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VIRASORO CONSTRAINTS FOR K3 SURFACES AND
MONODROMY OPERATORS

WEISHENG WANG

ABSTRACT. The Virasoro constraints for moduli spaces of stable torsion free sheaves
on a surface with only (p, p)-cohomology were recently proved by Bojko-Moreira-Lim.
The rank 1 case, which is not restricted to surfaces with only (p, p)-cohomology, was
established by Moreira. We formulate conjectural Virasoro constraints in any positive
rank without requiring only (p, p)-cohomology. We prove our conjecture for K3 surfaces
using Markman monodromy operators, which allow us to reduce to the rank 1 case. We
also prove new Virasoro constraints in rank 0. Finally, for K3 surfaces, we introduce
new Virasoro operators in negative degree which, together with the previous Virasoro
operators, give a representation of Virasoro algebra with central charge 24.

1. INTRODUCTION

The Virasoro operators in Gromov-Witten theory were first proposed in [3], where the
Virasoro operators are constructed for some Fano varieties. Here, I will recall the form
of the Virasoro operators following [9]. The Virasoro constraints on the moduli of stable
pairs side is obtained by the GW/PT correspondence on 3-folds [7], T will briefly review
this. The Virasoro constraints on moduli of stable sheaves were first obtained on Hilbert
schemes of points on a surface S by restrict the stable pairs case to S x P! [7][6]. Tt is
then generalised to moduli of stable sheaves of higher ranks [2][1].

1.1. Virasoro constraint in Gromov-Witten theory. Gromov-Witten theory is de-
fined by integration over the moduli space of stable maps. Let X be a non-singular
projective variety over C. A map from a connected pointed nodal curve to X is a stable
map if it has finite automorphism group (for more detail see chapter 24 [4]). A stable
map f represents a homology class 8 € Ho(X,Z) if fi[C] = 8. Myn(X,3) denotes
the moduli space of stable maps from n-pointed genus ¢ nodal curves to X represent-
ing the class 3, it is a proper Deligne-Mumford stack. There are n evaluation maps

ev; : My (X, 8) — X given by:
evi(X,p1, e f) = f() (L<i<n).

At each point [X,p1,...,pn, f] of My .(X, 3), the cotangent line to X at point p; is a
one-dimensional vector space; those spaces glue together to give a line bundle IL; called
the ith tautological line bundle. Define v; := ¢;(IL;).

Let {7,} be a homogeneous basis of H*(X,C). The descendent Gromov-Witten in-
variants of X are:

T (ar) - T ()05 = fw e ) )
g,m s
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Let {t7} be a set of variables, and define the generating function F* (¢, \) as

AEDIPE DY ﬁZ Mt T () - T () )2

9=0 BeH2(X,Z)  n=0 'a1 an
1 k'n

Also define the full partition function ZX = exp(F*). ZX is the partition function cor-
responds to the standard disconnected Gromov-Witten bracket (| >;(2;, where the domain
nodal curve could be disconnected:

SEDIC D WD W1 YRS N MO b

g=0 BeH(X,Z) n=0 . ai...an
ki...kn

A set of formal differential operators {Li}r>—1 are defined in [9], They are defined in
variables ¢}, and only depend upon the intersection pairing gq, = SX Ya U Yo, With 7., €
H*(X,C), the Hodge decomposition v, € HP*% (X, C) and the action of ¢1(X) on {7,}.
For the precise form of operators { Ly }x>_1, one can refer section 4 of [9]. Those operators
satisfy the Virasoro bracket,

[Li, Lo] = (k = 1) Ly
The Virasoro conjecture in Gromov-Witten theory states as follows:
Conjecture 1.1. For all non-singular projective varieties X, Ly(Z*) = 0.

This conjecture has been proven for curves C, of genus g and nonsingular projective
toric varieties.

1.2. GW /Pairs correspondence for 3-folds and Virasoro constraints for stable
pairs. The moduli space of stable maps Mg,n(x ,B) is essentially based upon the geom-
etry of curves in X, there is another way to approach the moduli of curves in X, which
is the moduli of stable pairs.

Definition 1.2. A stable pair (F,s) on X is a coherent sheaf ' on X and a section
s € H°(X, F) satisfying the following two stability conditions: (1) F is pure of dimension
1, (2) the section s : Ox — [ has cokernel of dimensional 0.

Given a stable pair Ox — F, the kernel of s defines a Cohen-Macaulay subcurve
C < X, ie. (C has no embedded points; the support of the cokernel of s defines a 0-
dimensional subscheme of C'. To a stable pair, the Euler characteristic and the class of
the support C of F' is associated:

X(F)=neZ and |[C]=p0¢€ Hy(X,Z).

For a fixed n and 3, there is a projective moduli space of stable pairs P,(X, (), it is non
empty only if 5 is an effective curve class. This moduli space is studied in [10], it has
been shown that P,(X, ) is a fine moduli space with a universal stable pair (F, s) over
X x P,(X, ). Let mx and 7p be the projection to the first and second factor, then one
can define the descendent class by:

chy () = 7p« (chi(F — Oxxpo(x,8) - Tx7) -

The invariant in the stable pair theory has the following form:

(e (1) - -l ()57 = f [ Tehw, ().

[Pn(X,8)]"" 121
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The moduli of stable maps and stable pair are both based upon the geometry of curves
in X, therefore one may hope there exists some links between those two descendent
theories. Indeed, for non-singular projective 3-folds, this correspondence conjecturally
holds: the Gromov-Witten and stable pairs descendent series are related after a change
of variables.

Let D be the commutative Q-algebra with generators

{ch;(7)]i = 0,7 € H*(X,Q)}
subject to the nature relations
ch; (A7) = Achi(7)
chy (4 + ) = chy(9) + chi(7),

For A € Q and 7,4 € H*(X). Define Dy similarly as D1 using generators 7;(7)’s. The
GW/PT correspondence is a linear map €* : DX — D2y, where DX is a subalgebra of
Dy called essential descendants and the map €° is defined on monomials, for the precise
definition of €* and ]D)if% one can refer [7]. In toric 3-fold case, the precise correspondence

statement is:

Theorem 1.3 (Theorem 6 of [7]). Let X be a nonsingular projective toric 3-fold. Let
D eDiX, B e HyX,Z) with dg = §gc1(X). Then the GW/PT correspondence holds:

(_q)—d5/2 (Z n<D>X PT) = (—iu) (Z w29 2<€. >X GW)

nez 9EZ

after the change of variable —q = e™

In [7], Virasoro constraints on moduli of stable pairs are proven using the Virasoro
constraints for the Gromov-Witten theory of toric 3-folds and the above GW /PT corre-
spondence. The Virasoro operators £LT with k > —1 are defined as a operators on Diy.
For the precise definition one can refer [7]. The Virasoro constraints states as follows:

Conjecture 1.4 ([7]). Let X be a nonsingular projective 3-fold with only (p, p)-cohomology,
and let 3 € Hy(X,Z). For all k > —1 and D € Dy, we have
LTy, =0,

<D>XPT Zq J D.

= Pn (Xvﬁ vzr

where

The statement of this conjecture about stationary descendants for non-singular pro-
jective toric 3-folds is proven in [7]. A special case is when X = S x P! where S is a
smooth projective toric surface, then the Virasoro constraints for this toric 3-fold X are:

. X,PT
Vk = -1, <££T HChmz (% X p)> =0,

1=1 n[P1]
where v; € H*(S), p € H*(P') is the point class and [P'] € Hy(X) is the fiber class.
Specializing to the space P,(S x P! n[P]) =~ Hilb"(S), one gets a new set of Virasoro
constraints for tautological classes on Hilb"(S) for toric surfaces. In [6], this constraint is
proven for simply connected surfaces, I will recall the full form of the Virasoro operators
in this Hilbert scheme of points setting in the next section.
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The Hilbert scheme of points can be viewed as a moduli of stable sheaves of rank 1,
therefore one may expect that there is a Virasoro constraint for the moduli of stable
sheaves. In [2], D. van Bree has proposed a Virasoro conjecture for the moduli space of
Gieseker semistable sheaves for surfaces with only (p, p)-cohomology. In [1], Bojko, Lim
and Moreira have proved the Virasoro constraint for moduli spaces of stable torsion-free
sheaves on any curve and on surfaces with only (p, p)-cohomology classes, in particular
the conjecture of D. van Bree is proven.

In this paper, I will combine Moreira’s Virasoro constraints on Hilbert schemes of
points on simply connected surfaces and van Bree’s Virasoro constraints on moduli of
sheaves on surfaces with only (p,p)-cohomology to propose the following conjecture of Vi-
rasoro constraints on moduli of stable sheaves on simply connected surfaces and provide
a proof for this Virasoro constraint in the case of K3 surface.

Conjecture 1.5. Let S be a smooth projective simply connected surface over C and
let H be a fized polarisation. Choose numbers r > 0 and co and a line bundle L. Let
M = MEH(r,L,cy) be the moduli space of Gieseker semistable sheaves of rank r, with
determinant L and second Chern class co. Assume that all semistable sheaves are also
stable and M has a (twisted) universal sheaf F. Let D be the holomorphic descendents
defined in the section 2. Let € : D% — H*(M,C) be the geometric realization defined
in (2) and let Ly, k = —1 be the Virasoro operators defined in (2). Then Vk = —1 and
VD e D°, we have

J ' §f®(detf)—l/r (ﬁkD) =0
[M]vi

In Theorem 2.2, the above conjecture is proven for S being a K3 surface. In section
5, the rank zero case is considered and a modified version of the Virasoro constraints
is proven in proposition 5.6. The idea of the proof is to use the Markman operator to
transform the descendent integrals on moduli of stable sheaves to descendent integrals
on Hilbert schemes of points where the conjecture is proven.

In section 2, I will recall the Virasoro constraints of Moreira and van Bree and for-
mulate the Virasoro constraints on K3 surfaces. In section 3, I will recall the Markman
operator following G.Oberdieck’s expositions [8]. In section 4, I will prove the Virasoro
constraint on moduli of positive rank stable sheaves on K3 surfaces. In section 5, I will
consider the rank 0 case. In section 6, I will propose a set of negative Virasoro operators
on K3 surface. Those negative Virasoro operators combined with the existing Li>_1
operators will satisfy the Virasoro algebra with central charge e(S).

1.3. Acknowledgement. The author would like to thank his supervisor Martijn Kool
for many useful suggestions. He is also grateful to Woonam Lim for useful conversations.
The author is supported by the ERC Consolidator Grant FourSurf 101087365.

2. VIRASORO CONSTRAINTS

Let S be a non-singular and projective K3 surface. There is a bilinear form, called
Mukai pairing, on A := H*(S,Z) defined as:

S

where oV is defined as follows: if one writes z = (r, D, n) as the decomposition of degree
then ¥ = (r,—D,n). This pairing is symmetric, unimodular, of signature (4,20) and
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the resulting lattice is called the Mukai lattice. For x = (r, D,n) € A, I will also write
(1) tk(z) =r, ca(x) =D, wv(z)=n.

For a coherent sheaf F on S, its Mukai vector is defined to be v = ch(F) - v/tdg. Let
v € A and an ample line bundle H be chosen such that M := My (v), the moduli space of
H-semistable sheaves on S with Mukai vector v, does not contain any strictly semistable
sheaves and is a smooth projective and admits a (twisted) universal sheaf. For example,
one could choose v € H"(S), v # 0 and (v,v) > —2 and v is not a multiple of a class
by an integer larger than 1, those choices of v are called effective and primitive in the
sense of [5]. Also, for such v, there always exists an ample line bundle H on S such that
My (v) has the above mentioned properties [5].

Let D° be the commutative algebra generated by symbols called holomorphic descen-
dents of the form:

chi(y) fori=0,ve H*(S,C)

subject to the linearity relations
chi' (M1 + Aoya) = Ar el (11) + Ao chy (72)
for Ay, Ap € C. T also write chi'(v) for the element
chil(y) = ) chi'(7) e D!
i=0

Consider the moduli space M := My (v) with r := rk(v) = 1 and the product M x S,
let my; and wg be the projection from M x S to M and S. Let F be a universal sheaf or
a twisted universal sheaf. Let me recall the definition in [1] of the geometric realization
with respect to F on M x S as the algebra homomorphism

(2) &7 D% — H* (M),
which acts on generators chi'(y) with v € H?4(S) as
&x (chi' (7)) = Tare (Chivaims)—(F)TE7)

Next, I will define the Virasoro operators for K3 surfaces. I combined the form of
Virasoro operators in [6] and in [2]. For k > —1, I define operators Ry, T, Sj, on D° as
follows:

e The operator R, : D° — D is defined as a derivation by fixing its action on the
generators: given v € HP1(S),

Ry,(chi' (7)) = (H(@ + j)) chix(7)

7=0

I take the following conventions: the above product is 1 if k = —1 and ch}’ ,(y) = 0 if
1+ k<0.
e The operator T, : D¥ — D7 is the operator of multiplication by a fixed element of
D
T = Y (1)1 ch}! chl (td)

itj=k

IThe elements in DS can only allow finite sums of descendants, here we may view this infinite sum
lives in a completion of DS,
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where (—1)3m()=p";11 ch!! Ch?(tds) 2 is defined as follows: let A : S — S x S be the
diagonal map and let

Z’VtL@)’Vﬁ = A, tdg
t

be the Kiinneth decomposition of A, tdg such that v} e Hriai (S) for some pr, gL', Then

(—1) 111 ehf! chl (tds) = Y (—1) 728411 ch (1) chl (7).
t

e For o € H*(S), define the derivation R_i[a] by R_[a](chi'(y)) = chi',(ay). For
k> —1,S;,:D° - D° is defined

(k+1)!

Sk(D) = — >, Rals!] (e, (6f)D), VD eD?,

{ilp} =0}

where r is the rank of the sheaves that the moduli M parameterize and the sum runs
over the terms 6F ® 67 of the Kiinneth decomposition of A,1 € H*(S x S) such that

L
pi’ = 0.
Finally define operators Ly and Ly for &k > —1 as:
3 L, =R, + 1T}
<) Lr,=R,+T,+ 5

Remark 2.1. Denote by S" the Hilbert scheme of points on S parameterizing 0 di-
mensional subschemes of S with length n. Let Zz be the ideal sheaf of the univer-
sal subscheme; equivalently one can write Zz = Ogwiyg — Oz. When viewing Slnl
as a moduli of rank one sheaves, the universal sheaf F is Zz, in this case one has
ch(F @ (det F)~') = ch(F). Therefore, in the case of S, the above defined Virasoro
operators become the Virasoro operators of Moreira in [6]: in [6], the geometric realiza-
tion &7, is used. If one considers a surface S with only (p,p) cohomology and a moduli
space M of Gieseker semistable sheaves of of rank 7 > 1 as the case in [2], then the above
defined Virasoro operators become the Virasoro operators of van Bree [2].

One of the main result of this paper is:

Theorem 2.2. Let S be a non-singular and projective K3 surface. Let D € D%. Let
My (v) be a moduli of sheaves on S as above with r = rk(v) = 1, and let F be a
universal sheaf. Define F := F ® (det F)™Y" as an element of the rational K-theory of
My (v) x S (F is independent of the choice of the universal sheaf F as in [2]). Then
for k = —1, we have:

f & (LeD) = 0.
Mg (v)

3. MARKMAN’S MONODROMY OPERATOR

Let S be a non-singular projective K3 surface and let M := Mpg(v) be a moduli
of sheaves on S as the section 2, but in this section, it is possible to take rk(v) = 0.
Morphisms 7, and mg are defined in the same way as the section 2.

’In [1], Tk operators are also defined for curves, in this case dim(S) should be replaced by the
dimension of the curve.

3(det F)~'/" might not exist as a line bundle, also the geometric realization is well define is this case,
since it only involves Chern characters
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Define the morphism 07 : A — H?(M,Q) as follows:
Or(x) = [mars(ch(F)mg(Vtds - 7))o,

where [e]; means take the real degree k component of a cohomology class.
The morphism B : H*(S,Q) — H*(M, Q) is defined by

(4) B(x) = mas(uy - V),

where

Uy 1= exp <€:}E(:)>) - ch(F) - A/tdg € H*(M x S,Q),

where some pull-backs 7}, 7§ are suppressed. One can check that B is independent of
the choice of the (twisted) universal sheaf F.

Let S; and S5 be two non-singular projective K3 surfaces with polarizations H;, Hs.
Let g : H*(S1,Z) — H*(Ss,7Z) be an isometry of Mukai lattices, assume vy, vy are two
vectors in the Mukai lattice satisfying assumptions of the section 2 and vy = g(v1). Let
M; := Mpy,(v;) for ¢ = 1,2. Markman defined the transformation v(g) : H*(M;,C) —
H*(M,,C) in [5]:

Y(9)(2) = Tau (Caiman)| — Tiss (735 (1@ g)uy,)” - Th5us,) | - 712)

where m;; (m;) is the projection of My x Sy x M; to the (i, j)-th (k-th) factor. The main
properties of 7(g) are given in the following theorem:

\%

Theorem 3.1 (Markman). Let Sy, Sy and vy, vs as above. For any isometry g : H*(S;,C) —
H*(S3,C) such that g(vy) = ve, ¥(g) is the unique operator such that:

(i) v(g) is a degree-preserving ring isomorphism and is a isometry with respect to
the Poincaré pairing: {x,y) = §,, xy for all x,y € H*(M,Q).
(i) (7(9) ® 9)(to,) = thy,. )

(iii) v(g1) @ v(g2) = Y(g192) and v(g)~* = (g7 ') (if it makes sens), where g1, g2 are
two 1sometries.

(iv) v(9) (cx(Thr,)) = cr(Tas,)-
The above properties imply that

JMIU_JMQ (0) Vo e H*(My,Q).

In fact the property (7(9) ® g)(uy,) = uy, can be expressed in a nicer way using the
B morphism defined in (3):

Lemma 3.2 (Lemma 2.7 of [8]). Let M;,v; with i = 1,2 and g as above. Let the
canonical morphism B : H*(S,Q) — H*(M;,Q) be defined as (3) and write Bg(z) for
the component in degree 2k. Let f : H*(M;,Q) — H*(M,,Q) be a degree preserving
isometric ring isomorphism. Then the following are equivalent:

(1) (f ® g)(uv,) = w,,

(ii) f(B(7)) = Blgy) for all v € H*(S5),Q).

Therefore, we have the following commutative diagram.

H*(Sh@) % H*(S27@)

5| |s

H*(M17Q) ﬂ) H*(M27Q>
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Now, let zy ...x € A, consider the following descendent integrals over M:

JM P(Bi(xj),ca(Twu)),

where P(t;;, ;) is a polynomial with Q-coeflicients depending on the variables ¢;;, with
7=1,... k,i>0and u;, [ > 1.

Using Markman’s operator, Oberdieck proved a universality property for integrals over
M; this roughly means that integral §, P(B;(z;), ¢(Ta)) only depends on the polyno-
mial P, the dimension of M and pairings (v, x;), (z;, ;) for all 4, j i.e. the intersection

matrix
< (vvvlz ('U,SL’Z'>£:1 > .
(i, v)izy (xivxj)i,jzl

[ will now explain this in detail. In fact, given the data (M (v), z;) as above, the Lemma
2.11 of [8] shows that there exists y; € Ac which have the same above intersection matrix,
and satisfy

J‘M P(BZ({EJ),Cl(TM)) = f P(Bz(yj)acl(TM))

M

and Span(v,yy, ..., yx) is a non-degenerate subspace of Ac¢ (i.e. the restriction of the in-
ner product of Ac, induced by the Mukai pairing, onto the subspace is non-degenerate).
The condition dim M > 2 is used to obtain the Lemma 2.11 of [8], therefore if one always
assume dim M > 2 then given two pairs (M (v),z;) and (M (v'), ) with the same inter-
section matrix, one may always assume that Span(v,z,...,x;) and Span(v’, 2, ..., z})
are non-degenerate.

Then, one can use the following lemma:

Lemma 3.3 (Lemma 2.13 of [8] ). Let V' be a finite-dimensional C-vector space with a

C-linear inner product. Let vy,...,vx € V and wy,...,w, € V be lists of vectors such
that

(i) Span(vy,...,vx) is non-degenerate,

(ii) Span(wy,...,wy) is non-degenerate,

(iii) (v, vj) = {wi,wj) for all i, .
Then there ezists an isometry ¢ : V. — V such that ¢(v;) = w; for all 1.

Since I always assume that Span(v, 1, ..., x) and Span(v’, 21, . . ., z}.) are non-degenerate,
by above lemma, there exists an isometry g : H*(S,C) — H*(S’,C) taking (v, x1, ..., zx)
to (v = gv, 2} = gxy, ..., x) = gzg). Therefore by the properties of the Markman oper-
ator and morphism B one has:

.
| PB@)aT) = | 29 PE@)alTie)
M (v) JM(0'")
f‘
= P(Bi(gx;), ci(Thw)))
JM(v')
r
= P(Bi(x), al(Tuw))),
Jm)

where the first equality is by the Theorem 3.1 and the second equality is by the Lemma
3.2. This leads to the following theorem:
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Theorem 3.4 (Oberdieck [8]). let P(t;;,u,) be a polynomial depending on the variables
tij, j=1,..,k,i=>0, and u, | = 1. Let also A = (a;;)F;_, be a (k+1) x (k+ 1)-matriz.
Then there emsts I(P,A) € Q (I(P,A) is a rational number only depending on P, A)
such that for any M = Mpy(v) with dim(M) > 2 and for xi,...,x; € A also with v € A

as above.
< (U,U) (Uaxiﬁ:l ) = A
(xl,v)f 1 ($ivxj)§,j:1 ’

JM P(B;(z;),c(Ty)) = 1(P, A).

such that

4. POSITIVE RANK VIRASORO CONSTRAINTS

4.1. dim M > 2 case. As in Section 2, let S be a non-singular projective K3 surface,
let v = (r,D,n) € A be a Mukai vector with r = rk(v) > 0. Assume dim(Mg(v)) > 2.
I would like to use the universality result the Theorem 3.4 introduced in the previous
section to prove the Virasoro constraints for positive rank on My (v). Recall that, for all
v e H*(S,C) the symbol ch? () is mapped to H*(M) by:

chi(y) = 7. (Ch <.7-"®det( ) l/rk(v)) Ta(y )) Vy e H*(S,C).

We now use following brief calculation to express this in terms of B(e).
(5)
Tata(ch(F @ det (F)~)m5 (7))

- man(en(Fyewp (~22) o)

o iren (S 5) i)
o (0 (4ot o ) ) i)

oo (25 2 (o () )

where the notation (2) is used, also notice that dim(M) > 2 implies (v,v) > 0. The
second equality used the fact that, by Kiinneth decomposition, 01 (F) = m3;(0=(p)) +
m&(c1(v)), the last line used the fact that By(x) = 0x(z) for x € vt (see [8]).

Therefore chi () for v € HP9(S) is the degree 2i — p + ¢ component of

0 (g ) m{( ) )

Consider the evaluation of the integral over M(v) of a polynomial of chf(y)’s. By
Theorem 3.4, one only need to look at the intersection matrix of the classes appearing
in the arguments of B and B; in (4.1).

Therefore, for L € H?(S,Q), one needs to keep track of

S CHEE
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For p, one needs to keep track of

For 1, one needs to keep track of
c1(v) -1 p
4/ td
o (rk(v)) S k()
Recall that for K3 surface, I have y/tdg = 1 + p. Now, also consider the descendent
of the form chy! (1 + p). chj!(1 + p) is the degree 2k component of the following class

[WM* (ch(f® det (F) VO rx(q 4 p))]k ,

which equals chj! (1) + ch;(p). Using the fact (1 + p)\/tdg{1 = 1; for chi(1 + p) one

needs to track
exp alv) () L v
rk(v) )’ rk(v)”

One can choose the generators of D° as

(7) {ch!(L;), chy(p), chi (1 + p)|j, k, I € N, {L;}; forms a basis of H*(S,C)}.

Using this set of generators, one only needs to keep track of the intersection matrix of
the following elements to evaluate descendent integrals.

(8)  Ljexp (511{2}};) with L; € H2(S,C); exp <f}1{2}};) D: rkl(’w;

One can calculate Mukai pairings between the above classes, the only interesting pairings
are:

/ik(o), Liesp (1)) = 0
e (G )10 (g ) = 2
oo (i) o (i) -
o (G ) = 5
e () -
e (i) (g ) 0
(p,v) =—r

Consider the following integral:

fM( P (eh(L,),ch(p), i1 + p)).
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where P is a polynomial, L; € H*(S,Q) and v = (r, D,n). This integral is defined for
general v € A that satisfies assumptions of Section 2, one can now take a specific value
by setting v = 1 — (n — 1)p, which leads to the following

Lemma 4.1. Let P be a polynomial with variables in (4.1), and v = (r, D,n)

_[w()f?(ch?<1q>,chf<p>,chs<ﬂ.+—p>)

S I CHOORE R )

SIN] r

where 2N — 2 = (v,v) = D? — 2rn.

Proof. We now consider the RHS of (4.1). By setting v = 1 — (N — 1)p, I have:
(1—(N—-1)p,1—(N—1)p) =2N -2 = (v,0v) = D* — 2rn.

The classes in (4.1) become (up to multiplication of 1/r or r):

1
9) L;, for L; e H*(S); U T o 1—-(N—-1)p.

Notice that 1 is multiplied with 1/r and p is multiplied with 7, this is harmless since
r > 0. One can calculate Mukai pairings among these classes, the only interesting
pairings are the following:

(L;, L;) = L;L;

(0,2) = (N ~1) = ~(z D" ~n)
(p7%> = _%
(p,U) =T

By comparing with the pairings of (4.1) one can see that (4.1) and (4.1) have the same
pairing matrix.

By the last line of (4.1), the class p in (4.1) comes from the B; part of ch(p), it is
multiplied by r in (4.1), therefore it comes from the B; part of rch!'(p); analogously,
1/r in (4.1) comes from 1/r ch}'(1 +p). Therefore, the classes in (4.1) are the arguments
of B and B; function of

1
{ch;{(Li),TchI,j(p), —chi'(1 + p)|j, k, 1 € N, {L;}; forms a basis of H*(S,C)}.
r
Therefore by Theorem 3.4, the lemma is true. U

In the following paragraphs, I will use the above lemma to prove the Virasoro con-
straints on M (v) in the positive rank case. Without of lose of generality one can always
assume D € D¥ is a monomial and D does not contain ch?(1)’s, since one can always
use the relation

(10) chy; (1 + p) = chy/ (1) + chy (p)
to rewrite D. Then by the Lemma 4.1, one has

J RszrNPJ RyD,
M (v) SIN]
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where N, is the number of ch}'(p) minus the number of Ch?(ﬂ + p) in D. Next, I claim
that

(11) f Tszerf T:.D.
M (v) SIN]

For Ty, the terms which are of interest are the terms containing ch;(1) or ch;(p), in
T} those terms are:

Z (ald! chll (1) chy'(p) + alb! chl (p) chy'(1)) .
a+b=k
and
Z a'b! chlf ch;' (2p)
a+b=~k

All the contributions from H?(S,Q) ® H*(S,Q) cause no problem, since they only con-
tains descendants of the form ch}'(L) with i € N, L € H?(S,Q) and therefore by lemma
4.1, their contributions remain the same.

For the first term, one can use the relation (4.1) to rewrite it as:

(12) 5 (o a4 p) - cali )| awlie)

" + alb! chl (p) [ch?(]l +P) - ch?(p)D -

Using lemma 4.1 to pass from integral over M (v) to S, (4.1) becomes:

(13) > (a!b! [% ch(1 +p) —r Chg(p)}“ch}f(p)

a+b=k

+ alblr ch! (p) l% ch;' (1 + p) — rch?(p)D

_ (Qa!b!(l—r2)ch5(p)ch?(p)>

a+b=k

+ Z (a'b' ch!(1) chy'(p) + alb! chl(p) ch?(]l)).
a+b=k

Next, consider the term >}, ,_, a!b! chl ch;' (2p), when passing from integral over M (v)
to SN using lemma 4.1, this term becomes:

(14) >} 2albl®chl(p) chy'(p)

a+b=k
Z 2a!b! ch(p) chy' (p) Z 2a!b!(r* — 1) ch(p) ch' (p)
a+b=k a+b=k

Therefore (4.1), (4.1) and the fact that other kiinneth component cause no problems
imply (4.1).

Now, let us look at the Sj, term. The classes in H%?(S) are 1 € H*°(S) and o €
H%2(S). There is only one such o up to scaling, since dim H%?(S) = 1. Let us first look
at the term

_%(;{; + 1)IR_1[1] (chj,, (p)D) .
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Evidently, when passing from integral over M (v) to SV this term changes to
—ro(k + 1)IR_[1] (ch),,(p)D) .
Now consider the term

(15) L

T(k + 1)IR_4[o] (chy 1 (7)D),

where @ - 0 = p. Notice that for § € H*(S), 0 -0 # 0 = § = G or 1 or a linear
combination of those. Because we assumed that ch;(1) does not appear in D, the terms
that survive in (4.1) are terms produced when R_;[o] acts on different ch}'(7)’s or on
different chi'(1+p)’s. In the first case, it will create an additional ch; ;(p); in the second
case, it will destroy an ch'(1 + p), in either case it will produce a factor r. Thus when
passing from integral over M (v) to SV (4.1) changes to

—r™(k + 1)IR_,[o] ch}l ,(7)D.

Therefore we find:

f SiD = TNPJ S.D.
M (v) SIN]

Because the Virasoro constraints on SV are proven [6], the Virasoro constraints on
M (v) are also valid. This proves Theorem 2.2 for dim M > 2.

4.2. dim M = 2 case. As before, let S be a non-singular projective K3 surface, let v be
a Mukai vector with rk(v) > 0. In this case, I will recall some facts following Section 2.4
of [8]. Let M := Mpy(v) be a 2-dimensional moduli space of stable sheaves, hence it is a
K3 surface. There is the following well known isometry of Mukai lattices:

(T) : H*(S, @) N H*(M, @)’ y ﬂ_M*(6761(]:)/7’16(1))@(}7’)71-;(7))’

where v(F) := ch(F)1/tdarxs. The fact that & is a Hodge isometry implies:

B(p) = k(o)L B() = o(L). (1) = .

where ¢ : H*(S,Q) — H?*(M,Q) is a Hodge isometry, which means ¢ is an isometry
with respect to the Mukai paring of S and M, since M is also a K3 surface.
One has the following identities by direct calculation:

L (v
hi'(y) = d f HP(S).
o) = | (m—” or o e M)
1 ¥ i ) :| ®
ch;(v) = ) for v e H*(S,Q).
(7) l'v tdy (’\/ tds 2deg(vy)+2i—4 ! ( )

Here the new symbole chy () has its geometric realization as:

chy,(7) = Tars (chi(F @ (det F)7) - 787) .
For v € H?4(S) one has:

(16) Ch?(’y) = Chi+1+%(’7)-

Similarly as before:

a1 +p) - |

Tt ()] e+l
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Because dim M = 2, one can explicitly calculate the cohomology class of ch?(y). The
non zero ones among them are:

— 6(y), where v € H(S)

(p)
chy (p) = —rk(v)p,
(7)
chi(1) = —1k(v)1

chi(1) = (rktv) + rk(v)) p
1
tk(v)

In fact, the geometric realization of ch}'(p), chi'(1) are the same as ch;(p), ch;(1). For
v € H?(S,C), using chy(vy) will make notation simpler since only chy(y) # 0 whereas
there are potentially several i such that ch}'(y) # 0.

chy (1 +p) =

Lemma 4.2. Let S be a non-singular and projective K3 surface, and let v, My (v) be
defined as above. Suppose My (v) is 2 dimensional, and suppose r :=rk(v) > 0. Then

| Py ageo.ata ) - [P (rale).dlon ali),

where P is a polynomial and v, € H*(S, Q).

One can use (4.2) to rewrite ch;'(y) as chy(y). The only monomials whose integral
on M are non zero have one of the following three forms (up to multiplication by a
constant):

[t (9)]" cha(7) cha(72)
N
[chy'(p)] ™ chy'(p)
N
[ch'(P)] chy (1 + p),
where N is some non-negative integer and ~y;,v, € H?(S,C). Their integral over M are:
N
|| [l @] ehaton) chata) = ¥ (660).00)
M
=7 (11,72)
f [chi(p)]" chy'(p) = ="
M
N _
f [Ché{(p)] chi (1 + p) = V71
M
One can also evaluate integrals on S[U:

L[l] [r Chgl(p)]N chy(71) cha(72) = 7™ - (¢(m), ¢(12))
=" (71,%)

L[l] [ Chg(p)]N[T chy (p)] = —r™*!
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1
f [r chg(p)]N .= chg(]l +p) = PN
Sl1] r

By comparing the two evaluations, lemma 4.2 is proven. Therefore one can use the
same argument as in subsection 4.1 to show the Virasoro constraints are valid in case of
dim M = 2. Combined with the result of previous subsection, Theorem 2.2 is proven.

5. RANK O CASE

The Virasoro operator in the section 4 only works for the strictly positive rank case,
since the definition of Sy has the constant % To solve this, one needs the concept of
d-normalized universal sheaf [1] which will be presented in the following subsection.

5.1. )-normalized universal sheaf and the invariant Virasoro operator. Let me
recall the notion of d-normalized universal sheaf in [1]. Let v € A M := Mg(v) and
T, s being defined as above. And I assume that there exists a universal sheaf on
M x S. Let a € Ko(X)g be the topological type of sheaves that M parameterizes,
i.e. one has ch(a) - +/tdg = v. Suppose § € H*(S,Z) is an algebraic class such that
§50 - ch(a) # 0. We say a universal sheaf G is é-normalized if

€g(chy'(6)) = 0.
By the remark 2.14 of [1], the J-normalized universal sheaf always exists and is unique as

an element of the rational K-theory of M x X. Let F be any universal sheaf, its unique
d-normalized universal sheaf is:

Fs=F® o7 (chil(9))/ §5 0-ch(a)

Also by the same remark, g, = &g o where 7 : DY — D is defined as:

n= <—7Ch11{(5) )JRJ' :
= §50-ch(a) !
Therefore, the geometric realization with respect to 6-normalized sheaf is still valid even
such a sheaf does not exist in usual sense. By direct calculation one can check that
(F®L)s = Fs for any line bundle £ on M. Since we want that the geometric realisation
of any D € D is independent of choice of the universal sheaf, §-normalised universal
sheaf will be a good choice to formulate the Virasoro constraint. For rank zero sheaves,
p-normalised universal sheaf is clearly not possible, since Ss p-ch(a) = 0. A good choice,
in this case, would be a Y-normalised universal sheaf, for some Y € HY1(S), which will
be used in the next subsection.

Now, as in previous sections, let v = (r,d,n) with r > 0. For later use, let me introduce
the following notations:

Ly := R, + T}
k+1)!
Sk, = _{ " ) R_ychyl(p)
k+1)! .
Sio = - R el ),

Where o € H%%(S) with S a K3 surface and o - & = p. As before, for a D € D?,

Se0(0) =~k @l )D),

similar for Sy . Also, one has Sy, = Sk + Sk,
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Proposition 5.1. As before, let Ly, = Ry+Ty+Syk. The commutation relation [R_q, Ly| =
(k+ 1)Ly is true.

Proof. The relation [R_1, Ly| = (k + 1)Lj_; is already checked in [1]. Let us calculate
[R_1, Sk], using ¥, 0% ® 6} as the Kiinneth decomposition of A, 1€ H*(S x S) :

[R_1,S¢]D = R_,SiD — SyR_1D

kE+1)!
- S R oD+ i, @0 RD)
{tlpf =0}
— SkR_1D
kE+1)!
= —% >, Ral6f] (ChII;I((StR)D)
{tlpf =0}
= (k? + 1)Sk,1D,
where in the second line, T used that R_; commutes with R_;[y]. Therefore I have
[Rfl, Ek] = (k? + 1)£k71- |:|
Define the following invariant Virasoro operator as in [1].
(1Y, o
(17) 'Cinv = - EjRj_l
j;1 (j+1)!

Using the commutation relation
[Rfl, Lk] = (k + 1)£k71

one has:

2 : (_l)j j+2 Z (—1)j . i1
Rfl‘cinv = . LRj_l + - (j + 1)£»71RJ_1 = (.
j=—1 (j + 1)' J =1 (] + 1)' J

Therefore the geometric realization of Ly, D, D € D° does not depend on the choice of
universal sheaf, by lemma 2.8 of [1]. More precisely, this means the following: given two
universal sheaf F and F' = F ® n},L where L is a line bundle on M, then

Er(LinD) = E7(LinyD) VD € DP.

Therefore I could omit the geometric realization and write

[ e
M

In the positive rank case, I have used F ® det(F)~Y" in the geometric realization,
which is not a universal sheaf. One can adapt lemma 2.19 of [1] to show that the
Virasoro constraint is equivalent when using F®det(F)~"" or F®det(F) V" @i A",
where A € Pic(S) such that ¢;(A) = ¢;(v). Also one can check that the latter sheaf is a
p-normalised universal sheaf.

Proposition 5.2.

f Ergac(r)-ir (LkD) =0 Yk > —1,VD e D®
M

= J {rodet(F)-Vrgriavr (D) =0 Vk > —1,VD € D,
M
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where A € Pic(S) such that c¢i(A) = c1(v). Also F ® det(F)™V" @ 75AY" is a p-

normalised sheaf.

Proof. One need to show that in K3 case, the algebra isomorphism F : D° — D in
lemma 2.19 of [1] satisfies L o F = F oLy for all £ > —1. More precisely: recall that F
is defined as F (ch;'(7)) = chj (e=P)y) with L € Pic(S), and It is already shown in [1]
that Lyo F = FoL for k > —1. I need to show F oS, = Si oF in addition. This is true
since F commutes with R_;, R_1[7y] and

k+1)! _
FSkD — _( " ) F <R1[O'] (ChI];IJrl(O')D) + R,l (ChEJrl(p)D))

k+1)! _

- LD o) (F bl )D) + R (P D) )
kE+1)! _

— _< ; ) (R_l[o'] (chEH(cr) FD) + R_1 (Chg-i-l(p) FD) )

=S, F D,

where ¢ is the only class in H*?(S) and e . 5 = 7 is used. O

Consider Mukai vector v = (n,d,0) with n,d # 0. [ want to find a Virasoro operators
LY = Rp+T,+S) which satisfy the Virasoro constraints when using geometric realization
with a Y-normalised universal sheaf Fy-, where Y € H"!(S). This means I want to find
Virasoro operators £) which satisfy:

(18) J Er (LY D) =0, VYDeD%Vk>—1.
M (n,d,0)
Let me define the S} operator as follows:
Y (k+1)! H
= —————R 1ch (VY

Sk,o SSYCh(Q{)R 1€ k+1( )
(19) k+1)! _

5t = - g ol (@)

Y . ay Y
Sk = Sko *+ Sk

where 0 € H*?(X), ch(a) - v/tdg = v and o = p. It turns out that this is the correct
definition of S} in order for the Virasoro operators to satisfy the desired property (5.1).
I will prove this statement in the following paragraphs.

Proposition 5.3. Let v = (n,d,r) with n,d # 0 be a Mukai vector, and let Y € HV1(S),
then:

J Er (LY D) =0 for any k> —1, De D’
M(v)

— LiwD = 0.
M(v)

To prove this proposition, I need the following
Claim 5.4. £ (JD) = JLY D where J = ch}'(Y) € D%,
proof of claim.

Ri(JD) = (k+ 1)!chy, ,(Y)D + JRD
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Ty(JD) = JT},D
Y (k+1)! H
StoID) =~ ey At (b (1)ID)
(k+ 1)!
§4Y - ch(a)
JSYo(D) = (k+ 1)l chy,, (Y)D
(k+ 1)!

Spo(JD) = — - R_y[o] (chj,,(7)JD)

= JS),(D) since R_1[y]J = 0.

= JSy(D) — chyy1 (Y) chg (V) D

Summing all terms gives the claim. O

Proof of proposition. This proof of the Proposition 5.3 adapts the proof of the Proposi-
tion 2.16 of [1]. To be more complete, I write the entire proof. First note:

(1 gy oo
PESRES

j=—1

(20) | | | ‘
=) 2 Y (@R @l (DRZ) <o
s i>—1

J

where the convention ch;_(Y") = 0 is used as before. Analogously, one also has

(21) > (=1 S;oR = 0.

S0+

Therefore

—1y A
Liny = 2 (]( n >1)' (Lj + Sj,() + S]’,Q)R]_—iil
j=-1 )

—1y A
j=-1 '

_ (1) .y it
- 2 TR R

j==1

where the second equality uses (5.1) and (5.1) and S}, = Si.2. Therefore = is obvious.

Let us prove <= next. The idea is to prove by iflduction, suppose the first part of
the proposition holds for every k' > k (it certainly holds for &' > dim(M) for degree
reasons). Let J = ch]'(Y) € D¥ as before, then the fact that Fy is Y-normalised implies:
£x,(J) = 0. Applying L, in (5.1) to J*1D gives

28 0= JM(v) v (L (JD)) = Z_:l (;_+1>1])! JM(v) $re (L) RLY (JM1D))

Since R_; is a derivation and R_1(J) = chi(Y) = {4V - ch(a), I have

G [ Tkl _jH TN\ os [ k1 pi+l-s
w10y = 3 (0w, () i)

s=0 s
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min(k+1,j+1) .

J+1 (k+1)! el
24 _ RSN e
- ; < s )(k:+1—3)!z‘] (D),

where I denote z = {6 - ch(c). Using the fact that £} commutes with J, i.e. the Claim
5.4 and &x,(J) = 0, one has that the only non vanishing terms in (5.1) come from the
terms with k = s — 1 in (5.1). Therefore:

0=2, (‘_—13;)!2]6+1 fM(v) 7 <£}/Rik(m) '

By induction hypothesis, all terms with j > k vanishes, therefore one has:

o Y
0= JM(U) &ry (L0 D).

This finishes the proof. O

In section 3, I have proven:
J {raaet F)-im (LxD) =0, VD e D%, Vk > —1,
M (n,d,0)
which, by the Proposition 5.2, implies
J £, (LxD) =0, VD e D%, Vk > —1.
M (n,d,0)
This implies, by the definition (5.1) of Ly, that:
f €5 (L D) = f LD =0, ¥DeDS.
M (n,d,0)

M(n7d70)

Above, by the Proposition 5.3, implies:

J Er (LY D) =0, VYDeD% Vk>—1.
M (n,d,0)

5.2. Using Markman operator to deduce Virasoro for rank zero case. Now
write the sheaf Fy in terms of the language of [§]:

Fy = F@ et/ fsY-eh()

-ree ()
br(v)

= F®exp <(v’v)) ® exp <9(§/g)) N ?j(:;)

where those are identities in K-group of coherent sheaves on M x S. Therefore, by
similar calculations as (4.1), one has:

(25) £, (chl'()) = exp (31 (% - Jw))B (v vias ).

Therefore in order to use the Markmann operator one only needs to keep track of inter-
section matrix of (v, p, 1, L;), where L; € H*(S) and Y = L; for one of the i’s.

Consider another Mukai vector v = (0,d, n), Spanc(v, p, 1, L;) and Spang (v, 1, p, L;)
with L; € H?(X) are non-degenerate with respect to the Mukai pairing. Then (v, p, 1, L;)
and (v', 1, p, L;) have the same intersection matrix, therefore by Lemma 3.3, there is an




20 WEISHENG WANG

isometry sending v — v', 1 — p, p — 1 and L; — L;. Thus let us define operator
M : D¥ — D® which is an algebra isomorphism as

M(chi'(1)) = ch}'(—1)
M(ch'(p)) = ch'(1 + p)
M(ch{'(L;)) = ch{'(L;)

The operator M is defined to make the intersection matrix of the arguments of function
B(e) in (5.2) invariant after the isometry.

In resume, the following constraint on M (v’) is proven by the Theorem 2.2 and section
5.1:

(26) f &7 (MoLYD) =0, YDeD% Vk> 1.
M(v")

We also need the following lemma to transform (5.2) in to a nicer form.
Lemma 5.5. MoM =id, Mo R, = R,oM and M o T}, = T}, o M.

Proof of lemma. M oM = id and M o R, = R, o M are obvious.
MT;,

=M /[ Y (=1)*liljlch)! ch?(tds)>

i+j=k

=M M (=0Pilgteh (v b () + il (chl (1) bl (p) + chf'(1) ch(p))
i+j=k i+j=k
Vi e (S)

+M (2 D, ililehi(p) chf <P>)

i+j=k

= > (=D*Philjlch (o) bl ()
itj—k
Vi e (S)

+ Y iljl [= chi' (1) chl(p) — chf (p) chf!(1) — 2¢hf(1) ch} (1)]
i+j=k
+2 )il [ehf' (1) chf' (1) + chf (1) chf(p) + chi(p) chl (1) + chf'(p) chf!(p)]
i+j=k
=T,
O
Therefore the following constraint, in the rank zero case, is true:

Proposition 5.6. Let v = (0,d,n) with d,n > 0 be a Mukai vector, let Y € H"(S) and
let SY = SKO + S,IQ as defined in (5.1), then the following constraints are true:

J ffy<(Rk+Tk+MoS,§oM)D) =0 VDeD® Vk>—1.
M (v)

The lemma 5.5 means that the operator M keeps the operator L = Ry + T} invariant,
which justify to call above constraint the Virasoro constraint.
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Remark 5.7. Assume I € M 4,) with n > 0. On the set level, the map F — F? :=
Ext(F,wg) is a bijection, notice that &xt(F,ws) =~ RHom(F, Og)[1] = F¥[1]. The type
of FV is ch(FV[1]) = (0,d,—n), therefore one may expect that the proposition 5 also
holds for spaces Mg 4y With d,n > 0.

6. NEGATIVE VIRASORO OPERATORS

In this section, let S be a K3 surface as before. In [1], the Virasoro operators are related
with lattice vertex algebra operators. Inspired by this correspondence, I will construct
the operators Ly._; which along with previously defined L~ _; form a Virasoro algebra
with the central charge e(S) = 24, the topological Euler characteristic of S.

Let k > 1 define the following derivations:

(Z:—k)! hH ifi >k
Ve HYS.C), R_ychli(y) = { G Biel?), ifi=k
0, otherwise

Define the operator d;[v] acting on D € D® as a derivation as follows:

i .
¢ Jl)' J v-v Vye H*(S,C).
— D g

for v a homogeneous element of H*(S,C). Let Y, 67 ®47 be the Kiinneth decomposition
of the diagonal class A € H*(S x S, C) and 6%, 6% have Hodge type (pF, ¢*) and (pF, ¢,

17]
respectively. Next, choose such a Kiinneth decomposition >} 62®d%, define the operator

T, as™:

¥i> 0,5 =0, dfv]chli(y)=

rm 1 S oty () 3 oia

w i+j=k i+j=k
>0 >0
7>0 7>0

By the same reason why T,k > —1 are independent of the representations of the
Kiinneth decomposition, which is since T} was defined in a multi-linear way, one can
see that Tk, k > 0 are also independent of the Kiinneth decomposition.

To clarify calculations, I will choose a particular representation of Kiinneth decompo-
sition. Let {c;}; be a basis for H*(S,C), define {«;’}; to be the unique vectors satisfying
Ss ajay = 60;;. Then Y a; ® a; is a Kiinneth decomposition. One can choose the basis
B of H*(S,C) in such a way that: 1 € B and 1Y = p € B; also 0,0Y = 7 € B where
o€ H*°(S); vV =y € B for all y = HY!(S). That means:

B = {y,7"|ye H(S,C) u H*°(S,C)} u B"',

where BY' = {v1,...,7,} is a basis of H"!(S, C) such that {,~,v; = d;;. This is possible
since this symmetric paring is non-degenerate on H(S,C) and can be diagonalized.
The operator T now becomes:

Tk———ZZ di[vv]+( ftds>2d

veB i+j=k i+j=k
>0 >0
7>0 7>0
4For surfaces with only even cohomology, (fl)dim(s)*pL = (fl)prR. The latter format is used in

[6],
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where p, is defined by v e HP»% (S, C). Also define the operator L_j as:
(27) L_,=R_,+T..
In this subsection, I will prove the following proposition:
Proposition 6.1. Let S be a K3 surface and let the operators {L; : D° — D%}z be

defined as (2) when k = —1 and be defined as (6) when k < —1 then the following
commutation relation is true:

K —k
12
where e(S) is the topological Euler characteristic of S.

[Ll, L_k] = (—l — k‘)Ll_k + . G(S) . 5]971,

Proof. 1 also write D € D as a monomial containing only descendants of the form
ch(v e B). In order to clarify the action of T, for any D € D?, I can rewrite D in the
following form (since S only has even cohomology, all descendants commute with each
other):

D=T] 1] (chff(v))™" - Dy - Dxs

vEB k>i>0
=D - Do - Dz,
where Dy, D, D=y contains, respectively, only descendent of the form ch (v € B),chy.,_, (v €

B) and chl, (v € B). The reason why I write D in this form is that 7", will only act
non trivially on D_j part, and R_; will only act non trivially on Dy part.
Let £ > 1,1 = —1 I calculate some commutators now:

(R, T_i)(D<xDoDsy) = (RT_; D<) (DoDsi) + (T-kD<i) (RiDoDsy,)
— (T_xy R D<) (DoDsy) — (T-kD<i) (R Do Dxy,)
= (RIT_1D<i)(DoDsy) — (T_x R D<) (Do D)
To calculate R/T 1D, — T, R;D_}, let me calculate the following first:
(28) (Ridj[v]di[v”] — dj[v] di[v” | Ri) D <,

where 1,7 are fixed integers satisfying ¢ + j = k,72 > 0,7 > 0. If R; acts on Ch?_l(v) in
Dy, then its contribution to — d;[v] d;[vY | R Dy, is:

il 1 1 D,
(29) —— , : Ni1oMjov (i + 1) ;
(=1 —-1) G- -1 ! ChiH_l(v)ch?(vV)
when R; acts on cthfl(vV), it gives:
! 1 1 D
B0 Myt (Mg + Dy

G =D G- (-1 (™) b (v)’

when R; acts on ch;'(v) or on ch;{(vv) it gives respectively:
[+4) 1 1 Dy chi},
_ ( + Z)' : i 'ni,vnj,vv (ni,v . 1) - <k§ Z+l(v) =
G- —1D(—1) ch; (v) chy (v¥) chy (v)
+) 1 1 Dy chilyy(vY)
!

oY oY _1 7,V AL
OG- (n;, . b (v) b (v¥) b (v)

and

(31)

v
B2 =
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when R; acts on other descendants, say chg(w), it gives:

U+p) 1 1 I Dy, chy, (w) .

(=D @=1) G =D b (w) eh (vv) chf (v)
Now, let us look at the first term of (6):

L L T v T o Ry Dy
E—=DIG =D Tehl (vv) ehl(v)
It is easy to see that when R; does not act on chi',(v) and not on Ch?_l(’l}v), but on
Ch?(v),ch?(vv),chg(w) respectively, it gives —(6), —(6) and —(6) as above. When R,
acts on ch}',(v) or on Ch?_l(vv) it gives:

(33)

Rldj [U]di[UV]D<k =

il 1 1 D,
(34> : : - Ni—1,0T0v T and
(i—=1—-1GE—=1D{G-1) I ch!, (v) chl(vv)
il 1 1 D
(35) J N1 pv My Ny =

G-l DG-DIG—1)
Summing (6), (6), (6) and (6) gives:

L, (o) ¥ (v)

(6) = il 1 L Dy
(=1=DHi=1G =D bl (v) eh (o)
i 1 1 D

TG DG G = DU R G ) e ()
= — di,l[vv] dj[v]D<k — j di[vv] dj,l[U]D<k

Summing terms of the form (6) with according coefficients over i + j = k,i > 0,5 > 0
and over B one gets:

(36) (R, T_] = {(_l — k)T gy, fl—k<O0

0, otherwise.
Next, I calculate the following commutator:
[T}, R_)(D<DoD=y) = TiD <t Do(R_x D=y) — (R_xT1) D < Do D=y,
—T1D < Do(R_ D>},
= —(R_4T1) DDy D>},
If | <k, R_;T; vanishes. Suppose now [ > k, then:
R_, T, = R_;, Z d‘m Z'j'ChH chH(tdS)

i+j5=I
. ) — k) !
= Z (—1)dim(S)-p" i!j!@, ulk chi® kchH(tds) + z‘j'(j k). chif ch!' , (tdg)
Py = 1) G
= (l + k?)Tl_k,

where the convention ch () = 0 is used. Therefore:

{(—l—k)Tl_k, ifl—k>0

, otherwise.

[T, R_i] =
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Next, I calculate [T, T;|D. Generally, for two derivations operators dj, ds one has:
[dide, T}|D = (didoT}) D + (diT7)(d2D) + (d21;)(dy D). Because the operator 7" is the
sum of compositions of two derivatives, one can use this equality to calculate [T, T;]D.
As mentioned before, derivations d;[e] with 0 < i < k only act non trivially on the
component D_yg, therefore we can perform the following calculations:

(37)
Iy S Corana o

|
|

e~ =
7N
Y

o

[ ] o
—_

=

—~
|

S~—
—
o~~~
|

<
=
o
=
T
<.

—~
]
SN—
~~
VR
i
—_
S~—
=
e
—

-~

|| =
—_

=

S
<

o

S )
AA
S | =
S~—

~_

vEB i+j=k

) 7 ([, ) gttty (G e fim)

i+j=k
1<j<min(k—1,1)

—1L1)
—é(Ltds) 5 ()

i+j=k
1<j<min(k—1,1)

Similarly:

2 2 *(d;[vY )T (di[v] D<)

veB i+j=k
>0
7>0

_ (= (k=0D) .  Dapehiip(vY)
(38) ‘"Z 2 (W(l_””’”’v chf'(vv) )

vEB i+j=k
1<j<min(k—1,0)

1 (i—(k=1)  Deych(p)
—§<Ltd5) 2 ( (-t 7" )

i+j=k
1<j<min(k—1,l)

»-lk|>—‘
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There is also the following terms:

i([) ¥ @mimaipio.g
(30 :i(J;“%)ggk(uflﬂﬂ“_j”m?”m>(kr}nf”“'céia)
:%(LMQ 3; (@afspbmﬁkgg%mv

1<j<min(k—1,l)

2 ([Pl di[pITi)(D)

— 0
Summing (6), (6) and (6) one gets:
(6)+(6) +2 x (6)
_ (i —(k=0) . Dy Ch?f(kfl)(vv>
(4()) = —Z Z (W(Z—k) 7R ChiH(@\/) )7

veB i+j=k
1<j<min(k—1,0)

= —R;_i[e — k]Dy,

where, for a function f(e) defined on integers, R;[f(e)] is the derivation acting as
B[ f()] chj' () = f(i)R; chil (7).

There are also the following terms in [T, T;] which are non-zero only if k = I

1
~1 D1 >0 (1P (dylv] difv¥Ti) Dy
veB itj—k
>0
7>0

1 .
=13 1) Da
veB i+j=k
>0
7>0

NI

veB i+j=k
1>0
7>0

_ _%Z ST (ik — i) Dy

vEB k>1i>0

1 k(k—1 kE—1)k(2k —1
e

veEB 6
k> —k
12

. €(S)D<k,



26 WEISHENG WANG

where e(.5) is the topological Euler characteristic and, for K3, e(S) = |B| = dim H*(S5,C) =
24.
Next, I calculate the following commutator:

[Ri, R_i)(D<xDoDxy)

= (RiR_) — R_1R)) DDy D>y,

= (RiD<Do)(R_;Dxi) + Doy Do(RiR_;.Dx) — (R_i Ry D, Do) Dy,

— (RiD<;Do)(R_;D=y) — Dy Do(R_x R D=y,)

= Dt Do(RiR_xD>i) — Dex Do(R_RiDx) — (R_x Ry D < Do) D=y,

= D Do((—k — )Ry D=y) — (Ri_g[(e + 1)] D=y Do) Doy

Combining (6) with (6), one has (notice that Ry chy (e) = 0, Vk € Z):

—(6) + (6) = D Do((—k — D) Ry D>y.) — (Ri—g[(® + 1)] D<x Do) D>,
+ (Ri—k[® — k]D<xDo) D=

= Dy Do((—k — 1) Ri_yDsp) + ((—k — 1) Ry D= Do) D=
— (=k = )Ry_s(D—pDyDy)

Summing the above commutators one has:

(41)

k3 —k
12

[Ll, L_k] = (—l — k‘)Ll_k + : G(S) - Ol

Let me calculate [L_;, L_j] next.

[Rt, Ry]ehy'(7) = (R R — R_xRy) chy'(7)
1—k=0D G —k)! g
= (<z i 1>), E 1;! ch;"p ()
(i—k=DIGE=D! 4
(Z —]— 1) ('L . 1)| Chifkfl(fy)
= (I —k)R_j_;chi'(y), fori=1+Ek.
[R_;, R_¢]chi'(y) =0, fori<I+k.

Therefore [R_;, R_;] = R_j—;. Next, I calculate [R_;, T 4|D. Firstly, consider the
following term:

(42) (R d;[vY] di—j[v] = dj[v"] die—j[v] R_) D.

Similar as the calculation for (6), the contribution to the above term vanishes unless R_;
acts on one of the following symbols:

l!(v), ehll (0"), b (0), chll (V).

By an easy calculation, one finds that when R_; acts on chH( ), chit ;(vY), the contribu-

tion to (6) also vanishes. Let me calculate the case when R_; acts on ChJH( v):
R_yd;[vY]dyp—;[v]D
! ! NN n ! D
= . jultk—juv Tby j41
(= DUk =g = U2 G L= D)leh]l (v) eyl (0Y)
dj[v"] dp—j[v] R D
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1 1 (n,0 4 1) 4! D
= 7 - Njo Ng—jov Ny 4177
G-Dlk—j—1r7 PTG 4+ L= 1) bl (v) chll [ (v)

Therefore:
(6) = _j d[’UV,j + l] d[U, k— j]D

The contribution of chj’ j+1(vY) can be calculated similarly. Summing over i +j = k,i >
0,7 > 0 those two type of contributions, one has:

(43) Y U -Dd ] = Y =D d[ev]dfe].

itj=k+1 itj=k+1
G141 i>l+1
i<k—1 j<k—1

For the commutator [T_;, R_;]D, we have the following term:

(44) Y, =R ]de]+ Y, (k) dvY]d[v]

i+j=k+l i+j=k+l
j=k+1 i=k+1
i<l—1 J<i=1

Summing the first term of (6) and the second term of (6) and summing the second term
of (6) and the first term of (6):

6)+(6)= > —(G-DdpIdl]l- Y, (—1)d[v"]d[v]

it+j=k+1 it+j=k+1
j=1 j=>1
i>1 i>1
==k D d[v ]difv]
it+j=k+1
>1

i>1
Summing over v € B with corresponding coefficients, one has:
[R_l, T_k] + [T_l, R_k] = (l — k‘)T_l_k.

For the commutator [T_;,T x|, one can easily see that this vanishes. Therefore the
following commutation relation is proven:

[L_l,L_k] = (l — k’)L_l_k, for [ > 1,/{3 > 1.
For m,n > —1, it has been shown (lemma 2.11 [2]) that
[Ln, L] = (—m + n) Ly iy, for myn = —1.

Therefore the Proposition 6.1 is proven. U
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