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On groups whose conjugacy class sizes are not divisible

by each other

Yang Nanying ∗, Ilya Gorshkov†‡

Abstract: Let G be a finite group and N(G) be the set of its conjugacy class sizes exclud-
ing 1. Let us define a directed graph Γ(G), the set of vertices of this graph is N(G) and the
vertices x and y are connected by a directed edge from x to y if x divides y and N(G) does
not contain a number z different from x and y such that x divides z and z divides y. We
will call the graph Γ(G) the conjugate graph of the group G. In this work, we will study finite
groups whose conjugate graph is a set of points.
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Introduction

Over the years, considerable work has been done to establish relations between the structure
of a finite group and its set of sizes of conjugacy classes.

We say that a group G has conjugate rank n (shortly rank or rank(G)) if |N(G)| = n.
Noboru Ito laid the foundation for the study of F -groups in his famous paper [8]. A finite
group G is F -group if x, y ∈ G \ Z(G) and CG(x) ≤ CG(y) implies that CG(x) = CG(y).
An important subclass of F -groups is the class of rank 1 groups, i.e. I-group is a group
whose set of conjugacy classes sizes is {1, n}. Ito proved that rank 1 groups are nilpotent,
in particular n is a prime power. Later, Kenta Ishikawa showed [9] that rank 1 groups are
of class at most 3. In [10] rank 1 groups when p 6= 2 were described.

Johen Rebmann [11] proved a classification theorem describing F -groups. He determined
their structure, up to F -groups which are central extensions of groups of prime-power order.

One more subclass of F -groups is the class of CA-groups. Finite group G is a CA-group
if all centralizers of noncentral elements are abelian. The CA-groups were investigated by
Roland Schmidt [12]. He determined their structure up to CA-groups which are central
extensions of groups of prime-power order.

Silvio Dolfi, Marcel Herzog and Enrico Jabara [2] studied CH groups, consisting of finite
groups in which noncentral commuting elements have centralizers of the same order. In
particular, the following inclusion was proved

CA ⊂ CH ⊂ F.

Given Θ ⊆ N, |Θ| < ∞, define the directed graph Γ(Θ), with the vertex set Θ and

edges
−→
ab whenever a divides b and Θ does not contain a number c such that a divides c
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and c divides b. In [6], the conjugate graph Γ(G) was defined for a finite group G. Set
Γ(G) = Γ(N(G) \ {1}). We will say that G is an SP -group if Γ(G) does not contain edges.
Note that the definition of SP -groups differs significantly from the definition of CA- and
CH-groups. In this case, only the arithmetic properties of the group are used.

The main goal of this manuscript is to describe groups with the SP property. In partic-
ular, we will prove the inclusion SP ⊂ CH .

Theorem 1. SP ⊂ CH.

Using this result and classification of CH-groups we obtain a classification of SP -groups.

Theorem 2. A group G is SP -group if and only if it is of one of the following types.

(I) G = T × P where T is abelian and P is a p-group for some prime p, rank(P ) = 1.

(II) G/Z is a Frobenius group with Frobenius kernel K/Z and Frobenius complement L/Z,
where K and L are abelian.

(III) G/Z is a Frobenius group with Frobenius kernel K/Z and Frobenius complement L/Z,
such that K = PZ, where rank(P ) = 1 and P is a normal Sylow p-subgroup of G for
some p ∈ π(G), Z(P ) = Z ∩ P and L is abelian.

(IV) G/Z ≃ PSL(2, pn) or PGL(2, pn) and G′ ≃ SL(2, pn), where p is a prime and pn > 3.

(V) G/Z ≃ PSL(2, 9) or PGL(2, 9) and G′ is isomorphic to the Schur cover of PSL(2, 9).

Corollary 1. If Γ(G) is an edgeless graph with two vertices, then G/Z is a solvable Frobenius
group.

In [3], Dolfi and Jabara studied groups of rank 2 and, in particular, from their description
one can also obtain Corollary 1.

Corollary 2. The graph Γ(G) of an SP -group G contains at most 3 vertices.

1 Preliminaries

Let G be a group and take x ∈ G. We denote by xG the conjugacy class of G containing
x and CH(x) is the centralizer of x in the subgroup H . If N is a subgroup of G, then
Ind(N, x) = |N |/|CN(x)|. Note that Ind(G, x) = |xG|.

Lemma 1 ([1, Lemma 1]). If, for some prime p, every p′-element of a group G has index
prime to p, then the Sylow p-subgroup of G is a direct factor of G.

Lemma 2 ([7, Lemma 1.4]). Let G be a finite group, K E G and G = G/K. Take x ∈ G
and x = xK ∈ G/K. Then the following conditions hold

(i) |xK | and |xG| divide |xG|.
(ii) If L and M are consequent members of a composition series of G, L < M , S = M/L,

x ∈ M and x̃ = xL is an image of x, then |x̃S| divides |xG|.
(iii) If y ∈ G, xy = yx, and (|x|, |y|) = 1, then CG(xy) = CG(x) ∩ CG(y).
(iv) If (|x|, |K|) = 1, then CG(x) = CG(x)K/K.

(v) CG(x) ≤ CG(x).
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The following two lemmas are simple exercises.

Lemma 3. Let P be a p-group. Then P/Z(P ) is not a cyclic group.

Lemma 4. Let G be a finite group, K EG, x ∈ G. Then CG(x)K/K ≤ CG/K(xK).

Definition 1. A finite group G is called a CH-group if for every x, y ∈ G \ Z(G), xy = yx
implies that |CG(x)| = |CG(y)|.

Lemma 5. [3, Theorem 4.2] Let G be a nonabelian group and write Z = Z(G). Then G is
a CH-group if and only if it is of one of the following types.

(I) G is nonabelian and has an abelian normal subgroup of prime index.

(II) G/Z is a Frobenius group with Frobenius kernel K/Z and Frobenius complement L/Z,
where K and L are abelian.

(III) G/Z is a Frobenius group with Frobenius kernel K/Z and Frobenius complement L/Z,
such that K = PZ, where P is a normal Sylow p-subgroup of G for some p ∈ π(G), P
is a CH-group, Z(P ) = Z ∩ P and L ≃ HZ, where H is an abelian p′-subgroup of G.

(IV) G/Z ≃ S4 and if V/Z is the Klein four group in G/Z, then V is nonabelian.

(V) G ≃ P ×A, where P is a nonabelian CH-group of prime-power order and A is abelian.

(VI) G/Z ≃ PSL(2, pn) or PGL(2, pn) and G′ ≃ SL(2, pn), where p is a prime and pn > 3.

(VII) G/Z ≃ PSL(2, 9) or PGL(2, 9) and G′ is isomorphic to the Schur cover of PSL(2, 9).

Definition 2. We will say that G lies in the class F (i), where i ∈ {I, II, .., V II} and write
G ∈ CH(i) if G is a CH-group and item i from Lemma ?? is satisfied.

Definition 3. A finite group G is called an SP -group if for every x, y ∈ G \ Z(G), |CG(x)|
divides |CG(y)| implies that |CG(x)| = |CG(y)|.

Remark 1. A set of integers greater than 1 is primitive if no element of the set divides
another. The definition of SP -groups is equivalent to a requirement that N(G) is a primitive
set.

Lemma 6. [5, Theorem 5.2.3] Let A be a p′-group of automorphisms of abelian p-group P .
Then P = CP (A)× [P,A].

2 Proof of Theorem 1

Let G ∈ SP , Z = Z(G), and x, y ∈ G \ Z be commuting elements. Let us show that
|CG(x)| = |CG(y)|. We have x = x1, x2, ..xn, where xi are elements of primary and coprime
order. Note that CG(xixj) = CG(xi) ∩ CG(xj). Thus, among the elements x1, .., xn there is
an element z that does not lie in Z(G). For any a ∈ CG(z) such that (a, z) = 1, we have
CG(a) = CG(z) or CG(a) = G. Similarly, in CG(y) there is an element t of primary order
such that CG(t) = CG(y) and for any b ∈ CG(t) such that (t, b) = 1, we have CG(b) = CG(t)
or CG(b) = G. Since the elements x and y commute, it follows that the elements z and
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t commute. If t and z have coprime order, then CG(tz) = CG(t) ∩ CG(z) and therefore
CG(t) = CG(tz) = CG(z) and the statement has been proven.

Let’s assume that z and t are p-elements, where p is a prime number. If in the centralizer
of z or t there is a p′-element h such that CG(h) 6= G, then CG(h) = CG(z) and CG(h) =
CG(th) = CG(t). Therefore CG(z) = CG(t). Thus, if CG(z) or CG(t) contains a non-central
p′ element, then CG(z) = CG(t). Suppose that |CG(z)|p′ = |CG(t)|p′ = |G/Z|p′. Then
Ind(G, z) = Ind(G, t)pn, in particular Ind(G, z) divides Ind(G, t). Therefore |CG(z)| =
|CG(t)|.

Thus, we have shown that SP ⊂ CH . An example of a CH-group that is not SP is
given in Remark 2.

3 Proof of Theorem 2

It follows from Theorem 1 that any SP -group is a CH-group. To prove Theorem 2, let us
study which CH-groups are SP -groups.

We will say that G lies in the class CH(i), where i ∈ {I, II, .., V II} and write G ∈ CH(i)
if G is a CH group and item i from Lemma ?? is satisfied. Note that the classes CH(i) have
intersections, therefore the number i may not be uniquely determined.

Let G ∈ SP , Z = Z(G).

Lemma 7. G ∈ F (I) if and only if one of the statements is true

1. G = T × P where P is a Sylow p-subgroup of G and rank(P ) = 1;

2. P is abelian.

Proof. We have that G contains a normal abelian subgroup A of index p. Let H be a Hall
p′-subgroup of G. Since H ≤ A, then H is normal in G and is an abelian group.

Let P ≤ H be a Sylow p-subgroup of G. Assume that P acts non-trivially on H . From
Lemma 6 and the fact that H is an Abelian p′-group it follows that there is x ∈ P such
that H = CH(x) × Y , where Y > 1. In particular, Ind(H, x) > 1 and x 6∈ A. We have
NG(Y ) ≥ A〈x〉. Since NG(Y )/A = G/A, we have Y EG.

Let y ∈ Y . Since Y is a normal subgroup of G and A ≤ CG(y), we have Ind(G, y) = p.
Note that Ind(G, x)p = Ind(P, x).

Assume that P is not abelian. Assume that Ind(P, x) = 1. Since CG(A) ≥ A〈x〉 = P ,
we have A ≤ Z(P ). From the fact that |P |/|A| = p and Lemma 3 it follows that P is
abelian; a contradiction. Therefore, Ind(G, x)p > 1. Thus Ind(G, y) divides Ind(G, x); a
contradiction. Therefore P is abelian and Statement 1 of the Lemma holds.

Suppose that P acts trivially on H . Therefore, for any h ∈ H we have Ind(G, h)p = 1.
It follows from Lemma 1, that P is a direct factor of the group G. For any x ∈ P we have
Ind(G, x) = Ind(P, x). Thus, if P is not a group of rank 1 then P contains elements x and
y such that 1 < Ind(G, x) < Ind(G, y) and Ind(G, x)|Ind(G, y); a contradiction. Therefore
rank(P ) = 1.

Thus, if G ∈ SP , then one of the statements of the lemma holds.
Let us prove that if one of the statements of the lemma is satisfied, then G ∈ SP .
Let us assume that the statement 1 of the Lemma is satisfied. Then N(G) = {p} and

hence G ∈ SP .
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Let us assume that the statement 2 of the Lemma is satisfied. Then N(G) = {p, k},
where k is coprime with p. Therefore, G ∈ SP .

Remark 2. Note that the class F (I) contains a CA-group that is not an SP -group. For
example, we can take a p-group P = A⋊B, where A is an elementary abelian group of order
pp and B is a group of order p acting permutatively on A. Obviously, the centralizer of any
non-central element of G is abelian and N(G) = {p, pp−1}. If p > 2, then G ∈ CA\SP . This
means that the class of SP -groups does not coincide with the classes of CA- and CH-groups.

Lemma 8. Groups from F (II) are SP -groups.

Proof. We have that G/Z is a Frobenius group with Frobenius kernel K/Z and Frobenius
complement L/Z, whereK and L are abelian. Let : G → G/Z be a natural homomorphism.
Take x ∈ K, such that Ind(G, x) > 1. The fact that CG(x) ≤ CG(x) and CG(x) = K implies
that Ind(G, x) = |L/Z|. Similarly, if y ∈ L is such that Ind(G, y) > 1, then Ind(G, y) = |K|.
Since any element of G lies in the subgroup conjugate to one of the subgroups L or K, then
the set of conjugacy class sizes of the group G is {1, |K|, |L|}. The groups K and L have
coprime order. Thus G ∈ SP .

Remark 3. Note that groups satisfying statement 2 of Lemma 7 are F (II) groups.

Lemma 9. G ∈ F (III) if and only if rank(K) = 1.

Proof. We have that G/Z is a Frobenius group with Frobenius kernel K/Z and Frobenius
complement L/Z, such thatK = PZ, where P is a Sylow p-subgroup of G for some p ∈ π(G),
P is CH-group, Z(P ) = Z ∩ P and L ≃ HZ, where H is an abelian p′-subgroup of G. In
particular, L is abelian.

Suppose that there are elements x, y ∈ P , such that Ind(P, x) > Ind(P, y) > 1. Since P is
a normal Sylow p-subgroup of G it follows that Ind(G, x)p = Ind(P, x). Similar to Lemma 8,
it can be shown that Ind(G, x) = Ind(P, x)|L/Z| and Ind(G, y) = Ind(P, y)|L/Z|. Thus
Ind(G, x)|Ind(G, y); a contradiction. Thus rank(P ) = 1.

Lemma 10. If G ∈ F (IV ), then G is not an SP -group.

Proof. We have G/Z ≃ S4 and if V/Z is the Klein four group in G/Z, then V is nonabelian.
Let G = G/Z, h ∈ G be such that its image h ∈ G is of order 4. Note that CG(h) = 〈h〉.

From the fact that CG(h) ≤ CG(h), it follows that CG(h) = Z〈h〉. Therefore, Ind(G, h) = 6.
Let g ∈ G be a 2-element such that g is an element of order 2 and does not lie in any

proper normal subgroup of G. In the standard permutation representation of S4, the element
g has the form (1, 2). Note that C = CG(g) = 〈g〉 × 〈z〉, where z is the central element of
some Sylow 2-subgroup of the group G. In the standard permutation representation of S4,
the element z has the form (1, 2)(3, 4). The group C is the Klein four group and therefore
C is nonabelian. Note that Z < CG(g) ≤ C. Therefore CG(g) = Z〈g〉. So Ind(G, g) = 12.
Thus, Ind(G, h) divides Ind(G, g); a contradiction.

Lemma 11. G ∈ F (V ) if and only if rank(P ) = 1.

5



Proof. The statement of the lemma follows from the fact that N(G) = N(P ).

Remark 4. Note that the groups from Statement 1 of Lemma 7 are F (V )-groups.

Lemma 12. Groups from F (V I) are SP -groups.

Proof. We have G/Z ≃ PSL(2, pn) or PGL(2, pn) and G′ ≃ SL(2, pn) where p is a prime and
pn > 3. Put q = pn. It’s not difficult to check that N(SL2(q)) = {(q2−1)/2, q(q−1), q(q+1)}
and N(GL2(q)) = {q(q − 1), q2 − 1, q(q + 1)}.

Let X ≤ G be a subgroup of minimal order such that XZ/Z = G/Z, S ≤ X be such that
S ≃ SL2(q). Since G = XZ, we see that X E G and N(G) = N(X). We have X = S ⋊ L,
where L is an abelian group acting on S as a group of diagonal automorphisms or L is the
trivial group. Thus N(X) = N(SL2(q)) or GL2(q).

Lemma 13. Groups from F (V II) are SP -groups.

Proof. We have G/Z ≃ PSL(2, 9) or PGL(2, 9) and G′ is isomorphic to the Schur cover of
PSL(2, 9). Let X ≤ G be a subgroup of minimal order such that XZ/Z = G/Z. Using [4]
it’s easy to get that N(X) = N(G′) = {72, 90, 120}. Similarly as in Lemma 12 we obtain
that N(G) = N(S) and therefore G ∈ SP .
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