Q)[p∞] <∞ forces upon by the original approach.

1Thus ϕ∗ωE = c · 2πif(z)dz for the Néron differential ωE and the newform f attached to E.
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1.3. BDP main conjecture. In this section we assume that, in addition to (Heeg), the imaginary
quadratic field K satisfies the condition that

(spl) (p) = vv splits in K,

with v the prime of K above p induced by our fixed embedding Q →֒ Qp. On the other hand, the
condition that p is a prime of good ordinary reduction for E is not necessary here.

Put Λur := Λ−⊗̂Zp
Zur
p , where Zur

p is the completion of the ring of integers of the maximal

unramified extension of Qp. By the work of Bertolini–Darmon–Prasanna [BDP13] and its Λ−-adic
extension in [Bra11, CH18], there is a p-adic L-function LBDP

v (f/K) ∈ Λur characterized by the
property that for every character χ : Γ− → C×

p crystalline at both v and v of weights (n,−n) with
n > 0 we have

LBDP
v (f/K)2(χ) = C(f/K, χ) · Lalg(f/K, χ, 1),

where C(f/K, χ) is a nonzero term depending on f/K and χ, and Lalg(f/K, χ, 1) is the “algebraic
part” of the central Rankin–Selberg L-value L(f/K, χ, 1).

On the algebraic side, define the BDP Selmer group by

SelBDP
v (E/K−

∞) := ker

{

H1(K−
∞, E[p∞])→

∏

w∤v

H1(K−
∞,w, E[p∞])

}

.

In particular, classes in SelBDP
v (E/K−

∞) are trivial at the primes above v. Denote byXBDP
v (E/K−

∞)

the Pontryagin dual of SelBDP
v (E/K−

∞).
The following can be viewed as a special case of Greenberg’s Iwasawa main conjectures [Gre94]

for p-adic deformations of motives.

Conjecture 1.7 (BDP main conjecture). XBDP
v (E/K−

∞) is Λ−-torsion, with

charΛ−(XBDP
v (E/K−

∞)) =
(

LBDP
v (f/K)2

)

as ideals in Λur.

Proposition 1.8. Suppose the p-part of the BSD formula holds in analytic rank 0. Then Conjec-
ture 1.7 implies the p-part of the BSD formula in analytic rank 1, i.e.

ords=1L(E, s) = 1 =⇒ ordp

(

L′(E, 1)

ΩE ·RegE

)

= ordp

(

#X(E/Q) · Tam(E/Q)

(#E(Q)tors)2

)

.

Proof. Suppose ords=1L(E, s) = 1, and choose an imaginary quadratic field K such that:

(i) Hypotheses (Heeg) and (spl) hold;
(ii) L(EK , 1) 6= 0.

Then ords=1L(E/K, s) = 1, which by the work of Gross–Zagier and Kolyvagin [Kol88] implies
that the classical Heegner point yK ∈ E(K) is non-torsion, and we have

(3) rankZE(K) = 1, #X(E/K) <∞;

in particular, the index [E(K) : ZyK ] is finite. Let FBDP
v (E/K−

∞) ∈ Λ− be a characteristic power
series for XBDP

v (E/K−
∞). Then by the work of Jetchev–Skinner–Wan [JSW17] we have the equality

up to a p-adic unit

(4) FBDP
v (E/K−

∞)(0) ∼p

(

1− ap(E) + p

p

)2

·
∏

w|N

cw(E/K) ·#X(E/K) ·
logωE

(yK)2

[E(K) : ZyK ]2
,

where ap(E) = p+1−#E(Fp), cw(E/K) is the Tamagawa factor of E at w, and logωE
: E(Kv)→

Qp is the formal group logarithm. On the other hand, the formula of Bertolini–Darmon–Prasanna
[BDP13] yields

(5) LBDP
p (f/K)2(0) ∼p

1

u2Kc
2
·

(

1− ap(E) + p

p

)2

· logωE
(yK)2.
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Since Conjecture 1.7 implies that LBDP
v (f/K)(0) ∼p FBDP

v (E/K−
∞)(0), combining (4) and (5) we

arrive at

[E(K) : ZyK ]2 ∼p #X(E/K) ·
∏

w|N

cw(E/K) · u2Kc
2.

By Gross–Zagier formula [GZ86], this last relation is equivalent to the p-part of the BSD formula
when ords=1L(E/K) = 1. Thus using from the factorization

L(E/K, s) = L(E, s)L(EK , s)

and the assumption that the p-part of the BSD formula holds for L(EK , 1), the result follows. �

2. Lecture 2: BDP main conjecture at Eisenstein primes

2.1. Main result. Let p ∤ 2N be a prime of good ordinary reduction for E. When the residual
representation

ρE,p : GQ → AutFp
(E[p]) ≃ GL2(Fp)

has “big image” (and satisfies some mild ramification hypotheses), Conjectures 1.4 and 1.7 are
known by combining:

• Euler/Kolyvagin system methods using Heegner points ([MR04], [How04]);
• A vast generalization of Ribet’s methods ([SU14], [Wan20, Wan21b]).

Now we put ourselves in the opposite case where E[p] is reducible as a GQ-module, say

(6) E[p]ss ≃ Fp(φ) ⊕ Fp(ψ),

where φ, ψ : GQ → F×
p are characters. Note that ψ = ωφ−1 by the Weil pairing, where ω : GQ → F×

p

is the mod p cyclotomic character. The goal of this lecture is to outline the proof of the following
result from [CGLS22] (in the rank one case) and [CGS23].

Theorem 2.1. Let K be an imaginary quadratic field of odd discriminant −DK 6= −3, and
satisfying hypotheses (Heeg) and (spl). Suppose p > 2 is a good Eisenstein prime for E with

φ|Gp
6= 1, ω,

where Gp ⊂ GQ is a decomposition group at p. Then the BDP main conjecture (Conjecture 1.7)
and Perrin-Riou’s main conjecture (Conjecture 1.4) both hold.

Recall that Λ− denotes the anticyclotomic Iwasawa algebra. From the structure theorem for
finitely generated Λ−-modules and the Weierstrass preparation theorem, one has Iwasawa λ- and
µ-invariants attached to XBDP

v (E/K−
∞) and LBDP

v (E/K). An understanding of these invariants
is a key in Theorem 2.1, whose proof is naturally divided into 2 steps:

• Step 1 : Exploit the congruence (6) to show that

µ(XBDP
v (E/K−

∞)) = µ(LBDP
v (E/K)) = 0,

λ(XBDP
v (E/K−

∞)) = λ(LBDP
v (E/K)2).

• Step 2 : Show that XBDP
v (E/K−

∞) is Λ−-torsion, with

charΛ−(XBDP
v (E/K−

∞)) ⊃
(

LBDP
v (f/K)2

)

as ideals in Λur[1/p].

Clearly the combination of these two imply the equality

charΛ−(XBDP
v (E/K−

∞)) =
(

LBDP
v (f/K)2

)

in Λur predicted by Conjecture 1.7. That they also imply Conjecture 1.4 follows from the equiv-
alence between the two conjectures, a consequence of the Λ−-adic analogue of the BDP formula
[BDP13] obtained in [CH18].

Remark 2.2. In a recent work [KY24], T. Keller and M. Yin have removed the hypothesis on φ
in Theorem 2.1. They have also extended the result to higher weight modular forms, and (using
Hida theory in the style of Skinner [Ski16]) even to the case of multiplicative Eisenstein primes.
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In the next two subsections we outline the main ideas that go into the proofs of the above Step 1
and Step 2, respectively.

2.2. Anticyclotomic Greenberg–Vatsal method. Denote by S the set of primes of K dividing
N , and by Σ ⊃ S the set of primes ofK dividing Np∞. LetKΣ be the Galois group of the maximal
extension of K unramified outside Σ, and consider the S-imprimitive BDP Selmer group

(7) SelBDP
v,S (E/K−

∞) := ker

{

H1(KΣ/K−
∞, E[p∞])→

∏

w|v

H1(K−
∞,w, E[p∞])

}

.

Let XBDP
v,S (E/K−

∞) be the Pontryagin dual of SelBDP
v,S (E/K−

∞). Multiplying LBDP
v (f/K) by certain

elements in Λ− interpolating the local Euler factors of L(f/K, χ, s) at s = 1 at primes v ∈ S over
characters χ of Γ−, one can define an S-imprimitive LBDP

v,S (f/K) ∈ Λur interpolating the central

L-values of L(f/K, χ, s) at s = 1 with the Euler factors at the primes in S stripped out.
The principle to be exploited is that Conjecture 1.7 should be equivalent to its S-imprimitive

counterpart, so in particular

charΛ−(XBDP
v,S (E/K∞))

?
=

(

LBDP
v,S (f/K)2

)

,

with the latter having the advantage (first noticed by Greenberg in the context of classical Iwasawa
theory [Gre77]) that the objects involved are better-behaved with respect to congruences.

Let Φ,Ψ : GQ → Z×
p be the Teichmüller lifts of φ, ψ, respectively. Attached to Φ,Ψ one has Λ−-

cotorsion Selmer groups Selv,S(Φ/K
−
∞), Selv,S(Ψ/K

−
∞) (whose definition is recalled in the proof of

Proposition 2.3 below) with associated Iwasawa λ-invariants denoted λSφ , λ
S
ψ , respectively.

Proposition 2.3. Suppose p ∤ 2N is such that E[p]ss ≃ F(φ)⊕ F(ψ) as GQ-modules with φ|Gp
6=

1, ω. Then XBDP
v,S (E/K−

∞) is Λ−-torsion, with

µ(XBDP
v,S (E/K−

∞)) = 0, λ(XBDP
v,S (E/K−

∞)) = λSφ + λSψ.

Proof. Let Kφ is the fixed field of ker(φ|GK
), and let M∞ be the maximal abelian pro-p extension

of K−
∞Kφ unramfied outside v and S. By standard arguments, the Selmer group

(8)
Selv,S(Φ/K

−
∞) := ker

{

H1(KΣ/K−
∞,Qp/Zp(Φ))→

∏

w|v

H1(K−
∞,w,Qp/Zp(Φ))

}

≃ Homcts(Gal(M∞/K
−
∞Kφ),Qp/Zp)

is Λ−-cotorsion and with no proper Λ−-submodules of finite index. On the other hand, by Hida’s re-
sult on the vanishing of the µ-invariant of anticyclotomic Katz p-adic L-functions [Hid10] together
with Rubin’s proof of the Iwasawa main conjecture for K [Rub91], we have µ(Selv,S(Φ/K

−
∞)∨) = 0.

Thus we see that Selv,S(Φ/K
−
∞) is p-divisible, and therefore the λ-invariant of its Pontryagin dual

Selv,S(Φ/K
−
∞)∨ is given by

(9) λSφ = dimFp

(

Selv,S(Φ/K
−
∞)[p]

)

.

From our conditions on φ, it is easy to see that the natural map

H1(K−
∞,Qp/Zp(φ))→ H1(K−

∞,Qp/Zp(Φ))[p]

gives Selv,S(φ/K
−
∞) ≃ Selv,S(Φ/K

−
∞)[p], where Selv,S(φ/K

−
∞) is the residual Selmer group defined

as in (8) with Fp(φ) in place of Qp/Zp(Φ). Of course, the same results apply with ψ = ωφ−1 in
place of φ.

Letting SelBDP
v,S (E[p]/K−

∞) be the Selmer group defined as in (7) with E[p∞] replaced by E[p],
from the short exact sequence

(10) 0→ Fp(φ)→ E[p]→ Fp(ψ)→ 0

we immediately arrive at the short exact sequence

(11) 0→ Selv,S(φ/K
−
∞)→ SelBDP

v,S (E[p]/K−
∞)→ Selv,S(ψ/K

−
∞)→ 0.
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The above thus shows that Selv,S(E[p]/K−
∞) ≃ SelBDP

v,S (E/K−
∞)[p] is finite, and soXBDP

v,S (E/K−
∞)

is Λ−-torsion with µ = 0. Since similarly as before the λ-invariant of SelBDP
v,S (Φ/K−

∞)∨ can be com-

puted as dimFp
(SelBDP

v,S (E/K−
∞)[p]), the last claim in the proposition follows from (11) and (9). �

On the analytic side, (10) implies a congruence

f ≡ Eφ,ψ (mod p)

between the newform f attached to E and a weight 2 Eisenstein series Eφ,ψ attached to the
Dirichlet characters Φ,Ψ. From the constructions of LBDP

v,S (f/K) and of the Katz p-adic L-function

for characters of K [Kat78, HT93], building on work of Kriz [Kri16] one then deduces a congruence

LBDP
v,S (E/K)2 ≡ LKatz

v,S (Φ) · LKatz
v,S (Ψ) (mod pΛur),

which together with the aforementioned vanishing result of Hida yields the equalities

µ(LBDP
v,S (E/K)) = 0, λ(LBDP

v,S (E/K)2) = λ(LKatz
v,S (Φ)) + λ(LKatz

v,S (Ψ)).

By Rubin’s proof of the Iwasawa main conjecture for K, these last two equalities and Proposi-
tion 2.3 yield the proof of Step 1.

2.3. Kolyvagin system argument with “error terms”. As noted in §2.1, the proof of Theo-
rem 2.1 exploits the following interplay between Conjectures 1.7 and Conjecture 1.4.

Proposition 2.4. Suppose E(K)[p] = 0. Then the following are equivalent:

(1) XBDP
v (E/K−

∞) is Λ−-torsion, LBDP
v (f/K) is nonzero, and

charΛ−(XBDP
v (E/K−

∞)) ⊃
(

LBDP
v (f/K)2

)

in Λur[1/p].
(2) X(E/K−

∞) has Λ−-rank one, κHg
∞ is not Λ−-torsion, and

charΛ−(X(E/K−
∞)tors) ⊃ charΛ−

(

Š(E/K−
∞)

Λ− · κHg
∞

)2

in Λ−[1/p].

The same result holds for the opposite divisibilities, and without inverting p.

Sketch of proof. By p-ordinarity, there is a unique quotient T−
p E ≃ Zp of TpE where the Gp-action

is unramified. From the two-variable extension (due to Loeffler–Zerbes [LZ14]) of the cyclotomic
Perrin-Riou big logarithm map [PR94] one can deduce the existence of an injective generalized
Coleman power series map with pseudo-null cokernel

Colv : lim
←−
n

H1(K−
n,v, T

−
p E) →֒ Λur,

which by virtue of a Λ−-adic extension of the BDP formula (see [CH18]) sends the natural image
of resv(κ

Hg
∞ ) to LBDP

v (f/K). The result then follows from a double application (one involving resv
and another involving resv) of Poitou–Tate duality. �

Since the fact that κHg
∞ is not Λ−-torsion follows from the work of Cornut–Vatsal [Cor02, Vat03]2,

the proof of Step 2, and hence of Theorem 2.1, is thus reduced to the following.

Proposition 2.5. Suppose E(K)[p] = 0. Then X(E/K−
∞) has Λ−-rank one, and we have

charΛ−(X(E/K−
∞)tors) ⊃ charΛ−

(

Š(E/K−
∞)

Λ− · κHg
∞

)2

in Λ−[1/p].

2Alternatively, it also follows from the Λ−-adic BDP formula and the nonvanishing of LBDP
v (f/K) (see [Hsi14])

via Hida’s methods.
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Proof. This follows from a refinement of Kolyvagin’s methods building on some of the techniques
developed by Howard and Nekovář (see [How04, Nek07]) in related settings. The difficulty in the
present case lies in the fact that no “big image” hypotheses on TpE is being made.

By standard arguments, the non-triviality of κHg
∞ and a generalized Cassels–Tate pairing implies

the existence of a Λ−-module pseudo-isomorphism

X(E/K−
∞) ∼ Λ− ⊕M ⊕M

with M a finitely generated torsion Λ−-module. Thus the task is to compare the characteristic
ideal of M with that of Š(E/K−

∞)/Λ− ·κHg
∞ . Let P be a height one prime of Λ− with P 6= (p), and

take a sequence Pm of height one primes of Λ− with Pm → P as m → ∞. Note that each such
Pm corresponds to a character αm : Γ− → R×

m with Rm a finite extension of Zp. By inductively
choosing a sequence of Kolyvagin primes (of “depth k” for k ≫ 0) using Cebotarev, one arrives at
the inequality

lengthRm
(MPm

) ≤ lengthRm

(

Š(E/K∞)Pm
/Rm · κ

Hg
∞,Pm

)

+ Em,

where Em is an “error term” behaving asymptotically like ordp(αm(γ)−α−1
m (γ)) as m→∞. Thus

Em = O(1) as long as P 6= (γ − 1), and hence by a control theorem in the style of Mazur–Rubin
[MR04], letting P vary we deduce that the claimed divisibility holds in Λ−[1/p, 1/(γ − 1)]. To
handle the prime P = (γ − 1), one takes a sequence Pm with αm ≡ 1 (mod pm), and choosing a
sequence of Kolyvagin primes as above, but this time exploiting the action of complex conjugation
on (TpE ⊗ αm)/pm, a different induction argument yields the inequality

lengthRm
(MPm

) ≤ lengthRm

(

Š(E/K∞)Pm
/Rm · κ

Hg
∞,Pm

)

+ Em,

with an error term Em now bounded independently of m, which by a control theorem yields the
desired divisibility also at the augmentation ideal (γ − 1). �

Remark 2.6. For the application to the p-converse to the theorem of Gross–Zagier and Kolyvagin,
it suffices to have the divisibility “⊂” in Theorem 2.1 (rather than the equality of characteristic
ideals) after inverting (γ − 1) and (p); similarly, an ambiguity by powers of (γ − 1) is harmless for
the application to the p-part of the BSD formula in analytic rank one. However, the final from of
the result of Theorem 2.1 obtained in [CGS23] is essential to the proof of Mazur’s main conjecture
at Eisenstein primes explained in the next lecture.

3. Lecture 3: Mazur’s main conjecture at Eisenstein primes

3.1. Main result. In this lecture we explain the proof of the following result from [CGS23].

Theorem 3.1. Let E/Q be an elliptic curve of conductor N , and let p ∤ 2N be a good Eisenstein
prime for E, i.e. such that

E[p]ss ≃ Fp(φ)⊕ Fp(ψ)

for characters φ, ψ = ωφ−1 : GQ → F×
p . Assume that φ|Gp

6= 1, ω. Then Mazur’s main conjecture
(Conjecture 1.2) holds for E.

Previously, the following results were known towards Conjecture 1.2 for good Eisenstein primes
p:

• Rubin [Rub91]: proof in the CM case.
• Kato [Kat99]: X(E/Q∞) is Λ-torsion, with

charΛ(X(E/Q∞)) =
(

LMSD
p (E/Q)

)

in Λ[1/p].
• Wüthrich [Wut14]: LMSD

p (E/Q) is integral, and Kato’s divisibility holds in Λ.
• Greenberg–Vatsal [GV00]: proof in “half” of the cases; more precisely, when

(GV) φ =

{

unramified at p and odd, or

ramified at p and even;

in other words, when E[p∞] contains no cyclic subgroups of multiplicative type.
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The condition on φ in the Greenberg–Vatsal result is needed to ensure the vanishing of µ(X(E/Q∞))
building on the work of Ferrero–Washington [FW79] and Mazur–Wiles [MW84]. Without this re-
striction on φ, it was shown by Greenberg [Gre99] that µ(X(E/Q∞)) is positive, and by work of
Stevens [Ste89] one similarly knows that µ(LMSD

p (E/Q)) > 0 when φ doesn’t satisfy (GV).
Thus to extend the Greenberg–Vatsal method beyond the cases covered by (GV) one is faced

with the challenge of determining the exact value of the algebraic and analytic invariants, which
seems to be a very difficult problem (but see [BP19] and [PW24] for interesting recent works in
this direction).

The proof of Theorem 3.1 is based on a different method to compare Iwasawa invariants. The
method is insensitive to the value of µ, and in particular gives a new proof of the Greenberg–Vatsal
result in the cases they considered.

3.2. Comparing Iwasawa invariants. In this section we explain the strategy from [CGS23] to
arrive at the equalities

(12) µ(X(E/Q∞)) = µ(LMSD
p (E/Q)), λ(X(E/Q∞)) = λ(LMSD

p (E/Q)),

which combined with Kato’s divisibility (as integrally refined by Wüthrich [Wut14]) yields Theo-
rem 3.1. Some of the details on how the strategy is carried out are given in the next subsection.

The following discussion applies to any prime p ∤ 2N of good ordinary reduction for E. Let K
be an imaginary quadratic field satisfying (spl), and let K+

∞ be the cyclotomic Zp-extension of K.
Following Greenberg [Gre89], we define the ordinary Selmer group of E over K+

∞ by

Selp∞(E/K+
∞) := ker

{

H1(K+
∞, E[p∞])→

∏

w|p

H1(K+
∞,w, E[p∞])

Aw
×
∏

w∤p

H1(Iw , E[p∞])

}

,

where Aw := im{E+[p∞] → E[p∞]}div, with E+[p∞] the kernel of the reduction map at p, and
Iw ⊂ GK+

∞,w
the inertia subgroup at w. On the analytic side, Hida’s p-adic Rankin method [Hid85]

(as studied by Perrin-Riou [PR88] in detail in the case of Rankin–Selberg convolution of f with
theta series of K) yields the construction of a 2-variable p-adic L-function

LPR
p (E/K) ∈ ΛK := Zp[[Gal(K∞/K)]],

where K∞/K is the Z2
p-extension of K, interpolating the algebraic part of the central L-values

L(f/K, χ, 1) (with a normalized period depending on E), as χ runs over the finite orders characters
of ΓK .

The action of complex conjugation yields a decomposition ΓK ≃ Γ+ × Γ− into ±-eigenspaces,
with Γ+ (resp. Γ−) idenfitied with the Galois group of the cyclotomite (resp. anticyclotomic) Zp-
extension of K. Denoting by LPR

p (E/K)+ the image of LPR
p (E/K) under the natural projection

ΛK → Λ+ := Zp[[Gal(K+
∞/K)]] ≃ Λ,

Greenberg’s Iwasawa Main Conjecture for general p-ordinary representations [Gre89] predicts that
for ⋆ ∈ {+, ∅}, the Pontryagin dual X(E/K⋆

∞) = HomZp
(Selp∞(E/K⋆

∞),Qp/Zp) is Λ⋆-torsion,
with

(13) charΛ⋆(X(E/K⋆
∞))

?
=

(

LPR
p (E/K)⋆

)

.

As a motivation for the general argument, we note that the aforementioned results, together
with Theorem 2.1, already imply a proof of this conjecture in some cases. Indeed, denote by EK

the twist of E by the quadratic character corresponding to K. Kato’s integral divisibility towards
Conjecture 1.2 for E and EK yields the divisibility

(14) charΛ+(X(E/K+
∞)) ⊃

(

LPR
p (E/K)+

)

,

while from Theorem 2.1 and the fact that K−
∞∩K

+
∞ = K one can show the equality up to a p-adic

unit

(15) F(E/K+
∞)(0) ∼p L

PR
p (E/K)+(0),

where F(E/K+
∞) ∈ Λ+ is any characteristic power series for X(E/K+

∞). It is easy to see that the
combination of (14) and (15) implies (13), and hence Conjecture 1.2, provided LPR

p (E/K)+(0) 6= 0.
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Unfortunately, hypothesis (Heeg) forces this value to vanish for sign reasons. Using Beilinson–
Flach classes and their explicit reciprocity laws (as described in more detail in the next subsection),
the same conclusion applies provided LBDP

v (E/K)(0) 6= 0, which by the main result of [BDP13]
amounts to the requirement that the Heegner point yK ∈ E(K) is non-torsion.

To treat the general case, the idea is to take an anticyclotomic character

α : Γ− → Z×
p

with α ≡ 1 (mod pM ), for some M ≫ 0 to stay away from any problematic zeroes; in particular, so
that LBDP

v (E/K)(α) 6= 0. From a refinement [BSTW23] of the Beilinson–Flach classes constructed
by Lei–Loeffler–Zerbes [LLZ14, LLZ15] and Kings–Loeffler–Zerbes [KLZ20, KLZ17] (in particular
allowing one of the forms used in the construction to be a residually reducible and p-indistinguished
Hida family with CM by K), and their explicit reciprocity laws, one can deduce from Theorem 2.1
a proof of the α-twisted variant of conjecture (13) for K+

∞/K:

(16) charΛ+(X(E(α)/K+
∞))

?
=

(

LPR
p (E(α)/K)+

)

.

Establishing (16) for a suitable choice of α as above is the key to the proof of Theorem 3.1, since
from the easy congruences

charΛ+(X(E(α)/K+
∞)) ≡ charΛ+(X(E/K+

∞)) (mod pM ),

LPR
p (E(α)/K)+ ≡ LPR

p (E/K)+ (mod pM ),

it implies the equalities

µ(X(E/K+
∞)) = µ(LPR

p (E/K)+), λ(X(E/K+
∞)) = λ(LPR

p (E/K)+)

(in particular, without knowing the specific value of the µ-invariants!). Together with the integral
divisibility (14), these equalities yield the proof of conjecture (13) for K+

∞/K, from where the
proof of Theorem 3.1 can be deduced from Kato’s work.

3.3. From anticyclotomic to cyclotomic. It remains to outline the proof of (16).
Since Conjecture 1.2 is known to be isogeny invariant, we replace E by the elliptic curve E•/Q is

the same isogeny class constructed by Wüthrich [Wut14]. This can be characterized as the elliptic
curve whose p-adic Tate module TpE• agrees with the geometric lattice in the p-adic representation
Vf realized as the maximal quotient of H1

et(Y1(N)Q,Qp(1)) on which the Hecke operators acts with
the same eigenvalues as f .

Let H1
Iw(K∞, TpE•) be the Iwasawa cohomology for the Z2

p-extensionK∞/K, which by Shapiro’s

lemma can be identified with H1(K,TpE•⊗̂Zp
ΛK). By the work of Lei–Loeffler–Zerbes and Kings–

Loeffler–Zerbes, as refined in the case of interest in recent work of Burungale–Skinner–Tian–Wan,
there exists a class

BFα ∈ H1
Iw(K∞, TpE•(α))

together with two explicit reciprocity laws:

(1) At the prime v, the class BFα naturally lands in the subspace H1(Kv, T
+
p E•(α)) and there

is a generalized Coleman power series map

Colv : H
1
Iw(K∞,v, T

+
p E•(α)) →֒ Zur

p ⊗̂Zp
ΛK

sending resv(BFα) to LGr
v (f(α)/K), where LGr

v (f(α)/K) is a two-variable Rankin–Selberg
p-adic L-function with the property that its natural image LGr

v (f(α)/K)− in Λur satisfies
(as can be checked by comparing their respective interpolation properties)

(

LGr
v (f(α)/K)−

)

=
(

LBDP
v (f(α)/K)2

)

,

where LBDP
v (f(α)/K) is the twist of LBDP

v (f(α)/K) by the anticyclotomic character α.
(2) At the prime v, there is a generalized Coleman power series map

Colv : H1
Iw(K∞,v, T

−
p E•(α)) →֒ ΛK ,

where T−
p E•(α) := TpE•(α)/T

+
p E•(α), sending the natural image of BFα to LPR

p (E(α)/K).
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The cyclotomic projection BF+
α ∈ H1

Iw(K
+
∞, TpE•(α)) is the base class of a cyclotomic Euler

system for TpE•(α), and for a suitable choice of α it can be shown to be nonzero as a conse-
quence of Rohrlich’s nonvanishing results [Roh84] and the second of the above explicit reciprocity
laws. By the Euler system machinery [Rub00], one thus obtains that a certain dual Selmer group
Xord,str(E•(α)/K

+
∞) (dual to the compact Selmer group Selord,rel(K

+
∞, TpE•(α)) on which the class

BF+
α lives) is Λ+-torsion, with characteristic ideal satisfying the divisibility

charΛ+

(

Xord,str(E•(α)/K
+
∞)

)

⊃ charΛ+

(

Selord,rel(K
+
∞, TpE•(α))

Λ+ · BF+
α

)

in Λ+[1/p]. By the commutative hexagon deduced from Poitou–Tate duality:

H1
Iw(K+

∞,v
,T−

p E•(α))

Λ+·resv(BF+
α )

X(E•(α)/K
+
∞)

Selord,rel(K
+
∞
,T−

p E•(α))

Λ+·BF+
α

Xord,str(E•(α)/K
+
∞)

H1
Iw(K+

∞,v,T
+
p E•(α))

Λ+·resv(BF+
α )

Xv(E•(α)/K
+
∞)

resv

resv

this translates into the divisibilities

(17) charΛ+(X(E•(α)/K
+
∞)) ⊃ charΛ+

(

H1
Iw(K

+
∞,v, T

−
p E•(α))

Λ+ · resv(BF
+
α )

)

=
(

LPR
p (E•(α)/K)+

)

with the equality following from the explicit reciprocity law at v (using that Colv has pseudo-null
cokernel), and

(18) charΛ+(Xv(E•(α)/K
+
∞))Λ̃+ ⊃ charΛ+

(

H1
Iw(K

+
∞,v, T

+
p E•(α))

Λ+ · resv(BF
+
α )

)

Λ̃+ =
(

LGr
v (E•(α)/K)+

)

,

similarly using the explicit reciprocity law at v. Further choosing α so that LBDP
v (f/K)(0) 6= 0 (as

is possible by the nonvanishing of LBDP
v (f/K) as an element in Λur), we deduce from Theorem 3.1

that both sides of the divisibility (18) agree at T = 0 and are nonzero, hence they are equal. From
the commutative hexagon, it follows that the divisibility in (17) is also an equality, concluding the
proof of (16).
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