Best Simultaneous Approximation of Functions and a Generalized Minimax Theorem

Shinji Tanimoto
Department of Mathematics, University of Kochi, Kochi 780-8515, Japan*.

Abstract

Best simultaneous approximation (BSA) for finitely or infinitely many functions are considered under the uniform norm and other important norms. Characterization theorems for a BSA from a finite-dimensional subspace are obtained by a generalized minimax theorem. From the characterization theorem a strong unicity theorem is also deduced for a BSA.

1. Introduction

Let $\left\{f_{a}\right\}$ be a family of functions obtained in association with each element a in a set A. The purpose is to approximate these functions $\left\{f_{a}\right\}_{a \in A}$ simultaneously from a subspace H contained in a function space. In this scetion X is a compact Hausdorff space and $C(X)$ denotes the set of all real-valued continuous functions on X.

In [6] such an approximation problem was considered for real-valued functions $\left\{f_{a}\right\}_{a \in A}$ defined on X. The continuity of functions themselves is not supposed, but we assume uniform boundedness of the functions. For a specified subspace H of finite dimension in $C(X)$, we say that $f^{*} \in H$ is a best simultaneous approximation $(B S A)$ for $\left\{f_{a}\right\}_{a \in A}$ from H, whenever f^{*} satisfies the inequality

$$
\max _{a \in A, x \in X}\left|f_{a}(x)-f^{*}(x)\right| \leq \max _{a \in A, x \in X}\left|f_{a}(x)-f(x)\right| \text { for all } f \in H .
$$

In [6] a characterization theorem for a BSA was deduced under the following conditions:

- both functions (of $x) \inf _{a \in A} f_{a}(x)$ and $\sup _{a \in A} f_{a}(x)$ belong to $C(X)$;
- for each $x \in X$, the infimum and supremum of $f_{a}(x)$ are, respectively, attained by some $f_{a}(x)$.

Moreover, if H is a Haar subspace, a strong unicity theorem for a BSA was obtained from the characterization theorem (see Section 3). When X is a finite closed interval, an alternation theorem for a BSA was also obtained that is similar to the ordinary one (see [1]).

In the next section we consider a BSA problem in a function space $C(X, Y)$ (the set of all continuous functions from X to Y), Y being a normed linear space over the real field \mathbb{R} with norm $\|\cdot\|$. When a family of functions $\left\{f_{a}\right\}_{a \in A} \subset C(X, Y)$ and a finite-dimensional subspace $H \subset C(X, Y)$ are given, $f^{*} \in H$ is said to be a BSA to the functions $\left\{f_{a}\right\}_{a \in A}$ from H, if the inequality

$$
\max _{a \in A, x \in X}\left\|f_{a}(x)-f^{*}(x)\right\| \leq \max _{a \in A, x \in X}\left\|f_{a}(x)-f(x)\right\|
$$

holds for all $f \in H$. In this setting we will deduce a characterization theorem of a BSA for $\left\{f_{a}\right\}_{a \in A}$ that corresponds to the one of [6].
*Former affiliation

In Section 3, from this characterization theorem, a strong unicity theorem is derived in the function space $C(X)$.

In Section 4 we treat another BSA problem in L^{p}-approximation and obtain a characterization theorem of a BSA for finitely or infinitely many functions $\left\{f_{a}\right\} \subset L^{p}$. These characterization theorems are proved by means of a generalized minimax theorem ([4, Corollary 3.3]). For convenience sake we restate it as a lemma.

Lemma 1. Let U be an n-dimensional, compact convex subset of a Hausdorff topological vector space, V a compact Hausdorff space, and let $J: U \times V \rightarrow \mathbb{R}$ be a jointly continuous function. An element $u^{*} \in U$ minimizes $\max _{v \in V} J(u, v)$ over U, if and only if there exist nonnegative numbers $\lambda_{1}, \ldots, \lambda_{n+1}$ with sum one, and $v_{1}^{*}, \ldots, v_{n+1}^{*} \in V$ such that

$$
\begin{equation*}
\sum_{i=1}^{n+1} \mu_{i} J\left(u^{*}, v_{i}\right) \leq \sum_{i=1}^{n+1} \lambda_{i} J\left(u^{*}, v_{i}^{*}\right) \leq \sum_{i=1}^{n+1} \lambda_{i} J\left(u, v_{i}^{*}\right) \tag{1}
\end{equation*}
$$

holds for all $u \in U, v_{1}, \ldots, v_{n+1} \in V$, and for all nonnegative numbers $\mu_{1}, \ldots, \mu_{n+1}$ with sum one.
As a useful remark we add that, ignoring all i such that $\lambda_{i}=0$ and rearranging the suffix, (1) can be described as

$$
\sum_{i=1}^{n+1} \mu_{i} J\left(u^{*}, v_{i}\right) \leq \sum_{i=1}^{k} \lambda_{i} J\left(u^{*}, v_{i}^{*}\right) \leq \sum_{i=1}^{k} \lambda_{i} J\left(u, v_{i}^{*}\right),
$$

for some $k(1 \leq k \leq n+1)$ with $\sum_{i=1}^{k} \lambda_{i}=1\left(\lambda_{i}>0\right)$.

2. Characterization theorem

For a compact Hausdorff space X and a normed linear space Y over the real field \mathbb{R} with norm $\|\cdot\|$, we consider the set $C(X, Y)$ of all continuous functions from X to Y. A family of functions $\left\{f_{a}\right\}_{a \in A} \subset C(X, Y)$ and an n-dimensional subspace $H \subset C(X, Y)$ are given, where n is a positive integer. For $f \in C(X, Y)$ we define the uniform norm of f by

$$
\|\|f\|\|=\max _{x \in X}\|f(x)\|,
$$

and we endow the function space $C(X, Y)$ with this norm. Therefore, a BSA $f^{*} \in H$ is characterized by

$$
\max _{a \in A}\left|\| f _ { a } - f ^ { * } \| \left\|\leq \max _{a \in A}\left|\left\|f_{a}-f \mid\right\| \text { for all } f \in H .\right.\right.\right.
$$

We assume that A is a Hausdorff topological space and impose the two conditions:
(a) A is compact;
(b) the mapping $A \rightarrow C(X, Y)$ defined by $a \mapsto f_{a}$ is continuous.

Now let us introduce the following function

$$
J(f, a, x)=\left\|f_{a}(x)-f(x)\right\|
$$

defined on $H \times A \times X$. It is a jointly continuous function and convex in the argument f. Moreover, $A \times X$ is a compact set with respect to the product topology. Under this setting we have the
following characterization theorem for a BSA.

Theorem 2. An element $f^{*} \in H$ is a $B S A$ to $\left\{f_{a}\right\}$ from H if and only if, for some positive integer $k(1 \leq k \leq n+1)$, there exist $a_{1}, \ldots, a_{k} \in A, x_{1}, \ldots, x_{k} \in X$ and positive numbers $\lambda_{1}, \ldots, \lambda_{k}$, whose sum is one, such that
(i) $\sum_{i=1}^{k} \lambda_{i}\left\|f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right\| \leq \sum_{i=1}^{k} \lambda_{i}\left\|f_{a_{i}}\left(x_{i}\right)-f\left(x_{i}\right)\right\| \quad$ for all $f \in H$;
(ii) $\left\|f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right\|=\left\|\left|f_{a_{i}}-f^{*}\| \|=\max _{a \in A}\left\|\mid f_{a}-f^{*}\right\| \|\right.\right.$ for all $i(1 \leq i \leq k)$.
(Proof) Let f^{*} be a BSA. We define $U=\left\{f \in H:\left\|f-f^{*}\right\| \| \leq 1\right\}$. Then U is a compact convex set of H, since H is finite-dimensional. First we consider the approximation problem over the set U in place of H. Then f^{*} is also a minimizer of $\max _{(a, x) \in A \times X} J(f, a, x)$ over U. Applying Lemma 1 and its remark to this situation, we see that, for some $k(1 \leq k \leq n+1)$, there exist $\left(a_{1}, x_{1}\right), \ldots,\left(a_{k}, x_{k}\right) \in A \times X$, and positive numbers $\lambda_{1}, \ldots, \lambda_{k}$ with $\sum_{i=1}^{k} \lambda_{i}=1$ such that the following two inequalities hold:

$$
\begin{array}{r}
\sum_{i=1}^{k} \lambda_{i} J\left(f^{*}, a_{i}, x_{i}\right) \leq \sum_{i=1}^{k} \lambda_{i} J\left(f, a_{i}, x_{i}\right) \text { for all } f \in U \\
\sum_{i=1}^{n+1} \mu_{i} J\left(f^{*}, b_{i}, y_{i}\right) \leq \sum_{i=1}^{k} \lambda_{i} J\left(f^{*}, a_{i}, x_{i}\right) \tag{3}
\end{array}
$$

for all $b_{1}, \ldots, b_{n+1} \in A, y_{1}, \ldots, y_{n+1} \in X$ and all nonnegative numbers $\mu_{1}, \ldots, \mu_{n+1}$ with sum one.
The right-hand side of (2) is a convex function of f and has a local minimum at $f^{*} \in U$. By a property of convex functions it follows that it has a global minimum at $f^{*} \in H$, which implies (i). Next in (3) putting $\mu_{1}=1$ while other $\mu_{i}=0$, and $b_{1}=a$ for any $a \in A$, we have $\left\|f_{a}(y)-f^{*}(y)\right\| \leq \sum_{i=1}^{k} \lambda_{i}\left\|f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right\|$ for all $y \in X$, and hence for every $a \in A$

$$
\left|\left\|f_{a}-f^{*} \mid\right\| \leq \sum_{i=1}^{k} \lambda_{i}\left\|f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right\|\right.
$$

This shows that $\max _{a \in A}\| \| f_{a}-f^{*} \mid\left\|\leq \sum_{i=1}^{k} \lambda_{i}\right\| f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right) \|$. Using $\sum_{i=1}^{k} \lambda_{i}=1\left(\lambda_{i}>0\right)$, we conclude that

$$
\max _{a \in A}\left|\left\|f_{a}-f^{*}\left|\left\|\leq \sum_{i=1}^{k} \lambda_{i}\right\| f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\left\|\leq \max _{a \in A}\right\|\right| f_{a}-f^{*}\right\|\right.
$$

which implies (ii).
Conversely, suppose that $f^{*} \in H$ satisfies conditions (i) and (ii) for a_{i} 's in A, x_{i} 's of X and positive numbers λ_{i} 's such that $\sum_{i=1}^{k} \lambda_{i}=1$. Then these conditions imply that, for any $f \in H$,

$$
\max _{a \in A}\| \| f_{a}-f^{*}\| \|=\sum_{i=1}^{k} \lambda_{i}\left\|f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right\| \leq \sum_{i=1}^{k} \lambda_{i}\left\|f_{a_{i}}\left(x_{i}\right)-f\left(x_{i}\right)\right\| \leq \max _{a \in A}\| \| f_{a}-f\| \|
$$

showing that f^{*} becomes a BSA. This completes the proof.
Next we consider the case where A is a finite set, as discussed in [5]. Let $g_{1}, \ldots, g_{\ell} \in C(X, Y)$ be given. In order to consider BSA to $\left\{g_{j}\right\}$, we introduce a compact set

$$
A=\left\{a=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right): \sum_{j=1}^{\ell} \alpha_{j}=1, \alpha_{j} \geq 0(1 \leq j \leq \ell)\right\}
$$

For each $a \in A$ we set $g_{a}=\sum_{j=1}^{\ell} \alpha_{j} g_{j}$. For $f \in H$, an n-dimensional subspace of $C(X, Y)$, we have, using the convexity of norm

$$
\max _{1 \leq j \leq \ell}| |\left|g_{j}-f\right|| | \leq \max _{a \in A}| |\left|g_{a}-f\right|\left\|\left|=\max _{a \in A}\right|\right\|\left|\sum_{1 \leq j \leq \ell}^{\ell} \alpha_{j}\left(g_{j}-f\right)\right|\left\|\left|\leq \max _{1 \leq j \leq \ell}\right|\right\| g_{j}-f \mid \| .
$$

Thus our approximation problem is reduced to simultaneously approximate $\left\{g_{a}\right\}(a \in A)$ from H. Then as a special case of Theorem 2 follows the characterization theorem in [5].

3. Strong unicity theorem

Suppose that the norm of Y is defined by means of an inner product \langle,$\rangle so that \|y\|^{2}=\langle y, y\rangle$ for $y \in Y$. The condition (i) of Theorem 2 is equivalent to the assertion; the function of a real variable t

$$
\sum_{i=1}^{k} \lambda_{i}\left\|f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)+t f\left(x_{i}\right)\right\|
$$

attains the minimum at $t=0$ for every $f \in H$. By a simple calculation we obtain the next corollary, using the inner product.

Corollary 3. Let Y be an inner product space. An element $f^{*} \in H$ is a BSA to $\left\{f_{a}\right\}$ from H if and only if, for some positive integer $k(1 \leq k \leq n+1)$, there exist $a_{1}, \ldots, a_{k} \in A, x_{1}, \ldots, x_{k} \in X$ and positive numbers $\lambda_{1}, \ldots, \lambda_{k}$, whose sum is one, such that
(i') $\sum_{i=1}^{k} \lambda_{i}\left\langle f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right), f\left(x_{i}\right)\right\rangle=0 \quad$ for all $f \in H$;
(ii) $\left\|f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right\|=\left\|\left|\left|f_{a_{i}}-f^{*}\right|\left\|=\max _{a \in A}\left|\left\|\left|f_{a}-f^{*}\right|\right\|\right.\right.\right.\right.$ for all $i(1 \leq i \leq k)$.

In what follows we consider the case of $Y=\mathbb{R}$ and so we deal with the function space $C(X)$ as in Section 1. Referring to [2, p.91] or [4, Section 5], an n-dimensional subspace $H \subset C(X)$ is called a Haar subspace if, for n distinct elements $x_{1}, \ldots, x_{n} \in X$ and for n arbitrary numbers $r_{1}, \ldots, r_{n} \in \mathbb{R}$, there exists a unique $f \in H$ such that $f\left(x_{k}\right)=r_{k}(1 \leq k \leq n)$.

A one-dimensional Haar subspace is obviously spanned by any function that does not vanish in X. A two-dimensional Haar subspace is spanned by every pair of functions $f, g \in C(X)$ satisfying $f(x) g(y) \neq f(y) g(x)$ whenever $x \neq y$, and so on (by linear algebra). Here the uniform norm of $C(X)$ is defined by

$$
\|f\|=\max _{x \in X}|f(x)|
$$

for $f \in C(X)$. Now we prove the following strong unicity theorem.
Theorem 4. Suppose that the compact set X contains at least $n+1$ elements, where $n \geq 1$. Let a BSA $f^{*} \in H$ to $\left\{f_{a}\right\}_{a \in A}$ from an n-dimensional Haar subspace H satisfy (i') and (ii) of Corollary 3, for some integer $k(1 \leq k \leq n+1)$. If k elements $x_{1}, \ldots, x_{k} \in X$ are all distinct and the common value of (ii) is not zero, then there exists a positive number γ such that

$$
\max _{a \in A}\left\|f_{a}-h\right\| \geq \max _{a \in A}\left\|f_{a}-f^{*}\right\|+\gamma\left\|f^{*}-h\right\| \quad \text { for all } h \in H .
$$

(Proof) First we show that $k=n+1$. If $k \leq n$, there is a function $f \in H$ such that $f\left(x_{i}\right)=$ $f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)$ for $i(1 \leq i \leq k)$, since H is a Haar subspace. Inserting this f into the equality (i')
we have

$$
\sum_{i=1}^{k} \lambda_{i}\left|f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right|^{2}=\left|f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right|^{2}=0
$$

However, we assumed that $\delta=\left|f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right|=\max _{a \in A}\left\|f_{a}-f^{*}\right\|$ is not zero. Hence we must have $k=n+1$.

Letting h be an arbitrary element in H such that $\|h\|=1$, condition (i') can be written as

$$
\sum_{i=1}^{n+1} \lambda_{i} \sigma_{i} h\left(x_{i}\right)=0, \quad \sigma_{i}=\left(f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right) / \delta \quad(1 \leq i \leq n+1) .
$$

Since H is a Haar subspace and $\|h\|=1$, it follows that $\max _{1 \leq i \leq n+1} \sigma_{i} h\left(x_{i}\right)>0$. If we set

$$
\gamma=\min _{\|h\|=1} \max _{1 \leq i \leq n+1} \sigma_{i} h\left(x_{i}\right)
$$

then γ is positive, since the set $\{h \in H:\|h\|=1\}$ is compact.
Let $f \neq f^{*}$ be any element in H and set $h=\left(f^{*}-f\right) /\left\|f^{*}-f\right\|$. Then there exists at least one i satisfying

$$
\sigma_{i} h\left(x_{i}\right)=\sigma_{i}\left(f^{*}\left(x_{i}\right)-f\left(x_{i}\right)\right) /\left\|f^{*}-f\right\| \geq \gamma,
$$

and the required inequality follows using this i and $\left|\sigma_{i}\right|=1$:

$$
\begin{array}{r}
\max _{a \in A}\left\|f_{a}-f\right\| \geq \sigma_{i}\left(f_{a_{i}}\left(x_{i}\right)-f\left(x_{i}\right)\right)=\sigma_{i}\left(f_{a_{i}}\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right)+\sigma_{i}\left(f^{*}\left(x_{i}\right)-f\left(x_{i}\right)\right) \\
\geq \max _{a \in A}\left\|f_{a}-f^{*}\right\|+\gamma\left\|f^{*}-f\right\|
\end{array}
$$

4. BSA on L^{p}-spaces

Let (S, m) be a σ-finite positive measure space and $L^{p}(S, m)(1 \leq p<\infty)$ the set of all real-valued measurable functions f such that $|f|^{p}$ are integrable over S. For such p let q be the real number determined by $p^{-1}+q^{-1}=1$ for $p>1$, and $q=\infty$ for $p=1$. We use the following notation (similarly for $\|g\|_{q}$ of $g \in L^{q}$),

$$
\|f\|_{p}=\left(\int_{S}|f|^{p} d m\right)^{1 / p}
$$

and $\|f\|_{\infty}=\operatorname{ess}_{\sup }^{x \in S}$ $|f(x)|$.
We also assume that A is a compact set of a Hausdorff topological space and to each $a \in A$ there corresponds a function f_{a} which belongs to $L^{p}(S, m)$, and that the mapping $A \rightarrow L^{p}(S, m)$ so defined is continuous.

Let H be an n-dimensional subspace of $L^{p}(S, m)$, where $n \geq 1$. The problem is to approximate simultaneously the functions $\left\{f_{a}\right\}$ by elements of H. If $f^{*} \in H$ satisfies

$$
\begin{equation*}
\max _{a \in A}\left\|f_{a}-f^{*}\right\|_{p} \leq \max _{a \in A}\left\|f_{a}-f\right\|_{p} \tag{4}
\end{equation*}
$$

for all $f \in H$, we say that f^{*} is a BSA to the functions $\left\{f_{a}\right\}$ from H.
In order to formulate this problem in relation to Lemma 1, we need the following well-known facts. Property (a) is the Banach-Alaoglu theorem (see [3, p.68]) and property (b) is the duality pairing (see [7, p.115]).
(a) The dual space of $L^{p}(S, m)$ is $L^{q}(S, m)$ and $G=\left\{g \in L^{q}(S, m):\|g\|_{q} \leq 1\right\}$ is a compact set in the weak*-topology $\sigma\left(L^{q}(S, m), L^{p}(S, m)\right)$.
(b) For each $f \in L^{p}(S, m)$ we have $\|f\|_{p}=\max _{g \in G} \int_{S}(g f) d m$.

Therefore, (4) is equivalent to the following:

$$
\begin{equation*}
\max _{(a, g) \in A \times G} \int_{S} g\left(f_{a}-f^{*}\right) d m \leq \max _{(a, g) \in A \times G} \int_{S} g\left(f_{a}-f\right) d m \tag{5}
\end{equation*}
$$

for all $f \in H$, and the problem is to find a function f^{*} satisfying (5).
It follows from (a) that $A \times G$ is a compact set in the product topology and it is easy to see that

$$
J(f, a, g)=\int_{S} g\left(f_{a}-f\right) d m
$$

is a jointly continuous function of the three variables $a \in A, g \in G$ and $f \in H$, using Hölder's inequality and the definition of the weak*-topology. Moreover, it is a convex function with respect to f. Hence we can again invoke Lemma 1 for the characterization of best approximations.

Theorem 5. An element $f^{*} \in H$ is a $B S A$ to $\left\{f_{a}\right\}$ from H if and only if, for some positive integer $k(1 \leq k \leq n+1)$, there exist $a_{1}, \ldots, a_{k} \in A, g_{1}, \ldots, g_{k} \in G$ and positive numbers $\lambda_{1}, \ldots, \lambda_{k}$ with sum one, satisfying the following two conditions:
(i) $\int_{S}\left(\sum_{i=1}^{k} \lambda_{i} g_{i}\right) h d m=0$ for all $h \in H$;
(ii) $\int_{S} g_{i}\left(f_{a_{i}}-f^{*}\right) d m=\left\|f_{a_{i}}-f^{*}\right\|_{p}=\max _{a \in A}\left\|f_{a}-f^{*}\right\|_{p} \quad$ for all $i(1 \leq i \leq k)$.
(Proof) Let f^{*} be a BSA. Define the set $U=\left\{f \in H:\left\|f-f^{*}\right\|_{p} \leq 1\right\}$. Then U is compact and convex, for H is a finite-dimensional subspace of $L^{p}(S, m)$. The convexity follows from Minkowski's inequality (see [7, p.33]). It is obvious that f^{*} also minimizes $\max _{(a, g) \in A \times G} J(f, a, g)$ over the set U. It follows from Lemma 1 , for some $k(1 \leq k \leq n+1)$, that there exist $a_{1}, \ldots, a_{k} \in A$, $g_{1}, \ldots, g_{k} \in G$, and numbers $\lambda_{1}, \ldots, \lambda_{k}>0$ with $\sum_{i=1}^{k} \lambda_{i}=1$ such that the following two inequalities hold:

$$
\begin{equation*}
\sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i}\left(f_{a_{i}}-f^{*}\right) d m \leq \sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i}\left(f_{a_{i}}-f\right) d m \tag{6}
\end{equation*}
$$

for all $f \in U$; and

$$
\begin{equation*}
\sum_{i=1}^{n+1} \int_{S} \mu_{i} h_{i}\left(f_{b_{i}}-f^{*}\right) d m \leq \sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i}\left(f_{a_{i}}-f^{*}\right) d m \tag{7}
\end{equation*}
$$

for all $\left(b_{1}, h_{1}\right), \ldots,\left(b_{n+1}, h_{n+1}\right) \in A \times G$, and all nonnegative numbers $\mu_{1}, \ldots, \mu_{n+1}$ with sum one.
Inequality (6) implies

$$
\sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i}\left(f-f^{*}\right) d m \leq 0 \text { for all } f \in U
$$

Let us put $f=f^{*}+t h$, where $h \in H$ is arbitrary and $t>0$ is so small that this f belongs to U. Then we get

$$
\sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i} h d m=\int_{S}\left(\sum_{i=1}^{k} \lambda_{i} g_{i}\right) h d m \leq 0 \text { for all } h \in H
$$

which means condition (i), since the left-hand side of the inequality must be zero.
By setting $b_{i}=a_{i}$ and $\mu_{i}=\lambda_{i}$ for all $i(1 \leq i \leq k)$ in (7) and remarking property (b), we see that (7) implies

$$
\sum_{i=1}^{k} \lambda_{i}\left\|f_{a_{i}}-f^{*}\right\|_{p} \leq \sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i}\left(f_{a_{i}}-f^{*}\right) d m
$$

Since the reverse inequality always holds, we conclude

$$
\sum_{i=1}^{k} \lambda_{i}\left\|f_{a_{i}}-f^{*}\right\|_{p}=\sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i}\left(f_{a_{i}}-f^{*}\right) d m \leq \max _{a \in A}\left\|f_{a}-f^{*}\right\|_{p}
$$

Next in (7) putting $\mu_{1}=1$ (so $\mu_{i}=0$ for $i \neq 1$) and $b_{1}=a$ for any $a \in A$, we have for any $a \in A$

$$
\max _{g \in G} \int_{S} g\left(f_{a}-f^{*}\right) d m=\left\|f_{a}-f^{*}\right\|_{p} \leq \sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i}\left(f_{a_{i}}-f^{*}\right) d m
$$

hence

$$
\begin{equation*}
\max _{a \in A}\left\|f_{a}-f^{*}\right\|_{p} \leq \sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i}\left(f_{a_{i}}-f^{*}\right) d m \leq \max _{a \in A}\left\|f_{a}-f^{*}\right\|_{p} . \tag{8}
\end{equation*}
$$

Then we conclude from (8) and $\lambda_{i}>0$ that for all $i(1 \leq i \leq k)$

$$
\left\|f_{a_{i}}-f^{*}\right\|_{p}=\int_{S} g_{i}\left(f_{a_{i}}-f^{*}\right) d m=\max _{a \in A}\left\|f_{a}-f^{*}\right\|_{p}
$$

which is condition (ii).
Conversely, suppose that f^{*} satisfies conditions (i) and (ii). Let $f \in H$ be any element. We have by (i)

$$
\begin{equation*}
\sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i}\left(f_{a_{i}}-f\right) d m-\sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i}\left(f_{a_{i}}-f^{*}\right) d m=\int_{S}\left(\sum_{i=1}^{k} \lambda_{i} g_{i}\right)\left(f^{*}-f\right) d m=0 \tag{9}
\end{equation*}
$$

On the other hand, using (ii),

$$
\begin{array}{r}
\sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i}\left(f_{a_{i}}-f\right) d m-\sum_{i=1}^{k} \int_{S} \lambda_{i} g_{i}\left(f_{a_{i}}-f^{*}\right) d m \leq \max _{1 \leq i \leq k}\left\|f_{a_{i}}-f\right\|_{p} \\
-\max _{a \in A}\left\|f_{a}-f^{*}\right\|_{p} \leq \max _{a \in A}\left\|f_{a}-f\right\|_{p}-\max _{a \in A}\left\|f_{a}-f^{*}\right\|_{p}
\end{array}
$$

where the condition $\sum_{i=1}^{k} \lambda_{i}=1\left(\lambda_{i}>0\right)$ is used. Immediately we conclude that f^{*} is a BSA in view of (9), thereby completing the proof.

References

[1] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, 1966.
[2] R. B. Holmes, A Course on Optimization and Best Approximation, Lecture Notes in Mathematics, Vol. 257, Springer-Verlag, 1972.
[3] W. Rudin, Functional Analysis (2nd ed.), McGraw-Hill, 1991.
[4] S. Tanimoto, Uniform approximation and a generalized minimax theorem, Journal of Approximation Theory 45, 1-10, 1985.
[5] S. Tanimoto, A characterization of best simultaneous approximations, Journal of Approximation Theory 59, 359-361, 1989.
[6] S. Tanimoto, On best simultaneous approximation, Mathematica Japonica 48, 275-279, 1998.
[7] K. Yosida, Functional Analysis (3rd ed.), Springer-Verlag, 1971.

