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Abstract

Best simultaneous approximation (BSA) for finitely or infinitely many functions are consid-
ered under the uniform norm and other important norms. Characterization theorems for a BSA
from a finite-dimensional subspace are obtained by a generalized minimax theorem. From the
characterization theorem a strong unicity theorem is also deduced for a BSA.

1. Introduction

Let {f,} be a family of functions obtained in association with each element a in a set A.
The purpose is to approximate these functions {f,}sca simultaneously from a subspace H con-
tained in a function space. In this scetion X is a compact Hausdorff space and C'(X) denotes the
set of all real-valued continuous functions on X.

In [6] such an approximation problem was considered for real-valued functions {f,}.c4 defined
on X. The continuity of functions themselves is not supposed, but we assume uniform boundedness
of the functions. For a specified subspace H of finite dimension in C(X), we say that f* € H is a
best simultaneous approrimation (BSA) for {fs}aca from H, whenever f* satisfies the inequality

wax Afa(w) = @) < max |fa(z) = ()] forall f € H.

In [6] a characterization theorem for a BSA was deduced under the following conditions:
e both functions (of x) inf,c4 fo(z) and sup,c 4 fo(z) belong to C'(X);
e for each z € X, the infimum and supremum of f,(x) are, respectively, attained by some f,(z).

Moreover, if H is a Haar subspace, a strong unicity theorem for a BSA was obtained from the
characterization theorem (see Section 3). When X is a finite closed interval, an alternation theorem
for a BSA was also obtained that is similar to the ordinary one (see [1]).

In the next section we consider a BSA problem in a function space C(X,Y") (the set of all
continuous functions from X to Y), Y being a normed linear space over the real field R with
norm || - ||. When a family of functions {f,}sca C C(X,Y) and a finite-dimensional subspace
H C C(X,Y) are given, f* € H is said to be a BSA to the functions {f,}sca from H, if the
inequality

max || fa(z) — ff(2) || £ max | fa(z) — f(x) |

a€A, zeX a€A, zeX

holds for all f € H. In this setting we will deduce a characterization theorem of a BSA for {f,}sca
that corresponds to the one of [6].
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In Section 3, from this characterization theorem, a strong unicity theorem is derived in the
function space C'(X).

In Section 4 we treat another BSA problem in LP-approximation and obtain a characterization
theorem of a BSA for finitely or infinitely many functions {f,} C LP. These characterization theo-
rems are proved by means of a generalized minimax theorem ([4, Corollary 3.3]). For convenience
sake we restate it as a lemma.

Lemma 1. Let U be an n-dimensional, compact convex subset of a Hausdorff topological vec-
tor space, V' a compact Hausdorff space, and let J : U x V. — R be a jointly continuous function.
An element u* € U minimizes max,cy J(u,v) over U, if and only if there exist nonnegative numbers
AL, .oy Any1 with sum one, and vi,...,v;, 1 € V such that

n+1 n+1 n+1

Zuij(u*,vi) < ZAiJ(u*,v;‘) < Z)\ij(u,vf) (1)
i=1 i=1 i=1
holds for allu € U, vy,...,vp+1 € V, and for all nonnegative numbers pi,. .., nt1 with sum one.

As a useful remark we add that, ignoring all ¢ such that A; = 0 and rearranging the suffix,
(1) can be described as

n+1 k
Z /Lz'](u 7U2) < Z AZJ(U*v ’U:) < Z /\ZJ(U7 U:)v
=1 =1 =1

for some k(1 <k <n+1) with Zle Ai=1 (N >0).

2. Characterization theorem

For a compact Hausdorff space X and a normed linear space Y over the real field R with
norm || - ||, we consider the set C(X,Y) of all continuous functions from X to Y. A family of
functions {f,}eca C C(X,Y) and an n-dimensional subspace H C C(X,Y’) are given, where n is
a positive integer. For f € C'(X,Y) we define the uniform norm of f by

A1l = max || f(z) |,

and we endow the function space C'(X,Y’) with this norm. Therefore, a BSA f* € H is characterized
by
_ f* < _ .
mase 1 = Il < mallfu = fII| for all f € 1

We assume that A is a Hausdorff topological space and impose the two conditions:
(a) A is compact;
(b) the mapping A — C'(X,Y) defined by a — f, is continuous.

Now let us introduce the following function

J(fra,2) = || fa(z) = f(2) |

defined on H x A x X. It is a jointly continuous function and convex in the argument f. Moreover,
A x X is a compact set with respect to the product topology. Under this setting we have the



following characterization theorem for a BSA.

Theorem 2. An element f* € H is a BSA to {f,} from H if and only if, for some positive integer
k(1 <k<n+1), there exist ay,...,ax € A, x1,...,xx € X and positive numbers A, ..., \i, whose
sum is one, such that

() 250 A I fau ) = @) | < 325 Ml fai (i) = f(@i) || for all f € H;
(i) || fa;(zi) = f*(2) [| = [[lfa; = F7]] = maxaen [[[fa = || for all i(1 <i<k).

(Proof) Let f* be a BSA. We define U = {f € H : |||f — f*||| < 1}. Then U is a compact
convex set of H, since H is finite-dimensional. First we consider the approximation problem over
the set U in place of H. Then f* is also a minimizer of max, ;yeaxx J(f,a,z) over U. Applying
Lemma 1 and its remark to this situation, we see that, for some k(1 < k < n 4 1), there exist
(a1,21),...,(ak,zr) € A x X, and positive numbers \j,..., \p with Zle A; = 1 such that the
following two inequalities hold:

k k
Z J(f* a5, ;) < Z J(f,a;,z;) for all f e U, (2)
i=1 i=1
n+1 k
Zﬂz f buyz < Z f auﬂjz (3)
i=1 i=1
for all by,...,bp11 € A, Y1,-..,Yns1 € X and all nonnegative numbers p1, ..., tty11 With sum one.

The right-hand side of (2) is a convex function of f and has a local minimum at f* € U.
By a property of convex functions it follows that it has a global minimum at f* € H, which
implies (i). Next in (3) putting p; = 1 while other yu; = 0, and b; = a for any a € A, we have
| faly) — f*(y) || < Zle i || fa;(xi) — f*(x;) || for all y € X, and hence for every a € A

k
1 fa = F <Y N far (i) = () |-

i=1

This shows that maxaea [||fa — f*||| < S50 Ni || fa; (1) — f*(2) |- Using 58, 0 =1 (A > 0),
we conclude that

max |||fa — fII < ZA Il fai (i) = £7(@i) || < max ||l fa = 7]

=1

which implies (ii).
Conversely, suppose that f* € H satisfies conditions (i) and (ii) for a;’s in A, z;’s of X and
positive numbers A;’s such that Zle A; = 1. Then these conditions imply that, for any f € H,

k k
mace 1o = £l = 30N | far () = (@) 11 30 | faln) = F@) | < mase o = 1l

i=1 i=1

showing that f* becomes a BSA. This completes the proof.

Next we consider the case where A is a finite set, as discussed in [5]. Let g1,...,9¢ € C(X,Y)
be given. In order to consider BSA to {g;}, we introduce a compact set

A:{a— al,...a ZZ: - 20(1§j§€)}.



For each a € A we set g, = Z§:1 a;gj. For f € H, an n-dimensional subspace of C'(X,Y), we
have, using the convexity of norm

l
max [lg; — £l < max|[lga — £ = max |l 1<Z<€Oéj(gj =Dl < max lllg; = F1Il
SIS

Thus our approximation problem is reduced to simultaneously approximate {g,} (a € A) from H.
Then as a special case of Theorem 2 follows the characterization theorem in [5].

3. Strong unicity theorem

Suppose that the norm of Y is defined by means of an inner product ( , ) so that || y H2 =(y,y)
for y € Y. The condition (i) of Theorem 2 is equivalent to the assertion; the function of a real
variable ¢

k
D i | fai(wi) = f* (@) + tf () |
=1

attains the minimum at ¢t = 0 for every f € H. By a simple calculation we obtain the next corollary,
using the inner product.

Corollary 3. Let Y be an inner product space. An element f* € H is a BSA to {f,} from H if
and only if, for some positive integer k(1 < k < n + 1), there exist ay,...,ax € A, x1,...,25 € X

and positive numbers Ay, ..., A\, whose sum is one, such that
k
() D Ailfas(zi) = f*(2:), f@) =0 for all f € H;
i=1
(@) fais) = f7(@i) | = Mllfa; = £l = max|lfa = flll for all i(1 <@ < k).

In what follows we consider the case of Y = R and so we deal with the function space C(X)
as in Section 1. Referring to [2, p.91] or [4, Section 5], an n-dimensional subspace H C C(X)
is called a Haar subspace if, for n distinct elements z1,...,z, € X and for n arbitrary numbers
T1,...,Tn € R, there exists a unique f € H such that f(xp) =7, (1 <k <n).

A one-dimensional Haar subspace is obviously spanned by any function that does not vanish in
X. A two-dimensional Haar subspace is spanned by every pair of functions f, g € C(X) satisfying
f(@)g(y) # f(y)g(z) whenever = # y, and so on (by linear algebra). Here the uniform norm of
C(X) is defined by

I ll= max|f(x)]

for f € C(X). Now we prove the following strong unicity theorem.

Theorem 4. Suppose that the compact set X contains at least n + 1 elements, where n > 1.
Let a BSA f* € H to {fa}taca from an n-dimensional Haar subspace H satisfy (') and (ii) of
Corollary 3, for some integer k(1 < k <n-+1). If k elements x1,...,xp € X are all distinct and
the common value of (ii) is not zero, then there exists a positive number vy such that

max || fo —h||[>max || fo— f* | +v | f*=h| forall he H.
acA a€A

(Proof) First we show that k = n + 1. If & < n, there is a function f € H such that f(z;) =
fa; (i) — f*(x;) for i (1 <1i < k), since H is a Haar subspace. Inserting this f into the equality (i’)



we have
k
D Xilfay (@) = (@) P = | fa, (i) — f* (@) = 0.
i=1

However, we assumed that 6 = |f,, (z;) — f*(z;)| = maxaea || fo — f* || is not zero. Hence we must
have k =n + 1.
Letting h be an arbitrary element in H such that || h ||= 1, condition (i’) can be written as

n+1

Y Noih(i) =0, o7 = (fa, () = f*(2:)) /5 (1<i<n+1).

i=1
Since H is a Haar subspace and || h ||= 1, it follows that max;<j<n11 oih(x;) > 0. If we set

= min max o;h(z;),
k=1 1<i<n+1
then ~y is positive, since the set {h € H : || h |= 1} is compact.
Let f # f* be any element in H and set h = (f* — f)/ || f*— f ||. Then there exists at least
one i satisfying

oih(w;) = oi(f* (i) = f(xa)/ | [~ = F 1= 7,
and the required inequality follows using this i and |o;| = 1:
max || fo = f 12 0i(fa,(x:) = f(22)) = 0i(fa, (i) = f7(@a)) + oa(f* (i) = f(@3))
Zmax || fo— f [+ Lf7 = £

4. BSA on [P-spaces

Let (S,m) be a o-finite positive measure space and LP(S,m) (1 < p < oo) the set of all
real-valued measurable functions f such that |f|P are integrable over S. For such p let ¢ be the
real number determined by p~' 4+ ¢ ' =1 for p > 1, and ¢ = oo for p = 1. We use the following
notation (similarly for || g ||, of g € L9),

1 £ ll= ( /S FiPdm) ™,

and || f |loo = ess sup,eglf(2)].
We also assume that A is a compact set of a Hausdorff topological space and to each a € A

there corresponds a function f, which belongs to LP(S,m), and that the mapping A — LP(S,m)
so defined is continuous.

Let H be an n-dimensional subspace of LP(S,m), where n > 1. The problem is to approximate
simultaneously the functions {f,} by elements of H. If f* € H satisfies

maXxgeA ” fa - f* Hp < maXgea H fa - f ”p (4)

for all f € H, we say that f* is a BSA to the functions {f,} from H.

In order to formulate this problem in relation to Lemma 1, we need the following well-known
facts. Property (a) is the Banach-Alaoglu theorem (see [3, p.68]) and property (b) is the duality
pairing (see [7, p.115]).



(a) The dual space of LP(S,m) is LI(S,m) and G = {g € LI(S,m) :|| g || < 1} is a compact set
in the weak*-topology o(L%(S,m), LP(S,m)).

(b) For each f € LP(S,m) we have || f ||, = maxgeq [4(gf)dm.

Therefore, (4) is equivalent to the following:

max / g(fa— f)dm < max / o(fa — fydm (5)
S S

(a,9)€EAXG " (a,9)€EAXG

for all f € H, and the problem is to find a function f* satisfying (5).
It follows from (a) that A x G is a compact set in the product topology and it is easy to see
that

J(f7a7.g) = /S.g(fa_f)dm

is a jointly continuous function of the three variables a € A, g € G and f € H, using Holder’s
inequality and the definition of the weak*-topology. Moreover, it is a convex function with respect
to f. Hence we can again invoke Lemma 1 for the characterization of best approximations.

Theorem 5. An element f* € H is a BSA to {f,} from H if and only if, for some positive
integer k(1 < k <n+1), there exist ai,...,ax € A, ¢1,...,9x € G and positive numbers Ay, ..., A\
with sum one, satisfying the following two conditions:

k
(1) /(Z)\igi)hdmzo for all h € H;
S

=1

@) [ ot = Fam = foi= £l = ma | o= £y for all i(1 < <),

(Proof) Let f* be a BSA. Define the set U = {f € H : || f— f*||, < 1}. Then U is com-
pact and convex, for H is a finite-dimensional subspace of LP(S;m). The convexity follows from
Minkowski’s inequality (see [7, p.33]). It is obvious that f* also minimizes max(q gcaxc J(f;a,g)
over the set U. It follows from Lemma 1, for some k (1 < k < n+1), that there exist ay,...,ax € A,
Ji,-- -, gk € G, and numbers Ay,..., Ay > 0 with Zle A; = 1 such that the following two inequali-
ties hold:

b k
;/S)\igi(fai — ff)dm < ;/S)\igi(fai — f)dm (6)

for all f € U; and

n+1 k
S [ wibiCn = £)im < 3 [ gl — 1) ™
=175 =175

for all (by,h1),...,(bpt1,hnt1) € A X G, and all nonnegative numbers puq, . .., fin4+1 With sum one.

Inequality (6) implies

k
Z/ Xigi(f — f)dm <0 for all f € U.
i=1"5

Let us put f = f* + th, where h € H is arbitrary and ¢ > 0 is so small that this f belongs to U.
Then we get

k k
Z/ Xigihdm = / (D Xigi)hdm <0 for allh € H,
=175 S =1



which means condition (i), since the left-hand side of the inequality must be zero.
By setting b; = a; and p; = \; for all i (1 <4 < k) in (7) and remarking property (b), we see
that (7) implies

k k
SNl fu = £ 1,23 [ Nl — £)dm.
i=1 =175
Since the reverse inequality always holds, we conclude
k k
SN o= £y = 2 [ Nt = )am < mac | = 171
i=1 1=1

Next in (7) putting g3 = 1 (so u; =0 for i # 1) and b; = a for any a € A, we have for any a € A

geG

k
wave [ g(fu = £)m = fu= 11, < 3 [ Mol = £)im.
i=1
hence
k
Igleaj( | fa=f"llp < ZZ:;/S)‘igi(fai — fM)dm < r;leaj( | fo—1f"llp- (8)
Then we conclude from (8) and \; > 0 that for all i (1 < i < k)
I o= 8 o= [ i = $)dm = max | fo = 1
S acA
which is condition (ii).

Conversely, suppose that f* satisfies conditions (i) and (ii). Let f € H be any element. We
have by (i)

k k .
> [ Nt = ryam = > [ riatga— 17yim = [ (Shar - pim=n o
On the other hand, using (i),
k k
;/S)\igi(fai — f)dm — ;/S)\igi(fai — fF)dm < mmax, | far — £ I
—max || fu = £ llp < max || fo— f llp —max | fo= £ [

where the condition Zle Ai =1 (N > 0) is used. Immediately we conclude that f* is a BSA in
view of (9), thereby completing the proof.
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