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In a measurement-induced continuous-time quantum walk, we address the problem of detecting a particle
in a subspace, instead of a fixed position. In this configuration, we develop an approach of bright and dark
states based on the unit and vanishing detection probability respectively for a particle-detection in the subspace.
Specifically, by employing the rank-nullity theorem, we determine several properties of dark and bright states in
terms of energy spectrum of the Hamiltonian used for a quantum walk and the projectors applied to detect the
subspace. We provide certain conditions on the position and the rank of the subspace to be detected, resulting in
the unit total detection probability, which has broad implications for quantum computing. Further, we illustrate
the forms of dark as well as bright states and the dependence of detection probability on the number of dark
states by considering a cyclic graph with nearest-neighbor and next nearest-neighbor hopping. Moreover, we
observe that the divergence in the average number of measurements for detecting a particle successfully in a
subspace can be reduced by performing high rank projectors.

I. INTRODUCTION

The quantum mechanical analogue of a classical random
walk, referred to as quantum walk [1–3], can be classified into
two distinct categories – discrete-time and continuous-time
quantum walk. Due to the quantum superposition principle,
quantum walk represents a sophisticated framework for con-
structing quantum algorithms which, in turn, results in a uni-
versal paradigm for quantum computation [4–8]. In particular,
it has been utilized in a wide range of quantum information
processing tasks, including quantum search [9–11], quantum
encryption and security [12, 13], cryptographic systems [14],
random number generation [15, 16], state engineering [3, 17–
19] to name a few. Additionally, quantum walks have been
experimentally implemented [20] using nuclear magnetic res-
onance [21, 22], photonic [23, 24] and optomechanical sys-
tems [25], and trapped ions [26].

One of the primary objectives of continuous-time quantum
walks is to determine the probability and time of arriving at
a certain location when a particle starts from a particular ini-
tial position. Despite controversies surrounding the consid-
eration of time as an operator [27], significant progress have
been achieved when addressing the time-of-arrival problem in
the literature [28–37]. Concurrently, several quantum search
setups [38–42] have been proposed, in conjunction with inves-
tigations into state transfer phenomena [43, 44]. In addition
to the approaches, a periodic measurement strategy combined
with unitary evolution – which is determined by the Hamil-
tonian of a certain system – can be employed to identify the
particle. Within this realm, the measurement process dynami-
cally influences the evolution of the state of the walker.

In stroboscopic measurement-induced quantum walk
(MIQW) [45], the first-detected arrival problem becomes rele-
vant [46–48] over the first arrival time, which excludes strobo-
scopic measurements. Specifically, determining the walker in
the target state using periodic measurements for the first time
after beginning from some initial state is known as the first
detection problem. While measurements impede the quan-
tum walker’s free evolution, this problem has attracted a lot
of attention [49–53] since it is related to readout techniques

in quantum computing tasks and control of quantum systems
[54–59]. Moreover, MIQW is intricately linked to mid-circuit
measurements [60–62], a key component in quantum com-
puting, error correction [63] and mitigation [64] and has also
been implemented on IBM quantum computers equipped with
a mid-circuit readout feature [65]. From a more fundamental
perspective, this method of detecting a particle in a fixed posi-
tion may further highlight the role of measurements in quan-
tum theory [66–69].

The total probability of the first detection, referred to as
the total detection probability, is the statistics of the walker’s
detection for the first time during the application of an infi-
nite number of stroboscopic measurements in MIQW [28, 31–
33, 35, 36, 46–48, 70]. To emphasize, there exist certain ini-
tial conditions under which the desired state is never achieved
due to destructive interference in the system; we refer to these
states as dark states [71, 72] in accordance with forbidden
transitions in atomic physics, whereas bright states can be rec-
ognized with certainty. It has been shown that the probability
of identifying these states is connected with the existence of
dark and bright energy states in the system [72, 73].

We employ the concepts of dark and bright energy levels to
address the problem of detecting a particle in a subspace (see
Fig. 1 for schematics), going beyond locating it in a single
site. It has also been addressed by using different methods,
namely non-Hermitian approach [51] and by establishing its
connection with the properties of Schur function [52]. It is
crucial to highlight that in certain cases, the method proposed
here can explain the total detection probability in a more sim-
pler manner than the existing methods. In this work, we adopt
the rank-nullity theorem [74] to establish a connection be-
tween the existence of dark and bright states by selecting a
subspace from the set of vertices of a discrete, and finite graph
in which the particle has to be identified. In contrast to the sce-
nario encountered in a localized single-site detection within a
graph, we exhibit that for each degenerate energy level, there
can exist more than one bright energy state, in the subspace
detection within a system. Subsequently, we derive explicit
formulae for the orthonormal states within the dark energy
subspace and its corresponding complementary bright energy
subspace. We demonstrate that the total detection probabil-
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FIG. 1. Schematic diagram of first detection of the walker in sub-
space Vs of a finite graph, consisting of a set of vertices V with
measurement-induced quantum walk. In the MIQW protocol, the
first hitting time statistics Fn is captured through the application
of unitary dynamics, U(τ), punctuated intermittently by measure-
ments {D, I− D} taken in a stroboscopic fashion with time interval
τ . Here, the D is the detector corresponding to the subspace Vs. The
schematic shows that upto (n−1)th round of measurements, no-click
event is occurring, i.e., the subspace Vs is not detected, while after
the nth round of measurement, the particle is detected in subspace
Vs which corresponds to a successful click event. After successful
detection the protocol is stopped.

ity decreases monotonically with an increase in the number of
dark states in the system which is related to the increase of
rank and the position of the detector. Importantly, we provide
a necessary and sufficient condition for detecting a particle
in a subspace with certainty in an arbitrary finite graph hav-
ing discrete, bounded and degenerate spectrum independent of
vertex-localized initial states which can be important in quan-
tum computation. We observe that increasing the rank of the
subspace and strategically placing detectors can minimize the
divergences in average hitting time observed in the case of a
single-site detection.

The paper is organized in the following manner. In Sec. II,
the problem of subspace detection and the quantities of inter-
est are discussed. In the context of a particle to be detected
in a subspace, the notion of dark as well as bright states and
the criteria for unit detection probability are presented in Sec.
III. Sec. IV illustrates another method for computing the to-
tal detection probability based on the computation of matrices
numerically while both the methods are applied on interacting
systems with nearest-neighbor and next nearest-neighbor hop-
ping in Sec. V. In Sec. VI, we study the pattern of the average
number of measurement in detecting a particle in subspace
while the results are summarized in Sec. VII.

II. STROBOSCOPIC SUBSPACE DETECTION
PROTOCOL

Let us consider a quantum mechanical particle mov-
ing on a finite graph having a set of vertices V={
|l⟩
∣∣∣∑L

l=1 |l⟩⟨l| = I and ⟨l|m⟩ = δl,m

}L

l=1
, described by a

time-independent Hamiltonian H = −
∑L

l,m=1 γlm |l⟩⟨m|
where γlm are constants. Thus, unitary dynamics of the ini-
tial state, |ϕ(0)⟩, leads to the evolved state at time, t, as
|ϕ(t)⟩ = U(t) |ϕ(0)⟩ = e−iHt |ϕ(0)⟩. In the context of hit-
ting problem [46, 75] in MIQW, we are interested to deter-
mine the position of particle in a given subspace of V . To-
wards achieving the same, we perform repeated projective
measurements with periodicity τ , corresponding to the sub-
space Vs = {|di⟩}r̃<L

i=1 , written as{
D =

r̃<L∑
i=1

|di⟩⟨di| , I− D
}
, (1)

where |di⟩ can be any vertex of V with ⟨di|dj⟩ = δi,j and
r̃ represents the rank of the detector, D. Under the assump-
tion that the measurements are performed instantaneously, we
consider a sequence of measurements until the particle is de-
tected. Therefore, if the particle remains undetected up to
(n − 1) number of measurement rounds, the unnormalized
resulting state just before the successful detection at round n
can be written as

|ϕ(nτ)⟩ ≡ |ϕ(n)⟩ = U(τ)[(I− D)U(τ)]n−1 |ϕ(0)⟩ . (2)

The first detection probability, i.e., the probability in detecting
the particle for the first time after nth measurement attempt is
given by [51, 70]

Fn = ⟨ϕ(n)|D |ϕ(n)⟩ , (3)

while the total first detection probability, Pdet of the particle
is defined as the detection probability after an infinite number
of measurements conditioned on the fact that once the particle
is detected, measurement process is stopped [70, 72]. Alter-
natively, we call it as total detection probability, and mathe-
matically, we can write it as

Pdet =

∞∑
n=1

Fn. (4)

Also, the probability of the particle surviving the first n rounds
of measurement can be written as

Sn = 1−
n∑

k=1

Fk

= ⟨ϕ(n)| (I− D) |ϕ(n)⟩
= ⟨ϕ(0)| [U†(τ)(I− D)]n[(I− D)U(τ)]n |ϕ(0)⟩
= ⟨ϕ(0)|S†

n

Sn |ϕ(0)⟩ , (5)

where S ≡ (I − D)U(τ) is the survival operator. Therefore,
the final survival probability (i.e., in limn→∞ Sn) reads as

Psur = lim
n→∞

Sn = 1− Pdet. (6)
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In the case of identifying a particle in a fixed subspace, we will
be focusing on developing a framework that can be utilized to
obtain total detection probability.

III. PRESCRIPTION FOR CALCULATION OF TOTAL
DETECTION PROBABILITY THROUGH DARK AND

BRIGHT ENERGY SUBSPACE

We now develop a method that leads to a definite conclu-
sion about whether a particle resides in a given region. In par-
ticular, we investigate the trends of the total detection proba-
bility, Pdet, by varying the subspace in which the particle is
to be detected. To address this question, we provide a frame-
work aimed at partitioning the energy space of the Hamilto-
nian into two distinct orthogonal subspaces, namely dark and
bright subspaces [72].

Dark and bright states. Given an initial state |ϕ(0)⟩,
Pdet(ϕ(0)) = 0, i.e., Fn = 0∀n represents a dark state with
respect to a detection space D on the other hand, Pdet(ϕ(0)) =
1 corresponds to bright state which is detected with certainty.
However, there can be initial states that are neither completely
dark nor bright, and the first detection probability lies between
0 and 1, i.e., 0 < Pdet < 1.

We are interested in the stationary dark states, which are
the eigenstates of both the unitary evolution U(τ) and sur-
vival operator S. Let us denote the k-th energy level of the
Hamiltonian, H as Ek and the corresponding set of eigenvec-
tors as {|Ek,m⟩}gkm=1 where gk is the degeneracy of Ek. If
an energy level is non-degenerate, we omit the index m. We
consider two different scenarios in case of degeneracy of Ek

while finding conditions for dark state to exist.
(i) Non-degenerate energy levels. According to the defini-

tion, a non-degenerate energy level Ek is a dark state if

D |Ek⟩ = 0, (7)

and

(I− D)U(τ) |Ek⟩ = exp(−iEkτ) |Ek⟩ . (8)

The condition in Eq. (7) for a non-degenerate energy eigen-
state to be a dark state can be equivalently expressed as
⟨di|Ek⟩ = 0 ∀i. In the other scenario, i.e., for degenerate en-
ergy levels, the physics of dark and bright states with respect
to subspace detection is much more captivating as discussed
below.

(ii) Degenerate energy levels. In case of degenerate eigen-
states, {|Ek,m⟩}gkm=1, we construct an projector Ek which can
be written mathematically as

Ek =

gk∑
m=1

|Ek,m⟩⟨Ek,m| . (9)

Here, the first index k in |Ek,m⟩ corresponds to the distinct
energy level, and the second index m indicates the level of
degeneracy present in each level. To find out the existence of
dark states in the corresponding degenerate subspace, let us

write any dark state in that particular subspace as

|ζk⟩ =
gk∑

m=1

αm |Ek,m⟩ . (10)

Therefore, by Eq. (7) we get

D |ζk⟩ = 0 (11)

=⇒
r̃,gk∑

i=1,m=1

αm |di⟩ ⟨di|Ek,m⟩ = 0,

=⇒
gk∑

m=1

αm |di⟩ ⟨di|Ek,m⟩ = 0∀i

=⇒ Ak |α̃⟩ = 0, (12)

with the r̃ × gk matrix, Ak, being

Ak =


⟨d1|Ek,1⟩ ⟨d1|Ek,2⟩ . . . ⟨d1|Ek,gk⟩
⟨d2|Ek,1⟩ ⟨d2|Ek,2⟩ . . . ⟨d2|Ek,gk⟩

...
...

. . .
...

⟨dr|Ek,1⟩ ⟨dr|Ek,2⟩ . . . ⟨dr|Ek,gk⟩

 , (13)

and |α̃⟩ = (α1, α2, . . . , αgk)
T being the coefficient vector of

the dark state (see Eq. (10)). The above condition clearly
shows that the existence of |ζk⟩ depends on the overlaps of
|Ek,m⟩ with |di⟩, i.e, ⟨di|Ek,m⟩ ∀i,m. Let us proceed to ana-
lyze this matter through a systematic examination of individ-
ual cases.

Case I. Consider the scenario when ⟨di|Ek,m⟩ =
0 ∀ i,m. In this case, all the degenerate energy eigenstates
{|Ek,m⟩}gkm=1 corresponding to energy Ek are the dark states,

i.e.,
∣∣∣ζjk〉 = |Ek,j⟩ for j = 1, 2, . . . , gk. Therefore, the entire

energy subspace is dark.
Case II. Let us consider a situation when ⟨di|Ek,m⟩ = 0

for some of i and m but not all of them. We present one of
our main findings as Proposition 1, from which the number of
dark states can be calculated. Note that in the complementary
subspace to the dark subspace, the energy states are eventually
bright states which will be proved later in Proposition 2.

Proposition 1. Number of dark states in the subspace
{|Ek,m⟩}gkm=1 is equal to the dimension of the null space of
Ak, denoted as dim(NAk) while the number of bright states
is equal to the rank of matrix Ak, rank(Ak).

Proof. It is evident from Eq. (12) that the existence of
dark states is equivalent to finding non-trivial solutions
(trivial solution is αi = 0 for i = 1, 2, . . . , gk) of the ma-
trix Ak which, in turn, is linked to the determination of its
nullspace, denoted as NAk

. Therefore, the number of dark
states in the corresponding energy subspace is equal to di-
mension of the nullspace, i.e., dim (NAk

). Moreover, from
rank-nullity theorem [74], we know

rank(Ak) + dim(NAk) = Number of columns of Ak = gk.

(14)
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Therefore, the number of bright states is just rank(Ak)
since any degenerate subspace is spanned by dark states
and its complement space, containing only bright states
[72]. Mathematically, we can write that {|Ek,m⟩}gkm=1 is

spanned by
{{∣∣∣ζjk〉}dim(NAk)

j=1
,
{∣∣∣ηjk〉}rank(Ak)

j=1

}
, i.e., fol-

lowing Eq. (9), it can be expressed as

Ek =

dim(NAk)∑
j=1

∣∣∣ζjk〉〈ζjk∣∣∣+ rank(NAk)∑
j=1

∣∣∣ηjk〉〈ηjk∣∣∣ . (15)

Let us now explicitly calculate the basis states consisting
of bright and dark states for degenerate energy levels. The
general form of the matrix Ak after performing row reduction

on it and removing zero rows can be updated as

Ak =


a1,1 a1,2 . . . a1,lk . . . a1,gk
0 a2,2 . . . a2,lk . . . a2,gk
...

...
. . .

...
...

0 0 . . . alk,lk . . . alk,gk


lk×gk

, (16)

of reduced dimension where lk = rank(Ak) ≤ gk with ai,j =
0 ∀i > j. Also from rank-nullity theorem, we know that the
dark subspace corresponding to a degenerate energyEk exists
if lk < gk. Now we can write one of the dark states as

∣∣ζ1k〉 = N1

∣∣∣∣∣∣∣∣∣∣

|Ek,1⟩ |Ek,2⟩ . . . |Ek,lk⟩ |Ek,lk+1⟩
a1,1 a1,2 . . . a1,lk a1,lk+1

0 a2,2 . . . a2,lk a2,lk+1

...
...

. . .
...

...
0 0 . . . alk,lk alk,lk+1

∣∣∣∣∣∣∣∣∣∣
, (17)

while all other dark states can be iteratively written as

∣∣∣ζjk〉 = Nj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|Ek,1⟩ |Ek,2⟩ . . . |Ek,lk⟩ |Ek,lk+1⟩ |Ek,lk+2⟩ ... |Ek,lk+j⟩
a1,1 a1,2 . . . a1,lk a1,lk+1 a1,lk+2 ... a1,lk+j

0 a2,1 ... a2,lk a2,lk+1 a2,lk+2 ... a2,lk+j

...
...

. . .
...

...
...

. . .
...

0 0 . . . alk,lk alk,lk+1 alk,lk+2 ... alk,lk+j〈
ζ1k
∣∣Ek,1

〉 〈
ζ1k
∣∣Ek,2

〉
...

〈
ζ1k
∣∣Ek,lk

〉 〈
ζ1k
∣∣Ek,lk+1

〉 〈
ζ1k
∣∣Ek,lk+2

〉
...

〈
ζ1k
∣∣Ek,lk+j

〉
...

...
. . .

...
...

...
. . .

...〈
ζj−1
k

∣∣∣Ek,1

〉 〈
ζj−1
k

∣∣∣Ek,2

〉
. . .

〈
ζj−1
k

∣∣∣Ek,lk

〉 〈
ζj−1
k

∣∣∣Ek,lk+1

〉 〈
ζj−1
k

∣∣∣Ek,lk+2

〉
. . .

〈
ζj−1
k

∣∣∣Ek,lk+j

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(lk+j)×(lk+j)

.

(18)

with Nj being the normalization constant.

On the other hand, the projector of Ek sector acting on the
individual states of the detector {|di⟩}r̃i=1 can be written as{

Ek|di⟩√
⟨di|Ek|di⟩

}r̃

i=1

, which, by Gram-Schmidt orhtogonaliza-

tion procedure, can be transformed to mutually orthogonal set
as

{∣∣∣ηjk〉 =

r̃∑
i=1

cjk,iEk |di⟩

∣∣∣∣∣ 〈ηjk∣∣∣ηj′k 〉 = δj,j′

}lk

j=1

. (19)

Note that this is equivalent in orthonormalizing the set{∑gk
m≥p ap,m |Ek,m⟩

}lk

p=1
as evident from Eqs. (13) and

(16). Eventually, the set
{∣∣∣ηjk〉}lk

j=1
is actually the bright

states corresponding to Ek sector which will be proved
shortly.

A. Detection probability from bright or dark space projection

We possess the requisite foundation to calculate the total
detection probability by exploiting the idea of dark and bright
states discussed above. For an initial state|ϕ(0)⟩, we can write

|ϕ(0)⟩ = PHζ
|ϕ(0)⟩+ PHη |ϕ(0)⟩ , (20)

where PHζ
=
∑
k,j

∣∣∣ζjk〉〈ζjk∣∣∣ and PHη =
∑
k,j

∣∣∣ηjk〉〈ηjk∣∣∣ are

the projectors of dark and bright subspaces respectively with
PHζ

+ PHη = I. The survival probability [47] can be found
by considering the overlap of the initial state with the dark
subspace, i.e., Psur = ⟨ϕ(0)|PHζ

|ϕ(0)⟩. Consequently, from
Eq. (20), it follows that the total detection probability can be
written as [72]

Pdet = ⟨ϕ(0)|PHη |ϕ(0)⟩ (21)

=
∑
k

lk∑
j=1

|
〈
ηjk

∣∣∣ϕ(0)〉 |2, (22)
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where the index k runs over all the distinct energy levels of
H , responsible for the evolution of the system, and lk =
rank (Ak). Equivalently, one can also calculate

Pdet = 1−
∑
k

dim(NAk)∑
j=1

|
〈
ζjk

∣∣∣ϕ(0)〉 |2. (23)

Having formulated the detection probability Pdet, let us now
show that any

∣∣∣ηjk〉 represents the bright state as mentioned
earlier.

Proposition 2. Any state from the set
{∣∣∣ηjk〉}rank(Ak)

j=1
, re-

sides in the complementary space of the dark subspace, hav-
ing unit total first detection probability, i.e., Pdet = 1.

Proof. For any
∣∣∣ηjk〉, we obtain:

PHζ

∣∣∣ηjk〉 =
∑
k′

gk′−lk′∑
j′=1

∣∣∣ζj′k′

〉〈
ζj

′

k′

∣∣∣ηjk〉

=
∑
k′

gk′−lk′∑
j′=1

∣∣∣ζj′k′

〉
δk′k

〈
ζj

′

k

∣∣∣ηjk〉

=

gk−lk∑
j′=1

∣∣∣ζj′k 〉〈ζj′k ∣∣∣ηjk〉

=

gk−lk∑
j′=1

∣∣∣ζj′k 〉〈ζj′k ∣∣∣ r̃∑
i=1

cjk,iEk |di⟩

=

gk−lk∑
j′=1

r̃∑
i=1

cjk,i

∣∣∣ζj′k 〉〈ζj′k ∣∣∣di〉
= 0. (24)

Here, the second to third line is followed from Eq. (19), and
the last line is due to the definition of dark states (see Eq. (11)).
Therefore, the survival probability, Psur = 0 and consequently
Pdet = 1 corresponding to

∣∣∣ηjk〉∀j, k.

Before calculating Pdet for specific system configurations,
we shall discuss some generic features.

Proposition 3. Independent of the existence of dark states
in the system, if the initial state can be written as a linear
combination of only bright energy states of the systems, i.e.,
|ϕ(0)⟩ =

∑
j,k c

j
k

∣∣∣ηjk〉 for any value of cjk ∀j, k, such that∑
j,k |c

j
k|2 = 1, the total first detection probability, Pdet, is

unity for that initial state.

Proof. Since the initial state is a linear combination of the
bright states only, Eq. (20) reduces to |ϕ(0)⟩ = PHη |ϕ(0)⟩
where cjk =

〈
ηjk

∣∣∣ϕ(0)〉 and following Eq. (21), we can write
Pdet = ⟨ϕ(0)|ϕ(0)⟩ = 1.

Furthermore, when the initial state is the linear combina-
tion of the vectors in the detector subspace, then measure-
ments detect the return of the particle in the subspace defined
as the return problem [52]. Therefore, if the initial state is
|ϕ(0)⟩ =

∑r̃
i=1 ei |di⟩, PHζ

|ϕ(0)⟩ = 0 from the definition
of dark states which means |ϕ(0)⟩ = PHη

|ϕ(0)⟩ and from
Proposition 3, we immediately obtain the following corollary:

Corollary 4. For initial states which are linear combination
of detector states (as mentioned in Eq. (1)), i.e., |ϕ(0)⟩ =∑r̃

i=1 ei |di⟩, termed as a return problem, Pdet = 1.

Apart from the initial state, the dependency of Pdet on the
rank and position of the detector subspace can be assessed
from the study of dark and bright states. From Eq. (23), it is
evident that if no dark state exists in a system, Pdet is surely
unity, independent of any initial state. Moreover, the existence
of the dark states is related to the features of Ak as mentioned
in Proposition 1. We will now establish a connection between
the characteristics of the detection subspace and the determin-
istic nature of the measurement-induced quantum walk.

Theorem 5. Let H be a discrete, bounded, degenerate
Hamiltonian of the finite graph defined by vertices, V ={
|l⟩ |

∑L
l=1 |l⟩⟨l| = I and ⟨l|m⟩ = δl,m

}L

l=1
which drives a

system periodically in measurement induced quantum walk.
Suppose H has degeneracy gk corresponding to energy level
Ek. By considering a subspace Vs = {|dj⟩}r̃<L

j=1 of V where
|dj⟩ can be any |l⟩ with ⟨di|dj⟩ = δi,j , its detection D =∑r̃

j=1 |dj⟩⟨dj | is performed deterministically, i.e., Pdet = 1

independent of any localized initial state |ϕ(0)⟩ = |l⟩ ∈ V if
and only if both the conditions are satisfied:

C1. for each non-degenerate Ek, ⟨dj |Ek⟩ ̸= 0, at least for
one dj ∈ Vs, and

C2. for each degenerate Ek, rank(Ak) = gk which is pos-
sible when r̃ ≥ maxk gk.

are satisfied.

Proof. If C1 is satisfied, from definition(Eq. (7)), the non-
degenerate energy subspace has no dark states. From C2, if
rank of the detector, r̃ ≥ maxk gk and by performing row
reduction on Ak we find rankAk = gk for each degener-
ate energy Ek, dim (NAk

) = 0∀k. In this case, it follows
from Proposition 1 that there exists no dark states correspond-
ing to degenerate energy subspace of the system. Therefore,
Pdet = 1 as evident from Eq. (23).

Now, we concentrate on the case when Pdet = 1 indepen-
dent of the initial localized states of the corresponding system
it implies C1 and C2. Mathematically, this can be written as
⟨l|PHη

|l⟩ = 1 ∀l ∈ V which follows from Eq. (21). Now, as
{|l⟩}Ll=1 forms an orthonormal basis, it must be the case that
PHη

= I which means the system has no dark states. There-
fore, from Proposition 1, we can see that rank(Ak) = gk for
each degenerate energy subspace, and hence C2 is true. More-
over, the nonexistence of dark states in non-degenerate energy
subspace implies C1 is obvious from Eq. (7).
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IV. ALTERNATIVE METHOD FOR OBTAINING TOTAL
DETECTION PROBABILITY

Without delving into the detailed physics of dark and bright
states, we can obtain Pdet solely through the utilization of
Eq. (4) by saturating the summation to a finite value. How-
ever, this method is computationally inefficient and can be a
time-consuming affair. To overcome this issue, we propose a
reformulation of Pdet for the detection of a subspace Vs by
detector D, following the methodologies outlined in Ref. [75]
and [76].

Before laying out the result, let us define few matrices
S,W, Tj of dimension L× L. Firstly, the energy spectrum of
H is given by {ϵp, |ϵp⟩}L−1

p=0 where ϵp is the eigenvalue of H
with an eigenvector |ϵp⟩. Now, the elements of the aforemen-
tioned matrices are given by Skp = δkp ⟨ϵp|ϕ(0)⟩, Wkp = 1,
(Tj)kp = δkp ⟨ϵp|dj⟩ andC = I−

∑r̃
j=1 T

∗
j WTj . The unitary

evolution operator U can be written in the energy eigenbasis
as Ukp = δkpe

−iϵpτ . Moreover, for any operator O, we char-
acterize Ō ≡ O∗ ⊗O. Finally, we define L = I− Ū C̄ which
is an L2 × L2 dimensional matrix.

Proposition 6. In a finite graph of L vertices, the probability
of first successful detection after infinite number of measure-
ments (with periodicity τ ) in a subspace of dimension r̃ < L

can be written as Pdet =
∑r̃

i=1 Tr
[
L−1Ū S̄W̄ T̄ ∗

i

]
L2×L2 .

Proof. First, we show that Eq. (3) can be rewritten as a trace
of product of L2 × L2 matrices of the form,

Fn =

r̃∑
i=1

Tr
[
(Ū C̄)n−1Ū S̄W̄ T̄ ∗

i

]
L2×L2 , (25)

(see Appendix A). Finally, using Eq. (4), the probability of
first successful detection is found to be

Pdet =

∞∑
n=1

r̃∑
i=1

Tr
[
(Ū C̄)n−1Ū S̄W̄ T̄ ∗

i

]
=

r̃∑
i=1

Tr
[
L−1Ū S̄W̄ T̄ ∗

i

]
. (26)

Note that instead of computing the inverse of L, we need
to calculate pseudoinverse [74], L−1 due to the fact that L
becomes singular when the spectrum of U(τ) is degenerate.
However, by definition pseudoinverse reduces to traditional
inverse when L is non-singular. Although we perform the
measurements periodically (with fixed τ ), it is clear that dur-
ing measurements at random times, the above formulation can
be very efficient [76].

V. INTERACTING SYSTEM WITH MODERATE RANGE
HOPPING

Let us utilize the concepts, namely the dark and bright
states, developed in Sec. III for an interacting system with
nearest and next nearest-neighbor hopping. The initial states

are localized on the graph nodes, and the rank of the detec-
tor is varied for detection of particle in subspaces of higher
dimensions. The entire investigations will also highlight the
advantages and limitations of methods discussed in Secs. III
and IV.

A. Total detection probability of subspace for
nearest-neighbor interacting system

Let us consider a nearest-neighbor (NN) interacting lattice
of L sites with periodic boundary condition described by the
Hamiltonian,

H = −γ
L−1∑
i=0

|i+ 1⟩⟨i|+ |i⟩⟨i+ 1| , (27)

where L is an even integer and set γ = 1 without loss of gen-
erality. The eigenvalues and eigenvectors of the above system
are given by [51]

ϵp = −2γ cos

(
2πp

L

)
, and

|ϵp⟩ =
1√
L

L−1∑
j=0

exp

(
i2πpj

L

)
|j⟩ , (28)

respectively where p = 0, 1, . . . , (L − 1). Notice that only
|ϵ0⟩ and

∣∣ϵL/2

〉
are non-degenerate eigenstates. By relabeling

the spectrum, we can write the non-degenerate subspace as
{Ek, |Ek⟩ |k = 0, L/2} whereas the doubly degenerate sub-
space is

{
Ek, {|Ek,m⟩}2m=1 |k = 1, 2, . . . , L2 − 1

}
with

|E0⟩ = |ϵ0⟩ ;
∣∣EL/2

〉
=
∣∣ϵL/2

〉
,

|Ek,1⟩ = |ϵk⟩
|Ek,2⟩ = |ϵL−k⟩

}
for k = 1, 2, . . . ,

L

2
− 1.

(29)

We take the initial state as a localized state in a position ba-
sis, |s⟩. Let us now vary the rank of the detector D, denoted by
r̃ which belongs to the position basis. Note that ⟨E0|d⟩ ̸= 0
and

〈
EL/2

∣∣d〉 ̸= 0 where |d⟩ is any localized position state
with the position being d = 0, . . . , L − 1 of the lattice. Such
observation suggests that irrespective of r̃, non-degenerate
energy subspace is completely bright, i.e., |η0⟩ = |ϵ0⟩ and∣∣ηL/2

〉
=
∣∣ϵL/2

〉
are bright states.

1. Rank-1 detection of particle (r̃ = 1)

Let us study the problem where a rank-1 detector state, D =
|d⟩⟨d|, is used to detect the particle which is in some localized
position in the lattice [72]. In the rank-1 scenario, there can be
only a single bright state corresponding to each distinct energy
Ek for k = 0, 1, . . . , L/2. Therefore, Eq. (21) corresponding
to the first detection probability reduces to [72]

Pdet =
∑
k

| ⟨s|Ek |d⟩ |2

⟨d|Ek |d⟩
. (30)
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In case of doubly degenerate energy levels where ϵk = ϵL−k

with k ̸= 0, L/2, the bright and the dark states respectively
take the form as

|ηk⟩ =
1√
2

(
e−

i2πkd
L |ϵk⟩+ e

i2πkd
L |ϵL−k⟩

)
, and (31)

|ζk⟩ =
1√
2

(
e−

i2πkd
L |ϵk⟩ − e

i2πkd
L |ϵL−k⟩

)
. (32)

Finally, from both Eqs. (30) and (22) we can find

Pdet(s) =
2

L
+

2

L

L
2 −1∑
k=1

cos2
[
2πk(d− s)

L

]

=

{
1 s = d, d+ L

2 ,

1/2 otherwise.
(33)

Note that s = d corresponds to the return problem as dis-
cussed in Corollary 4. The case where the initial state is dia-
metrically opposite, i.e., s = d+ L

2 , we can write

∣∣∣∣d+ L

2

〉
=

1√
L

|η0⟩+ (−1)d
∣∣ηL/2

〉
+
√
2

L/2−1∑
k=1

(−1)k |ηk⟩

 ,
(34)

which gives Pdet = 1 following Proposition 3. Moreover,
by fixing L = 10, we calculate Pdet numerically by Eq. (26)
without delving into the details of dark and bright states which
matches with the above result.

2. Identification of particle with rank-2 detector (r̃ = 2)

Let us now increase the rank of D to be 2, which can be
written as

D = |d1⟩⟨d1|+ |d2⟩⟨d2| . (35)

Due to the translation symmetry in H (Eq. (27)), Pdet must
remain invariant by a constant shift, i.e., Pdet(s, d1, d2) =
Pdet(s+ c, d1+ c, d2+ c). Therefore, we fix d1 = 0 and vary
d2 from 1 to L

2 .i.e., mathematically we can write

D = |0⟩⟨0|+ |d2⟩⟨d2| . (36)

In case of doubly degenerate energy subspaces, we calculate
the matrix Ak as

Ak =

[
⟨0|ϵk⟩ ⟨0|ϵL−k⟩
⟨d2|ϵk⟩ ⟨d2|ϵL−k⟩

]
(37)

=
1

L

[
1 1

exp
(
i2πkd2

L

)
exp
(−i2πkd2

L

)] . (38)

Moreover, the row echelon form of Ak can be written as

REF (Ak) =

[
1 1
0 2i sin

(
2πkd2

L

)] . (39)

Let us now discuss the different cases of null space of Ak.

Case I. If d2 ̸= mkL
2k for some mk ∈ Z+ where Z+ de-

notes the set of positive integers, it is evident from Eq. (39)
that rank(Ak) = 2. Therefore, the nullspace is trivial corre-
sponding to energy Ek. Consequently, no dark states exist in
the entire energy spectrum if the above condition satisfies for
all k which means PHη =

∑
k Ek = I. Therefore, the first

detection probability is

Pdet = 1 if d ̸= mkL

2k
∀k. (40)

Case II. In the case d2 = mkL
2k for some mk ∈ Z+, we have

Ak =
(−1)mk

L

[
1 1
1 1

]
, (41)

which have rank(Ak) = 1 and dim(NAk) = 1. Conse-
quently, the dark and bright states are given by

|ζk⟩ =
1√
2
(|ϵk⟩ − |ϵL−k⟩) , (42)

and

|ηk⟩ =
1√
2
(|ϵk⟩+ |ϵL−k⟩) (43)

respectively. Specifically, for d = L/2 there exists mk such
that mk = k ∀k. The bright state projector can be written as

PHη = |E0⟩⟨E0|+
∣∣EL/2

〉〈
EL/2

∣∣+ L/2−1∑
k=1

|ηk⟩⟨ηk| , (44)

which gives

Pdet(s) =
2

L
+

2

L

L
2 −1∑
k=1

cos2
[
2πks

L

]

=

{
1 s = 0, L/2,

1/2 otherwise.
(45)

Notice that in this case, Pdet, as shown in Eq. (45) matches
exactly with the first detection probability (Eq. (33)) of rank-
1 detector. The above result is a consequence of the fact that
the dark and bright states (Eqs. (42) and (43)) for D = |0⟩⟨0|+
|L/2⟩⟨L/2| is same (upto an overall phase) as that for D =
|0⟩⟨0| or D = |L/2⟩⟨L/2| which is given by Eqs. (31) and (32).
To visualize the entire investigation, we carry out the analysis
for a finite system-size, i.e., for fixed lattice sites, specifically
L = 10 and L = 20.

(i) Example 1 : L = 10. Following Eq. (26), we com-
pute Pdet for system-size L = 10 by varying |s⟩ and |d2⟩ as
shown in Fig. 2, consistent with the above analysis of dark and
bright states. For d2 = 5, we have mk = k∀k, i.e., Case II
is satisfied. Moreover, both s = 0 and 5 are return problems
having Pdet = 1 which follows from Corollary 4. Except for
d2 ̸= 5, d2 ̸= 5mk

k ∀d2, k which correspond to Case I and
consequently according to Theorem 5, Pdet = 1 independent
of the initial state |s⟩. In both cases, either of Case I or Case
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FIG. 2. (Color online.) Total detection probability for detection of a
particle in two-dimensional subspace for the cyclic graph (L = 10)
as defined in Eq. (27) and detector as Eq. (36). Each column cor-
responds to fixed initial state |s⟩ and detector D = |0⟩⟨0| + |d2⟩⟨d2|
with d2 = 1, 2, · · · , 9. Each row corresponds to a fixed D (d2 fixed)
with varying initial state |s⟩ where s = 0, 1, · · · 9. The row with
d2 = 5 corresponds to detector D = |0⟩⟨0| + |5⟩⟨5| . The total de-
tection probability for this subspace, Pdet = 0.5 ≤ 1 for all initial
states except the return problem (i.e., s = 0 or s = 5) due to the
existence of dark states given by Eq. (42). Except d2 = 5, all other
rows have Pdet = 1 (as also seen from Theorem 5).

II is satisfied for all degenerate energy eigenvalues k. But this
is not always true as one increases the system size. Note that
from the framework of dark and bright energy subspace, when
no dark states exist, it immediately implies that Pdet is unity
which does not require any numerical computation.

(ii) Example 2: L = 20. To show the dependence of Pdet on
number of dark states of a system, we takeL = 20. According
to Eq. (35), we fix d1 = 0 and vary d2 = 1, 2, . . . , 19, i.e.
D = |0⟩⟨0| + |d2⟩⟨d2|. For each doubly degenerate energy
level {Ek|k = 1, 2, . . . , 9} we have

Ak =

[
⟨0|ϵk⟩ ⟨0|ϵ20−k⟩
⟨d2|ϵk⟩ ⟨d2|ϵ20−k⟩

]
=

1

20

[
1 1

exp
(
i2πkd2

20

)
exp
(−i2πkd2

20

)]
=⇒ REF (Ak) =

[
1 1
0 2i sin

(
πkd2

10

)] . (46)

The possibilities of rank(Ak) can be

rank(Ak) =

{
2 if kd2

10 ̸= mk

1 if kd2

10 = mk,
(47)

for somemk ∈ Z+. We calculate Pdet as shown in Fig. 3. Let
us explain the probabilities serially:

1. When value of d2 is odd (except 5, 15), Case I is satis-
fied ∀k, i.e., Pdet = 1 independent of initial state |s⟩.

FIG. 3. (Color online.) Pdet for a cyclic graph with L = 20. The
two-dimensional subspace detector is D = |0⟩⟨0| + |d2⟩⟨d2|, d2 =
1, 2, · · · , 19 similar to the case in Fig. 2. For a fixed initial state,
i.e., for a fixed column, a range of values for Pdet is observed which
depends on the choice of the site, d2 . Corresponding to a particular
value of d2, the dark states present in the system change (see Table
I), thus influencing total detection probability Pdet. The presence
of a fewer dark states corresponds to higher Pdet for the subspace.
For a similar reason as in Fig. 2, the row with d2 = L

2
= 10 has

Pdet = 0.5 for all initial states except |0⟩ and |10⟩

2. For even values of d2 (except 10), only the E5 energy
level has a dark state.

3. For d2 = 5, 15, the energy levels corresponding to k =
2, 4, 6, 8 consist of a single dark state each.

4. Finally for d2 = 10, each of the energy levels of k =
2, 4, 5, 6, 8 have a single dark state each.

To illustrate that the total detection probability decreases
monotonically with the increase of dark states, we fix the ini-
tial state |s⟩ at site, s = 1 and vary d2 from Eq. (36). See
Table I for Pdet by varying |d2⟩. Despite the existence of dark

d2 Total number of dark states Pdet

1, 3, 7, 9, 11, 13, 17, 19 0 1

2, 4, 6, 8, 12, 14, 16, 18 1 0.9

5, 15 4 0.75

10 5 0.5

TABLE I. Value of Pdet and total number of dark states of the
periodic NN system given in Eq. (27) with L = 20 and D =
|0⟩⟨0|+ |d2⟩⟨d2|, by varying d2.

states, the initial states that give Pdet to be unity are due to
Proposition 3.
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3. Detection of three-dimensional subspace through rank-3
detector (r̃ = 3)

In case of rank-3 detector, we fix d1 = 0, i.e., the detector
has the form

D = |0⟩⟨0|+ |d2⟩⟨d2|+ |d3⟩⟨d3| , (48)

and vary d2 = 1, 2, . . . L− 1, and d3 = 1, 2, . . . L/2− 1 with
d2 ̸= d3. Notice that we only vary d3 from 1 to L/2 − 1 as
the system is symmetric about the axis passing through 0 and
L/2. The matrix Ak and its row echelon form can be written
as

Ak =

 ⟨0|ϵk⟩ ⟨0|ϵL−k⟩
⟨d2|ϵk⟩ ⟨d2|ϵL−k⟩
⟨d3|ϵk⟩ ⟨d3|ϵL−k⟩

 (49)

=
1

L3/2

 1 1

exp
(
i2πkd2

L

)
exp
(−i2πkd2

L

)
exp
(
i2πkd3

L

)
exp
(−i2πkd3

L

)
 , (50)

and

REF (Ak) =

1 1

0 2i sin
(
2πkd2

L

)
0 2i sin

(
2πkd3

L

)
 , (51)

respectively.
Condition I. We can see that rank(Ak) = 2 as long as d2 ̸=

mkL
2k or d3 ̸= nd2 for some integer mk and n ≥ 2 which

shows that there is no dark state in degenerate subspace Ek.
Condition II. On the other hand, when d2 = mkL

2k and
d3 = nd2 are simultaneously satisfied, rank(Ak) = 1 and the
corresponding dark and bright states are same as in Eqs. (42)
and (43) respectively.

For L = 10, the particle can always be detected determin-
istically (see Appendix B). In this case, d2 = 5 for mk = k∀k
and d3 = 5n which does not exist inside the system. There-
fore, Condition I is satisfied simultaneously for all degener-
ate energy levels, leading to the nonexistence of dark states
which implies unit Pdet = in accordance with Theorem 5.
For L = 20, a similar analysis can be performed, although it
is much more involved. In the next subsection, we incorporate
the next nearest-neighbor hopping to the system Hamiltonian
towards analyzing the total detection probability for a differ-
ent degenerate spectrum.

B. NN and next nearest-neighbor (NNN) interacting system

For the NN interacting system, the maximum degeneracy
of the system was two-fold, and in each degenerate subspace
consisted at most one dark state. To illustrate the method
given in Sec. III to construct more than one dark states for
subspace detection, along with NN, we take NNN hopping
with system-size L = 10n ∀n ∈ Z+. Therefore, the system is
governed by the Hamiltonian,

H1 = −γ
L−1∑
i=0

|i+ 1⟩⟨i|+ |i+ 2⟩⟨i|+ h.c. (52)

The eigenvalues and eigenvectors of H1 are given by

ϵp = −2γ
[
cos

(
2πp

L

)
+ cos

(
4πp

L

)]
,

|ϵp⟩ =
1√
L

L−1∑
j=0

exp

(
i2πpj

L

)
|j⟩ .

(53)

We relabel the energy spectrum as follows:

• Non-degenerate: |E0⟩ = |ϵ0⟩ and
∣∣EL/2

〉
=
∣∣ϵL/2

〉
are

non-degenerate.

• Four-fold degenerate: The set of eigenstates corre-
sponding to the single four-fold degenerate energy level
can be represented as

{ ∣∣EL/5,1

〉
=
∣∣ϵL/5

〉
,
∣∣EL/5,2

〉
=∣∣ϵ2L/5

〉
,
∣∣EL/5,3

〉
=
∣∣ϵ3L/5

〉
,
∣∣EL/5,1

〉
=
∣∣ϵ4L/5

〉 }
.

• Two-fold degenerate: L−6
2 number of two-fold de-

generate energy levels can be written as
{
|Ek,1⟩ =

|ϵk⟩ and |Ek,2⟩ = |ϵL−k⟩ |k ̸= L/5, 2L/5
}(L/2)−1

k=1
.

Let us analyze the total detection probability when a rank-2
detector is used to detect the particle.

1. Detecting the walker in the two-dimensional subspace (r̃ = 2)

In the case of finding a particle in two-dimensional sub-
space, the projector is constructed as

D = |0⟩ ⟨0|+ |d2⟩ ⟨d2| with d2 ̸= 0, (54)

Similar to the system with NN hopping, |E0⟩ and
∣∣EL/2

〉
are

completely bright.
Four-fold degenerate subspace. In the case of four-fold de-

generate energy levels, we have



10

AL/5 =

[ 〈
0
∣∣EL/5,1

〉 〈
0
∣∣EL/5,2

〉 〈
0
∣∣EL/5,3

〉 〈
0
∣∣EL/5,4

〉〈
d2
∣∣EL/5,1

〉 〈
d2
∣∣EL/5,2

〉 〈
d2
∣∣EL/5,3

〉 〈
d2
∣∣EL/5,4

〉] ,
=

exp
(
i2πd
5

)
L2

[
1 1 1 1

1 exp
(
i2πd2

5

)
exp

(
i3πd2

5

)
exp

(
i4πd2

5

)] , (55)

=⇒ REF (AL/5) =

[
1 1 1 1

0 exp
(
i2πd2

5

)
− 1 exp

(
i3πd2

5

)
− 1 exp

(
i4πd2

5

)
− 1

]
. (56)

From REF (AL/5), it is clear that rank(AL/5) = 2, when
exp

(
i2πd2

5

)
= 1, exp

(
i3πd2

5

)
= 1, and exp

(
i4πd2

5

)
= 1

are not simultaneously satisfied, i.e., d2 ̸= 10m ∀m ∈ Z+.

Following the procedure in Sec. III, two dark states in the case
of the four-fold degenerate subspace can be calculated as

∣∣ζL/5,1

〉
= N1

[
e(iπd)

∣∣EL/5,1

〉
− 2 cos

(
πd2
5

)
e(

i4πd2
5 ) ∣∣EL/5,2

〉
+ e(

i3πd2
5 ) ∣∣EL/5,3

〉 ]
,

∣∣ζL/5,2

〉
= N2

[
2i cos2

(
πd2
5

)
sin

(
πd2
5

) ∣∣EL/5,1

〉
− i

2

(
e(

i8πd2
5 ) sin

(
3πd2
5

)
+ e(

i12πd2
5 ) sin

(
πd2
5

)) ∣∣EL/5,2

〉
+

e(
i6π
5 )

2

[
2
(
e(

i6π
5 ) − 1

)
cos

(
πd2
5

)
+ i sin

(
3πd2
5

)] ∣∣EL/5,3

〉
− ie(

i8πd2
5 ) sin

(
3πd2
5

) ∣∣EL/5,4

〉 ]
, (57)

with the normalization constants, N1 = 1√
2[1+cos2(πd2

5 )]
and

N2 =
√

2

[20+27 cos( 2πd2
5 )+6 cos( 4πd2

5 )+7 cos( 6πd2
5 )] sin2(πd2

5 )
.

By Gram-Schmidt procedure, the bright states can be written
as

∣∣ηL/5,1

〉
=

EL/5 |0⟩√
⟨0|EL/5 |0⟩

=
1

2

(∣∣EL/5,1

〉
+
∣∣EL/5,2

〉
+
∣∣EL/5,3

〉
+
∣∣EL/5,4

〉)
,

∣∣ηL/5,2

〉
=

(
EL/5 |d2⟩ −

〈
ηL/5,1

∣∣EL/5 |d2⟩
∣∣ηL/5,1

〉 )√
⟨d2|EL/5 |d2⟩ − ⟨d2|EL/5

∣∣ηL/5,1

〉 〈
ηL/5,1

∣∣EL/5 |d2⟩

= B
[ (
e

i4πd2
5 + e

i6πd2
5 + e

i8πd2
5

) ∣∣EL/5,1

〉
+
(
e

i2πd2
5 + e

i6πd2
5 + e

i8πd2
5

) ∣∣EL/5,2

〉
+
(
e

i2πd2
5 + e

i4πd2
5 + e

i8πd
5

) ∣∣EL/5,3

〉
(58)

+
(
e

i2πd2
5 + e

i4πd2
5 + e

i6πd2
5

) ∣∣EL/5,4

〉 ]
, (59)

B =
1√

4(1− 1 [cos (2πd2/5) + cos (4πd2/5)]
2
)
. (60)

On the other hand, for d2 = 10m, rank(Ak) = 1, hence the three dark states and a single bright state are given by∣∣ζL/5,1

〉
=

1√
2

[∣∣EL/5,2

〉
−
∣∣EL/5,1

〉]
,∣∣ζL/5,2

〉
=

1√
6

[
2
∣∣EL/5,3

〉
−
∣∣EL/5,2

〉
−
∣∣EL/5,1

〉]
,∣∣ζL/5,3

〉
=

1

2
√
3

[
3
∣∣EL/5,4

〉
−
∣∣EL/5,3

〉
−
∣∣EL/5,2

〉
&−

∣∣EL/5,1

〉 ]
, (61)
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∣∣ηL/5

〉
=

1

2

[ ∣∣EL/5,1

〉
+
∣∣EL/5,2

〉
+
∣∣EL/5,3

〉
+
∣∣EL/5,4

〉 ]
. (62)

Two-fold degenerate subspace. In this scenario, the condition
for the dark state gives

Ak =

[
⟨0|Ek,1⟩ ⟨0|Ek,2⟩
⟨d2|Ek,1⟩ ⟨d2|Ek,2⟩

]

=
1

L

[
1 1

exp
(
i2πkd2

L

)
exp

(−i2πkd2

L

)] , (63)

REF (Ak) =

[
1 1

0 2i sin
(
2πkd2

L

)] . (64)

When d = mkL
2k for some mk ∈ Z+, we have rank(Ak) = 1

and the corresponding dark and bright states are given by

|ζk⟩ =
|Ek,1⟩ − |Ek,2⟩√

2
, (65)

|ηk⟩ =
|Ek,1⟩+ |Ek,2⟩√

2
. (66)

Otherwise, the two-fold energy level has no dark states.
We take the system-size, L = 10, |ϕ(0)⟩ = |s⟩ and using

this analysis, we compute the total probability of detection for
d2 ̸= 5 as

Pdet(s) = ⟨s|PHη |s⟩

=
6

10
+

1

10

[
cos

(
2sπ

5

)
+ cos

(
4sπ

5

)]2
+

B2

10

[3
4
cos

(
2(s− d2)π

5

)
+

3

4
cos

(
4(s− d2)π

5

)
− 1

4
cos

(
2(s+ d2)π

5

)
− 1

4
cos

(
4(s+ d2)π

5

)
− 1

4
cos

(
2(s+ 2d2)π

5

)
− 1

4
cos

(
2(s− 2d2)π

5

)
− 1

4
cos

(
2(2s+ d2)π

5

)
− 1

4
cos

(
2(2s− d2)π

5

)]2
=

{
1 s = 0, d2, 5, d2 + 5

2/3 otherwise,
(67)

and for d2 = 5 as

Pdet(s) =
2

10
+

2

10
cos2

(
2πs

10

)
+

2

10
cos2

(
6πs

10

)
+

1

10

[
cos2

(
4πs

10

)
+ cos2

(
8πs

10

)]
=

{
1 s = 0, 5

3/8 otherwise.
(68)

Finally, Pdet, calculated using Eq. (26) as shown in Fig. 4
agrees with the one obtained via the approach with bright and
dark states (see Eqs. (67) and (68)).

FIG. 4. (Color online.) Two-dimensional subspace detection proba-
bility for a ring with additional next nearest-neighbor hopping (L =
10) as given in Eq. (52) and D = |0⟩⟨0|+ |d2⟩⟨d2|, d2 = 1, 2, · · · , 9.
Notice that the values of Pdet are rounded up to two decimal places.
Further, we notice that when d2 = 5, Pdet = 0.375 ≈ 0.38 for all
initial states except |0⟩ and |5⟩.

VI. AVERAGE NUMBER OF MEASUREMENTS FOR
SUBSPACE DETECTION

Throughout the paper, we have adhered to stroboscopic
measurement protocol for detecting particle in a given sub-
space in quantum walk evolution. Along with the total detec-
tion probability Pdet after an infinite number of measurement
attempts, another quantity of interest is the time required to
detect the particle in the corresponding subspace, also known
as the hitting time of the quantum walk [75]. Intermediate
free evolution time τ being constant, the average number of
measurements, n̄, calculated as n̄ =

∑∞
n=1 nFn, is required

to detect the particle which means hitting time τ̄ = τ n̄. Note,
however from our previous discussions, Pdet can be less than
unity where average number of measurements required for de-
tection can not be calculated by above mentioned formula as
the detection is not guaranteed. Therefore, we redefine the
average number of measurements conditioned on the fact that
the particle is detected as

n̄ =

∑∞
n=1 nFn

Pdet
. (69)

Furthermore, depending on the initial state of the quantum
walk, the hitting time can again be classified into two distinct
categories -

1. Average arrival time for quantum walks starting from
initial states orthogonal to the detection subspace.

2. Average return time for quantum walks starting with
initial states within the detection subspace.
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FIG. 5. (Color online.) n̄ (ordinate) against free evolution time τ
(abscissa) for system-size L = 10 of a cyclic graph with NN hopping
(Eq. (27)). Particle is initially at site s = 1 (top) and s = 2 (bottom)
and the detector is D = |0⟩⟨0|. Comparing the plots, we demonstrate
that n̄ may be divergent only at τc. All the axes are dimensionless.

Before presenting examples, let us first show that n̄ can have
a closed-form expression by which it can be calculated effi-
ciently [75, 76].

Proposition 7. The average number of measurements re-
quired for the detection of the particle in a subspace condi-
tioned on the fact that a particle is detected can be written in
a closed-form as

n̄ =
1

Pdet

r∑
i=1

Tr
[
L−2Ū S̄W̄ T̄ ∗

i

]
. (70)

Proof. Using Eq. (25) the average number of measurements n̄
conditioned on successful detection can be written as

n̄ =
1

Pdet

∞∑
i=1

nFn

=
1

Pdet

∞∑
n=1

r̃∑
i=1

nTr
[
(Ū C̄)n−1Ū S̄W̄ T̄ ∗

i

]
=

1

Pdet

r∑
i=1

Tr
[
L−2Ū S̄W̄ T̄ ∗

i

]
. (71)

Let us now calculate n̄ for different configurations in case
of NN interacting periodic system as mentioned in Eq. (27)
with system-size L = 10.

A. Arrival time

At first, for single site detection we take the detector to be
fixed at d = 0 and calculate n̄ where the walk is taken to be

initially at site s = 1 or s = 2 as shown in Fig. 5. Notice that
n̄ diverges at certain times for both cases which is possible
only when the critical condition [76, 77] |ϵp′ − ϵp|τc = 2nπ
(with n ∈ Z+) satisfies for any pair of energy eigenvalues ϵp′

and ϵp of H . When τ = τcs, the degeneracy of the evolution
unitary U = e−iHt increases from the degeneracy of H . In
Fig. 5, the vertical dotted lines correspond to all the critical
times τc. However, divergence at τ = 0 signifies the Zeno
limit [78]. Note that for s = 1, at all τcs, the value of n̄ di-
verges. However, n̄ does not diverge at all τcs when s = 2.
This shows that although all the τcs may not correspond to di-
vergence seen in n̄, it belongs to the set of τcs. Note further
that the methods discussed in Secs. III and IV for comput-
ing Pdet remains valid in all the points in which n̄ does not
diverge.

Let us demonstrate that in the case of higher rank measure-
ments, n̄ diverges for some values of τs, which is a subset of
the set of critical time τc obtained in rank-1 measurements.
For illustration, we consider the initial state as |s⟩ = |3⟩ and
increase the rank of the detector subspace. The observations
are listed below.

1. Let us take D = |0⟩⟨0|+ |1⟩⟨1| and D = |0⟩⟨0|+ |1⟩⟨1|+
|2⟩⟨2|. In case of rank-1 detector, D = |0⟩⟨0|, the num-
ber of divergences in n̄ is 17 (see Fig. 5) and they exist
at all τc with 0 ≤ τ ≤ 2π. On the other hand, the diver-
gences in n̄ reduce to 14 and 8 for the above rank-2 and
rank-3 detectors respectively (see Fig. 6).

2. In case of rank-3 detector, instead of d2 = 1 and
d3 = 2, if we take d2 = 9 and d3 = 8, the number
of divergences in n̄ is further reduced to 6.

3. Interestingly, when the detector subspace is exactly di-
ametrically opposite to the initial state |3⟩, i.e., D =
|7⟩⟨7|+ |8⟩⟨8|+ |9⟩⟨9|, all divergences vanish except the
Zeno limit. Note that the site d2 = 8 is the diametrically
opposite one for |s⟩ = |3⟩.

Moreover, we compute the time (τ ) required for minimum
n̄, listed in Fig. 6. The foregoing analysis, in conjunction with
the mitigation of divergences in the necessary number of mea-
surements for detection, can be important from the perspective
of the control of a quantum particle through a periodic mea-
surement scheme, warranting further investigation.

B. Return time

In the case of a return problem, we consider the initial state
to be localized in any single site of a given subspace. For a
fixed initial state, |s⟩ = |0⟩, the return of the particle in D =
|0⟩⟨0| and D = |0⟩⟨0| + |1⟩⟨1| has constant n̄ = 6 and n̄ = 5
respectively. Notably, for the subspace of rank greater than
two, the average number of measurements required for the
detection oscillates with τ as shown in Fig. 7, which requires
critical analysis.
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FIG. 6. (Color online.) The average number of measurements condi-
tioned on the particle to be detected, n̄ (vertical axis) against τ (hor-
izontal axis) for a quantum walk on the cyclic graph with L = 10 in
Eq. (27) initialized at |s⟩ = |3⟩. The subspaces of dimensions one
((a)), two ((b)), and three ((c)-(e)) are measured. Points in each plot
represent the minimum n̄ and its corresponding τ , mentioned in the
legend. As mentioned in the text, the number of divergences in n̄ can
be reduced by suitably choosing rank-3 detector as seen from (c), (d)
and (e). Interestingly, for diametrically opposite subspace detector,
D = |7⟩⟨7|+ |8⟩⟨8|+ |9⟩⟨9| ((e)), there is no divergence except at the
Zeno limit. All the axis are dimensionless.

FIG. 7. (Color online.) n̄ (vertical axis) with τ (horizontal axis) for
return problem in subspaces of dimension one, two, and three. The
initial states are chosen such that τ̄ = τ n̄ corresponds to the average
return time of a quantum walk for a particular subspace. For initial
state, |s⟩ = |0⟩, the value of n̄ = 6 and 5 for D = |0⟩⟨0| and D =
|0⟩⟨0| + |1⟩⟨1| respectively are independent τ . On the other hand, n̄
attains oscillatory behavior with τ for D = |0⟩⟨0| + |1⟩⟨1| + |2⟩⟨2|
with initial states at the site s = 0 (solid line) or 1 (dashed line).
Note that n̄ decreases with the increase in the rank of the detector.
All the axis are dimensionless.

VII. CONCLUSION

We focused on the statistics of the particle’s arrival in a
given subspace undergoing measurement-induced quantum
walk. In particular, we obtained the first detection probability
and the corresponding total detection probability of a particle
within a subspace using the stroboscopic measurement proto-
col.

We formulated an alternative framework for detecting a par-
ticle in a subspace that utilizes the notion of dark and bright
energy eigenstates of a given Hamiltonian used for a quantum
walk. Specifically, we employed the rank-nullity theorem to
determine the number of dark and bright energy eigenstates
for degenerate energy levels when we assert the detection of a
particle in a defined subspace. Based on the energy spectrum
of the Hamiltonian, responsible for a quantum walk and its
relationship with the detector state, we uncovered conditions
independent of the choice of the initial state so that the particle
performs a quantum walk to be certainly detected in a given
subspace. Note that such subspaces are perfect candidates for
encoding target states in the context of quantum search prob-
lems. In this configuration, the possibility of the existence of
multiple bright states corresponding to a degenerate energy
level emerges which is not observed in the detection of the
single site [72]. Furthermore, by using alternative numeri-
cal method, we computed the total detection probability of
continuous-time random walk in a cyclic graph with nearest-
neighbor and next nearest-neighbor hopping which can also
be confirmed using the approach with bright and dark energy
states.

In the context of arrival and return to the subspace, we
found that the divergence observed in the average number of
measurements conditioned on the successful detection can be
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significantly reduced when subspace detection of a particle
is taken into account with the assistance of higher rank pro-
jectors. The measuring process presented in this work is not
identical with other divergence-removing techniques known
in the literature and hence opens up an intriguing avenue for
future exploration in case of quantum control. Our findings
emphasize the significance of measurement strategies for con-
clusively detecting the particle and may suggest more study
utilizing higher rank projectors in the context of quantum
continuous-time random walks.
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Appendix A: Deriving exact formulas of first detection statistics
in case of subspace detection

Let us derive a closed-form expression for the first detection
statistics in the case of subspace detection. For any operator
X , ⟨Ψ|X |Φ⟩ in energy eigenbasis of the given Hamiltonian
can be written as

⟨Ψ|X |Φ⟩ =
∑
i,j

⟨Ψ |ϵi⟩⟨ϵi|X |ϵj⟩⟨ϵj |Φ⟩

=
∑
i,j

Ψ∗
iXijΦj

= Tr [XSWT ∗] (A1)

where Ψi = ⟨ϵi|Ψ⟩, Φi = ⟨ϵi|Φ⟩. The operators are as fol-
lows

Wij = 1,

S = diag(Φ1,Φ2, ...,Φn),

T = diag(Ψ1,Ψ2, ...,Ψn). (A2)

The unitary operator in the energy basis can be written as

U = diag(e−iϵ1τ , e−iϵ2τ , e−iϵ3τ , ..., e−iϵnτ ). (A3)
Using Eq. (3), the first detection probability for n = 1 is given
by

F1 = ⟨ϕ(1)|D |ϕ(1)⟩

=

r∑
i=1

⟨ϕ(0)|U† |di⟩⟨di|U |ϕ(0)⟩

=

r∑
i=1

Tr [U∗TiWS∗] Tr [USWT ∗
i ]

=

r∑
i=1

Tr [USWT ∗
i ]

∗
Tr [USWT ∗

i ] , (A4)

where Skk = ⟨ϵk|ψ(0)⟩ , (Ti)kk = ⟨ϵk|di⟩. Going from third
to fourth line we use the cyclic property of trace along with
the fact that U, S, Ti commute as they are diagonal matrices.

Similarly, for n = 2, we have

F2 = ⟨ϕ(2)|D |ϕ(2)⟩

=

r̃∑
i=1

⟨ϕ(0)|U†(I− D)U† |di⟩ ⟨di|U(I− D)U |ϕ(0)⟩

=

r̃∑
i=1

Tr

U
I−

r̃∑
j=1

T ∗
j WTj

USWT ∗
i

∗

Tr

U
I−

r̃∑
j=1

T ∗
j WTj

USWT ∗
i


=

r̃∑
i=1

Tr [UCUSWT ∗
i ]

∗
Tr [UCUSWT ∗

i ] , (A5)

where C = I−
∑r̃

j=1 T
∗
j WTj . Finally, for the nth round, Fn

is calculated as

Fn = ⟨ϕ(n)|D |ϕ(n)⟩

=

r̃∑
i=1

Tr
[
(UC)n−1USWT ∗

i

]∗
Tr
[
(UC)n−1USWT ∗

i

]
.

(A6)

Using an important property of trace given as

Tr[A⊗B] = Tr[A] Tr[B]

Tr[A∗ ⊗A] = Tr[A∗] Tr[A] = Tr[A]
∗
Tr[A],

(A7)

https://github.com/titaschanda/QIClib
https://titaschanda.github.io/QIClib
https://titaschanda.github.io/QIClib
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and defining Ō = O∗ ⊗O, for any operator O we can rewrite
Eq. (A6) as

Fn =

r̃∑
i=1

Tr
[
(Ū C̄)n−1Ū S̄W̄ T̄ ∗

i

]
. (A8)

Therefore, we can calculate Pdet as

Pdet =

∞∑
n=1

Fn

=

∞∑
n=1

r̃∑
i=1

Tr
[
(Ū C̄)n−1Ū S̄W̄ T̄ ∗

i

]
=

r̃∑
i=1

Tr
[
L−1Ū S̄W̄ T̄ ∗

i

]
,

(A9)

where we perform summation of the infinite geometric series
and define L = I− Ū C̄.

Appendix B: Pdet for NN hopping system with rank-3 detector

The detector has the following configuration:

D = |0⟩⟨0|+ |d2⟩ ⟨d2|+ |d3⟩ ⟨d3| , (B1)

where d2 = 1, 2, . . . L, and d3 = 1, 2, . . . L/2 − 1 with d2 ̸=
d3. For L = 10, we calculate Pdet as shown in Fig. 8.

FIG. 8. (Color online.) Three-dimensional subspace detection prob-
ability for the system-size (L = 10) as in Eq. (27) and the detector
given as Eq. (B1). For all rank-3 detectors, the particle is certainly
detected due to the absence of dark energy states as stated in Theo-
rem 5.
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