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Abstract

Best simultaneous approximation (BSA) for finitely or infinitely many functions are consid-
ered under the uniform norm and other important norms. Characterization theorems for a BSA
from a finite-dimensional subspace are obtained by a generalized minimax theorem. From the
characterization theorem a strong unicity theorem is also deduced for a BSA.

1. Introduction

Let {fa} be a family of functions obtained in association with each element a in a set A.
The purpose is to approximate these functions {fa}a∈A simultaneously from a subspace H con-
tained in a function space. In this scetion X is a compact Hausdorff space and C(X) denotes the
set of all real-valued continuous functions on X.

In [6] such an approximation problem was considered for real-valued functions {fa}a∈A defined
on X. The continuity of functions themselves is not supposed, but we assume uniform boundedness
of the functions. For a specified subspace H of finite dimension in C(X), we say that f∗ ∈ H is a
best simultaneous approximation (BSA) for {fa}a∈A from H, whenever f∗ satisfies the inequality

max
a∈A, x∈X

|fa(x)− f∗(x)| ≤ max
a∈A, x∈X

|fa(x)− f(x)| for all f ∈ H.

In [6] a characterization theorem for a BSA was deduced under the following conditions:

• both functions (of x) infa∈A fa(x) and supa∈A fa(x) belong to C(X);

• for each x ∈ X, the infimum and supremum of fa(x) are, respectively, attained by some fa(x).

Moreover, if H is a Haar subspace, a strong unicity theorem for a BSA was obtained from the
characterization theorem (see Section 3). When X is a finite closed interval, an alternation theorem
for a BSA was also obtained that is similar to the ordinary one (see [1]).

In the next section we consider a BSA problem in a function space C(X,Y ) (the set of all
continuous functions from X to Y ), Y being a normed linear space over the real field R with
norm ‖ · ‖. When a family of functions {fa}a∈A ⊂ C(X,Y ) and a finite-dimensional subspace
H ⊂ C(X,Y ) are given, f∗ ∈ H is said to be a BSA to the functions {fa}a∈A from H, if the
inequality

max
a∈A, x∈X

‖ fa(x)− f∗(x) ‖ ≤ max
a∈A, x∈X

‖ fa(x)− f(x) ‖

holds for all f ∈ H. In this setting we will deduce a characterization theorem of a BSA for {fa}a∈A
that corresponds to the one of [6].
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In Section 3, from this characterization theorem, a strong unicity theorem is derived in the
function space C(X).

In Section 4 we treat another BSA problem in Lp-approximation and obtain a characterization
theorem of a BSA for finitely or infinitely many functions {fa} ⊂ Lp. These characterization theo-
rems are proved by means of a generalized minimax theorem ([4, Corollary 3.3]). For convenience
sake we restate it as a lemma.

Lemma 1. Let U be an n-dimensional, compact convex subset of a Hausdorff topological vec-

tor space, V a compact Hausdorff space, and let J : U × V → R be a jointly continuous function.

An element u∗ ∈ U minimizes maxv∈V J(u, v) over U , if and only if there exist nonnegative numbers

λ1, . . . , λn+1 with sum one, and v∗1, . . . , v
∗
n+1 ∈ V such that

n+1
∑

i=1

µiJ(u
∗, vi) ≤

n+1
∑

i=1

λiJ(u
∗, v∗i ) ≤

n+1
∑

i=1

λiJ(u, v
∗
i ) (1)

holds for all u ∈ U , v1, . . . , vn+1 ∈ V , and for all nonnegative numbers µ1, . . . , µn+1 with sum one.

As a useful remark we add that, ignoring all i such that λi = 0 and rearranging the suffix,
(1) can be described as

n+1
∑

i=1

µiJ(u
∗, vi) ≤

k
∑

i=1

λiJ(u
∗, v∗i ) ≤

k
∑

i=1

λiJ(u, v
∗
i ),

for some k (1 ≤ k ≤ n+ 1) with
∑k

i=1 λi = 1 (λi > 0).

2. Characterization theorem

For a compact Hausdorff space X and a normed linear space Y over the real field R with
norm ‖ · ‖, we consider the set C(X,Y ) of all continuous functions from X to Y . A family of
functions {fa}a∈A ⊂ C(X,Y ) and an n-dimensional subspace H ⊂ C(X,Y ) are given, where n is
a positive integer. For f ∈ C(X,Y ) we define the uniform norm of f by

|||f ||| = max
x∈X

‖ f(x) ‖,

and we endow the function space C(X,Y ) with this norm. Therefore, a BSA f∗ ∈ H is characterized
by

max
a∈A

|||fa − f∗||| ≤ max
a∈A

|||fa − f ||| for all f ∈ H.

We assume that A is a Hausdorff topological space and impose the two conditions:

(a) A is compact;

(b) the mapping A → C(X,Y ) defined by a 7→ fa is continuous.

Now let us introduce the following function

J(f, a, x) = ‖ fa(x)− f(x) ‖

defined on H×A×X. It is a jointly continuous function and convex in the argument f . Moreover,
A × X is a compact set with respect to the product topology. Under this setting we have the
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following characterization theorem for a BSA.

Theorem 2. An element f∗ ∈ H is a BSA to {fa} from H if and only if, for some positive integer

k (1 ≤ k ≤ n+1), there exist a1, . . . , ak ∈ A, x1, . . . , xk ∈ X and positive numbers λ1, . . . , λk, whose

sum is one, such that

(i)
∑k

i=1 λi ‖ fai(xi)− f∗(xi) ‖ ≤
∑k

i=1 λi ‖ fai(xi)− f(xi) ‖ for all f ∈ H;

(ii) ‖ fai(xi)− f∗(xi) ‖ = |||fai − f∗||| = maxa∈A |||fa − f∗||| for all i (1 ≤ i ≤ k).

(Proof) Let f∗ be a BSA. We define U = {f ∈ H : |||f − f∗||| ≤ 1}. Then U is a compact
convex set of H, since H is finite-dimensional. First we consider the approximation problem over
the set U in place of H. Then f∗ is also a minimizer of max(a,x)∈A×X J(f, a, x) over U . Applying
Lemma 1 and its remark to this situation, we see that, for some k (1 ≤ k ≤ n + 1), there exist
(a1, x1), . . . , (ak, xk) ∈ A × X, and positive numbers λ1, . . . , λk with

∑k
i=1 λi = 1 such that the

following two inequalities hold:

k
∑

i=1

λiJ(f
∗, ai, xi) ≤

k
∑

i=1

λiJ(f, ai, xi) for all f ∈ U ; (2)

n+1
∑

i=1

µiJ(f
∗, bi, yi) ≤

k
∑

i=1

λiJ(f
∗, ai, xi) (3)

for all b1, . . . , bn+1 ∈ A, y1, . . . , yn+1 ∈ X and all nonnegative numbers µ1, . . . , µn+1 with sum one.
The right-hand side of (2) is a convex function of f and has a local minimum at f∗ ∈ U .

By a property of convex functions it follows that it has a global minimum at f∗ ∈ H, which
implies (i). Next in (3) putting µ1 = 1 while other µi = 0, and b1 = a for any a ∈ A, we have
‖ fa(y)− f∗(y) ‖ ≤

∑k
i=1 λi ‖ fai(xi)− f∗(xi) ‖ for all y ∈ X, and hence for every a ∈ A

|||fa − f∗||| ≤
k

∑

i=1

λi ‖ fai(xi)− f∗(xi) ‖ .

This shows that maxa∈A |||fa − f∗||| ≤
∑k

i=1 λi ‖ fai(xi) − f∗(xi) ‖. Using
∑k

i=1 λi = 1 (λi > 0),
we conclude that

max
a∈A

|||fa − f∗||| ≤

k
∑

i=1

λi ‖ fai(xi)− f∗(xi) ‖≤ max
a∈A

|||fa − f∗|||,

which implies (ii).
Conversely, suppose that f∗ ∈ H satisfies conditions (i) and (ii) for ai’s in A, xi’s of X and

positive numbers λi’s such that
∑k

i=1 λi = 1. Then these conditions imply that, for any f ∈ H,

max
a∈A

|||fa − f∗||| =

k
∑

i=1

λi ‖ fai(xi)− f∗(xi) ‖≤

k
∑

i=1

λi ‖ fai(xi)− f(xi) ‖≤ max
a∈A

|||fa − f |||,

showing that f∗ becomes a BSA. This completes the proof.

Next we consider the case where A is a finite set, as discussed in [5]. Let g1, . . . , gℓ ∈ C(X,Y )
be given. In order to consider BSA to {gj}, we introduce a compact set

A =
{

a = (α1, . . . , αℓ) :
ℓ

∑

j=1

αj = 1, αj ≥ 0 (1 ≤ j ≤ ℓ)
}

.
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For each a ∈ A we set ga =
∑ℓ

j=1 αjgj . For f ∈ H, an n-dimensional subspace of C(X,Y ), we
have, using the convexity of norm

max
1≤j≤ℓ

|||gj − f ||| ≤ max
a∈A

|||ga − f ||| = max
a∈A

|||

ℓ
∑

1≤j≤ℓ

αj(gj − f)||| ≤ max
1≤j≤ℓ

|||gj − f |||.

Thus our approximation problem is reduced to simultaneously approximate {ga} (a ∈ A) from H.
Then as a special case of Theorem 2 follows the characterization theorem in [5].

3. Strong unicity theorem

Suppose that the norm of Y is defined by means of an inner product 〈 , 〉 so that ‖ y ‖2 = 〈y, y〉
for y ∈ Y . The condition (i) of Theorem 2 is equivalent to the assertion; the function of a real
variable t

k
∑

i=1

λi ‖ fai(xi)− f∗(xi) + tf(xi) ‖

attains the minimum at t = 0 for every f ∈ H. By a simple calculation we obtain the next corollary,
using the inner product.

Corollary 3. Let Y be an inner product space. An element f∗ ∈ H is a BSA to {fa} from H if

and only if, for some positive integer k (1 ≤ k ≤ n + 1), there exist a1, . . . , ak ∈ A, x1, . . . , xk ∈ X
and positive numbers λ1, . . . , λk, whose sum is one, such that

(i′)

k
∑

i=1

λi〈fai(xi)− f∗(xi), f(xi)〉 = 0 for all f ∈ H;

(ii) ‖ fai(xi)− f∗(xi) ‖ = |||fai − f∗||| = max
a∈A

|||fa − f∗||| for all i (1 ≤ i ≤ k).

In what follows we consider the case of Y = R and so we deal with the function space C(X)
as in Section 1. Referring to [2, p.91] or [4, Section 5], an n-dimensional subspace H ⊂ C(X)
is called a Haar subspace if, for n distinct elements x1, . . . , xn ∈ X and for n arbitrary numbers
r1, . . . , rn ∈ R, there exists a unique f ∈ H such that f(xk) = rk (1 ≤ k ≤ n).

A one-dimensional Haar subspace is obviously spanned by any function that does not vanish in
X. A two-dimensional Haar subspace is spanned by every pair of functions f, g ∈ C(X) satisfying
f(x)g(y) 6= f(y)g(x) whenever x 6= y, and so on (by linear algebra). Here the uniform norm of
C(X) is defined by

‖ f ‖= max
x∈X

|f(x)|

for f ∈ C(X). Now we prove the following strong unicity theorem.

Theorem 4. Suppose that the compact set X contains at least n + 1 elements, where n ≥ 1.
Let a BSA f∗ ∈ H to {fa}a∈A from an n-dimensional Haar subspace H satisfy (i’) and (ii) of

Corollary 3, for some integer k (1 ≤ k ≤ n + 1). If k elements x1, . . . , xk ∈ X are all distinct and

the common value of (ii) is not zero, then there exists a positive number γ such that

max
a∈A

‖ fa − h ‖≥ max
a∈A

‖ fa − f∗ ‖ + γ ‖ f∗ − h ‖ for all h ∈ H.

(Proof) First we show that k = n + 1. If k ≤ n, there is a function f ∈ H such that f(xi) =
fai(xi)− f∗(xi) for i (1 ≤ i ≤ k), since H is a Haar subspace. Inserting this f into the equality (i’)
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we have

k
∑

i=1

λi|fai(xi)− f∗(xi)|
2 = |fai(xi)− f∗(xi)|

2 = 0.

However, we assumed that δ = |fai(xi)− f∗(xi)| = maxa∈A ‖ fa − f∗ ‖ is not zero. Hence we must
have k = n+ 1.

Letting h be an arbitrary element in H such that ‖ h ‖= 1, condition (i’) can be written as

n+1
∑

i=1

λiσih(xi) = 0, σi = (fai(xi)− f∗(xi))/δ (1 ≤ i ≤ n+ 1).

Since H is a Haar subspace and ‖ h ‖= 1, it follows that max1≤i≤n+1 σih(xi) > 0. If we set

γ = min
‖h‖=1

max
1≤i≤n+1

σih(xi),

then γ is positive, since the set {h ∈ H : ‖ h ‖= 1} is compact.
Let f 6= f∗ be any element in H and set h = (f∗ − f)/ ‖ f∗ − f ‖. Then there exists at least

one i satisfying

σih(xi) = σi(f
∗(xi)− f(xi))/ ‖ f∗ − f ‖≥ γ,

and the required inequality follows using this i and |σi| = 1:

max
a∈A

‖ fa − f ‖≥ σi(fai(xi)− f(xi)) = σi(fai(xi)− f∗(xi)) + σi(f
∗(xi)− f(xi))

≥ max
a∈A

‖ fa − f∗ ‖ + γ ‖ f∗ − f ‖ .

4. BSA on L
p-spaces

Let (S,m) be a σ-finite positive measure space and Lp(S,m) (1 ≤ p < ∞) the set of all
real-valued measurable functions f such that |f |p are integrable over S. For such p let q be the
real number determined by p−1 + q−1 = 1 for p > 1, and q = ∞ for p = 1. We use the following
notation (similarly for ‖ g ‖q of g ∈ Lq),

‖ f ‖p=
(

∫

S
|f |pdm

)1/p
,

and ‖ f ‖∞= ess supx∈S|f(x)|.
We also assume that A is a compact set of a Hausdorff topological space and to each a ∈ A

there corresponds a function fa which belongs to Lp(S,m), and that the mapping A → Lp(S,m)
so defined is continuous.

Let H be an n-dimensional subspace of Lp(S,m), where n ≥ 1. The problem is to approximate
simultaneously the functions {fa} by elements of H. If f∗ ∈ H satisfies

maxa∈A ‖ fa − f∗ ‖p ≤ maxa∈A ‖ fa − f ‖p (4)

for all f ∈ H, we say that f∗ is a BSA to the functions {fa} from H.
In order to formulate this problem in relation to Lemma 1, we need the following well-known

facts. Property (a) is the Banach-Alaoglu theorem (see [3, p.68]) and property (b) is the duality
pairing (see [7, p.115]).
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(a) The dual space of Lp(S,m) is Lq(S,m) and G = {g ∈ Lq(S,m) : ‖ g ‖q ≤ 1} is a compact set
in the weak*-topology σ(Lq(S,m), Lp(S,m)).

(b) For each f ∈ Lp(S,m) we have ‖ f ‖p = maxg∈G
∫

S(gf)dm.

Therefore, (4) is equivalent to the following:

max
(a,g)∈A×G

∫

S
g(fa − f∗)dm ≤ max

(a,g)∈A×G

∫

S
g(fa − f)dm (5)

for all f ∈ H, and the problem is to find a function f∗ satisfying (5).
It follows from (a) that A × G is a compact set in the product topology and it is easy to see

that

J(f, a, g) =

∫

S
g(fa − f)dm

is a jointly continuous function of the three variables a ∈ A, g ∈ G and f ∈ H, using Hölder’s
inequality and the definition of the weak*-topology. Moreover, it is a convex function with respect
to f . Hence we can again invoke Lemma 1 for the characterization of best approximations.

Theorem 5. An element f∗ ∈ H is a BSA to {fa} from H if and only if, for some positive

integer k (1 ≤ k ≤ n+1), there exist a1, . . . , ak ∈ A, g1, . . . , gk ∈ G and positive numbers λ1, . . . , λk

with sum one, satisfying the following two conditions:

(i)

∫

S

(

k
∑

i=1

λigi
)

hdm = 0 for all h ∈ H;

(ii)

∫

S
gi(fai − f∗)dm = ‖ fai − f∗ ‖p = max

a∈A
‖ fa − f∗ ‖p for all i (1 ≤ i ≤ k).

(Proof) Let f∗ be a BSA. Define the set U = {f ∈ H : ‖ f − f∗ ‖p ≤ 1}. Then U is com-
pact and convex, for H is a finite-dimensional subspace of Lp(S,m). The convexity follows from
Minkowski’s inequality (see [7, p.33]). It is obvious that f∗ also minimizes max(a,g)∈A×G J(f, a, g)
over the set U . It follows from Lemma 1, for some k (1 ≤ k ≤ n+1), that there exist a1, . . . , ak ∈ A,
g1, . . . , gk ∈ G, and numbers λ1, . . . , λk > 0 with

∑k
i=1 λi = 1 such that the following two inequali-

ties hold:

k
∑

i=1

∫

S
λigi(fai − f∗)dm ≤

k
∑

i=1

∫

S
λigi(fai − f)dm (6)

for all f ∈ U ; and

n+1
∑

i=1

∫

S
µihi(fbi − f∗)dm ≤

k
∑

i=1

∫

S
λigi(fai − f∗)dm (7)

for all (b1, h1), . . . , (bn+1, hn+1) ∈ A×G, and all nonnegative numbers µ1, . . . , µn+1 with sum one.
Inequality (6) implies

k
∑

i=1

∫

S
λigi(f − f∗)dm ≤ 0 for all f ∈ U.

Let us put f = f∗ + th, where h ∈ H is arbitrary and t > 0 is so small that this f belongs to U .
Then we get

k
∑

i=1

∫

S
λigihdm =

∫

S

(

k
∑

i=1

λigi
)

hdm ≤ 0 for all h ∈ H,

6



which means condition (i), since the left-hand side of the inequality must be zero.
By setting bi = ai and µi = λi for all i (1 ≤ i ≤ k) in (7) and remarking property (b), we see

that (7) implies

k
∑

i=1

λi‖ fai − f∗ ‖p ≤

k
∑

i=1

∫

S
λigi(fai − f∗)dm.

Since the reverse inequality always holds, we conclude

k
∑

i=1

λi‖ fai − f∗ ‖p =

k
∑

i=1

∫

S
λigi(fai − f∗)dm ≤ max

a∈A
‖ fa − f∗ ‖p .

Next in (7) putting µ1 = 1 (so µi = 0 for i 6= 1) and b1 = a for any a ∈ A, we have for any a ∈ A

max
g∈G

∫

S
g(fa − f∗)dm = ‖ fa − f∗ ‖p ≤

k
∑

i=1

∫

S
λigi(fai − f∗)dm,

hence

max
a∈A

‖ fa − f∗ ‖p ≤
k

∑

i=1

∫

S
λigi(fai − f∗)dm ≤ max

a∈A
‖ fa − f∗ ‖p . (8)

Then we conclude from (8) and λi > 0 that for all i (1 ≤ i ≤ k)

‖ fai − f∗ ‖p =

∫

S
gi(fai − f∗)dm = max

a∈A
‖ fa − f∗ ‖p ,

which is condition (ii).
Conversely, suppose that f∗ satisfies conditions (i) and (ii). Let f ∈ H be any element. We

have by (i)

k
∑

i=1

∫

S
λigi(fai − f)dm−

k
∑

i=1

∫

S
λigi(fai − f∗)dm =

∫

S

(

k
∑

i=1

λigi
)

(f∗ − f)dm = 0. (9)

On the other hand, using (ii),

k
∑

i=1

∫

S
λigi(fai − f)dm−

k
∑

i=1

∫

S
λigi(fai − f∗)dm ≤ max

1≤i≤k
‖ fai − f ‖p

−max
a∈A

‖ fa − f∗ ‖p ≤ max
a∈A

‖ fa − f ‖p −max
a∈A

‖ fa − f∗ ‖p,

where the condition
∑k

i=1 λi = 1 (λi > 0) is used. Immediately we conclude that f∗ is a BSA in
view of (9), thereby completing the proof.
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