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Abstract. We characterize atypical values at infinity of a real polynomial func-

tion of three variables by a certain sum of indices of the gradient vector field of

the function restricted to a sphere with a sufficiently large radius. This is an

analogy of a result of Coste and de la Puente for real polynomial functions with

two variables. We also give a characterization of atypical values at infinity of a

real polynomial map whose regular fibers are 2-dimensional surfaces.

1. Introduction

Let f : Rn → Rm be a real polynomial map, Sing(f) be the set of singular points
of f in Rn, and K0(f) = f(Sing(f)). A bifurcation set of f is the smallest set of
values in Rm outside which f is a locally trivial fibration. This is a semialgebraic
set of codimension at least one [12, 14, 9]. A regular value λ ∈ f(Rn) \K0(f) is
called a typical value at ∞ of f if there is an open neighborhood over which f is a
trivial fibration. Otherwise, λ is called an atypical value at ∞ of f . For example,
the polynomial map f(x, y) = x(xy + 1) has no critical value but its bifurcation
set is {0}. There are several studies about the bifurcation sets of real polynomial
maps, see for instance [13, 2, 7, 6, 3].

Suppose m = 1, that is, f : Rn → R is a real polynomial function. Let Ba,R be
the closed ball in Rn centered at a point a ∈ Rn and of radius R > 0. Set

Γ =

{
x ∈ Rn | rank

(
x− a
grad f

)
≤ 1

}
.

Note that Sing(f) ⊂ Γ. We choose a center a ∈ Rn and a sufficiently large R > 0
so that Γ is transverse to ∂Ba,r for any r > R and Γ \ IntBa,R is homeomorphic
to Γ ∩ ∂Ba,R × [0, 1). Each connected component of Γ \ IntBa,R is contained in
either Sing(f) or Γ \ Sing(f). Throughout the paper, we always choose the center
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a generic so that each connected component of Γ \ (Sing(f) ∪ IntBa,R) is a curve.
These curves are called tangency branches at ∞ of f .

For each point p ∈ (Γ \ Sing(f)) ∩ ∂Ba,R, let Γp denote the tangency branch at
∞ of f passing through p. Set xp(r) = Γp ∩ ∂Ba,r for r ≥ R and define

λp = lim
r→∞

f(xp(r)) ∈ R ∪ {±∞}.

Let T∞(f) denote the set of values λ ∈ R for which there exists a curve x :
[R,∞) → Γ with x(r) ∈ Γ ∩ ∂Ba,r and limr→∞ f(x(r)) = λ. Note that

T∞(f) ⊂ {λp ∈ R | p ∈ (Γ \ Sing(f)) ∩ ∂Ba,R} ∪K0(f).

The aim of this paper is to characterize atypical values of f by observing its
behavior on the sphere ∂Ba,R with a sufficiently large radius R > 0. Specifically,
we focus on the vector field Xa,R on ∂Ba,R defined by the gradient vector field of
the restriction of f to ∂Ba,R. For each isolated zero p of Xa,R, the index Indp(Xa,R)
is defined by the degree of the map from ∂Bp,ε to the (n − 1)-dimensional sphere

given by x 7→ Xa,R(x)

∥Xa,R(x)∥ , where ε > 0 is a sufficiently small real number. Note that

each point of (Γ\Sing(f))∩∂Ba,R is an isolated zero of Xa,R. For each λ ∈ T∞(f),
let Γ(λ) be the union of tangency branches Γp with λp = λ. For each connected
component Ω of ∂Ba,R \ f−1(λ), set

Ind(λ,Ω) =
∑

p∈Γ(λ)∩Ω
Indp(Xa,R).

We focus on the case n = 3. In this case, since regular fibers of f are of
dimension 2, their topology can be determined by the indices of the vector field
Xa,R. In consequence, we obtain the following theorem. For the definition of a
vanishing component, see Section 2.1.

Theorem 1.1. Let f : R3 → R be a polynomial function and λ ∈ T∞(f) \K0(f).
If Ind(λ,Ω) ̸= 0 for some connected component Ω of ∂Ba,R \ f−1(λ) then λ is an
atypical value at ∞ of f . Conversely, if there does not exist a vanishing component
at ∞ when t tends to λ and Ind(λ,Ω) = 0 for any connected component Ω of
∂BR \ f−1(λ) then λ is a typical value at ∞ of f .

In the proof, it is shown that if Ind(λ,Ω) ̸= 0 for some Ω then, for t sufficiently
close to λ, there exists a connected component of f−1(t) \ IntBa,R diffeomorphic
to a disk. This interpretation can be used when we generalize the assertion in
Theorem 1.1 to polynomial maps F : Rn → Rn−2 for n ≥ 3. The statement is the
following.
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Theorem 1.2. Let F : Rn → Rn−2 be a polynomial map, where n ≥ 3. Suppose
that the radius R > 0 of Ba,R is sufficiently large. Then, λ ∈ F (Rn) \K0(F ) is a
typical value at ∞ of F if and only if the following are satisfied:

(1) There is no vanishing component at ∞ when t tends to λ;
(2) There exists a neighborhood D of λ in Rn−2 such that, for any t ∈ D,

(2-1) F−1(t) \ IntBR has no compact, connected component, and
(2-2) χ(F−1(t)) = χ(F−1(λ)) holds.

The above theorem is stated again in Section 5 (Theorem 5.1), where a pre-
cise condition for the radius R is given. The condition (2-1) is added instead of
the condition about the indices in Theorem 1.1. Note that atypical values of an
algebraic family of real curves, which can be seen as a restriction of a polyno-
mial map from Rn to Rn−1, are characterized by the conditions (1) and (2-2) [13].
See also [7]. Atypical values of a holomorphic map between connected complex
manifolds M → B with dimC M = dimC B + 1 are also characterized by the con-
ditions (1) and (2-2) [8].

This paper is organized as follows. In Section 2, we prove a few lemmas con-
cerning a choice of the center a and the radius R of the ball Ba,R. In Section 2.5,
two examples of polynomial functions f : R3 → R, which are based on examples
in [13] (also [2]), are given. In Section 3, we prove a theorem that characterizes a
vanishing component at infinity of a real polynomial function. Using this theorem,
we can obtain some argument for detecting a vanishing component at infinity, see
Remark 3.2. Section 4 is devoted to the proof of Theorem 1.1, and Section 5 is
devoted to the proof of Theorem 1.2.

2. Preliminaries

2.1. Vanishing component. In this section we give the definition of a vanishing
component at ∞ for a polynomial map from Rn to Rm with n > m ≥ 1.

Definition 2.1. Let F : Rn → Rm be a polynomial map. It is said that there is
a vanishing component at ∞ when t tends to λ if there exists a sequence of points
{tk} in Rm such that

lim
k→∞

tk = λ and lim
k→∞

max
i

inf{∥x∥ ∈ R | x ∈ Ytk,i} = ∞,

where Yt,1, . . . , Yt,nt are the connected components of F−1(t).

Remark 2.2. The existence of a vanishing component at ∞ does not change even
if the distance function ∥x∥ is replaced by ∥x− a∥ for any point a ∈ Rn.
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2.2. The center of the ball Ba,R. Let f : Rn → R be a polynomial function,
Sing(f) be the set of critical points of f in Rn, and K0(f) = f(Sing(f)).

Lemma 2.3. Let f : Rn → R be a polynomial function, K be a finite set in
f(Rn)\K0(f), and AK be the set of points a in Rn satisfying that, for each λ ∈ K,
there exists an open interval Iλ in R containing λ such that the function on f−1(t)
defined by x 7→ ∥x−a∥2 has only non-degenerate critical points for any t ∈ Iλ\{λ}.
Then the set AK is dense in Rn.

Proof. Set

S =

{
(x, v, t) ∈ Rn × Rn × (R \K0(f)) | f(x) = t, rank

(
v

grad f

)
≤ 1

}
.

It is easy to check that S is a semialgebraic set of dimensional n + 1 having no
singular points.

Consider the “endpoint” map (see [11]):

E : S → Rn × (R \K0(f)), (x, v, t) 7→ (x+ v, t).

By the Sard Theorem, the set E(Sing(E)) of singular values of E has measure 0.
We can also check that E(Sing(E)) is a semialgebraic set in Rn × (R \K0(f)) of
dimension at most n. By [11, Lemma 6.5], (a, t) ∈ E(Sing(E)) if and only if the
function on f−1(t) defined by x 7→ ∥x− a∥2 has a degenerate critical point.

We will prove the following claim: For each point a ∈ Rn, any neighborhood of
a in Rn contains at least one point x ̸= a such that the intersection ({x} × R) ∩
E(Sing(E)) is an isolated set. This implies that AK is dense in Rn.

For a contradiction, we assume that there exist a point a ∈ Rn and a small
neighborhood U of a in Rn satisfying that, for each x ∈ U \ {a}, there is an open
interval Ix ⊂ R such that {x} × Ix ⊂ E(Sing(E)).

Since E(Sing(E)) is a semialgebraic set in E(S) of codimension at least one, its
Zariski closure V in Rn × R is an algebraic subset of dimension at most n. Let
π : V → Rn be the projection from V ⊂ Rn×R to Rn defined by (x, t) 7→ x. Since
{x} × Ix ⊂ V for x ∈ U \ {a}, the inclusion U \ {a} ⊂ π(V ) holds.

On the other hand, it implies from [12, 14] that there exists an open ball B ⊂ U \
{a} such that π is trivial on B, which means that π−1(B) ⊂ V is diffeomorphic to
B×π−1(x) for x ∈ B. From the inclusion U\{a} ⊂ π(V ), we get {x}×Ix ⊂ π−1(x).
Therefore dim π−1(B) = dimU + 1 = n+ 1. This contradicts dimV ≤ n. □

Remark 2.4. In Lemma 2.3, a point in f−1(t) around which the function on f−1(t)
defined by x 7→ ∥x − a∥2 is locally constant is regarded as a degenerate critical
point.
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2.3. Topology of fibers and indices of vector fields on the sphere. Choose
a center a ∈ Rn of Ba,R generic and the radius R > 0 sufficiently large. The
interior of Ba,R is denoted by IntBa,R and its boundary is by ∂Ba,R. For each point
p ∈ (Γ \ Sing(f)) ∩ ∂Ba,R, let Γp denote the tangency branch at ∞ of f passing
through p. Set xp(r) = Γp ∩ ∂Ba,r, then f(xp(r)) is monotone with respect to the
parameter r. We use the following notations:

• f ↗ λ along Γp means that f(xp(r)) is monotone increasing for r ≥ R and
limr→∞ f(xp(r)) = λ.

• f ↘ λ along Γp means that f(xp(r)) is monotone decreasing for r ≥ R and
limr→∞ f(xp(r)) = λ.

Remark 2.5. Let Γp be the tangency branch at ∞ of f passing through p ∈ (Γ \
Sing(f)) ∩ ∂Ba,R. We have the following remarks.

(1) The point p is a critical point of the following two functions:

f |∂Ba,ra(p)
: ∂Ba,ra(p) → R, where ra(p) = ∥p− a∥,

ra|f−1(f(p)) : f
−1(f(p)) → R, where ra(x) = ∥x− a∥.

(2) Suppose that f ↗ λp along Γp. Then, p is a local maximum (resp. mini-
mum) point of f |∂Ba,ra(p)

if and only if it is a local minimum (resp. maxi-

mum) point of ra|f−1(f(p)).
(3) Suppose that f ↘ λp along Γp. Then, p is a local maximum (resp. mini-

mum) point of f |∂Ba,ra(p)
if and only if it is a local maximum (resp. mini-

mum) point of ra|f−1(f(p)) (cf. Example 2.7).

For simplicity, we denote by P one of the properties “local maximum”, “local
minimum”, “neither local maximum nor local minimum”.

Lemma 2.6. There exists a sufficiently large radius R > 0 such that, for each
p ∈ (Γ \ Sing(f)) ∩ ∂Ba,R, the property P of f |∂Ba,r is constant on Γp.

Proof. For each property P , define the subset VP of Rn by

VP = {x ∈ Rn | x is a P point of f |∂Ba,ra(x)
for ra(x) = ∥x− a∥ ≥ R}.

We will show that, for each P , the set VP is a semi-algebraic set. If P is local
maximum, the set VP is represented in terms of the first-order formulas as follows
(for the definitions of first-order formulas, see [1, 4]):

VP = {x ∈ Rn | ∃ε ∈ R ((y ∈ Rn, ∥y∥ = ∥x∥, ∥y − x∥ < ε) ⇒ f(y) ≤ f(x))}.
Hence, it implies from the Tarski-Seidenberg Theorem (see [1, Proposition 2.2.4]
or [4, Theorem 1.6]) that VP is a semialgebraic set. The set VP for P being
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local minimum is also semialgebraic by a similar argument. If P is neither local
maximum nor local minimum, then the set VP is the complement of the above two
semialgebraic sets. Therefore it is also semialgebraic.

Now, Γp ∩ VP is a semialgebraic subset of a curve for each P . Hence we can
choose R > 0 sufficiently large so that each Γp is contained in some of VP . □

2.4. Choice of the radius R. Define the set K∞(f) by

K∞(f) = {t ∈ R | there exists a sequence {xk} in Rn such that ∥xk∥ → ∞,

f(xk) → t, and ∥xk∥ ∥ grad f(xk)∥ → 0 as k → ∞}.
Note that K∞(f) is a finite set and satisfies T∞(f) ⊂ K0(f)∪K∞(f). We choose a
generic point a ∈ Rn as in Lemma 2.3 with respect to the set K = K∞(f) \K0(f).
Choose an open interval Iλ for each λ ∈ K so that Iλ∩ Iλ′ = ∅ for λ ̸= λ′ ∈ T∞(f).
We choose the radius R > 0 sufficiently large so that the following properties hold:

(i) Γ \ IntBa,R is homeomorphic to (Γ ∩ ∂Ba,R) × [0, 1) and, for each p ∈
(Γ \ Sing(f)) ∩ ∂Ba,R,

Γp ∩
⋃

λ∈T∞(f)

f−1(λ) = ∅.

(ii) R > 0 satisfies the condition in Lemma 2.6. Since the center a is chosen as
in Lemma 2.3, the property “neither local maximum nor local minimum”
for tangency branches is replaced by “saddle”.

(iii) For each λ ∈ K, each connected component Y of f−1(λ)\ IntBa,r intersects
∂Ba,r transversely for any r ≥ R. In particular, Y is diffeomorphic to
(Y ∩ ∂Ba,r)× [0, 1) for any r ≥ R.

(iv) {f(x) | x ∈ Γp} ⊂ Iλp holds for any p ∈ (Γ \ Sing(f)) ∩ ∂Ba,R.

In the following sections, we always assume that the radius R > 0 is sufficiently
large so that these properties hold.

2.5. Examples. We give two examples of polynomial functions f : R3 → R of the
form f(x, y, z) = g(x, y), where g(x, y) is a polynomial function of two variables.

Example 2.7. Let g : R2 → R be the following polynomial function:

g(x, y) = 2y5 + 4xy4 + (2x2 − 9)y3 − 9xy2 + 12y.

This example is given in [13, Example 3.4]. The shapes of fibers around the infinity
is studied in [2] explicitly, which is given as in Figure 1. There are eight tangency
branches, four of which are on the right-hand side and the other four are on the
left-hand side. The arrow on each tangency branch represents the direction in
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which the value of f increases. For example, for the right-top tangency branch
Γp1 , we have g ↘ 0 along Γp1 , p1 is a local minimum of g|Ba,ra(p1)

, and it is a local

minimum of ra|g−1(g(p1), where ra(x) = ∥x − a∥. This function has no vanishing
component at ∞.

0

0

−∞
−∞

g−1(0)

g−1(−ε)

g−1(ε)

∞

∞

0

0

g−1(0)

g−1(−ε)

g−1(ε)

p1
p2

Figure 1. Fibers around the infinity in Example 2.7. The oriented
dotted curves are tangency branches at ∞.

Let f : R3 → R be a polynomial function given by f(x, y, z) = g(x, y). In [13,
Example 3.4], the function g is obtained from h(x, y) = y(2x2y2 − 9xy + 12) as
g(x, y) = h(x + y, y). From this form, we can see that g−1(0) ∩ ∂Ba,R is given by
{y = 0} ∩ ∂Ba,R, which is a connected, simple closed curve on the 2-sphere ∂Ba,R.
The complement of this curve in ∂Ba,R consists of two open disks. We denote the
one where y is positive by Ω1 and the other by Ω2. By choosing the center a of
Ba,R on z = 0, we may assume that all tangency branches in Figure 1 are on the
plane z = 0. Then, for example, the point p1 is local minimum of f |Ba,ra(p1)

and

also local minimum of ra|f−1(f(p1), where ra(x) = ∥x−a∥. This is in the case (3) of
Remark 2.5. The index is Indp1(Xa,R) = 1. On the other hand, the singularity of
ra|f−1(f(p2) on the tangency branch Γp2 passing through the point p2 in the figure

becomes a saddle, and therefore its index is Indp2(Xa,R) = −1. The union Γ(0) of
tangency branches at ∞ of f along which either f ↘ 0 or f ↗ 0 has no other
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tangency branch passing through the region Ω1. Hence we have

Ind(λ,Ω1) =
∑

p∈Γ(0)∩Ω1

Indp(Xa,R)

= Indp1(Xa,R) + Indp2(Xa,R)

= 1 + (−1) = 0.

By the same observation, we have Ind(λ,Ω2) = 0. Then, by Theorem 1.1, we can
conclude that 0 is a typical value at ∞ of f .

Example 2.8. Let g : R2 → R be the following polynomial function:

g(x, y) = x2y3(y2 − 25)2 + 2xy(y2 − 25)(y + 25)− y4 − y3 + 50y2 + 51y − 575.

This example is given in [13, Example 3.1]. The shapes of fibers around the infinity
is studied in [2] explicitly after replacing x by x+ y to avoid vertical tangency at
infinity. The fibers are given as in Figure 2. There are two component vanishing at
∞ when t tends to 0. The word “cleaving” means that the point on the tangency
branch goes to ∞ when t tends to 0, so that the curve cleaves locally into two
curves. There are two cleaving curves.

∞
0

−∞
∞
−∞
0

−∞
−∞

−∞
∞
0

∞
−∞

0

vanishing

cleaving

cleaving

vanishing

p1

p2

p3

p4

Figure 2. Fibers around the infinity in Example 2.8. The oriented
dotted curves are tangency branches at ∞. All horizontal solid lines
are curves representing g−1(0).
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Let f : R3 → R be a polynomial function given by f(x, y, z) = g(x, y). Us-
ing Mathematica, we can see that the curve of g−1(0) inside the dotted circle is
as shown in Figure 2. Note that it is explained in [13, Example 3.1] that if |t| is
sufficiently small then g−1(t) is a disjoint union of five non-compact connected com-
ponents. Thus, the curves f−1(0) ∩ ∂Ba,R on the sphere ∂Ba,R becomes as shown
in Figure 3. There are five circles. Let Xa,R be the gradient vector field of f |∂Ba,R

.
We have Indp1(Xa,R) = Indp3(Xa,R) = −1 and Indp2(Xa,R) = Indp4(Xa,R) = 1. On
the region Ω1 depicted in the figure, we have

Ind(0,Ω1) = Indp1(Xa,R) + Indp2(Xa,R) + Indp4(Xa,R)

= (−1) + 1 + 1 = 1 ̸= 0.

Hence 0 is an atypical value at ∞ of f by Theorem 1.1. We can get the same con-
clusion from the region Ω2 depicted in the figure since Ind(0,Ω2) = Indp3(Xa,R) =
−1 ̸= 0.

∂Ba,R

p1

p2

p4

p3

Ω1

Ω2

Figure 3. The curves f−1(0) ∩ ∂Ba,R on the sphere ∂Ba,R.

3. A characterization of vanishing component at infinity

Let f : Rn → R be a polynomial function. Hereafter we omit a in the suffix
of Ba,r for r > 0 and denote it by Br for simplicity. Each critical point p ∈ ∂BR

of f |∂BR
not lying on Sing(f) is a point in (Γ \ Sing(f)) ∩ ∂BR. Hence it has a

tangency branch Γp.

Theorem 3.1. Suppose n ≥ 2 and λ ∈ T∞(f) \ K0(f). There is a vanishing
component at ∞ when t tends to λ with t > λ (resp. t < λ) if and only if there
exists a local minimum (resp. maximum) point p ∈ ∂BR of f |∂BR

with f ↘ λ
(resp. f ↗ λ) along Γp such that the intersection of the connected component of
f−1(f(p)) containing p with ∂BR consists of isolated points.
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Proof. We first prove the “only if” assertion. We only prove the assertion in the
case where t tends to λ with t > λ. The proof for the other case is similar. Let {Yt}
be a continuous family of connected components of f−1(t) that vanishes at∞ when
t tends to λ. Tangency branches intersecting {Yt} are contained in a connected
component H of Rn \ (f−1(λ)∪ IntBR) by the property (i) about the choice of the
radius R in Section 2.4. Remark that H is possibly Rn \ IntBR. Set Ω = H ∩∂BR.
Either Ω = ∂BR, or Ω ⊂ ∂BR is bounded by a finite number of circles belonging to
f−1(λ) ∩ ∂BR. Since t tends to λ with t > λ, we have Ω ⊂ {x ∈ ∂BR | f(x) > λ}.
Let SΩ denote the set of local minimum points of f |∂BR

in Ω ∩ Γ(λ), where Γ(λ) is
the union of tangency branches at ∞ of f along which either f ↗ λ or f ↘ λ. By
the definition of a vanishing component at ∞ in Section 2.1 and Remark 2.5 (1),
the function ra(x) = ∥x− a∥ restricted to f−1(t) has a local minimum point y on
Ω ∩ Γ(λ). Since t > λ, it satisfies that f ↘ λ along Γy. Hence, by Remark 2.5 (3),
y is a local minimum point of f |∂BR

, that is, y is a point in SΩ. In particular, SΩ

is non-empty.

Set δ = minx∈SΩ
f(x) and let p be a point in SΩ such that f(p) = δ and f ↘ λ

along Γp. Let (λ, δ] be the range of the parameter t of Yt. We will show that
Yδ ∩ ∂BR consists of isolated points.

Assume for a contradiction that Yδ ∩ ∂BR is not isolated.

Claim 1. Yδ ∩ Ω is not isolated.

Proof. Assume that Yδ ∩Ω is isolated. Then, all points in Yδ ∩Ω are local minima
of ra|Yδ

: Yδ → R, where ra(x) = ∥x − a∥. The inequality λ < δ implies that
Yδ ∩ f−1(λ) = ∅. Hence Yδ ⊂ H, see Figure 4. This inclusion implies Yδ ∩ ∂BR =
Yδ ∩Ω. However, the right-hand side is isolated while the left-hand is not. This is
a contradiction. □

Yδ

∂BR

f−1(λ)f−1(λ) H

Ω

Figure 4. Yδ ∩ f−1(λ) = ∅ implies Yδ ⊂ H.

We continue the proof of Theorem 3.1. Let Y[λ,δ] be the connected component
of f−1([λ, δ]) containing p. There are two cases:
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Case 1: Y[λ,δ] ∩ f−1(λ) = ∅ (cf. Figure 5). Set Ω[λ,δ] = Y[λ,δ] ∩ Ω̄, where Ω̄ is
the closure of Ω in ∂BR. Since Yδ ∩ Ω is not isolated by Claim 1, Yδ ∩ Ω has
a connected component C of dimension at least 1. A point in Ω at which Yδ is
tangent to Ω belongs to a tangency branch at ∞ of f and hence it is isolated in
Ω. In particular, it cannot be in C. This means that Yδ and Ω intersect along
C transversely. Therefore, since f is continuous on Ω̄, Y[λ,δ] ∩ Ω has a connected
component C of dimension n−1 ≥ 1. This set C is a compact subset of Ω. Due to
a generic choice of the center a in Lemma 2.3, the restriction of f to C cannot be a
constant function. Hence f is not a constant function on Ω[λ,δ]. Since ∂Ω̄ ⊂ f−1(λ)
(possibly ∂Ω̄ = ∅) and Y[λ,δ] ∩ f−1(λ) = ∅, we have ∂Ω[λ,δ] ⊂ f−1(δ) (possibly
∂Ω[λ,δ] = ∅). Hence, there exists a local minimum point q of f |∂BR

in the interior
of Ω[λ,δ] with λ < f(q) < δ.

Y[δ,λ]

∂BR

f−1(λ)f−1(λ)

p

λ

Γp

f−1(f(p))

q

q′

f−1(f(q))

Figure 5. A schematic picture for the proof in Case 1.

Since λ < f(q) < δ = f(p), there exists a point q′ on Γp such that f(q) = f(q′). If
f ↘ λq along Γq with λq ̸= λ, then the two sets {f(x) | x ∈ Γp} and {f(x) | x ∈ Γq}
should be disjoint by the property (iv). However f(q) = f(q′) is a common element
of these two sets. If f ↘ λ along Γq, then q ∈ SΩ. However, this and f(q) < f(p)
contradict f(p) = δ = minx∈SΩ

f(x). Thus, in either case, a contradiction arises.

Case 2: Y[λ,δ] ∩ f−1(λ) ̸= ∅. Take one point q ∈ Y[λ,δ] ∩ f−1(λ), then q belongs
to the connected component of f−1([λ, ε]) \ IntBa,R contained in Y[λ,δ] for any
λ < ε < δ. This contradicts the fact that {Yt} vanishes at ∞ when t tends to λ.

Next we prove the “if” assertion. Assume that there exists a local minimum
point p ∈ Γλ ∩ ∂BR of f |∂BR

with f ↘ λ along Γp such that the intersection of
the connected component Zf(p) of f−1(f(p)) containing p with the sphere ∂BR

consists of isolated points. Since p is a local minimum point of f |∂BR
, p is also a
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local minimum point of ra|Zf(a)
by Remark 2.5 (3). This and the isolatedness of

Zf(p) ∩ ∂BR imply that Zf(p) ⊂ Rn \ IntBR.

Put δ = f(p). Let Z(λ,δ] be the connected component of f−1((λ, δ]) containing p.
We will show that Z(λ,δ]∩∂BR = Zδ∩∂BR. It is easy to see that the two connected
components Γp \ {p} and ∂BR \ Zδ are subsets of different connected components
of R \ Zδ. Assume that there exists a point x ∈ Z(λ,δ] ∩ (∂BR \ Zδ). Choose a
point y ∈ Γp \ {p}. Note that the values f(x) and f(y) are in (λ, δ). Since Z(λ,δ]

is connected, there exists a path in Z(λ,δ] connecting x and y. Furthermore, since
f is a trivial fibration on (λ, δ], we can isotope this path so that it is in Z(λ,δ] \Zδ.
However, this is impossible since x and y belong to different connected components
of Rn \ Zδ. Therefore, Z(λ,δ] ∩ ∂BR = Zδ ∩ ∂BR.

Now it follows that for any t ∈ (λ, δ), the connected component Zt of f
−1(t)

intersecting Γp does not intersect BR. Hence the distance function ra|Zt on Zt

attains a minimum value at some point belonging to a tangency branch in Rn \
IntBR. Thus, we can find a sequence {tk} on (λ, δ) with limk→∞ tk = λ and a point
q ∈ Γ ∩ ∂BR such that

min{ra(x) | x ∈ Ztk} = ra(qk),

where qk = Ztk ∩ Γq. The distance ra(qk) goes to ∞ as k → ∞, otherwise Γq

intersects f−1(λ) and this contradicts the property (i). Hence Ztk vanishes at ∞
as k → ∞.

The proof for the case where p is a local maximum point is similar. □

Remark 3.2. Using Theorem 3.1, a vanishing component at ∞ of f : Rn → R is
detected as follows:

(Step 1) Choose a generic center a, calculate all tangency branches, and fix a suf-
ficiently large radius R > 0 that satisfies the conditions written in Sec-
tion 2.4.

(Step 2) For each p ∈ (Γ \ Sing(f)) ∩ ∂BR, calculate λp = limr→∞ f(xp(r)), where
xp(r) = Γp ∩ ∂Br. Then, make the following lists of finite sets:

Pmin(λ) = {p ∈ (Γ \ Sing(f)) ∩ ∂BR | p is local minimum of f |∂BR
with f ↘ λ}

Pmax(λ) = {p ∈ (Γ \ Sing(f)) ∩ ∂BR | p is local maximum of f |∂BR
with f ↗ λ}

Λmin = {λ ∈ R | Pmin(λ) ̸= ∅}
Λmax = {λ ∈ R | Pmax(λ) ̸= ∅}.

(Step 3) For each element λ ∈ Λmin (resp. λ ∈ Λmax), check if there exists p ∈
Pmin(λ) (resp. p ∈ Pmax(λ)) such that the intersection f−1(f(p)) ∩ ∂BR

consists of isolated points.
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(3-1) If it exists, then there exists a vanishing component at ∞ when t tends
to λ by Theorem 3.1.

(3-2) If it does not exist, then dim f−1(f(p))∩∂BR ≥ 1 for any p ∈ Pmin(λ)∪
Pmax(λ). For each p ∈ Pmin(λ) ∪ Pmax(λ), calculate all critical values
c1, . . . , ck of ra(x) = ∥x − a∥ on f−1(f(p)) and then choose a real
number R′ greater than max{R, c1, . . . , ck}, see Figure 6. Make a
list L′ of the connected components of ∂BR′ \ f−1(f(p)) and find a
component Ω′

p ∈ L′ intersecting Γp. If f−1(λ) ∩ Ω′
p = ∅ then there

exists a vanishing component at ∞ when t tends to λ as shown in the
next lemma (Lemma 3.3).

All vanishing components at ∞ are detected by the above steps, which is proved
in Lemma 3.4 below.

∂BR
p

Γp

f−1(f(p))

∂BR′
Ω′p

H ′

Figure 6. A schematic picture for Step (3-2).

Lemma 3.3. If f−1(λ) ∩ Ω′
p = ∅ then there exists a vanishing component at ∞

when t tends to λ.

Proof. Consider the case where p ∈ Pmin(λ). LetH
′ be the connected component of

Rn\(f−1(f(p))∪IntBR′) intersecting Γp and H̄ ′ be its closure. Let Ω̄′
p be the closure

of Ω′
p in ∂BR′ . Since R′ > max{R, c1, . . . , ck}, H̄ ′ is diffeomorphic to Ω̄′

p × [0, 1).

Let Y(λ,f(p)] be the connected component of f−1((λ, f(p)]) \ IntBR′ intersecting Γp

and Ȳ(λ,f(p)] be its closure. The inclusion Ȳ(λ,f(p)] ⊂ H̄ ′, the property (iii), and the
assumption f−1(λ)∩Ω′

p = ∅ imply that Ȳ(λ,f(p)]∩f−1(λ) = ∅. Since f ↘ λ along Γp

and f−1(λ) ∩ Ω′
p = ∅, we have λ < f(x) for x ∈ Ω̄′

p, f(x) = f(p) for x ∈ ∂Ω̄′
p, and

there exists a point x′ ∈ Ω′
p such that f(x′) < f(p). Set δ = min{f(x) | x ∈ Ω̄′

p}.
Note that λ < δ < f(p). For t ∈ (λ, δ), the connected component Yt of f

−1(t)
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intersecting Γp does not intersect Ω
′
p, and therefore it is contained in Y(λ,f(p)]. Since

Ȳ(λ,f(p)] ∩ f−1(λ) = ∅, {Yt} is a vanishing component at ∞ when t tends to λ.

The assertion for the case p ∈ Pmax(λ) is proved similarly. □

Lemma 3.4. If there exists a vanishing component at ∞ when t tends to λ, then
there exists a point p ∈ (Γ \ (Sing(f))) ∩ ∂BR with f−1(λ) ∩ Ω′

p = ∅.
Proof. Suppose that there exists a vanishing component at ∞ when t tends to λ.
We prove only the case t > λ. By Theorem 3.1, there exists a local minimum
point p ∈ Γp∩∂BR of f |∂BR

such that the intersection of the connected component
Zf(p) of f−1(f(p)) containing p with the sphere ∂BR consists of isolated points.
Put δ = f(p) and let Z(λ,δ] be the connected component of f−1((λ, δ]) containing
p. Then, as shown in the proof of the “if” assertion of Theorem 3.1, we have
Z(λ,δ] ∩ ∂BR = Zδ ∩ ∂BR. Let R′ be the radius chosen as in (3-2) and Ω′

p be the
connected component of ∂BR′ \ Zδ intersecting Γp. Assume that there exists an
intersection point x ∈ f−1(λ) ∩ Ω′

p. By the property (iii), there exists an arc on

f−1(λ) connecting x and a point on f−1(λ)∩∂BR, but such an arc should intersect
Zδ. This contradicts the fact that the image of this arc is λ. □

4. Proof of Theorem 1.1

Now, we restrict our setting to the case of polynomial functions with three
variables. Let f : R3 → R be a polynomial function. For each λ ∈ T∞(f) \K0(f),
there exists a sufficiently small ε > 0 such that, for I−λ = (λ − ε, λ) and I+λ =
(λ, λ+ ε), the restriction of f to f−1(I∗λ) and the restriction of f to f−1(I∗λ) ∩ BR

are trivial fibrations unless f−1(I∗λ) = ∅, where ∗ ∈ {−,+}. Here ε is chosen so
that f−1(t) intersects ∂BR transversely for t ∈ I∗λ. Then the restriction of f to
f−1(I∗λ) ∩ (Rn \ IntBR) is also a trivial fibration.

The surface f−1(λ) \ IntBR divides R3 \ IntBR into a finite number of connected
components H∗

λ,1, . . . , H
∗
λ,nλ

by the property (iii), where ∗ = − if f(x) < λ on H∗
λ,i

and ∗ = + if f(x) > λ on H∗
λ,i. Each H∗

λ,i is homeomorphic to Ω∗
λ,i × [0, 1), where

Ω∗
λ,i = H∗

λ,i ∩ ∂BR.

Let Ind(λ,Ω∗
λ,i) be the sum of indices of the gradient vector field of f restricted

to ∂BR for all zeros belonging to Γ(λ) on Ω∗
λ,i as defined in the introduction.

Lemma 4.1. χ(f−1(t) ∩H∗
λ,i) = Ind(λ,Ω∗

λ,i) for any t ∈ I∗λ.

Proof. Choose R′ > R sufficiently large so that f−1(t) intersects ∂BR′ transversely
and f−1(t) \ IntBR′ is diffeomorphic to (f−1(t) ∩ ∂BR) × [0, 1) for t ∈ I∗λ. Then
f−1(t) ∩ H∗

λ,i has the same homotopy type as f−1(t) ∩ H∗
λ,i ∩ BR′

R , where BR′
R =
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{x ∈ R3 | R ≤ ∥x− a∥ ≤ R′}. Hence we have

χ(f−1(t) ∩H∗
λ,i) = χ(f−1(t) ∩H∗

λ,i ∩BR′
R ).

Consider the distance function ra(x) = ∥x − a∥ on f−1(t) ∩ H∗
λ,i ∩ BR′

R . Due
to a generic choice of the center of BR in Section 2.2, this function has only
non-degenerate critical points and has no critical point on the boundary. Hence,
there is a one-to-one correspondence between critical points of ra on f−1(t) ∩H∗

λ,i

and the tangency branches Γp passing through p ∈ Γ(λ) ∩ Ω∗
λ,i as mentioned in

Remark 2.5 (1). If p ∈ Γ(λ) ∩ Ω∗
λ,i is local minimum or maximum of f |∂BR

then

Indp(Xa,R) = 1 and the Morse index i(pt) of the distance function ra on f−1(t)∩H∗
λ,i

at the intersection point pt of Γp with f−1(t) is 0 or 2. If p ∈ Γ(λ) ∩Ωλ,i is a saddle
point of f |∂BR

then Indp(Xa,R) = −1 and the Morse index i(pt) at the intersection
point pt of Γp with f−1(t) is 1. Hence we have Indp(Xa,R) = (−1)i(pt). Since the
Euler characteristic of f−1(t) ∩ Ω∗

λ,i is 0, by the Morse Theory, we have

χ(f−1(t) ∩H∗
λ,i ∩BR′

R ) =
∑

p∈Γ(λ)∩Ωλ,i

(−1)i(pt)

=
∑

p∈Γ(λ)∩Ωλ,i

Indp(Xa,R) = Ind(λ,Ω∗
λ,i).

This completes the proof. □

Proof of Theorem 1.1. We prove the first assertion by contraposition. Assume that
λ is a typical value of f . There exists a sufficiently small ε > 0 such that f is a
trivial fibration on Iε = (λ − ϵ, λ + ϵ). Let Ω∗

λ,i be a connected component of

∂BR \ f−1(λ) and ∂Ω̄∗
λ,i be the boundary of the closure of Ω∗

λ,i in ∂BR, which is a

union of circles. By the property (iii), the connected component Y of f−1(λ)\IntBR

intersecting ∂Ω̄∗
λ,i is diffeomorphic to ∂Ω̄∗

λ,i × [0, 1), and hence χ(Y ) = 0. This and

the triviality of f on Iε imply that χ(f−1(t) ∩ H∗
λ,i) = 0 for t ∈ I∗λ, where H∗

λ,i is

the connected component of R3 \ (f−1(λ) ∪ IntBR) intersecting Ω∗
λ,i. Combining

this with Lemma 4.1 we obtain Ind(λ,Ω∗
λ,i) = 0. This completes the proof of the

first assertion.

Next we prove the second assertion. Because there does not exist a component
of f−1(t) vanishing at ∞ when t tends to λ, there exists a sufficiently small ε > 0
such that each connected component of f−1(t) intersects ∂BR for all t ∈ I−λ ∪ I+λ .
Let H∗

λ,i be a connected component of R3 \ (f−1(λ) ∪ IntBR) and {Y 1
t , . . . , Y

s
t }

be the connected components of f−1(t) ∩ H∗
λ,i. Set Ω∗

λ,i = H∗
λ,i ∩ ∂BR. Since
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Ind(λ,Ω∗
λ,i) = 0, we have χ(f−1(t) ∩H∗

λ,i) = 0 by Lemma 4.1. Hence

s∑
j=1

χ(Y j
t ) = 0.

Choose R′ > R sufficiently large so that f−1(t) intersects ∂BR′ transversely and
f−1(t) \ IntBR′ is diffeomorphic to (f−1(t) ∩ ∂BR′) × [0, 1) for t ∈ I∗λ, and set
BR′

R = {x ∈ R3 | R ≤ ∥x− a∥ ≤ R′}. Then, as mentioned at the beginning of the
proof of Lemma 4.1, χ(Y j

t ∩BR′
R ) = χ(Y j

t ) holds. Hence

s∑
j=1

χ(Y j
t ∩BR′

R ) = 0. (4.1)

Here each Y j
t ∩BR′

R is a compact, connected, orientable surface embedded in R3.

We claim that χ(Y j
t ∩ BR′

R ) = 0 for any j = 1, . . . , s. If s = 1 then it follows
from equation (4.1). Suppose that s ≥ 2. Assume that χ(Y j0

t ∩ BR′
R ) ̸= 0 for

some j0 ∈ {1, . . . , s}. Then there exists a connected component Y j1
t with χ(Y j1

t ∩
BR′

R ) > 0 by (4.1). Since Y j1
t ∩ BR′

R is a compact, connected, orientable surface,
it is diffeomorphic to a disk. The boundary of this disk lies on ∂BR since ε >
0 is chosen so that Y j1

t ∩ ∂BR ̸= ∅. Moreover, this boundary is parallel to a
boundary component of the closure of Ω∗

λi
due to the property (iii). Since H∗

λ,i

is homeomorphic to Ω∗
λ,i × [0, 1) and the disk Y j1

t ∩ BR′
R is relatively embedded in

H∗
λ,i, Ω

∗
λi

should be a disk. Since the boundary of Ω∗
λi

is connected, f−1(t) ∩H∗
λ,i

is also connected. This contradicts s ≥ 2.

Now we have χ(Y j
t ∩ BR′

R ) = 0 for any t ∈ I∗λ and j = 1, . . . , s. This means
that all of these connected components are diffeomorphic to S1× [0, 1]. Therefore,
the relative homotopy groups πi(f

−1(I∗λ ∪ {λ}), f−1(λ), x) are trivial for all i ∈ N
and any base point x ∈ f−1(λ). Note that this conclusion holds for both of the
cases ∗ = − and ∗ = +. Hence, by [5, Proposition 3.3 and Theorem 1.2], for
Iλ = (λ− ε, λ+ ε), the map

f |f−1(Iλ) : f
−1(Iλ) → Iλ

is a Serre fibration. Then, this implies that f |f−1(Iλ) is a trivial fibration by [10,
Corollary 32]. Hence λ is a typical value at ∞ of f . □

5. Typical values of polynomial maps with 2-dimensional fibers

In this section, we study polynomial maps from Rn to Rn−2. The case n = 3 is
studied in the previous section.
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Let F : Rn → Rn−2 be a polynomial map, where n ≥ 3, and λ be a point in
F (Rn) \ K̄0(F ), where K̄0(F ) is the closure of K0(F ) in Rn−2. Let BR be the
n-dimensional ball in Rn centered at a ∈ Rn and with radius R > 0. As shown
in [5, Lemma 3.2], we can choose a sufficiently large radius R > 0 satisfying the
following property:

(v) Each connected component Y of F−1(λ)\IntBR intersects ∂Br transversely
for any r ≥ R. In particular, Y \IntBr is diffeomorphic to (Y ∩∂Br)× [0, 1)
for any r ≥ R.

In particular, there is a deformation-retract from F−1(λ) to F−1(λ) ∩BR.

Theorem 5.1. Let F : Rn → Rn−2 be a polynomial map, where n ≥ 3. For
λ ∈ F (Rn) \ K̄0(F ), choose a radius R so that the property (v) holds. Then, λ is
a typical value at ∞ of F if and only if the following are satisfied:

(1) There is no vanishing component at ∞ when t tends to λ;
(2) There exists a neighborhood D of λ in Rn−2 such that, for all t ∈ D,

(2-1) F−1(t) \ IntBR has no compact, connected component, and
(2-2) χ(F−1(t)) = χ(F−1(λ)) holds.

Proof. It is enough to show that if the conditions (1) and (2) are satisfied then F
is a trivial fibration over some neighborhood of λ. Assume that the two conditions
are satisfied. Let D be a small neighborhood of λ as in the condition (2). We can
choose D small enough so that the fibers F−1(t) are regular and intersect ∂BR

transversely for all t ∈ D. The map F |F−1(D)∩BR
: F−1(D) ∩ BR → D is a trivial

fibration.

By the conditions (1) and (2-1), F−1(t) \ IntBR does not have a connected
component which is contractible for any t ∈ D. Hence we have χ(F−1(t)\IntBR) ≤
0. Then, by the condition (2-2) and the property (v), we have

χ(F−1(λ)) = χ(F−1(t)) = χ(F−1(t) ∩BR) + χ(F−1(t) \ IntBR)

≤ χ(F−1(t) ∩BR) = χ(F−1(λ) ∩BR) = χ(F−1(λ)),

which implies that χ(F−1(t)\IntBR) = 0. Here we used the fact that F−1(t)∩∂BR

is a disjoint union of circles and its Euler characteristic is 0. By the condition (2-1),
F−1(t) \ IntBR is diffeomorphic to a disjoint union of a finite number of copies of
S1 × [0, 1).

The rest of the proof is same as the last argument in the proof of Theorem 1.1.
Since there exists a deformation-retract from F−1(t) to F−1(t) ∩ BR for each t ∈
D and the map F |F−1(D)∩BR

is a trivial fibration, the relative homotopy groups
πi(F

−1(D), F−1(λ), x) are trivial for all i ∈ N and any base point x ∈ f−1(λ).
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Then, by [5, Proposition 3.3 and Theorem 1.2], the map F |F−1(D) : F
−1(D) → D

is a Serre fibration and hence it is a trivial fibration by [10, Corollary 32]. Hence
λ is a typical value at ∞ of F . □

References

[1] J. Bochnak, M. Coste, M-F. Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb. (3), 36,

Springer-Verlag, Berlin, 1998.

[2] M. Coste, M.J. de la Puente, Atypical values at infinity of a polynomial function on the real

plane: an erratum, and an algorithmic criterion, J. Pure Appl. Algebra 162 (2001), no. 1,

23–35.
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