ATYPICAL VALUES AT INFINITY OF REAL POLYNOMIAL MAPS WITH 2-DIMENSIONAL FIBERS

MASAHARU ISHIKAWA AND TAT-THANG NGUYEN

Abstract

We characterize atypical values at infinity of a real polynomial function of three variables by a certain sum of indices of the gradient vector field of the function restricted to a sphere with a sufficiently large radius. This is an analogy of a result of Coste and de la Puente for real polynomial functions with two variables. We also give a characterization of atypical values at infinity of a real polynomial map whose regular fibers are 2-dimensional surfaces.

1. Introduction

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a real polynomial map, $\operatorname{Sing}(f)$ be the set of singular points of f in \mathbb{R}^{n}, and $K_{0}(f)=f(\operatorname{Sing}(f))$. A bifurcation set of f is the smallest set of values in \mathbb{R}^{m} outside which f is a locally trivial fibration. This is a semialgebraic set of codimension at least one [12, 14, 9]. A regular value $\lambda \in f\left(\mathbb{R}^{n}\right) \backslash K_{0}(f)$ is called a typical value at ∞ of f if there is an open neighborhood over which f is a trivial fibration. Otherwise, λ is called an atypical value at ∞ of f. For example, the polynomial map $f(x, y)=x(x y+1)$ has no critical value but its bifurcation set is $\{0\}$. There are several studies about the bifurcation sets of real polynomial maps, see for instance [13, 2, 7, 6, 3].

Suppose $m=1$, that is, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a real polynomial function. Let $B_{a, R}$ be the closed ball in \mathbb{R}^{n} centered at a point $a \in \mathbb{R}^{n}$ and of radius $R>0$. Set

$$
\Gamma=\left\{x \in \mathbb{R}^{n} \left\lvert\, \operatorname{rank}\binom{x-a}{\operatorname{grad} f} \leq 1\right.\right\} .
$$

Note that $\operatorname{Sing}(f) \subset \Gamma$. We choose a center $a \in \mathbb{R}^{n}$ and a sufficiently large $R>0$ so that Γ is transverse to $\partial B_{a, r}$ for any $r>R$ and $\Gamma \backslash \operatorname{Int} B_{a, R}$ is homeomorphic to $\Gamma \cap \partial B_{a, R} \times[0,1)$. Each connected component of $\Gamma \backslash \operatorname{Int} B_{a, R}$ is contained in either $\operatorname{Sing}(f)$ or $\Gamma \backslash \operatorname{Sing}(f)$. Throughout the paper, we always choose the center

[^0]a generic so that each connected component of $\Gamma \backslash\left(\operatorname{Sing}(f) \cup \operatorname{Int} B_{a, R}\right)$ is a curve. These curves are called tangency branches at ∞ of f.

For each point $p \in(\Gamma \backslash \operatorname{Sing}(f)) \cap \partial B_{a, R}$, let Γ_{p} denote the tangency branch at ∞ of f passing through p. Set $x_{p}(r)=\Gamma_{p} \cap \partial B_{a, r}$ for $r \geq R$ and define

$$
\lambda_{p}=\lim _{r \rightarrow \infty} f\left(x_{p}(r)\right) \in \mathbb{R} \cup\{ \pm \infty\}
$$

Let $T_{\infty}(f)$ denote the set of values $\lambda \in \mathbb{R}$ for which there exists a curve x : $[R, \infty) \rightarrow \Gamma$ with $x(r) \in \Gamma \cap \partial B_{a, r}$ and $\lim _{r \rightarrow \infty} f(x(r))=\lambda$. Note that

$$
T_{\infty}(f) \subset\left\{\lambda_{p} \in \mathbb{R} \mid p \in(\Gamma \backslash \operatorname{Sing}(f)) \cap \partial B_{a, R}\right\} \cup K_{0}(f)
$$

The aim of this paper is to characterize atypical values of f by observing its behavior on the sphere $\partial B_{a, R}$ with a sufficiently large radius $R>0$. Specifically, we focus on the vector field $X_{a, R}$ on $\partial B_{a, R}$ defined by the gradient vector field of the restriction of f to $\partial B_{a, R}$. For each isolated zero p of $X_{a, R}$, the index $\operatorname{Ind}_{p}\left(X_{a, R}\right)$ is defined by the degree of the map from $\partial B_{p, \varepsilon}$ to the $(n-1)$-dimensional sphere given by $x \mapsto \frac{X_{a, R}(x)}{\left\|X_{a, R}(x)\right\|}$, where $\varepsilon>0$ is a sufficiently small real number. Note that each point of $(\Gamma \backslash \operatorname{Sing}(f)) \cap \partial B_{a, R}$ is an isolated zero of $X_{a, R}$. For each $\lambda \in T_{\infty}(f)$, let $\Gamma^{(\lambda)}$ be the union of tangency branches Γ_{p} with $\lambda_{p}=\lambda$. For each connected component Ω of $\partial B_{a, R} \backslash f^{-1}(\lambda)$, set

$$
\operatorname{Ind}(\lambda, \Omega)=\sum_{p \in \Gamma^{(\lambda)} \cap \Omega} \operatorname{Ind}_{p}\left(X_{a, R}\right)
$$

We focus on the case $n=3$. In this case, since regular fibers of f are of dimension 2, their topology can be determined by the indices of the vector field $X_{a, R}$. In consequence, we obtain the following theorem. For the definition of a vanishing component, see Section 2.1.

Theorem 1.1. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a polynomial function and $\lambda \in T_{\infty}(f) \backslash K_{0}(f)$. If $\operatorname{Ind}(\lambda, \Omega) \neq 0$ for some connected component Ω of $\partial B_{a, R} \backslash f^{-1}(\lambda)$ then λ is an atypical value at ∞ of f. Conversely, if there does not exist a vanishing component at ∞ when t tends to λ and $\operatorname{Ind}(\lambda, \Omega)=0$ for any connected component Ω of $\partial B_{R} \backslash f^{-1}(\lambda)$ then λ is a typical value at ∞ of f.

In the proof, it is shown that if $\operatorname{Ind}(\lambda, \Omega) \neq 0$ for some Ω then, for t sufficiently close to λ, there exists a connected component of $f^{-1}(t) \backslash \operatorname{Int} B_{a, R}$ diffeomorphic to a disk. This interpretation can be used when we generalize the assertion in Theorem 1.1 to polynomial maps $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-2}$ for $n \geq 3$. The statement is the following.

Theorem 1.2. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-2}$ be a polynomial map, where $n \geq 3$. Suppose that the radius $R>0$ of $B_{a, R}$ is sufficiently large. Then, $\lambda \in F\left(\mathbb{R}^{n}\right) \backslash K_{0}(F)$ is a typical value at ∞ of F if and only if the following are satisfied:
(1) There is no vanishing component at ∞ when t tends to λ;
(2) There exists a neighborhood D of λ in \mathbb{R}^{n-2} such that, for any $t \in D$,
(2-1) $F^{-1}(t) \backslash \operatorname{Int} B_{R}$ has no compact, connected component, and
(2-2) $\chi\left(F^{-1}(t)\right)=\chi\left(F^{-1}(\lambda)\right)$ holds.
The above theorem is stated again in Section 5 (Theorem 5.1), where a precise condition for the radius R is given. The condition (2-1) is added instead of the condition about the indices in Theorem 1.1. Note that atypical values of an algebraic family of real curves, which can be seen as a restriction of a polynomial map from \mathbb{R}^{n} to \mathbb{R}^{n-1}, are characterized by the conditions (1) and (2-2) [13]. See also [7]. Atypical values of a holomorphic map between connected complex manifolds $M \rightarrow B$ with $\operatorname{dim}_{\mathbb{C}} M=\operatorname{dim}_{\mathbb{C}} B+1$ are also characterized by the conditions (1) and (2-2) [8].

This paper is organized as follows. In Section 2, we prove a few lemmas concerning a choice of the center a and the radius R of the ball $B_{a, R}$. In Section 2.5, two examples of polynomial functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, which are based on examples in [13] (also [2]), are given. In Section 3, we prove a theorem that characterizes a vanishing component at infinity of a real polynomial function. Using this theorem, we can obtain some argument for detecting a vanishing component at infinity, see Remark 3.2. Section 4 is devoted to the proof of Theorem 1.1, and Section 5 is devoted to the proof of Theorem 1.2 ,

2. Preliminaries

2.1. Vanishing component. In this section we give the definition of a vanishing component at ∞ for a polynomial map from \mathbb{R}^{n} to \mathbb{R}^{m} with $n>m \geq 1$.

Definition 2.1. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a polynomial map. It is said that there is a vanishing component at ∞ when t tends to λ if there exists a sequence of points $\left\{t_{k}\right\}$ in \mathbb{R}^{m} such that

$$
\lim _{k \rightarrow \infty} t_{k}=\lambda \quad \text { and } \quad \lim _{k \rightarrow \infty} \max _{i} \inf \left\{\|x\| \in \mathbb{R} \mid x \in Y_{t_{k}, i}\right\}=\infty
$$

where $Y_{t, 1}, \ldots, Y_{t, n_{t}}$ are the connected components of $F^{-1}(t)$.
Remark 2.2. The existence of a vanishing component at ∞ does not change even if the distance function $\|x\|$ is replaced by $\|x-a\|$ for any point $a \in \mathbb{R}^{n}$.
2.2. The center of the ball $B_{a, R}$. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial function, Sing (f) be the set of critical points of f in \mathbb{R}^{n}, and $K_{0}(f)=f(\operatorname{Sing}(f))$.

Lemma 2.3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial function, K be a finite set in $f\left(\mathbb{R}^{n}\right) \backslash K_{0}(f)$, and A_{K} be the set of points a in \mathbb{R}^{n} satisfying that, for each $\lambda \in K$, there exists an open interval I_{λ} in \mathbb{R} containing λ such that the function on $f^{-1}(t)$ defined by $x \mapsto\|x-a\|^{2}$ has only non-degenerate critical points for any $t \in I_{\lambda} \backslash\{\lambda\}$. Then the set A_{K} is dense in \mathbb{R}^{n}.

Proof. Set

$$
S=\left\{(x, v, t) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times\left(\mathbb{R} \backslash K_{0}(f)\right) \mid f(x)=t, \operatorname{rank}\binom{v}{\operatorname{grad} f} \leq 1\right\}
$$

It is easy to check that S is a semialgebraic set of dimensional $n+1$ having no singular points.

Consider the "endpoint" map (see [11]):

$$
E: S \rightarrow \mathbb{R}^{n} \times\left(\mathbb{R} \backslash K_{0}(f)\right), \quad(x, v, t) \mapsto(x+v, t)
$$

By the Sard Theorem, the set $E(\operatorname{Sing}(E))$ of singular values of E has measure 0 . We can also check that $E(\operatorname{Sing}(E))$ is a semialgebraic set in $\mathbb{R}^{n} \times\left(\mathbb{R} \backslash K_{0}(f)\right)$ of dimension at most n. By [11, Lemma 6.5], $(a, t) \in E(\operatorname{Sing}(E))$ if and only if the function on $f^{-1}(t)$ defined by $x \mapsto\|x-a\|^{2}$ has a degenerate critical point.

We will prove the following claim: For each point $a \in \mathbb{R}^{n}$, any neighborhood of a in \mathbb{R}^{n} contains at least one point $x \neq a$ such that the intersection $(\{x\} \times \mathbb{R}) \cap$ $E(\operatorname{Sing}(E))$ is an isolated set. This implies that A_{K} is dense in \mathbb{R}^{n}.

For a contradiction, we assume that there exist a point $a \in \mathbb{R}^{n}$ and a small neighborhood U of a in \mathbb{R}^{n} satisfying that, for each $x \in U \backslash\{a\}$, there is an open interval $I_{x} \subset \mathbb{R}$ such that $\{x\} \times I_{x} \subset E(\operatorname{Sing}(E))$.

Since $E(\operatorname{Sing}(E))$ is a semialgebraic set in $E(S)$ of codimension at least one, its Zariski closure V in $\mathbb{R}^{n} \times \mathbb{R}$ is an algebraic subset of dimension at most n. Let $\pi: V \rightarrow \mathbb{R}^{n}$ be the projection from $V \subset \mathbb{R}^{n} \times \mathbb{R}$ to \mathbb{R}^{n} defined by $(x, t) \mapsto x$. Since $\{x\} \times I_{x} \subset V$ for $x \in U \backslash\{a\}$, the inclusion $U \backslash\{a\} \subset \pi(V)$ holds.

On the other hand, it implies from [12, 14] that there exists an open ball $B \subset U \backslash$ $\{a\}$ such that π is trivial on B, which means that $\pi^{-1}(B) \subset V$ is diffeomorphic to $B \times \pi^{-1}(x)$ for $x \in B$. From the inclusion $U \backslash\{a\} \subset \pi(V)$, we get $\{x\} \times I_{x} \subset \pi^{-1}(x)$. Therefore $\operatorname{dim} \pi^{-1}(B)=\operatorname{dim} U+1=n+1$. This contradicts $\operatorname{dim} V \leq n$.
Remark 2.4. In Lemma 2.3, a point in $f^{-1}(t)$ around which the function on $f^{-1}(t)$ defined by $x \mapsto\|x-a\|^{2}$ is locally constant is regarded as a degenerate critical point.
2.3. Topology of fibers and indices of vector fields on the sphere. Choose a center $a \in \mathbb{R}^{n}$ of $B_{a, R}$ generic and the radius $R>0$ sufficiently large. The interior of $B_{a, R}$ is denoted by $\operatorname{Int} B_{a, R}$ and its boundary is by $\partial B_{a, R}$. For each point $p \in(\Gamma \backslash \operatorname{Sing}(f)) \cap \partial B_{a, R}$, let Γ_{p} denote the tangency branch at ∞ of f passing through p. Set $x_{p}(r)=\Gamma_{p} \cap \partial B_{a, r}$, then $f\left(x_{p}(r)\right)$ is monotone with respect to the parameter r. We use the following notations:

- $f \nearrow \lambda$ along Γ_{p} means that $f\left(x_{p}(r)\right)$ is monotone increasing for $r \geq R$ and $\lim _{r \rightarrow \infty} f\left(x_{p}(r)\right)=\lambda$.
- $f \searrow \lambda$ along Γ_{p} means that $f\left(x_{p}(r)\right)$ is monotone decreasing for $r \geq R$ and $\lim _{r \rightarrow \infty} f\left(x_{p}(r)\right)=\lambda$.

Remark 2.5. Let Γ_{p} be the tangency branch at ∞ of f passing through $p \in(\Gamma \backslash$ Sing $(f)) \cap \partial B_{a, R}$. We have the following remarks.
(1) The point p is a critical point of the following two functions:

$$
\begin{aligned}
& \left.f\right|_{\partial B_{a, r_{a}(p)}}: \partial B_{a, r_{a}(p)} \rightarrow \mathbb{R}, \text { where } r_{a}(p)=\|p-a\|, \\
& \left.r_{a}\right|_{f^{-1}(f(p))}: f^{-1}(f(p)) \rightarrow \mathbb{R}, \text { where } r_{a}(x)=\|x-a\| .
\end{aligned}
$$

(2) Suppose that $f \nearrow \lambda_{p}$ along Γ_{p}. Then, p is a local maximum (resp. minimum) point of $\left.f\right|_{\partial B_{a, r_{a}(p)}}$ if and only if it is a local minimum (resp. maximum) point of $\left.r_{a}\right|_{f^{-1}(f(p))}$.
(3) Suppose that $f \searrow \lambda_{p}$ along Γ_{p}. Then, p is a local maximum (resp. minimum) point of $\left.f\right|_{\partial B_{a, r_{a}(p)}}$ if and only if it is a local maximum (resp. minimum) point of $\left.r_{a}\right|_{f^{-1}(f(p))}(\mathrm{cf}$. Example 2.7).
For simplicity, we denote by \mathcal{P} one of the properties "local maximum", "local minimum", "neither local maximum nor local minimum".

Lemma 2.6. There exists a sufficiently large radius $R>0$ such that, for each $p \in(\Gamma \backslash \operatorname{Sing}(f)) \cap \partial B_{a, R}$, the property \mathcal{P} of $\left.f\right|_{\partial B_{a, r}}$ is constant on Γ_{p}.

Proof. For each property \mathcal{P}, define the subset $V_{\mathcal{P}}$ of \mathbb{R}^{n} by

$$
V_{\mathcal{P}}=\left\{x \in \mathbb{R}^{n} \mid x \text { is a } \mathcal{P} \text { point of }\left.f\right|_{\partial B_{a, r_{a}(x)}} \text { for } r_{a}(x)=\|x-a\| \geq R\right\}
$$

We will show that, for each \mathcal{P}, the set $V_{\mathcal{P}}$ is a semi-algebraic set. If \mathcal{P} is local maximum, the set $V_{\mathcal{P}}$ is represented in terms of the first-order formulas as follows (for the definitions of first-order formulas, see [1, 4]):

$$
V_{\mathcal{P}}=\left\{x \in \mathbb{R}^{n} \mid \exists \varepsilon \in \mathbb{R}\left(\left(y \in \mathbb{R}^{n},\|y\|=\|x\|,\|y-x\|<\varepsilon\right) \Rightarrow f(y) \leq f(x)\right)\right\} .
$$

Hence, it implies from the Tarski-Seidenberg Theorem (see [1, Proposition 2.2.4] or [4, Theorem 1.6]) that $V_{\mathcal{P}}$ is a semialgebraic set. The set $V_{\mathcal{P}}$ for \mathcal{P} being
local minimum is also semialgebraic by a similar argument. If \mathcal{P} is neither local maximum nor local minimum, then the set $V_{\mathcal{P}}$ is the complement of the above two semialgebraic sets. Therefore it is also semialgebraic.

Now, $\Gamma_{p} \cap V_{\mathcal{P}}$ is a semialgebraic subset of a curve for each \mathcal{P}. Hence we can choose $R>0$ sufficiently large so that each Γ_{p} is contained in some of $V_{\mathcal{P}}$.
2.4. Choice of the radius R. Define the set $K_{\infty}(f)$ by

$$
K_{\infty}(f)=\left\{t \in \mathbb{R} \mid \text { there exists a sequence }\left\{x_{k}\right\} \text { in } \mathbb{R}^{n} \text { such that }\left\|x_{k}\right\| \rightarrow \infty\right.
$$

$$
\left.f\left(x_{k}\right) \rightarrow t, \text { and }\left\|x_{k}\right\|\left\|\operatorname{grad} f\left(x_{k}\right)\right\| \rightarrow 0 \text { as } k \rightarrow \infty\right\}
$$

Note that $K_{\infty}(f)$ is a finite set and satisfies $T_{\infty}(f) \subset K_{0}(f) \cup K_{\infty}(f)$. We choose a generic point $a \in \mathbb{R}^{n}$ as in Lemma 2.3 with respect to the set $K=K_{\infty}(f) \backslash K_{0}(f)$. Choose an open interval I_{λ} for each $\lambda \in K$ so that $I_{\lambda} \cap I_{\lambda^{\prime}}=\emptyset$ for $\lambda \neq \lambda^{\prime} \in T_{\infty}(f)$. We choose the radius $R>0$ sufficiently large so that the following properties hold:
(i) $\Gamma \backslash \operatorname{Int} B_{a, R}$ is homeomorphic to $\left(\Gamma \cap \partial B_{a, R}\right) \times[0,1)$ and, for each $p \in$ $(\Gamma \backslash \operatorname{Sing}(f)) \cap \partial B_{a, R}$,

$$
\Gamma_{p} \cap \bigcup_{\lambda \in T_{\infty}(f)} f^{-1}(\lambda)=\emptyset
$$

(ii) $R>0$ satisfies the condition in Lemma 2.6. Since the center a is chosen as in Lemma 2.3, the property "neither local maximum nor local minimum" for tangency branches is replaced by "saddle".
(iii) For each $\lambda \in K$, each connected component Y of $f^{-1}(\lambda) \backslash \operatorname{Int} B_{a, r}$ intersects $\partial B_{a, r}$ transversely for any $r \geq R$. In particular, Y is diffeomorphic to $\left(Y \cap \partial B_{a, r}\right) \times[0,1)$ for any $r \geq R$.
(iv) $\left\{f(x) \mid x \in \Gamma_{p}\right\} \subset I_{\lambda_{p}}$ holds for any $p \in(\Gamma \backslash \operatorname{Sing}(f)) \cap \partial B_{a, R}$.

In the following sections, we always assume that the radius $R>0$ is sufficiently large so that these properties hold.
2.5. Examples. We give two examples of polynomial functions $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ of the form $f(x, y, z)=g(x, y)$, where $g(x, y)$ is a polynomial function of two variables.
Example 2.7. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the following polynomial function:

$$
g(x, y)=2 y^{5}+4 x y^{4}+\left(2 x^{2}-9\right) y^{3}-9 x y^{2}+12 y .
$$

This example is given in [13, Example 3.4]. The shapes of fibers around the infinity is studied in [2] explicitly, which is given as in Figure 1. There are eight tangency branches, four of which are on the right-hand side and the other four are on the left-hand side. The arrow on each tangency branch represents the direction in
which the value of f increases. For example, for the right-top tangency branch $\Gamma_{p_{1}}$, we have $g \searrow 0$ along $\Gamma_{p_{1}}, p_{1}$ is a local minimum of $\left.g\right|_{\left.B_{a, r_{a}\left(p_{1}\right)}\right)}$ and it is a local minimum of $\left.r_{a}\right|_{g^{-1}\left(g\left(p_{1}\right)\right.}$, where $r_{a}(x)=\|x-a\|$. This function has no vanishing component at ∞.

Figure 1. Fibers around the infinity in Example 2.7. The oriented dotted curves are tangency branches at ∞.

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a polynomial function given by $f(x, y, z)=g(x, y)$. In [13, Example 3.4], the function g is obtained from $h(x, y)=y\left(2 x^{2} y^{2}-9 x y+12\right)$ as $g(x, y)=h(x+y, y)$. From this form, we can see that $g^{-1}(0) \cap \partial B_{a, R}$ is given by $\{y=0\} \cap \partial B_{a, R}$, which is a connected, simple closed curve on the 2-sphere $\partial B_{a, R}$. The complement of this curve in $\partial B_{a, R}$ consists of two open disks. We denote the one where y is positive by Ω_{1} and the other by Ω_{2}. By choosing the center a of $B_{a, R}$ on $z=0$, we may assume that all tangency branches in Figure 1 are on the plane $z=0$. Then, for example, the point p_{1} is local minimum of $\left.f\right|_{B_{a, r_{a}\left(p_{1}\right)}}$ and also local minimum of $\left.r_{a}\right|_{f^{-1}\left(f\left(p_{1}\right)\right.}$, where $r_{a}(x)=\|x-a\|$. This is in the case (3) of Remark 2.5. The index is $\operatorname{Ind}_{p_{1}}\left(X_{a, R}\right)=1$. On the other hand, the singularity of $\left.r_{a}\right|_{f^{-1}\left(f\left(p_{2}\right)\right.}$ on the tangency branch $\Gamma_{p_{2}}$ passing through the point p_{2} in the figure becomes a saddle, and therefore its index is $\operatorname{Ind}_{p_{2}}\left(X_{a, R}\right)=-1$. The union $\Gamma^{(0)}$ of tangency branches at ∞ of f along which either $f \searrow 0$ or $f \nearrow 0$ has no other
tangency branch passing through the region Ω_{1}. Hence we have

$$
\begin{aligned}
\operatorname{Ind}\left(\lambda, \Omega_{1}\right) & =\sum_{p \in \Gamma^{(0)} \cap \Omega_{1}} \operatorname{Ind}_{p}\left(X_{a, R}\right) \\
& =\operatorname{Ind}_{p_{1}}\left(X_{a, R}\right)+\operatorname{Ind}_{p_{2}}\left(X_{a, R}\right) \\
& =1+(-1)=0 .
\end{aligned}
$$

By the same observation, we have $\operatorname{Ind}\left(\lambda, \Omega_{2}\right)=0$. Then, by Theorem 1.1, we can conclude that 0 is a typical value at ∞ of f.

Example 2.8. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the following polynomial function:

$$
g(x, y)=x^{2} y^{3}\left(y^{2}-25\right)^{2}+2 x y\left(y^{2}-25\right)(y+25)-y^{4}-y^{3}+50 y^{2}+51 y-575 .
$$

This example is given in [13, Example 3.1]. The shapes of fibers around the infinity is studied in [2] explicitly after replacing x by $x+y$ to avoid vertical tangency at infinity. The fibers are given as in Figure 2. There are two component vanishing at ∞ when t tends to 0 . The word "cleaving" means that the point on the tangency branch goes to ∞ when t tends to 0 , so that the curve cleaves locally into two curves. There are two cleaving curves.

Figure 2. Fibers around the infinity in Example 2.8. The oriented dotted curves are tangency branches at ∞. All horizontal solid lines are curves representing $g^{-1}(0)$.

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a polynomial function given by $f(x, y, z)=g(x, y)$. Using Mathematica, we can see that the curve of $g^{-1}(0)$ inside the dotted circle is as shown in Figure 2, Note that it is explained in [13, Example 3.1] that if $|t|$ is sufficiently small then $g^{-1}(t)$ is a disjoint union of five non-compact connected components. Thus, the curves $f^{-1}(0) \cap \partial B_{a, R}$ on the sphere $\partial B_{a, R}$ becomes as shown in Figure 3. There are five circles. Let $X_{a, R}$ be the gradient vector field of $\left.f\right|_{\partial B_{a, R}}$. We have $\operatorname{Ind}_{p_{1}}\left(X_{a, R}\right)=\operatorname{Ind}_{p_{3}}\left(X_{a, R}\right)=-1$ and $\operatorname{Ind}_{p_{2}}\left(X_{a, R}\right)=\operatorname{Ind}_{p_{4}}\left(X_{a, R}\right)=1$. On the region Ω_{1} depicted in the figure, we have

$$
\begin{aligned}
\operatorname{Ind}\left(0, \Omega_{1}\right) & =\operatorname{Ind}_{p_{1}}\left(X_{a, R}\right)+\operatorname{Ind}_{p_{2}}\left(X_{a, R}\right)+\operatorname{Ind}_{p_{4}}\left(X_{a, R}\right) \\
& =(-1)+1+1=1 \neq 0 .
\end{aligned}
$$

Hence 0 is an atypical value at ∞ of f by Theorem 1.1. We can get the same conclusion from the region Ω_{2} depicted in the figure since $\operatorname{Ind}\left(0, \Omega_{2}\right)=\operatorname{Ind}_{p_{3}}\left(X_{a, R}\right)=$ $-1 \neq 0$.

Figure 3. The curves $f^{-1}(0) \cap \partial B_{a, R}$ on the sphere $\partial B_{a, R}$.

3. A Characterization of vanishing component at infinity

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a polynomial function. Hereafter we omit a in the suffix of $B_{a, r}$ for $r>0$ and denote it by B_{r} for simplicity. Each critical point $p \in \partial B_{R}$ of $\left.f\right|_{\partial B_{R}}$ not lying on $\operatorname{Sing}(f)$ is a point in $(\Gamma \backslash \operatorname{Sing}(f)) \cap \partial B_{R}$. Hence it has a tangency branch Γ_{p}.

Theorem 3.1. Suppose $n \geq 2$ and $\lambda \in T_{\infty}(f) \backslash K_{0}(f)$. There is a vanishing component at ∞ when t tends to λ with $t>\lambda$ (resp. $t<\lambda$) if and only if there exists a local minimum (resp. maximum) point $p \in \partial B_{R}$ of $\left.f\right|_{\partial B_{R}}$ with $f \searrow \lambda$ (resp. $f \nearrow \lambda$) along Γ_{p} such that the intersection of the connected component of $f^{-1}(f(p))$ containing p with ∂B_{R} consists of isolated points.

Proof. We first prove the "only if" assertion. We only prove the assertion in the case where t tends to λ with $t>\lambda$. The proof for the other case is similar. Let $\left\{Y_{t}\right\}$ be a continuous family of connected components of $f^{-1}(t)$ that vanishes at ∞ when t tends to λ. Tangency branches intersecting $\left\{Y_{t}\right\}$ are contained in a connected component H of $\mathbb{R}^{n} \backslash\left(f^{-1}(\lambda) \cup \operatorname{Int} B_{R}\right)$ by the property (i) about the choice of the radius R in Section 2.4. Remark that H is possibly $\mathbb{R}^{n} \backslash \operatorname{Int} B_{R}$. Set $\Omega=H \cap \partial B_{R}$. Either $\Omega=\partial B_{R}$, or $\Omega \subset \partial B_{R}$ is bounded by a finite number of circles belonging to $f^{-1}(\lambda) \cap \partial B_{R}$. Since t tends to λ with $t>\lambda$, we have $\Omega \subset\left\{x \in \partial B_{R} \mid f(x)>\lambda\right\}$. Let S_{Ω} denote the set of local minimum points of $\left.f\right|_{\partial B_{R}}$ in $\Omega \cap \Gamma^{(\lambda)}$, where $\Gamma^{(\lambda)}$ is the union of tangency branches at ∞ of f along which either $f \nearrow \lambda$ or $f \searrow \lambda$. By the definition of a vanishing component at ∞ in Section 2.1 and Remark 2.5 (1), the function $r_{a}(x)=\|x-a\|$ restricted to $f^{-1}(t)$ has a local minimum point y on $\Omega \cap \Gamma^{(\lambda)}$. Since $t>\lambda$, it satisfies that $f \searrow \lambda$ along Γ_{y}. Hence, by Remark 2.5 (3), y is a local minimum point of $\left.f\right|_{\partial B_{R}}$, that is, y is a point in S_{Ω}. In particular, S_{Ω} is non-empty.

Set $\delta=\min _{x \in S_{\Omega}} f(x)$ and let p be a point in S_{Ω} such that $f(p)=\delta$ and $f \searrow \lambda$ along Γ_{p}. Let $(\lambda, \delta]$ be the range of the parameter t of Y_{t}. We will show that $Y_{\delta} \cap \partial B_{R}$ consists of isolated points.

Assume for a contradiction that $Y_{\delta} \cap \partial B_{R}$ is not isolated.
Claim 1. $Y_{\delta} \cap \Omega$ is not isolated.
Proof. Assume that $Y_{\delta} \cap \Omega$ is isolated. Then, all points in $Y_{\delta} \cap \Omega$ are local minima of $\left.r_{a}\right|_{Y_{\delta}}: Y_{\delta} \rightarrow \mathbb{R}$, where $r_{a}(x)=\|x-a\|$. The inequality $\lambda<\delta$ implies that $Y_{\delta} \cap f^{-1}(\lambda)=\emptyset$. Hence $Y_{\delta} \subset H$, see Figure 4. This inclusion implies $Y_{\delta} \cap \partial B_{R}=$ $Y_{\delta} \cap \Omega$. However, the right-hand side is isolated while the left-hand is not. This is a contradiction.

Figure 4. $Y_{\delta} \cap f^{-1}(\lambda)=\emptyset$ implies $Y_{\delta} \subset H$.
We continue the proof of Theorem 3.1. Let $Y_{[\lambda, \delta]}$ be the connected component of $f^{-1}([\lambda, \delta])$ containing p. There are two cases:

Case 1: $Y_{[\lambda, \delta]} \cap f^{-1}(\lambda)=\emptyset$ (cf. Figure 5). Set $\Omega_{[\lambda, \delta]}=Y_{[\lambda, \delta]} \cap \bar{\Omega}$, where $\bar{\Omega}$ is the closure of Ω in ∂B_{R}. Since $Y_{\delta} \cap \Omega$ is not isolated by Claim 1, $Y_{\delta} \cap \Omega$ has a connected component C of dimension at least 1. A point in Ω at which Y_{δ} is tangent to Ω belongs to a tangency branch at ∞ of f and hence it is isolated in Ω. In particular, it cannot be in C. This means that Y_{δ} and Ω intersect along C transversely. Therefore, since f is continuous on $\bar{\Omega}, Y_{[\lambda, \delta]} \cap \Omega$ has a connected component C of dimension $n-1 \geq 1$. This set C is a compact subset of Ω. Due to a generic choice of the center a in Lemma 2.3 , the restriction of f to C cannot be a constant function. Hence f is not a constant function on $\Omega_{[\lambda, \delta]}$. Since $\partial \bar{\Omega} \subset f^{-1}(\lambda)$ (possibly $\partial \bar{\Omega}=\emptyset$) and $Y_{[\lambda, \delta]} \cap f^{-1}(\lambda)=\emptyset$, we have $\partial \Omega_{[\lambda, \delta]} \subset f^{-1}(\delta)$ (possibly $\left.\partial \Omega_{[\lambda, \delta]}=\emptyset\right)$. Hence, there exists a local minimum point q of $\left.f\right|_{\partial B_{R}}$ in the interior of $\Omega_{[\lambda, \delta]}$ with $\lambda<f(q)<\delta$.

Figure 5. A schematic picture for the proof in Case 1.
Since $\lambda<f(q)<\delta=f(p)$, there exists a point q^{\prime} on Γ_{p} such that $f(q)=f\left(q^{\prime}\right)$. If $f \searrow \lambda_{q}$ along Γ_{q} with $\lambda_{q} \neq \lambda$, then the two sets $\left\{f(x) \mid x \in \Gamma_{p}\right\}$ and $\left\{f(x) \mid x \in \Gamma_{q}\right\}$ should be disjoint by the property (iv). However $f(q)=f\left(q^{\prime}\right)$ is a common element of these two sets. If $f \searrow \lambda$ along Γ_{q}, then $q \in S_{\Omega}$. However, this and $f(q)<f(p)$ contradict $f(p)=\delta=\min _{x \in S_{\Omega}} f(x)$. Thus, in either case, a contradiction arises.

Case 2: $Y_{[\lambda, \delta]} \cap f^{-1}(\lambda) \neq \emptyset$. Take one point $q \in Y_{[\lambda, \delta]} \cap f^{-1}(\lambda)$, then q belongs to the connected component of $f^{-1}([\lambda, \varepsilon]) \backslash \operatorname{Int} B_{a, R}$ contained in $Y_{[\lambda, \delta]}$ for any $\lambda<\varepsilon<\delta$. This contradicts the fact that $\left\{Y_{t}\right\}$ vanishes at ∞ when t tends to λ.

Next we prove the "if" assertion. Assume that there exists a local minimum point $p \in \Gamma_{\lambda} \cap \partial B_{R}$ of $\left.f\right|_{\partial B_{R}}$ with $f \searrow \lambda$ along Γ_{p} such that the intersection of the connected component $Z_{f(p)}$ of $f^{-1}(f(p))$ containing p with the sphere ∂B_{R} consists of isolated points. Since p is a local minimum point of $\left.f\right|_{\partial_{R}}, p$ is also a
local minimum point of $\left.r_{a}\right|_{Z_{f(a)}}$ by Remark 2.5 (3). This and the isolatedness of $Z_{f(p)} \cap \partial B_{R}$ imply that $Z_{f(p)} \subset \mathbb{R}^{n} \backslash \operatorname{Int} B_{R}$.

Put $\delta=f(p)$. Let $Z_{(\lambda, \delta]}$ be the connected component of $f^{-1}((\lambda, \delta])$ containing p. We will show that $Z_{(\lambda, \delta]} \cap \partial B_{R}=Z_{\delta} \cap \partial B_{R}$. It is easy to see that the two connected components $\Gamma_{p} \backslash\{p\}$ and $\partial B_{R} \backslash Z_{\delta}$ are subsets of different connected components of $\mathbb{R} \backslash Z_{\delta}$. Assume that there exists a point $x \in Z_{(\lambda, \delta]} \cap\left(\partial B_{R} \backslash Z_{\delta}\right)$. Choose a point $y \in \Gamma_{p} \backslash\{p\}$. Note that the values $f(x)$ and $f(y)$ are in (λ, δ). Since $Z_{(\lambda, \delta]}$ is connected, there exists a path in $Z_{(\lambda, \delta]}$ connecting x and y. Furthermore, since f is a trivial fibration on $(\lambda, \delta]$, we can isotope this path so that it is in $Z_{(\lambda, \delta]} \backslash Z_{\delta}$. However, this is impossible since x and y belong to different connected components of $\mathbb{R}^{n} \backslash Z_{\delta}$. Therefore, $Z_{(\lambda, \delta]} \cap \partial B_{R}=Z_{\delta} \cap \partial B_{R}$.

Now it follows that for any $t \in(\lambda, \delta)$, the connected component Z_{t} of $f^{-1}(t)$ intersecting Γ_{p} does not intersect B_{R}. Hence the distance function $\left.r_{a}\right|_{Z_{t}}$ on Z_{t} attains a minimum value at some point belonging to a tangency branch in $\mathbb{R}^{n} \backslash$ Int B_{R}. Thus, we can find a sequence $\left\{t_{k}\right\}$ on (λ, δ) with $\lim _{k \rightarrow \infty} t_{k}=\lambda$ and a point $q \in \Gamma \cap \partial B_{R}$ such that

$$
\min \left\{r_{a}(x) \mid x \in Z_{t_{k}}\right\}=r_{a}\left(q_{k}\right)
$$

where $q_{k}=Z_{t_{k}} \cap \Gamma_{q}$. The distance $r_{a}\left(q_{k}\right)$ goes to ∞ as $k \rightarrow \infty$, otherwise Γ_{q} intersects $f^{-1}(\lambda)$ and this contradicts the property (i). Hence $Z_{t_{k}}$ vanishes at ∞ as $k \rightarrow \infty$.

The proof for the case where p is a local maximum point is similar.
Remark 3.2. Using Theorem 3.1, a vanishing component at ∞ of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is detected as follows:
(Step 1) Choose a generic center a, calculate all tangency branches, and fix a sufficiently large radius $R>0$ that satisfies the conditions written in Section 2.4.
(Step 2) For each $p \in(\Gamma \backslash \operatorname{Sing}(f)) \cap \partial B_{R}$, calculate $\lambda_{p}=\lim _{r \rightarrow \infty} f\left(x_{p}(r)\right)$, where $x_{p}(r)=\Gamma_{p} \cap \partial B_{r}$. Then, make the following lists of finite sets:

$$
\begin{aligned}
P_{\min }(\lambda) & =\left\{p \in(\Gamma \backslash \operatorname{Sing}(f)) \cap \partial B_{R} \mid p \text { is local minimum of }\left.f\right|_{\partial B_{R}} \text { with } f \searrow \lambda\right\} \\
P_{\max }(\lambda) & =\left\{p \in(\Gamma \backslash \operatorname{Sing}(f)) \cap \partial B_{R} \mid p \text { is local maximum of }\left.f\right|_{\partial B_{R}} \text { with } f \nearrow \lambda\right\} \\
\Lambda_{\min } & =\left\{\lambda \in \mathbb{R} \mid P_{\min }(\lambda) \neq \emptyset\right\} \\
\Lambda_{\max } & =\left\{\lambda \in \mathbb{R} \mid P_{\max }(\lambda) \neq \emptyset\right\} .
\end{aligned}
$$

(Step 3) For each element $\lambda \in \Lambda_{\min }$ (resp. $\lambda \in \Lambda_{\max }$), check if there exists $p \in$ $P_{\min }(\lambda)\left(\right.$ resp. $\left.\quad p \in P_{\max }(\lambda)\right)$ such that the intersection $f^{-1}(f(p)) \cap \partial B_{R}$ consists of isolated points.
(3-1) If it exists, then there exists a vanishing component at ∞ when t tends to λ by Theorem 3.1.
(3-2) If it does not exist, then $\operatorname{dim} f^{-1}(f(p)) \cap \partial B_{R} \geq 1$ for any $p \in P_{\min }(\lambda) \cup$ $P_{\max }(\lambda)$. For each $p \in P_{\min }(\lambda) \cup P_{\max }(\lambda)$, calculate all critical values c_{1}, \ldots, c_{k} of $r_{a}(x)=\|x-a\|$ on $f^{-1}(f(p))$ and then choose a real number R^{\prime} greater than $\max \left\{R, c_{1}, \ldots, c_{k}\right\}$, see Figure 6. Make a list L^{\prime} of the connected components of $\partial B_{R^{\prime}} \backslash f^{-1}(f(p))$ and find a component $\Omega_{p}^{\prime} \in L^{\prime}$ intersecting Γ_{p}. If $f^{-1}(\lambda) \cap \Omega_{p}^{\prime}=\emptyset$ then there exists a vanishing component at ∞ when t tends to λ as shown in the next lemma (Lemma 3.3).
All vanishing components at ∞ are detected by the above steps, which is proved in Lemma 3.4 below.

Figure 6. A schematic picture for Step (3-2).

Lemma 3.3. If $f^{-1}(\lambda) \cap \Omega_{p}^{\prime}=\emptyset$ then there exists a vanishing component at ∞ when t tends to λ.

Proof. Consider the case where $p \in P_{\min }(\lambda)$. Let H^{\prime} be the connected component of $\mathbb{R}^{n} \backslash\left(f^{-1}(f(p)) \cup \operatorname{Int} B_{R^{\prime}}\right)$ intersecting Γ_{p} and \bar{H}^{\prime} be its closure. Let $\bar{\Omega}_{p}^{\prime}$ be the closure of Ω_{p}^{\prime} in $\partial B_{R^{\prime}}$. Since $R^{\prime}>\max \left\{R, c_{1}, \ldots, c_{k}\right\}, \bar{H}^{\prime}$ is diffeomorphic to $\bar{\Omega}_{p}^{\prime} \times[0,1)$. Let $Y_{(\lambda, f(p)]}$ be the connected component of $f^{-1}((\lambda, f(p)]) \backslash \operatorname{Int} B_{R^{\prime}}$ intersecting Γ_{p} and $\bar{Y}_{(\lambda, f(p)]}$ be its closure. The inclusion $\bar{Y}_{(\lambda, f(p)]} \subset \bar{H}^{\prime}$, the property (iii), and the assumption $f^{-1}(\lambda) \cap \Omega_{p}^{\prime}=\emptyset$ imply that $\bar{Y}_{(\lambda, f(p)]} \cap f^{-1}(\lambda)=\emptyset$. Since $f \searrow \lambda$ along Γ_{p} and $f^{-1}(\lambda) \cap \Omega_{p}^{\prime}=\emptyset$, we have $\lambda<f(x)$ for $x \in \bar{\Omega}_{p}^{\prime}, f(x)=f(p)$ for $x \in \partial \bar{\Omega}_{p}^{\prime}$, and there exists a point $x^{\prime} \in \Omega_{p}^{\prime}$ such that $f\left(x^{\prime}\right)<f(p)$. Set $\delta=\min \left\{f(x) \mid x \in \bar{\Omega}_{p}^{\prime}\right\}$. Note that $\lambda<\delta<f(p)$. For $t \in(\lambda, \delta)$, the connected component Y_{t} of $f^{-1}(t)$
intersecting Γ_{p} does not intersect Ω_{p}^{\prime}, and therefore it is contained in $Y_{(\lambda, f(p)]}$. Since $\bar{Y}_{(\lambda, f(p)]} \cap f^{-1}(\lambda)=\emptyset,\left\{Y_{t}\right\}$ is a vanishing component at ∞ when t tends to λ.

The assertion for the case $p \in P_{\max }(\lambda)$ is proved similarly.
Lemma 3.4. If there exists a vanishing component at ∞ when t tends to λ, then there exists a point $p \in(\Gamma \backslash(\operatorname{Sing}(f))) \cap \partial B_{R}$ with $f^{-1}(\lambda) \cap \Omega_{p}^{\prime}=\emptyset$.

Proof. Suppose that there exists a vanishing component at ∞ when t tends to λ. We prove only the case $t>\lambda$. By Theorem 3.1, there exists a local minimum point $p \in \Gamma_{p} \cap \partial B_{R}$ of $\left.f\right|_{\partial B_{R}}$ such that the intersection of the connected component $Z_{f(p)}$ of $f^{-1}(f(p))$ containing p with the sphere ∂B_{R} consists of isolated points. Put $\delta=f(p)$ and let $Z_{(\lambda, \delta]}$ be the connected component of $f^{-1}((\lambda, \delta])$ containing p. Then, as shown in the proof of the "if" assertion of Theorem 3.1, we have $Z_{(\lambda, \delta]} \cap \partial B_{R}=Z_{\delta} \cap \partial B_{R}$. Let R^{\prime} be the radius chosen as in (3-2) and Ω_{p}^{\prime} be the connected component of $\partial B_{R^{\prime}} \backslash Z_{\delta}$ intersecting Γ_{p}. Assume that there exists an intersection point $x \in f^{-1}(\lambda) \cap \Omega_{p}^{\prime}$. By the property (iii), there exists an arc on $f^{-1}(\lambda)$ connecting x and a point on $f^{-1}(\lambda) \cap \partial B_{R}$, but such an arc should intersect Z_{δ}. This contradicts the fact that the image of this arc is λ.

4. Proof of Theorem 1.1

Now, we restrict our setting to the case of polynomial functions with three variables. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a polynomial function. For each $\lambda \in T_{\infty}(f) \backslash K_{0}(f)$, there exists a sufficiently small $\varepsilon>0$ such that, for $I_{\lambda}^{-}=(\lambda-\varepsilon, \lambda)$ and $I_{\lambda}^{+}=$ $(\lambda, \lambda+\varepsilon)$, the restriction of f to $f^{-1}\left(I_{\lambda}^{*}\right)$ and the restriction of f to $f^{-1}\left(I_{\lambda}^{*}\right) \cap B_{R}$ are trivial fibrations unless $f^{-1}\left(I_{\lambda}^{*}\right)=\emptyset$, where $* \in\{-,+\}$. Here ε is chosen so that $f^{-1}(t)$ intersects ∂B_{R} transversely for $t \in I_{\lambda}^{*}$. Then the restriction of f to $f^{-1}\left(I_{\lambda}^{*}\right) \cap\left(\mathbb{R}^{n} \backslash \operatorname{Int} B_{R}\right)$ is also a trivial fibration.

The surface $f^{-1}(\lambda) \backslash \operatorname{Int} B_{R}$ divides $\mathbb{R}^{3} \backslash \operatorname{Int} B_{R}$ into a finite number of connected components $H_{\lambda, 1}^{*}, \ldots, H_{\lambda, n_{\lambda}}^{*}$ by the property (iii), where $*=-$ if $f(x)<\lambda$ on $H_{\lambda, i}^{*}$ and $*=+$ if $f(x)>\lambda$ on $H_{\lambda, i}^{*}$. Each $H_{\lambda, i}^{*}$ is homeomorphic to $\Omega_{\lambda, i}^{*} \times[0,1)$, where $\Omega_{\lambda, i}^{*}=H_{\lambda, i}^{*} \cap \partial B_{R}$.

Let $\operatorname{Ind}\left(\lambda, \Omega_{\lambda, i}^{*}\right)$ be the sum of indices of the gradient vector field of f restricted to ∂B_{R} for all zeros belonging to $\Gamma^{(\lambda)}$ on $\Omega_{\lambda, i}^{*}$ as defined in the introduction.

Lemma 4.1. $\chi\left(f^{-1}(t) \cap H_{\lambda, i}^{*}\right)=\operatorname{Ind}\left(\lambda, \Omega_{\lambda, i}^{*}\right)$ for any $t \in I_{\lambda}^{*}$.
Proof. Choose $R^{\prime}>R$ sufficiently large so that $f^{-1}(t)$ intersects $\partial B_{R^{\prime}}$ transversely and $f^{-1}(t) \backslash \operatorname{Int} B_{R^{\prime}}$ is diffeomorphic to $\left(f^{-1}(t) \cap \partial B_{R}\right) \times[0,1)$ for $t \in I_{\lambda}^{*}$. Then $f^{-1}(t) \cap H_{\lambda, i}^{*}$ has the same homotopy type as $f^{-1}(t) \cap H_{\lambda, i}^{*} \cap B_{R}^{R^{\prime}}$, where $B_{R}^{R^{\prime}}=$
$\left\{x \in \mathbb{R}^{3} \mid R \leq\|x-a\| \leq R^{\prime}\right\}$. Hence we have

$$
\chi\left(f^{-1}(t) \cap H_{\lambda, i}^{*}\right)=\chi\left(f^{-1}(t) \cap H_{\lambda, i}^{*} \cap B_{R}^{R^{\prime}}\right) .
$$

Consider the distance function $r_{a}(x)=\|x-a\|$ on $f^{-1}(t) \cap H_{\lambda, i}^{*} \cap B_{R}^{R^{\prime}}$. Due to a generic choice of the center of B_{R} in Section 2.2, this function has only non-degenerate critical points and has no critical point on the boundary. Hence, there is a one-to-one correspondence between critical points of r_{a} on $f^{-1}(t) \cap H_{\lambda, i}^{*}$ and the tangency branches Γ_{p} passing through $p \in \Gamma^{(\lambda)} \cap \Omega_{\lambda, i}^{*}$ as mentioned in Remark 2.5 (1). If $p \in \Gamma^{(\lambda)} \cap \Omega_{\lambda, i}^{*}$ is local minimum or maximum of $\left.f\right|_{\partial B_{R}}$ then $\operatorname{Ind}_{p}\left(X_{a, R}\right)=1$ and the Morse index $i\left(p_{t}\right)$ of the distance function r_{a} on $f^{-1}(t) \cap H_{\lambda, i}^{*}$ at the intersection point p_{t} of Γ_{p} with $f^{-1}(t)$ is 0 or 2 . If $p \in \Gamma^{(\lambda)} \cap \Omega_{\lambda, i}$ is a saddle point of $\left.f\right|_{\partial B_{R}}$ then $\operatorname{Ind}_{p}\left(X_{a, R}\right)=-1$ and the Morse index $i\left(p_{t}\right)$ at the intersection point p_{t} of Γ_{p} with $f^{-1}(t)$ is 1 . Hence we have $\operatorname{Ind}_{p}\left(X_{a, R}\right)=(-1)^{i\left(p_{t}\right)}$. Since the Euler characteristic of $f^{-1}(t) \cap \Omega_{\lambda, i}^{*}$ is 0 , by the Morse Theory, we have

$$
\begin{aligned}
\chi\left(f^{-1}(t) \cap H_{\lambda, i}^{*} \cap B_{R}^{R^{\prime}}\right) & =\sum_{p \in \Gamma^{(\lambda)} \cap \Omega_{\lambda, i}}(-1)^{i\left(p_{t}\right)} \\
& =\sum_{p \in \Gamma^{(\lambda)} \cap \Omega_{\lambda, i}} \operatorname{Ind}_{p}\left(X_{a, R}\right)=\operatorname{Ind}\left(\lambda, \Omega_{\lambda, i}^{*}\right) .
\end{aligned}
$$

This completes the proof.
Proof of Theorem 1.1. We prove the first assertion by contraposition. Assume that λ is a typical value of f. There exists a sufficiently small $\varepsilon>0$ such that f is a trivial fibration on $I_{\varepsilon}=(\lambda-\epsilon, \lambda+\epsilon)$. Let $\Omega_{\lambda, i}^{*}$ be a connected component of $\partial B_{R} \backslash f^{-1}(\lambda)$ and $\partial \bar{\Omega}_{\lambda, i}^{*}$ be the boundary of the closure of $\Omega_{\lambda, i}^{*}$ in ∂B_{R}, which is a union of circles. By the property (iii), the connected component Y of $f^{-1}(\lambda) \backslash \operatorname{Int} B_{R}$ intersecting $\partial \bar{\Omega}_{\lambda, i}^{*}$ is diffeomorphic to $\partial \bar{\Omega}_{\lambda, i}^{*} \times[0,1)$, and hence $\chi(Y)=0$. This and the triviality of f on I_{ε} imply that $\chi\left(f^{-1}(t) \cap H_{\lambda, i}^{*}\right)=0$ for $t \in I_{\lambda}^{*}$, where $H_{\lambda, i}^{*}$ is the connected component of $\mathbb{R}^{3} \backslash\left(f^{-1}(\lambda) \cup \operatorname{Int} B_{R}\right)$ intersecting $\Omega_{\lambda, i}^{*}$. Combining this with Lemma 4.1 we obtain $\operatorname{Ind}\left(\lambda, \Omega_{\lambda, i}^{*}\right)=0$. This completes the proof of the first assertion.

Next we prove the second assertion. Because there does not exist a component of $f^{-1}(t)$ vanishing at ∞ when t tends to λ, there exists a sufficiently small $\varepsilon>0$ such that each connected component of $f^{-1}(t)$ intersects ∂B_{R} for all $t \in I_{\lambda}^{-} \cup I_{\lambda}^{+}$. Let $H_{\lambda, i}^{*}$ be a connected component of $\mathbb{R}^{3} \backslash\left(f^{-1}(\lambda) \cup \operatorname{Int} B_{R}\right)$ and $\left\{Y_{t}^{1}, \ldots, Y_{t}^{s}\right\}$ be the connected components of $f^{-1}(t) \cap H_{\lambda, i}^{*}$. Set $\Omega_{\lambda, i}^{*}=H_{\lambda, i}^{*} \cap \partial B_{R}$. Since
$\operatorname{Ind}\left(\lambda, \Omega_{\lambda, i}^{*}\right)=0$, we have $\chi\left(f^{-1}(t) \cap H_{\lambda, i}^{*}\right)=0$ by Lemma 4.1. Hence

$$
\sum_{j=1}^{s} \chi\left(Y_{t}^{j}\right)=0
$$

Choose $R^{\prime}>R$ sufficiently large so that $f^{-1}(t)$ intersects $\partial B_{R^{\prime}}$ transversely and $f^{-1}(t) \backslash \operatorname{Int} B_{R^{\prime}}$ is diffeomorphic to $\left(f^{-1}(t) \cap \partial B_{R^{\prime}}\right) \times[0,1)$ for $t \in I_{\lambda}^{*}$, and set $B_{R}^{R^{\prime}}=\left\{x \in \mathbb{R}^{3} \mid R \leq\|x-a\| \leq R^{\prime}\right\}$. Then, as mentioned at the beginning of the proof of Lemma 4.1, $\chi\left(Y_{t}^{j} \cap B_{R}^{R^{\prime}}\right)=\chi\left(Y_{t}^{j}\right)$ holds. Hence

$$
\begin{equation*}
\sum_{j=1}^{s} \chi\left(Y_{t}^{j} \cap B_{R}^{R^{\prime}}\right)=0 \tag{4.1}
\end{equation*}
$$

Here each $Y_{t}^{j} \cap B_{R}^{R^{\prime}}$ is a compact, connected, orientable surface embedded in \mathbb{R}^{3}.
We claim that $\chi\left(Y_{t}^{j} \cap B_{R}^{R^{\prime}}\right)=0$ for any $j=1, \ldots, s$. If $s=1$ then it follows from equation 4.1). Suppose that $s \geq 2$. Assume that $\chi\left(Y_{t}^{j_{0}} \cap B_{R}^{R^{\prime}}\right) \neq 0$ for some $j_{0} \in\{1, \ldots, s\}$. Then there exists a connected component $Y_{t}^{j_{1}}$ with $\chi\left(Y_{t}^{j_{1}} \cap\right.$ $\left.B_{R}^{R^{\prime}}\right)>0$ by (4.1). Since $Y_{t}^{j_{1}} \cap B_{R}^{R^{\prime}}$ is a compact, connected, orientable surface, it is diffeomorphic to a disk. The boundary of this disk lies on ∂B_{R} since $\varepsilon>$ 0 is chosen so that $Y_{t}^{j_{1}} \cap \partial B_{R} \neq \emptyset$. Moreover, this boundary is parallel to a boundary component of the closure of $\Omega_{\lambda_{i}}^{*}$ due to the property (iii). Since $H_{\lambda, i}^{*}$ is homeomorphic to $\Omega_{\lambda, i}^{*} \times[0,1)$ and the disk $Y_{t}^{j_{1}} \cap B_{R}^{R^{\prime}}$ is relatively embedded in $H_{\lambda, i}^{*}, \Omega_{\lambda_{i}}^{*}$ should be a disk. Since the boundary of $\Omega_{\lambda_{i}}^{*}$ is connected, $f^{-1}(t) \cap H_{\lambda, i}^{*}$ is also connected. This contradicts $s \geq 2$.

Now we have $\chi\left(Y_{t}^{j} \cap B_{R}^{R^{\prime}}\right)=0$ for any $t \in I_{\lambda}^{*}$ and $j=1, \ldots, s$. This means that all of these connected components are diffeomorphic to $S^{1} \times[0,1]$. Therefore, the relative homotopy groups $\pi_{i}\left(f^{-1}\left(I_{\lambda}^{*} \cup\{\lambda\}\right), f^{-1}(\lambda), x\right)$ are trivial for all $i \in \mathbb{N}$ and any base point $x \in f^{-1}(\lambda)$. Note that this conclusion holds for both of the cases $*=-$ and $*=+$. Hence, by [5, Proposition 3.3 and Theorem 1.2], for $I_{\lambda}=(\lambda-\varepsilon, \lambda+\varepsilon)$, the map

$$
\left.f\right|_{f^{-1}\left(I_{\lambda}\right)}: f^{-1}\left(I_{\lambda}\right) \rightarrow I_{\lambda}
$$

is a Serre fibration. Then, this implies that $\left.f\right|_{f^{-1}\left(I_{\lambda}\right)}$ is a trivial fibration by [10, Corollary 32]. Hence λ is a typical value at ∞ of f.

5. Typical values of polynomial maps with 2-dimensional fibers

In this section, we study polynomial maps from \mathbb{R}^{n} to \mathbb{R}^{n-2}. The case $n=3$ is studied in the previous section.

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-2}$ be a polynomial map, where $n \geq 3$, and λ be a point in $F\left(\mathbb{R}^{n}\right) \backslash \bar{K}_{0}(F)$, where $\bar{K}_{0}(F)$ is the closure of $K_{0}(F)$ in \mathbb{R}^{n-2}. Let B_{R} be the n-dimensional ball in \mathbb{R}^{n} centered at $a \in \mathbb{R}^{n}$ and with radius $R>0$. As shown in [5, Lemma 3.2], we can choose a sufficiently large radius $R>0$ satisfying the following property:
(v) Each connected component Y of $F^{-1}(\lambda) \backslash \operatorname{Int} B_{R}$ intersects ∂B_{r} transversely for any $r \geq R$. In particular, $Y \backslash \operatorname{Int} B_{r}$ is diffeomorphic to $\left(Y \cap \partial B_{r}\right) \times[0,1)$ for any $r \geq R$.
In particular, there is a deformation-retract from $F^{-1}(\lambda)$ to $F^{-1}(\lambda) \cap B_{R}$.
Theorem 5.1. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-2}$ be a polynomial map, where $n \geq 3$. For $\lambda \in F\left(\mathbb{R}^{n}\right) \backslash \bar{K}_{0}(F)$, choose a radius R so that the property (v) holds. Then, λ is a typical value at ∞ of F if and only if the following are satisfied:
(1) There is no vanishing component at ∞ when t tends to λ;
(2) There exists a neighborhood D of λ in \mathbb{R}^{n-2} such that, for all $t \in D$,
(2-1) $F^{-1}(t) \backslash \operatorname{Int} B_{R}$ has no compact, connected component, and (2-2) $\chi\left(F^{-1}(t)\right)=\chi\left(F^{-1}(\lambda)\right)$ holds.

Proof. It is enough to show that if the conditions (1) and (2) are satisfied then F is a trivial fibration over some neighborhood of λ. Assume that the two conditions are satisfied. Let D be a small neighborhood of λ as in the condition (2). We can choose D small enough so that the fibers $F^{-1}(t)$ are regular and intersect ∂B_{R} transversely for all $t \in D$. The map $\left.F\right|_{F^{-1}(D) \cap B_{R}}: F^{-1}(D) \cap B_{R} \rightarrow D$ is a trivial fibration.

By the conditions (1) and (2-1), $F^{-1}(t) \backslash \operatorname{Int} B_{R}$ does not have a connected component which is contractible for any $t \in D$. Hence we have $\chi\left(F^{-1}(t) \backslash \operatorname{Int} B_{R}\right) \leq$ 0 . Then, by the condition (2-2) and the property (v), we have

$$
\begin{aligned}
\chi\left(F^{-1}(\lambda)\right) & =\chi\left(F^{-1}(t)\right)=\chi\left(F^{-1}(t) \cap B_{R}\right)+\chi\left(F^{-1}(t) \backslash \operatorname{Int} B_{R}\right) \\
& \leq \chi\left(F^{-1}(t) \cap B_{R}\right)=\chi\left(F^{-1}(\lambda) \cap B_{R}\right)=\chi\left(F^{-1}(\lambda)\right),
\end{aligned}
$$

which implies that $\chi\left(F^{-1}(t) \backslash \operatorname{Int} B_{R}\right)=0$. Here we used the fact that $F^{-1}(t) \cap \partial B_{R}$ is a disjoint union of circles and its Euler characteristic is 0 . By the condition (2-1), $F^{-1}(t) \backslash \operatorname{Int} B_{R}$ is diffeomorphic to a disjoint union of a finite number of copies of $S^{1} \times[0,1)$.

The rest of the proof is same as the last argument in the proof of Theorem 1.1. Since there exists a deformation-retract from $F^{-1}(t)$ to $F^{-1}(t) \cap B_{R}$ for each $t \in$ D and the map $\left.F\right|_{F^{-1}(D) \cap B_{R}}$ is a trivial fibration, the relative homotopy groups $\pi_{i}\left(F^{-1}(D), F^{-1}(\lambda), x\right)$ are trivial for all $i \in \mathbb{N}$ and any base point $x \in f^{-1}(\lambda)$.

Then, by [5, Proposition 3.3 and Theorem 1.2], the map $\left.F\right|_{F^{-1}(D)}: F^{-1}(D) \rightarrow D$ is a Serre fibration and hence it is a trivial fibration by [10, Corollary 32]. Hence λ is a typical value at ∞ of F.

References

[1] J. Bochnak, M. Coste, M-F. Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb. (3), 36, Springer-Verlag, Berlin, 1998.
[2] M. Coste, M.J. de la Puente, Atypical values at infinity of a polynomial function on the real plane: an erratum, and an algorithmic criterion, J. Pure Appl. Algebra 162 (2001), no. 1, 23-35.
[3] L.R.G. Dias, C. Joiţa and M. Tibăr, Atypical points at infinity and algorithmic detection of the bifurcation locus of real polynomials, Math. Z. 298 (2021), no.3-4, 1545-1558.
[4] H.V. Ha and T.S. Pham, Genericity in polynomial optimization Ser. Optim. Appl., 3 World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, xix+240 pp, 2017.
[5] M. Ishikawa, T. T. Nguyen, Relative homotopy groups and Serre fibrations for polynomial maps, preprint. arXiv:2208.10055.
[6] M. Ishikawa, T.T. Nguyen and T.S. Pham, Bifurcation sets of real polynomial functions of two variables and Newton polygons, J. Math. Soc. Japan 71 (2019), no. 4, 1201-1222.
[7] C. Joiţa and M. Tibăr, Bifurcation values of families of real curves, Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 6, 1233-1242.
[8] C. Joiţa and M. Tibăr, Bifurcation set of multi-parameter families of complex curves, J. Topol. 11 (2018), 739-751.
[9] K. Kurdyka, P. Orro, S. Simon, Semialgebraic Sard theorem for generalized critical values, J. Differential Geom. 56 (2000), no.1, 67-92.
[10] G. Meigniez, Submersions, fibrations and bundles, Trans. Amer. Math. Soc. 354 (2002), 3771-3787.
[11] J. Milnor, Morse Theory. Based on lecture notes by M. Spivak and R. Wells, Ann. of Math. Stud., 51, Princeton University Press, Princeton, NJ, 1963.
[12] R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240-284.
[13] M. Tibăr, A. Zaharia, Asymptotic behaviour of families of real curves, Manuscripta Math. 99 (1999), 383-393.
[14] J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295-312

Faculty of Economics, Keio University, 4-1-1, Hiyoshi, Kouhoku, Yokohama, Kanagawa 223-8521, Japan

Email address: ishikawa@keio.jp
Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay district, 11300 Hanoi, Vietnam

Email address: ntthang@math.ac.vn

[^0]: The first author is supported by JSPS KAKENHI Grant numbers JP19K03499, JP23K03098, JP23H00081 and Keio University Academic Development Funds for Individual Research. This work is supported by JSPS-VAST Joint Research Program, Grant number JPJSBP120219602.

