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We propose to synthesize tunable periodic gauge fields via Floquet engineering cold alkaline-earth atoms in

one-dimensional optical lattice. The artificial magnetic flux is designed to emerge during the combined process

of Floquet photon assisted tunneling and internal state transitions. By varying initial phases of driving protocol,

our proposal presents the ability to smoothly tune the periodic flux. Moreover, we demonstrate that the effective

two-leg flux ladder model can simulate one typical real topological insulator, which is described by the first

Stiefel Whitney class and protected by the PT symmetry. Benefiting from the long lifetime of excited states of

alkaline-earth atoms, our work opens new possibilities for exploiting the physics related to gauge fields, such as

topological phases, in the current cold atom platform.

I. INTRODUCTION

Gauge fields, as well as the associated gauge theories, are

crucial to modern physics. In the standard model, complex

gauge fields are necessary to mediate the interactions between

elementary particles. The application of strong magnetic

fields to two-dimensional electronic systems has led to the

discovery of topological matters[1–5] that have been actively

expanded over the last fifteen years[6–10]. Among those

topological matters, Chern insulators have drawn tremendous

attention for exploring the topological mechanisms beyond

Landau levels and their potential application aspects, which

was first proposed by Haldane through introducing staggered

fluxes threading the honeycomb lattice[11]. Inspired by

this spatial magnetic configuration, much of research is de-

voted to combining that with various lattice systems, whose

interplay results in flat bands[12–18], anomalous quantum

Hall effects[12, 19, 20], high Chern numbers[15, 18], high-

order Chern number[17], unique edge states[21, 22] and so

on. Extra effort is focused on investigating other periodic

fluxes to explore similar phenomena such as high Chern

numbers[23], redistribution of Chern numbers[24, 25], chi-

ral edge states[26]. Nevertheless, it is interesting to note that

there is a kind of novel topological phase recently emerg-

ing from the periodic π flux configuration[27–35]. Distinct

from other precursors, their Brillouin zone, band topologies,

edge states, symmetry groups and topological classifications

are profoundly modified by the Z2 projective algebra[27–32].

It is naturally anticipated that more general periodic U(1)
gauge fields may extend the realm of intriguing topological

phases[28]. However, how to engineer periodic gauge fields

is still an open question to date.

Thanks to the unprecedentedly clean and controllable ex-

perimental system, cold atoms offer a unique platform for

simulating and investigating the gauge fields[36–40]. One
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early and simple route for synthesizing effective magnetic

fields involves rapidly rotating the cold gases, leveraging the

analogy between the neutral atomic Coriolis force and the

charged particles’ Lorentz force[41–45]. Later, the scheme of

laser-assisted tunneling is proposed to exploit Peierls phases

which arise when the suppressed adjacent tunneling is res-

onantly restored by Raman transitions[46–51]. More elab-

orate dynamical driving technique–commonly referred to as

Floquet engineering[40, 52–62]–is employed to attach gauge

fields to varied lattice configurations such as triangular lat-

tice, kagome lattice, hexagonal lattice[55, 56, 60, 63–65].

The proven versatile tool can even engineer solenoid-type

flux geometries[66]. On the other hand, cold alkaline-earth

atoms(AEAs) offer unique advantages for simulating gauge

fields by utilizing long-lived electronic excited states, as the

strongly suppressed spontaneous emission reduces related

heating[49, 67–71]. This useful low heating rate has al-

lowed the application of Floquet engineering methods in op-

tical lattices to advance recent experimental progress not only

in quantum simulation but also in precision measurement[72,

73]. These developments motivate us to explore the possibility

of engineering periodic artificial gauge fields in such atomic

platforms.

In this paper, we propose a feasible and efficient scheme for

the generation of tunable periodic gauge fields by Floquet en-

gineering of cold AEAs. By designing an appropriate super-

lattice, we show that these atoms experience state-dependent

potentials, and thus acquire net magnetic fluxes attaching the

artificial ”electronic” dimension due to different Floquet pho-

ton assisted resonant precesses. Intriguingly, it is found that

the effective two-leg periodic flux model can exhibit the real

topological phase. This topological state is protected by PT
symmetry, the combined symmetry of spatial inversion P and

time reversal T , and characterized by the first Stiefel Whitney

class. Topological phase transition can occur when tuning the

periodic flux.

The paper is organized as follows. Section II serves as

an introduction to our proposal and the corresponding time-

dependent Floquet model. In Sec.III, we discuss the effec-
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FIG. 1. Sketch of proposed setup. (a) Cold AEAs are trapped

in shaking superlattice formed by two standing-wave laser fields

with wavelength λm and 2λm. Interacting with modulated pump-

ing lasers, atoms with ground states |g〉 can be excited to higher

energy levels |e〉. (b) The periodic shaking of superlattice origi-

nates from the two coordinated frequency modulation function for

the laser with magic wavelength ∆νm = ν1 sin(ωst) and the other

∆ν2m = ν1
2
sin(ωst), denoted dy blue solid line and red dash line

respectively. (c) The modulation function to frequency of the pump-

ing laser, ∆νp(t) = ν2 cos(ωst + ϕ) + λm

2λp
ν1 sin(t), with setting

ν2 = ν1, ϕ = π

3
and λm

λp
= 7π

6
.

tive Hamiltonian in case of the Floquet photon assisted res-

onant tunneling between adjacent sublattices, and transition

between two levels of atoms. According to that, the tunability

of periodic artificial gauge potentials is then shown. We dis-

cuss the topological properties of the effective model in Sec.

IV. Finally in Sec.V, we conclude with some discussions and

remarks.

II. PROPOSAL

Illuminated by the modulated pumping laser, we consider

cold AEA gases confined in an one-dimensional driven super-

lattice, which is illustrated intuitively in Fig.1(a). The pump-

ing laser interrogates the transition between the ground states

|g〉 and the excited states |e〉. Such superlattice is formed by

overlapping two 1D optical lattices with one at a magic wave-

length λm giving lattice depth Vm, and the other at the wave-

length 2λm giving the depth Vg and Ve for the state |g〉 and

|e〉 respectively. To simplify our discussion, the superlattice

and pumping laser are assumed to be driven simultaneously

and the sine protocol is chosen, which can be achieved by

acousto-optic modulators.

Define Pg and Pe as the projection operator to the ground

states |g〉 and the excited states |e〉 respectively, the driven

state-dependent superlattice can be written as

V (x, t) = −
Vm

2
cos(2km[x−XL(t)])

−
Vg

2
Pg cos(km[x−XL(t)])

−
Ve

2
Pe cos(km[x−XL(t)]), (1)

where the sinusoidal driven function is applied

XL(t) =
λm

2

∫ t

0

ν1 sin(ωst)dτ, (2)

ωs/2π denotes the driving frequency. The right hand side of

the first line in Eq.(1) indicates that the atomic two levels feel

the same lattice potential generated by the magic wavelength

λm. In contrast, the second and third lines describe differ-

ent trapping conditions due to the laser with wavelength 2λm.

Assuming identical spatial shaking XL(t) for the two lattice,

the two driven protocols should be coordinated as shown in

Fig.1(b). Let ν1 be the frequency excursion of the modulation

to the magic laser frequency. Such condition can be achieved

by just choosing the frequency excursion ν1/2 for the other

one.

Considering another time-dependent modulation to the fre-

quency of the pumping laser,

∆νp(t) = ν2 cos(ωst+ ϕ) +
1

λp

ẊL(t), (3)

which is shown in Fig.1(c), the |g〉 ↔ |e〉 transition can be de-

scribed by the atom-laser couping matrix(under the rotating-

wave approximation),

W =
~

2

(

δ geikp[x−Xp(t)]

ge−ikp[x−Xp(t)] −δ

)

,

with

Xp(t) = λp

∫ t

0

dτ∆νp(τ). (4)

Here g is the Rabi frequency, δ = ω0 − ωp is the detunning,

ω0 is the frequency difference between |g〉 and |e〉, λp and

kp is the wavelength and wave number of pumping laser. It is

noteworthy that we have introduced an initial phase difference

ϕ between the two driven functions in Eq.(2), which is the

key ingredient for engineering the periodic flux in our follow-

ing discussions. According to cold AEA experiments such as
173Yb[67, 69] and 87Sr[70, 72, 73], neglecting atomic interac-

tion in some suitable lattices is reasonable. Under individual-

particle approximation, then the external and internal motion

of the atoms is governed by the Hamiltonian

H =
[ p2

2m
+ V (x, t)

]

⊗ 1̂ +W, (5)

where m and p are the atomic mass and momentum, 1̂ is the

identity operator associated with the internal atomic degrees

of freedom.
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III. EFFECTIVE HAMILTONIAN AND PERIODIC GAUGE

FIELDS

It is convenient to work in the frame of reference co-

moving with the superlattice, into which we can transform the

atomic motion by two steps of unitary transformation. First,

we define U1 = exp( i
~
XL(t)p) and transform the Hamilto-

nian in Eq.(5) by H → H1 = U1HU †
1 − i~U1∂tU

†
1 . The

shift of position in the potential V (x, t) is compensated by

U1xU
†
1 = x + XL(t). However, the extra term −i~U1∂tU

†
1

generates −ẊL(t)p, which means a shift of the momentum.

To cancel this extra term, we implement the other unitary

transformation by U2 = exp(− i
~
mẊL(t)x), which results

in p → p + mẊL(t). Finally, the Hamiltonian Hc =

U2H1U
†
2 − i~U2∂tU

†
2 in the co-moving frame becomes

Hc =

[

p2

2m
+ V ′(x) +mẌL(t)x−

m

2
ẊL(t)

2

]

⊗ 1̂

+
~

2

(

δ geikp[x−Xp(t)+XL(t)]

ge−ikp[x−Xp(t)+XL(t)] −δ

)

(6)

with the undriven superlattice potential

V ′(x) = −
V1

2
cos(2kLx)−

Vg

2
Pg cos(kLx)

−
Ve

2
Pe cos(kLx). (7)

Here the term −m
2 ẊL(t)

2 can be ignored since it is a time-

dependent energy shift. In this laboratory frame, we can see

now that the vibration of superlattice gives rise to two phys-

ical effects. The first is the inertial force, given by F (t) =

−mẌL(t), which generates the energy term mẌL(t)x. The

second is the Doppler effect, related to the term eikpXL(t).

In Wannier representation using the tight-binding approxi-

mation, the many-body Hamiltonian described by Eq.(6) can

be formulated as

Hc =
∑

l,σ=g,e

Kσ

(

b†l,σal,σ + a†l+1,σbl,σ + h.c.
)

+
~g

2
eikp[XL(t)−Xp(t)]

∑

l

(ei2lθa†l,eal,g

+ei(2l+1)θb†l,ebl,g + h.c.) +HF +Hp, (8)

where al,σ(a†l,σ) and bl,σ(b†l,σ) denote the fermionic annihila-

tion(creation) operator for atoms occupying the Wannier state

at the a and b sublattice of the lth site respectively, Kσ is the

corresponding tunnelling amplitude, and g, e label the internal

states |g〉, |e〉 respectively. Here the phase θ = πλm/λp that

can be changed by adjusting the angle between the pumping

laser and the superlattice[69]. The energies associated with

the inertial force acting on atoms at different sites are given

by

HF = −F (t)λm

∑

l,σ=g,e

[

la†l,σal,σ + (l +
1

2
)b†l,σbl,σ

]

. (9)

Let µα,σ (α = a, b, σ = g, e) be the chemical potentials of

atoms in superlattice. Then the corresponding total potentials

should include the detuning related energy, namely µα,σ±
~

2δ.

Since we are interested in Floquet photon assisted resonant

processes, we set these potentials equal to integer multiples of

~ωs,

Hp = ~ωs

∑

l

[

naa
†
l,eal,e +mgb

†
l,gbl,g

+(mg + nb)b
†
l,ebl,e

]

, (10)

where the minimum is redefined as the zero point of potential

energy. This condition can be satisfied by choosing proper

lattice laser power, pumping laser frequency and driving fre-

quency.

We proceed to discuss the resonant situation. In this case,

we need to combine the potentials Hp with the inertial force

induced energies HF and the Doppler effect associated terms

eikp[XL(t)−Xp(t)] in Eq(8). Based on this consideration, we do

a combined rotation transformation of U3 = exp( i
~

∫ t

0
HFdτ)

and U4 = exp( i
~
Hpt), which leads to the new Hamiltonian

HR = U4U3HcU
†
3U

†
4 − i~U4U3∂t(U

†
3U

†
4 )

=
∑

l,σ=g,e

Kσ

(

ησb,ab
†
l,σal,σ + ησa,ba

†
l+1,σbl,σ

)

+
~g

2

∑

l

χl
aa

†
l,eal,g + χl

be
iθb†l,ebl,g + h.c., (11)

where

ησb,a = exp
[

−
i

2~

∫ t

0

dτF (τ)λm + imσωst
]

,

ησa,b = exp
[

−
i

2~

∫ t

0

dτF (τ)λm − imσωst
]

,

χl
α = exp

{

i2lθ + ikp[XL(t)−Xp(t)] + inαωst
}

,(12)

with α denoting a or b, and me = mg + nb − na.

In a typical AEA experiment, for example 87Sr atoms[72,

73], the driving frequency ωs/2π can vary from several hun-

dreds to several kilohertz, and the superlattice depth ranges

from near zero to tens of recoil energies(the the recoil energy

is defined as Er = h2/(2mλ2
m)). Therefore, we can adjust the

experimental parameters to ensure that the driven frequency

is larger than the inter-site tunneling amplitudes and the Rabi

frequency, and then the high-frequency expansion can be ap-

plied safely. In our proposal, the periodical modulation is sin

signal function, as shown in Eq.(2) and Eq.(3). We make use

of the Bessel function expansion, eiz sin β =
∑

k Jk(z)e
ikβ ,

to replace the driven modulation terms in Eq.(12). Keeping

only the resonant processes and neglecting other rapidly os-

cillating terms, the renormalized parameters of Eq.(12) can be

approximately expressed as

ησb,a ≈ J−mσ
(Γ1),

ησa,b ≈ Jmσ
(Γ1),

χl
α ≈ Jnα

(Γ2)e
2ilθ−inαϕ, (13)
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FIG. 2. Illustration of the effective two-leg ladder model with pe-

riodic gauge fields. (a) A modulated pumping laser induces tran-

sition between ground states |g〉 and excited states |e〉, which can

be viewed as two sites in the synthetic dimension. The tunneling

between sublattice is inhibited due to the potential offset, and can

be restored with assistance of Floquet photons. The Floquet photon

assisted resonance pathways of one loop in each plaquette is accom-

panied by phases θ and ϕ, thus giving rise to periodic fluxes. (b) The

renormalized functions of the hopping amplitudes along the legs are

Bessel functions, J1 and J3. (c) The renormalized functions along

the rungs, J0 and J2.

where Γ1 = πhν1/(4Er) and Γ2 = 2πν2/ωs. Finally, sub-

stituting Eq.(13) into Eq.(11), we obtain a time-independent

effective Hamiltonian. By employing internal atomic degrees

of freedom as the extra lattice dimension, it can be regarded

as a two-leg flux ladder model depicted in Fig.2(a).

From the last line in Eq.(13), we can see that phases nαϕ,

and thus the relevant gauge fields, emerge from the internal

state resonant transition with the assistance of Floquet pho-

tons. As for this artificial gauge field, the physical gauge-

invariant quantity is the phase accumulated on an elementary

loop per plaquette. Taking into account the phase θ, the total

magnetic flux through each plaquette is θ ± (na − nb)ϕ. One

should note that J−k = −Jk for odd k, which implies an ad-

ditional π phase. To simplify the analysis, we always choose

mσ and nα such that the total extra phases can be eliminated.

Take a particular case of na = 2, nb = 0, mg = 3, me = 1 as

an example, the accumulated phase is θ ± 2ϕ. Now it is clear

that our scheme can simulate the periodic U(1) gauge fields

with two plaquette as one period. Recall that θ is induced

by incommensurate ratio between wavelengths of the lattice

and the pumping lasers, it can be tuned by adjusting the angle

between those lasers. Moreover, ϕ is the initial phase of the

sinusoidal driving function and is fully controllable[72]. Thus

our scheme offers a feasible method to tune the periodic gauge

potentials.

Finally, we discuss the modulation of hopping ampli-

tudes in the effective model. The Bessel functions from

Eq.(13) renormalize the nearest-neighbor hopping amplitudes

along legs as KσJmσ
(0.25πhν1/Er) and along rungs as

1
2~gJnα

(2πν2/ωs), respectively. Independent of the phases

θ, ϕ, such simple parameter-dependent function forms result

in their individual controllability via varying the driving am-

plitudes ν1, ν2. While the demonstrated controllability offers

exciting possibilities, it is essential to first consider the widely

studied cases with equal hopping amplitudes along legs and

along rungs. Fig.2(b) shows the Bessel functions Jmσ
for

mg = 3 and me = 1. The crossing points J3(Γ1) = J1(Γ1)
indicate the equal tunneling amplitudes along legs if consid-

ering Kg ≈ Ke. Similarly, Fig.2(c) illustrates the tuned hop-

ping amplitudes across rungs, with equal points clearly visi-

ble.

IV. TOPOLOGICAL PHASE

Now we investigate topological phase of the ladder model

caused by the gauge fields. For clarity, we rewrite the effective

Hamiltonian for the case ofms = 3, mp = 1, na = 2, nb = 0,

Heff = t
∑

l

[

ei(θ+φ)b†l,sal,s + ei(θ−φ)a†l+1,sbl,s

+b†l,pal,p + a†l+1,pbl,p

]

+t⊥
∑

l

[

a†l,pal,s + b†l,pbl,s

]

+ h.c. (14)

where t = 0.32Kσ, t⊥ = 0.16~g, φ = 2ϕ, and the proper

gauge transformation is preformed. When φ = 0, namely

the uniform flux scenario, previous research has demonstrated

that no topological states are present in this 1D system[74].

When θ+φ = 0 and θ−φ = π, recent work by Zhao’s group

shows that nontrivial topological states manifest, and the topo-

logical invariant can be entirely determined by the projective

symmetry algebra[32]. For φ/2π being the rational number,

Sun[25] has studied the particular case of periodic fluxes with

period three, Ω1 = θ + 2π/3, Ω2 = θ + 4π/3, Ω3 = θ + 2π,

where the 1D topological invariant was elucidated with the

help of the Chern numbers of the corresponding extended 2D

system.

To explore the effects of general periodic gauge fields in

Eq.(14), we notice that this model exhibits combined symme-

try of inversion P and time-reversal T :

PTHeff(PT )−1 = Heff . (15)

In momentum space, the Hamiltonian and PT operator are

respectively represented by

Heff (k) = t

(

1 + cos(k) 0
0 cos(θ + φ) + cos(k − θ + φ)

)

⊗ σ1

+t

(

sin(k) 0
0 sin(θ + φ) + sin(k − θ + φ)

)

⊗ σ2

+t⊥τ1 ⊗ σ0,

PT = τ0 ⊗ σ1K, (16)

where τi, σi denote Pauli matrices and K the complex con-

jugation. Since (PT )2 = 1, the PT operator can be trans-

formed into K by a unitary transformation, and the corre-

sponding Hamiltonian Heff (k) will be required to be real
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FIG. 3. (a) Topological phase diagram and Z2 invariant ν versus φ,

where θ = 7π/6 and t⊥/t = 4. (b) Dispersion relation with the

same parameter of (a) but φ = −π/4, where the topological number

of the lowest band ν = 1. (c) A pair of edge states corresponding to

ν = 1 in (a) with φ = −π/4, which is calculated for 40 unit cells

in open boundary conditions. (d) An intuitive illustration of the non-

orientable state in the lowest band on the Brillouin zone boundaries

k = ±π.

in this basis. When the number of ouccpied bands is one

or three, the ground state is classified by the first Stiefel-

Whitney class and characterized by a Z2-valued topological

invariant [75, 76]. The topological invariant ν can be for-

mulated with the help of the Wilson loop. Introducing the

nonabelian gauge connection [A(k)]ab = 〈ua(k)|∂k|ub(k)〉,
where |ua(k)〉, |ub(k)〉 are the wave functions of occupied

bands, then the Wilson loop is constructed as

W = P exp(

∫ π

−π

A(k)dk), (17)

where P indicate path ordering. ν is defined by the determi-

nate of W ,

(−1)ν = detW = Πje
iαj ,

ν =
1

π

∑

j

αj mod 2, (18)

where eiαj are eigenvalues of W . Due to the PT symmetry,

ν can only take value 0 or 1 [76].

Taking 87Sr atoms as an example, θ can be approxi-

mated as 7π/6 if the pumping laser is parallel to the lattice

laser[70, 73]. We set t⊥/t as 4, and restrict φ within the inter-

val [−π, π] because of its periodicity. Applying Z2 invariant

formulas in Eq.(17) and Eq.(18) to the lowest filled band of the

Hamiltonian in Eq.(16), one finds that ν = 1 for −π < φ < 0

and is trivial otherwise, as shown in Fig.3(a). The topological

number can be explained as follows[76]. Considering the low-

est band of energy spectrum[see Fig.3(b)], if we impose real

conditions on the bulk wave function over the Brillouin zone,

the wave function can be made smooth over −π < k < π,

and glued on the boundaries k = ±π but with an orientation-

reversing transition function. The transition function equaling

to one indicates that the state is orientable and ν = 0, while

minus one indicates that the state is non-orientable and ν = 1,

as intuitively depicted in Fig.3(d). Fig.3(c) shows the prob-

ability of a pair of edge states located inside the energy gap

separating the second band form the lowest one, calculated for

40 unit cells with open boundary conditions when φ = −π/4.

When φ = 0, the system simplifies to the case of uniform

fluxes, and the number of sites per unit cell reduces from four

to two. This reduction indicates that the energy gap should

close when φ = 0, which corresponds to a topological phase

transition.

Additionally, we note that a similar discussion of topolog-

ical properties can be conducted for three occupied bands,

yielding the same results as that for one occupied bands.

V. CONCLUSIONS

In conclusion, we present a simple and feasible proposal

for engineering a two-leg ladder model with periodic gauge

fields based on driven cold AEA optical lattice systems. The

periodic gauge field is widely controllable by independently

changing the parameters of the driven protocol. Our pro-

posal can simulate real topological phase described by the

first Stiefel-Whitney class, and demonstrate topological phase

transition induced by gauge fields. Our scheme utilizes the

long-lived electronic internal state, and thus offers a highly

promising candidate for future experimental implementation

and observation. We hope these features of this work could

enrich the gauge field-related topological research both in the-

ory and in experiments.

Recently, the time-dependent synthetic gauge potentials

has been theoretically confirmed as the critical ingredient

for realizing tailored dynamical evolution of quasiparticles,

quasiholes[66, 77, 78], wave packets[79, 80], as well as adi-

abatic state preparation[81]. Another application of our pro-

posal is expected for those dynamical process studies.
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