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Abstract
The integration of visual cues has revitalized the
performance of the target speech extraction task,
elevating it to the forefront of the field. Neverthe-
less, this multi-modal learning paradigm often en-
counters the challenge of modality imbalance. In
audio-visual target speech extraction tasks, the au-
dio modality tends to dominate, potentially over-
shadowing the importance of visual guidance. To
tackle this issue, we propose AVSepChain, draw-
ing inspiration from the speech chain concept. Our
approach partitions the audio-visual target speech
extraction task into two stages: speech perception
and speech production. In the speech perception
stage, audio serves as the dominant modality, while
visual information acts as the conditional modal-
ity. Conversely, in the speech production stage, the
roles are reversed. This transformation of modality
status aims to alleviate the problem of modality im-
balance. Additionally, we introduce a contrastive
semantic matching loss to ensure that the seman-
tic information conveyed by the generated speech
aligns with the semantic information conveyed by
lip movements during the speech production stage.
Through extensive experiments conducted on mul-
tiple benchmark datasets for audio-visual target
speech extraction, we showcase the superior per-
formance achieved by our proposed method.

1 Introduction
Speech serves as the primary means of exchanging and com-
municating information among humans. However, in real-
world settings, speech signals often encounter contamination
from various interfering factors, such as noise and irrelevant
speakers. This scenario is commonly known as the “cocktail
party problem” [Bronkhorst, 2000]. During actual conver-
sations, perceivers possess the ability to selectively focus on
specific acoustic stimuli, highlighting their inherent selective
auditory attention. A long-term objective of speech process-
ing research is to develop machines capable of emulating hu-
man auditory capabilities. These machines should be able
to selectively extract the speech of a target speaker by utiliz-
ing auxiliary cues, such as reference speech [Xu et al., 2020;

Ge et al., 2020; Mu et al., 2023], static facial images [Gao
and Grauman, 2021], and lip movements [Wu et al., 2019;
Gao and Grauman, 2021; Pan et al., 2021].

Neuroscientific research has revealed that human percep-
tion of speech is inherently multi-modal, with lip movements
being observed to enhance auditory perception during con-
versations [Li et al., 2018; Stenzel et al., 2019]. Visual cues
have proven to be robust auxiliary references for speaker ex-
traction algorithms at the frame level, yielding remarkable
outcomes in separating target speakers, particularly in the
presence of highly overlapping speech [Ephrat et al., 2018;
Ochiai et al., 2019]. However, the utilization of static facial
images has demonstrated limited improvement in the perfor-
mance of target speech extraction (TSE) [Gao and Grauman,
2021] and may raise privacy concerns. Hence, this paper
focuses on leveraging lip movements as the primary cue to
guide TSE.

In previous studies on audio-visual target speech extrac-
tion (AV-TSE), it has been observed that visual information
is often underutilized, resulting in performance comparable
to ignoring visual cues. This situation arises due to the audio-
focused nature of AV-TSE, where the richness of visual fea-
ture information is less substantial compared to audio fea-
ture information. Consequently, the importance of visual
cues has been insufficiently considered, creating an imbal-
ance between audio and visual modalities. To address this
issue, we draw inspiration from the concept of the speech
chain [Denes and Pinson, 1993] in speech science and pro-
pose the audio-visual speech separation chain (AVSepChain).
The speech chain depicts the flow of information between
speakers and perceivers in speech communication, encom-
passing two stages: speech production and speech perception
[Deller Jr, 1993]. The information flow within the speech
chain includes auditory feedback from the speaker’s mouth
to the ears, the perceiver receiving acoustic information from
the speaker, and the perceiver receiving visual information
regarding the speaker’s lip movements, as shown in Figure 1.

In our approach, we employ a two-stage method to repli-
cate the inverse process of the two stages of the speech chain.
In the first stage, we utilize the audio-visual target speech ex-
traction network to simulate speech perception. This network
extracts the target speaker’s speech from the mixed audio,
leveraging the target speaker’s lip movements as a guiding
condition. In the second stage, we employ the lip-to-speech
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Figure 1: The schematic diagram of information flow within the speech chain. The speech chain captures the movement of information be-
tween the speaker and the perceiver during speech communication, encompassing the processes of speech production and speech perception.

synthesis network to simulate speech production. This net-
work generates speech based on lip movements, utilizing the
speech extracted in the first stage as a condition. Unlike
previous AV-TSE approaches that solely relied on the video
modality for conditional guidance, our approach alleviates
the modality imbalance issue by incorporating both audio and
video modalities as mutual conditions.

To ensure the consistency between the speech content con-
veyed through the voice and lip movements of the target
speaker, as depicted in the two channels of speech perception
shown in Figure 1, we propose a contrastive semantic match-
ing loss. Specifically, we employ audio and audio-visual self-
supervised pre-trained models to extract frame-level quan-
tized representations of speech content and lip movement
content separately. These representations serve as pseudo-
phonemes and pseudo-visemes, respectively, enabling us to
align cross-modal semantics. A viseme represents a basic
unit of visual speech, corresponding to a group of phonemes
present in acoustic speech [Massaro and Simpson, 2014;
Bear and Harvey, 2017]. By capitalizing on the consistency
between pseudo-visemes and pseudo-phonemes, we establish
that the generated speech of the target speaker possesses the
same semantic information as its lip movements.

In general, this paper presents three main contributions.
(i) We introduce the concept of speech chain into AV-TSE,
which, to the best of our knowledge, has not been explored
previously. By leveraging the audio and video modalities
as conditional information for each other, we simulate the
speech perception and production processes in the speech
chain, thereby alleviating the modality imbalance issue in AV-
TSE. (ii) We propose a contrastive semantic matching loss
to regulate the generation of more precise audio signals in
the lip-to-speech synthesis network. This loss conducts con-
trastive matching training on the content information of the
audio and video modalities, which is extracted using pre-
trained models. (iii) We perform comprehensive experiments
to validate the effectiveness of our approach. The results
demonstrate that our proposed AVSepChain significantly en-
hances the state-of-the-art performance of AV-TSE.

2 Related Work
2.1 Audio-Visual Target Speech Extraction
Recent neuroscience research has demonstrated that the hu-
man brain effectively addresses the “cocktail party problem”

by incorporating visual cues [Li et al., 2018; Stenzel et al.,
2019]. Drawing on this understanding, researchers have in-
tegrated visual information into the paradigm of speech sep-
aration to enhance performance in noisy and challenging en-
vironments. Prior studies by Lin et al. [2023] and Lee et
al. [2023] employed cross-modal attention for feature fusion,
while Zhou et al. [2022] designed an adaptive multi-modal
fusion framework. Additionally, Li et al. [2022] proposed
a multi-scale fusion framework inspired by cortical-thalamic
circuits. However, these methods typically prioritize audio as
the dominant modality, resulting in an imbalanced treatment
of audio and visual modalities.

2.2 Lip-to-Speech Synthesis
The tongue and lips assume a crucial role in controlling the
shape of the vocal tract and modifying its resonance charac-
teristics to convey distinct phonemes. Perceivers can infer
a speaker’s speech content by observing their lip movements,
providing opportunities for integrating video into speech syn-
thesis. Lip-to-speech synthesis (LTS) aims to convert visual
information derived from the analysis of lip movements into
corresponding speech signals. Similar to text-to-speech syn-
thesis (TTS) approaches [Mu et al., 2021], most LTS meth-
ods follow a two-stage procedure [Prajwal et al., 2020; Kim
et al., 2021; de Mira et al., 2022; Kim et al., 2023], involving
the generation of mel-spectrograms followed by their trans-
formation into audio signals using vocoders. In this paper,
we propose predicting the residual signal of the preliminary
separated speech to alleviate the difficulty of the LTS task.
Moreover, LTS inherently poses an underdetermined prob-
lem, as a single lip movement video can correspond to mul-
tiple speech possibilities. To impose constraints, previous re-
search commonly introduced reference speech from the same
speaker and employed a speaker encoder to obtain speaker
embeddings as guiding information [de Mira et al., 2022;
Choi et al., 2023b; Kim et al., 2023]. However, in this study,
we utilize the target speaker’s speech extracted during the
speech perception stage as the registration, eliminating the
need for additional speaker reference speech. Furthermore,
we implicitly constrain the synthesis process by predicting
the residual signal.

2.3 Modality Imbalance Problem
When dealing with audio-visual data, which involves multi-
ple modalities, a common challenge is modality imbalance.



Modality imbalance occurs when one modality dominates
over others in a specific task or scenario. To alleviate this
issue, a common approach is to adjust the training strategy of
the model to balance the learning process for each modal-
ity. For instance, Fan et al. [2023] introduced modality-
specific loss functions and regularization terms to enhance
the learning of non-dominant modalities. Similarly, Fu et
al. [2023] and Wu et al. [2022] balanced the learning pro-
cess of different modalities by dynamically adjusting gradi-
ents and learning rates, enabling the model to allocate more
attention to non-dominant modalities. Another approach, as
proposed by Du et al. [2021], involves leveraging pre-trained
single-modal models to tackle the modality imbalance prob-
lem. They extracted features from the single-modal model
and distilled them into the multi-modal model, thereby im-
proving the learning of non-dominant modalities. In this
study, we alleviate the issue of modality imbalance by shifting
the dominant role between two modalities at different stages.

3 Methodology
3.1 Overview
When presented with a mixed speech signal x and a lip move-
ment video v of the target speaker, the proposed AVSepChain
framework aims to extract clean speech s corresponding to
the target speaker from the speech of interfering speakers
and environmental noise by leveraging the visual informa-
tion. The framework consists of two stages: speech percep-
tion and speech production, as illustrated in Figure 2. In the
speech perception stage, we employ AV-HuBERT [Shi et al.,
2022a], a pre-trained audio-visual model, to extract the visual
hidden unit fv from the lip movement video v. Subsequently,
the audio-visual speech separator (AV-Separator) is utilized to
preliminarily separate the target speech spre from the mixed
speech x, using fv as a condition.

In the speech production stage, the mel-spectrogram Spre

of the preliminary separated target speech spre obtained in
the first stage serves as a conditional input. The audio-visual
speech synthesizer (AV-Synthesizer) predicts the residual sig-
nal sres of the target speech based on the visual hidden unit
fv . The final target speech sfin is obtained by adding spre
and sres. Moreover, we utilize HuBERT [Hsu et al., 2021],
a pre-trained audio model, to extract the audio hidden unit fa
from sfin. This unit is matched with fv to ensure semantic
feature alignment, thus guaranteeing that the generated tar-
get speech captures the same semantic information as the lip
movement. Each section will be further elaborated in the sub-
sequent sections.

3.2 Speech Perception
AV-HuBERT. In the speech perception stage, AV-HuBERT
functions as the encoder for lip movement videos. AV-
HuBERT is a self-supervised model designed for audio-visual
learning, which predicts clustering assignments in masked re-
gions based on speech features and lip movement sequences.
Previous studies have demonstrated the efficacy of this ap-
proach in capturing meaningful semantic information con-
veyed by lip movements. Consequently, it offers significant

benefits for downstream tasks such as audio-visual speech
recognition [Shi et al., 2022a; Shi et al., 2022b].

In our approach, for the lip movement video of the target
speaker, represented as v ∈ RH×W×Tv , where H , W , and
Tv denote the height, width, and number of image frames re-
spectively, we input it into the pre-trained AV-HuBERT. This
results in a condensed frame-level visual representation, de-
noted as fv ∈ RNfv×Tfv , where Nfv signifies the number of
channels of fv , and Tfv indicates its length.

AV-Separator. In our approach, the AV-Separator utilizes
the widely adopted AV-Sepformer [Lin et al., 2023] as its
backbone. Sepformer [Subakan et al., 2021] is a time-
domain monaural speech separation model that leverages the
dual-path Transformer architecture. AV-Sepformer extends
Sepformer by incorporating the cross-attention mechanism
[Vaswani et al., 2017] to integrate both audio and visual
modalities. In this study, similar to AV-Sepformer, we employ
cross-modal attention to fuse audio and video features. In this
case, considering that the visual information can be regarded
as cues for separating the target speech, we adopt an approach
where the audio modality is treated as the dominant modality
while the visual modality acts as the conditional modality.

Specifically, we initially encode the mixed audio x ∈ RTa

through a 1-D convolutional encoder, resulting in an audio
feature representation X ∈ RNa×TX . Here, Na represents
the number of convolutional kernels, and TX denotes the
length of the audio feature. Subsequently, we divide the 2-
D audio feature X into chunks of length KX , with a stride
size of KX

2 . These chunks are then concatenated to form a 3-
D audio feature Xc ∈ RNa×KX×SX , where SX refers to the
number of chunks. To match the dimensions of the video fea-
ture fv and the audio feature Xc, we replicate fv KX times,
adjust the length of fv to SX using interpolation, and project
the channel dimension of fv to Na, resulting in the adjusted
video feature f̃v ∈ RNa×KX×SX .

Next, we utilize the visual feature f̃v as the query and the
audio feature Xc as the key and value for cross-modal at-
tention fusion. This fusion yields an audio-dominant multi-
modal feature denoted as Hav ∈ RNa×KX×SX , which can be
computed as:

Hav = Softmax

(
f̃vW

Q
v ·
(
XcW

K
a

)⊺
√
Na

)
XcW

V
a (1)

Here, WQ
v , WK

a , and WV
a ∈ RNa×Na are learnable param-

eters. Subsequently, the AV-Separator extracts the speech of
the target speaker spre ∈ RTa from the audio-dominant cross-
modal feature Hav . To accomplish this, we utilize the scale-
invariant signal-to-noise ratio (SI-SNR) [Roux et al., 2019]
between spre and the true signal as the loss function Lper dur-
ing the speech perception stage. This loss function aims to
separate the speech of the target speaker preliminarily.

3.3 Speech Production
AV-Synthesizer. During the speech production stage, it
is crucial to handle the intrinsic one-to-many relationship
between visemes and phonemes, as well as accommodate
speech-related variations such as voice, accents, and prosody.
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Figure 2: The overall framework of AVSepChain encompasses two stages: speech perception and speech production. In the speech perception
stage, the AV-Separator initially extracts the target speaker’s speech. In the speech production stage, the AV-Synthesizer predicts the residual
signal of the output from the speech perception stage. In the speech perception stage, audio is treated as the dominant modality, while visual
information serves as the conditional modality. This relationship is reversed in the speech production stage. AV-HuBERT and HuBERT,
depicted in the solid line box, have their parameters fixed during training. The AV-Separator and AV-Synthesizer, shown in the dotted
box, have their parameters updated during training. The embeddings extracted by AV-HuBERT and HuBERT are utilized to calculate the
contrastive modality matching loss.

To tackle these challenges, we leverage the target speech that
was extracted in the previous stage as a registration to facil-
itate the synthesis of speech from lip movements. In con-
trast to the previous stage, we assign vision as the dominant
modality and audio as the conditional modality in this stage,
aiming to mitigate modality imbalance issues.

Specifically, we utilize the mel-spectrogram Spre ∈
RNmel×Tmel of the output spre from the first stage, along
with the lip movement feature sequence fv extracted by AV-
HuBERT, as the audio-visual input to the AV-Synthesizer.
Here, Nmel denotes the channel number of Spre, and Tmel

represents its length. Since the video stream and the audio
stream are inherently synchronized, the visual features and
the mel-spectrogram are naturally aligned. Consequently, we
upsample the video frames to match the sampling rate of the
mel-spectrogram based on the ratio between the sampling
rates of the mel-spectrogram and the video frames. Addi-
tionally, we project the video feature fv and audio feature
Spre to the same channel dimension Npro, resulting in f̂v and
Ŝpre ∈ RNpro×Tmel .

Next, we employ the audio feature Ŝpre as the query and
the visual feature f̂v as the key and value for cross-modal
attention fusion. This fusion yields a visual-dominant multi-
modal feature, denoted as Hva ∈ RNpro×Tmel , which can be
expressed as:

Hva = Softmax

 ŜpreW
Q
a ·
(
f̂vW

K
v

)⊺
√
Npro

 f̂vW
V
v (2)

Here, WQ
a , WK

v , and WV
v ∈ RNpro×Npro represent the learn-

able parameters. Subsequently, the AV-Synthesizer utilizes
the visual-dominant multi-modal feature Hva to predict the
residual signal sres ∈ RTa of the target speech spre, which

was extracted in the first stage. The final generated speech
of the target speaker sfin ∈ RTa is obtained by adding the
residual signal sres to the preliminary result spre, as shown
in the equation below:

sfin = spre + sres (3)
During the speech production stage, our approach involves

predicting the residual signal rather than the complete speech
waveform. This strategy aims to provide a preliminary candi-
date for the AV-Synthesizer, thus alleviating the challenge of
modeling the entire speech signal. By focusing on the residu-
als, the AV-Synthesizer can effectively capture the remaining
information necessary for synthesis and refine the prelimi-
nary results. This strategy also incorporates an implicit con-
straint into the synthesis process. To ensure that the generated
speech accurately corresponds to lip movements, we also em-
ploy the SI-SNR between sfin and the true signal as the loss
function Lsyn during the speech production stage.
Semantic matching. To ensure that the speech generated
by the AV-Synthesizer conveys the same semantic informa-
tion as the corresponding lip movements, we propose a con-
trastive semantic matching loss. Initially, we employ a pre-
trained HuBERT to extract the frame-level speech repre-
sentation fa ∈ RNfa×Tfa from the generated speech sfin.
Here, Nfa and Tfa denote the channel number and length
of fa, respectively. It is worth mentioning that this repre-
sentation has demonstrated effectiveness in downstream tasks
like automatic speech recognition (ASR) [Hsu et al., 2021;
Shi et al., 2022c]. Therefore, fa can be considered as
a pseudo-phoneme representation. Similarly, the represen-
tation fv extracted by AV-HuBERT can be regarded as a
pseudo-viseme representation. To align the cross-modal se-
mantic representations, we introduce a contrastive semantic
matching loss, denoted as Lmat, which is defined as follows:
Lmat = max{d(n(fv), n(fa))−d(n(fv), n(f̄a))+m, 0} (4)



Model
LRS2-2Mix VoxCeleb2-2mix

SI-SNRi↑ SDRi↑ PESQ↑ WER (%)↓ SI-SNRi↑ SDRi↑ PESQ↑ WER (%)↓
AV-ConvTasNet [2019] 12.4 12.7 2.75 31.4 10.6 10.9 2.07 34.2

Visualvoice [2021] 11.5 11.8 3.00 34.5 9.3 10.2 1.97 36.4
MuSE [2021] 13.5 13.8 2.97 27.9 11.7 12.0 2.21 32.0

CTCNet [2022] 14.3 14.6 3.06 24.8 11.9 13.1 2.26 26.8
AV-SepFormer [2023] 14.1 14.4 3.15 25.4 12.1 12.5 2.31 27.3
AVSepChain (Ours) 15.3 15.7 3.26 20.2 13.6 14.2 2.72 22.1

Table 1: Performance comparison of our method with state-of-the-art AV-TSE methods on the LRS2-2Mix and VoxCeleb2-2mix datasets.
We have referenced the original literature for results that are already established. For outcomes not documented in the original works, we
have incorporated findings from our own replication efforts.

Model
LRS3 TCD-TIMIT

SI-SNRi↑ PESQ↑ SI-SNRi↑ PESQ↑
AV-ConvTasNet [2019] 12.1 2.33 11.5 2.21

Visualvoice [2021] 11.6 2.27 10.9 2.25
MuSE [2021] 13.0 2.56 12.5 2.45

AV-SepFormer [2023] 13.8 2.67 13.4 2.57
AVSepChain (Ours) 15.2 3.12 14.7 2.88

Table 2: Cross-domain performance comparison by training on the
VoxCeleb2-2Mix dataset and testing on the LRS3 and TCD-TIMIT
datasets.

Method SI-SNRi↑ SDRi↑ PESQ↑ WER (%)↓
AVSepChain 15.3 15.7 3.26 20.2

w/o AV-Synthesizer 14.2 14.5 3.13 26.0
w/o Lmat 14.5 14.8 3.17 24.1

Predict complete signal 14.3 14.6 3.16 25.8

Table 3: Ablation study on the speech production stage, contrastive
semantic matching loss, and prediction of residual signal on the
LRS2-2Mix dataset.

Here, d(·, ·) represents the L2 distance, n denotes L2 nor-
malization, f̄a is the embedding obtained by applying Hu-
BERT to the interfering audio x − sfin, and m represents
the margin. To compute Lmat, we index each frame of
the pseudo-phoneme representations to their corresponding
pseudo-viseme representations based on the ratio of the sam-
pling rates of the audio and video streams. This ensures that
the lengths of fa, f̄a, and fv are matched. The gradient of
Lmat is then back-propagated to the AV-Synthesizer to update
its parameters.

3.4 Training
The overall training objective of our method can be defined
as follows:

Ltotal = Lper + Lsyn + λLmat (5)

Here, λ is a weighting factor. The loss function SI-SNR,
which is used to calculate Lper and Lsyn, is defined as:

SI-SNR(u, û) = −10 log10

 ∥ ⟨û,u⟩u
∥u∥2 ∥2

∥û− ⟨û,u⟩u
∥u∥2 ∥2

 (6)

In the above equations, u and û represent the ground truth and
predicted speech of the target speaker, respectively. ∥u∥2 =
⟨u, u⟩ denotes the signal power. During training, we optimize
the parameters of the AV-Separator and AV-Synthesizer while
keeping the parameters of AV-HuBERT and HuBERT fixed.

4 Experiments
4.1 Datasets
We conducted experiments on two audio-visual datasets,
namely LRS2-2Mix and VoxCeleb2-2Mix [Li et al., 2022],
derived from the LRS2 [Afouras et al., 2022] and VoxCeleb2
[Chung et al., 2018] datasets, respectively. Both LRS2-2Mix
and VoxCeleb2-2Mix consist of mixtures of two speakers.
We randomly selected two distinct speakers and mixed their
speech with a signal-to-noise ratio ranging from -5 dB to 5
dB. These datasets contain multilingual speech corrupted by
noise. The speaker identities in the training and test sets do
not overlap. Each speech segment has a duration of 2 sec-
onds and a sampling rate of 16 kHz. The video frames are
synchronized with the speech at a frame rate of 25 FPS. In
our experiments, we cropped the lip region and resized the
cropped frames to 88 × 88 pixels, resulting in a height and
width of H = W = 88.

4.2 Implementation Details
For both AV-HuBERT and HuBERT, we employ a 12-layer
BASE pre-trained model with a feature dimension of 768,
denoted as Nfv = Nfa = 768, and extract the features from
the last layer as embeddings. The AV-Separator is built on the
same hyperparameters as the AV-Sepformer [Lin et al., 2023],
comprising two repetitions of 8 Intra-Transformers, 7 Inter-
Transformers, and 1 Cross-Modal Transformer. The values
for Na and KX are set to 256 and 160, respectively. We
employ a logarithmic mel-spectrogram with 80 mel bands, a
filter length of 1024, a hop size of 10 ms, a window length of
40 ms, and a Hann window to capture the spectro-temporal
features Spre of the output audio spre from the AV-Separator.
In other words, Nmel is 80. The intermediate feature dimen-
sion Npro is set to 256. The AV-Synthesizer consists of a
cross-modal attention layer, followed by three 1-D convolu-
tion layers. The hidden dimensions for the convolution layers
are 256, 128, and 160, respectively, with a kernel size of 7.
Overall, our model encompasses a total of 33.1M trainable
parameters, with 31.3M parameters in the AV-Separator and



Network Input Calculating Loss SI-SNRi↑ SDRi↑ PESQ↑ WER (%)↓
AV-HuBERT AV-HuBERT 15.3 15.7 3.26 20.2
ResNet-18 AV-HuBERT 14.5 14.8 3.08 23.5
MS-TCN AV-HuBERT 14.6 14.9 3.12 22.1

CTCNet-Lip AV-HuBERT 14.9 15.3 3.24 21.8
AV-HuBERT ResNet-18 14.6 14.9 3.10 24.9
AV-HuBERT MS-TCN 14.9 15.3 3.14 24.2
AV-HuBERT CTCNet-Lip 15.1 15.4 3.21 23.8

Table 4: Results obtained employing visual embeddings extracted by various visual front-ends on the LRS2-2Mix dataset. These embeddings
serve as input for the AV-Separator and AV-Synthesizer, as well as for calculating the contrastive semantic matching loss.

Method SI-SNRi↑ SDRi↑ PESQ↑ WER (%)↓
Cross-attention 15.3 15.7 3.26 20.2
Concatenation 13.5 13.8 3.06 26.7

Summation 13.2 13.6 2.98 28.3

Table 5: Results of employing various cross-modal modulation
strategies on the LRS2-2Mix dataset for both the AV-Separator and
AV-Synthesizer.

1.8M parameters in the AV-Synthesizer. When calculating
the contrastive semantic matching loss, we set the margin m
to 0.5 and λ to 1. The model is trained using Adam opti-
mization, starting with an initial learning rate of 1.5 × 10−4.
If the loss does not decrease on the validation set for three
consecutive epochs, the learning rate is halved. The training
process is terminated if there is no decrease in the loss for five
consecutive epochs.

4.3 Evaluation Metrics
We evaluate the quality of separated speech using scale-
invariant signal-to-noise ratio improvement (SI-SNRi) [Roux
et al., 2019] and signal-to-noise ratio improvement (SDRi)
[Vincent et al., 2006]. The overall perceptual quality is
measured using the perceptual evaluation of speech quality
(PESQ) [Rix et al., 2001]. Moreover, to assess whether the
proposed method, as a speech enhancement front-end, im-
proves the accuracy of downstream tasks such as ASR, we
utilize the publicly available Google speech-to-text API to
obtain recognition results. Our primary focus lies on mea-
suring the word error rate (WER), where a lower error rate
indicates better preservation and restoration of the content in-
formation in the speech.

4.4 Comparison with the State-of-the-Art
We comprehensively compared AVSepChain and existing
AV-TSE methods on the LRS2-2Mix and VoxCeleb2-2Mix
datasets. The results, presented in Table 1, demonstrate that
AVSepChain achieves state-of-the-art performance on both
datasets. Notably, our proposed AVSepChain significantly
outperforms other methods in terms of PESQ and WER met-
rics. These findings suggest that our method, designed to sim-
ulate the perception and production processes of the speech
chain, enhances the perceptual quality of separated speech
and can be effectively integrated into downstream ASR tasks.

Cross-domain performance comparison. To assess the
generalization performance of our approach, we conducted
cross-domain performance tests on additional audio-visual
datasets. Specifically, we trained our model using the
VoxCeleb2-2Mix dataset and evaluated its performance on
the LRS3 [Afouras et al., 2018b] and TCD-TIMIT [Harte and
Gillen, 2015] datasets, derived from TED videos and studio
recordings, respectively. For these datasets, we randomly se-
lected speech segments from two distinct speakers and mixed
them, following a similar approach as in [Pan et al., 2021;
Lin et al., 2023]. The results, presented in Table 2, demon-
strate that our proposed method exhibits robust generalization
capabilities despite potential distribution shifts, which are of
utmost importance in real-world applications.

4.5 Ablation Study
In this section, we performed ablation experiments to val-
idate the effectiveness of each key design proposed in
AVSepChain. All experiments were conducted on the LRS2-
2Mix dataset.
Ablation study on speech production. To investigate the
impact of the speech production process on the separa-
tion performance in AVSepChain, we excluded the AV-
Synthesizer and utilized the output of the AV-Separator as the
final separated speech. The results are presented in the “w/o
AV-Synthesizer” row of Table 3. These findings reveal that
the speech production stage significantly enhances the per-
formance of the AV-TSE task by compensating for the limi-
tations of speech perception.
Ablation study on semantic matching. To examine the
impact of the contrastive semantic matching loss, we ex-
cluded this component during training and solely utilized the
SI-SNR loss to train AVSepChain. The findings are presented
in the “w/o Lmat” row of Table 3. The notable enhancements
observed in the PESQ and WER metrics emphasize the vital
role played by the contrastive semantic matching loss in fa-
cilitating the AV-Synthesizer to learn accurate pronunciation
and speech content.
Ablation study on prediction of residual signal. During
the speech production stage, we compensate for the target
speech, extracted during the speech perception stage, by pre-
dicting the residual signal. To emphasize the advantage of
this strategy, we compare the results achieved by predicting
the complete speech signal, as indicated in the “Predict com-
plete signal” row of Table 3. The findings demonstrate a sig-



Speech Perception Speech Production
SI-SNRi↑ SDRi↑ PESQ↑ WER (%)↓

Query Key & Value Query Key & Value
Video Audio Audio Video 15.3 15.7 3.26 20.2
Audio Video Audio Video 14.6 14.9 3.03 24.0
Video Audio Video Audio 13.8 14.1 2.86 28.4
Audio Video Video Audio 13.6 13.9 2.82 29.3

Table 6: Results of utilizing different modalities as the query, key, and value in the cross-modal attention mechanism during the speech
perception and speech production stages on the LRS2-2Mix dataset.

nificant improvement in speech production through the pre-
diction of the residual signal. This improvement can be at-
tributed to the ill-posed nature of the lip-to-speech synthesis
task, which encounters a one-to-many problem. By focus-
ing on predicting the residual signal, we effectively reduce
the complexity of the task and introduce implicit constraints
into the synthesis process, leading to enhanced generation re-
sults of the AV-Synthesizer with a smaller scale. In future
research, we aim to explore the utilization of powerful gen-
erative models, such as diffusion models [Luo et al., 2023;
Choi et al., 2023a], to directly generate complete speech sig-
nals during the speech production stage and improve the up-
per limit of our method’s performance [Lutati et al., 2023].

Comparison of visual front-ends. To validate the superi-
ority of AV-HuBERT as the visual front-end, we compared it
with several popular pre-trained lip-reading models, includ-
ing ResNet-18 [Afouras et al., 2018a], MS-TCN [Martı́nez
et al., 2020], and CTCNet-Lip [Li et al., 2022]. In this ex-
periment, we employed these models to extract visual em-
beddings, which were then utilized as inputs for the AV-
Separator and AV-Synthesizer, as well as for calculating the
contrastive semantic matching loss. The experimental results,
presented in Table 4, consistently reveal the superior perfor-
mance of AV-HuBERT over other models, both as input to the
network and for computing the loss. Notably, AV-HuBERT
significantly outperforms other pre-trained lip-reading mod-
els as a pseudo-viseme extractor in estimating the semantic
matching loss. This superior performance can be attributed
to the integration of visual (lip movement) and auditory (au-
dio signals) information in AV-HuBERT, which enables the
model to grasp the relationship between lip movement and
speech, thereby enhancing lip-reading accuracy. Moreover,
AV-HuBERT shares a similar self-supervised learning frame-
work with HuBERT, involving feature clustering and masked
prediction. Consequently, utilizing AV-HuBERT as a pseudo-
viseme extractor leads to semantic feature representations
that better align with those of HuBERT, resulting in improved
effectiveness of the contrastive semantic matching loss.

Comparison of modulation strategies. To validate the ef-
fectiveness of cross-modal modulation using cross-modal at-
tention, we compared various modulation strategies, includ-
ing concatenation and summation. The results are presented
in Table 5. The findings demonstrate a significant superiority
of the employed cross-modal attention method compared to
other approaches. This superiority stems from the adaptive
learning capability of cross-modal attention, which enables
the determination of weights for each modality rather than

simply feature combination or addition. Consequently, the
model can accurately control the contribution of each modal-
ity by dynamically adjusting the dominant and conditional
status of different modalities according to the specific task
requirements, achieved by modifying the modalities of the
query, key, and value. Furthermore, the model can selectively
focus on the most pertinent and valuable information within
each modality based on the specific task, thereby reducing the
impact of redundant information. This refinement enhances
the robustness and generalization ability of our model.

The impact of changing dominant and conditional modal-
ities. In AVSepChain, we alleviate the issue of modality
imbalance by dynamically switching between dominant and
conditional modalities. This is accomplished by modifying
the queries, keys, and values of the cross-modal attention in
various tasks. To assess the effectiveness of our approach,
we conducted comparative experiments by altering the or-
der of queries, keys, and values. The results of these experi-
ments are presented in Table 6. As the keys and values in the
cross-modal attention should originate from the same feature,
there are four potential settings. The outcomes demonstrate
that our configuration consistently achieves the most favor-
able performance. Additionally, the table reveals that using
either audio or visual modalities as the dominant modality for
both the speech perception and speech production stages re-
sults in a significant modality imbalance problem, potentially
leading to failure in the other conditional modality. When the
positions of the audio and visual modalities are swapped, the
negative impact increases considerably, suggesting that the
dominant modality should be assigned as the keys and val-
ues, while the conditional modality should serve as the query.

5 Conclusion
From the perspective of the speech chain, this paper proposes
AVSepChain, which simulates the process of speech percep-
tion and speech production in the speech chain. Its objective
is to alleviate the modality imbalance problem in AV-TSE by
considering audio and visual modalities as conditional modal-
ities for each other. This is achieved by assigning different
modalities as queries, keys, and values for cross-modal at-
tention. Furthermore, to ensure that the synthesized speech
preserves the same semantic information as the lip movement
video during the speech production process, a contrastive se-
mantic matching loss is proposed. Extensive experiments
confirm the effectiveness of our approach, indicating that our
method defines state-of-the-art performance on the AV-TSE
task by mitigating modality imbalance.



References
[Afouras et al., 2018a] Triantafyllos Afouras, Joon Son

Chung, and Andrew Zisserman. The conversation: Deep
audio-visual speech enhancement. In INTERSPEECH,
pages 3244–3248. ISCA, 2018.

[Afouras et al., 2018b] Triantafyllos Afouras, Joon Son
Chung, and Andrew Zisserman. LRS3-TED: a large-
scale dataset for visual speech recognition. CoRR,
abs/1809.00496, 2018.

[Afouras et al., 2022] Triantafyllos Afouras, Joon Son
Chung, Andrew W. Senior, Oriol Vinyals, and Andrew
Zisserman. Deep audio-visual speech recognition. IEEE
Trans. Pattern Anal. Mach. Intell., 44(12):8717–8727,
2022.

[Bear and Harvey, 2017] Helen L. Bear and Richard W. Har-
vey. Phoneme-to-viseme mappings: the good, the bad, and
the ugly. Speech Commun., 95:40–67, 2017.

[Bronkhorst, 2000] Adelbert W Bronkhorst. The cocktail
party phenomenon: A review of research on speech intelli-
gibility in multiple-talker conditions. Acta Acustica united
with Acustica, 86(1):117–128, 2000.

[Choi et al., 2023a] Jeongsoo Choi, Joanna Hong, and
Yong Man Ro. Diffv2s: Diffusion-based video-to-speech
synthesis with vision-guided speaker embedding. CoRR,
abs/2308.07787, 2023.

[Choi et al., 2023b] Jeongsoo Choi, Minsu Kim, and
Yong Man Ro. Intelligible lip-to-speech synthesis with
speech units. CoRR, abs/2305.19603, 2023.

[Chung et al., 2018] Joon Son Chung, Arsha Nagrani, and
Andrew Zisserman. Voxceleb2: Deep speaker recognition.
In INTERSPEECH, pages 1086–1090. ISCA, 2018.

[de Mira et al., 2022] Rodrigo Schoburg Carrillo de Mira,
Alexandros Haliassos, Stavros Petridis, Björn W. Schuller,
and Maja Pantic. SVTS: scalable video-to-speech synthe-
sis. In INTERSPEECH, pages 1836–1840. ISCA, 2022.

[Deller Jr, 1993] John R Deller Jr. Discrete-time processing
of speech signals. In Discrete-time processing of speech
signals, pages 908–908. 1993.

[Denes and Pinson, 1993] Peter B Denes and Elliot Pinson.
The speech chain. Macmillan, 1993.

[Du et al., 2021] Chenzhuang Du, Tingle Li, Yichen Liu,
Zixin Wen, Tianyu Hua, Yue Wang, and Hang Zhao. Im-
proving multi-modal learning with uni-modal teachers.
CoRR, abs/2106.11059, 2021.

[Ephrat et al., 2018] Ariel Ephrat, Inbar Mosseri, Oran
Lang, Tali Dekel, Kevin Wilson, Avinatan Hassidim,
William T. Freeman, and Michael Rubinstein. Looking to
listen at the cocktail party: a speaker-independent audio-
visual model for speech separation. ACM Trans. Graph.,
37(4):112, 2018.

[Fan et al., 2023] Yunfeng Fan, Wenchao Xu, Haozhao
Wang, Junxiao Wang, and Song Guo. PMR: prototypical
modal rebalance for multimodal learning. In CVPR, pages
20029–20038. IEEE, 2023.

[Fu et al., 2023] Jie Fu, Junyu Gao, and Changsheng Xu.
Multimodal imbalance-aware gradient modulation for
weakly-supervised audio-visual video parsing. CoRR,
abs/2307.02041, 2023.

[Gao and Grauman, 2021] Ruohan Gao and Kristen Grau-
man. Visualvoice: Audio-visual speech separation with
cross-modal consistency. In CVPR, pages 15495–15505.
Computer Vision Foundation / IEEE, 2021.

[Ge et al., 2020] Meng Ge, Chenglin Xu, Longbiao Wang,
Eng Siong Chng, Jianwu Dang, and Haizhou Li. Spex+:
A complete time domain speaker extraction network. In
INTERSPEECH, pages 1406–1410. ISCA, 2020.

[Harte and Gillen, 2015] Naomi Harte and Eoin Gillen.
TCD-TIMIT: an audio-visual corpus of continuous speech.
IEEE Trans. Multim., 17(5):603–615, 2015.

[Hsu et al., 2021] Wei-Ning Hsu, Benjamin Bolte, Yao-
Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhut-
dinov, and Abdelrahman Mohamed. Hubert: Self-
supervised speech representation learning by masked pre-
diction of hidden units. IEEE ACM Trans. Audio Speech
Lang. Process., 29:3451–3460, 2021.

[Kim et al., 2021] Minsu Kim, Joanna Hong, and Yong Man
Ro. Lip to speech synthesis with visual context attentional
GAN. In NeurIPS, pages 2758–2770, 2021.

[Kim et al., 2023] Minsu Kim, Joanna Hong, and Yong Man
Ro. Lip-to-speech synthesis in the wild with multi-task
learning. CoRR, abs/2302.08841, 2023.

[Lee et al., 2023] Suyeon Lee, Chaeyoung Jung, Youngjoon
Jang, Jaehun Kim, and Joon Son Chung. Seeing through
the conversation: Audio-visual speech separation based on
diffusion model. CoRR, abs/2310.19581, 2023.

[Li et al., 2018] Yuanqing Li, Fangyi Wang, Yongbin Chen,
Andrzej Cichocki, and Terrence Sejnowski. The effects
of audiovisual inputs on solving the cocktail party prob-
lem in the human brain: An fmri study. Cerebral Cortex,
28(10):3623–3637, 2018.

[Li et al., 2022] Kai Li, Fenghua Xie, Hang Chen, Kexin
Yuan, and Xiaolin Hu. An audio-visual speech separation
model inspired by cortico-thalamo-cortical circuits. CoRR,
abs/2212.10744, 2022.

[Lin et al., 2023] Jiuxin Lin, Xinyu Cai, Heinrich Dinkel,
Jun Chen, Zhiyong Yan, Yongqing Wang, Junbo Zhang,
Zhiyong Wu, Yujun Wang, and Helen Meng. Av-
sepformer: Cross-attention sepformer for audio-visual tar-
get speaker extraction. CoRR, abs/2306.14170, 2023.

[Luo et al., 2023] Simian Luo, Chuanhao Yan, Chenxu Hu,
and Hang Zhao. Diff-foley: Synchronized video-to-
audio synthesis with latent diffusion models. CoRR,
abs/2306.17203, 2023.

[Lutati et al., 2023] Shahar Lutati, Eliya Nachmani, and Lior
Wolf. Separate and diffuse: Using a pretrained dif-
fusion model for improving source separation. CoRR,
abs/2301.10752, 2023.

[Martı́nez et al., 2020] Brais Martı́nez, Pingchuan Ma,
Stavros Petridis, and Maja Pantic. Lipreading using



temporal convolutional networks. In ICASSP, pages
6319–6323. IEEE, 2020.

[Massaro and Simpson, 2014] Dominic W Massaro and Jef-
fry A Simpson. Speech perception by ear and eye: A
paradigm for psychological inquiry. Psychology Press,
2014.

[Mu et al., 2021] Zhaoxi Mu, Xinyu Yang, and Yizhuo
Dong. Review of end-to-end speech synthesis technology
based on deep learning. CoRR, abs/2104.09995, 2021.

[Mu et al., 2023] Zhaoxi Mu, Xinyu Yang, Sining Sun, and
Qing Yang. Self-supervised disentangled representa-
tion learning for robust target speech extraction. CoRR,
abs/2312.10305, 2023.

[Ochiai et al., 2019] Tsubasa Ochiai, Marc Delcroix,
Keisuke Kinoshita, Atsunori Ogawa, and Tomohiro
Nakatani. Multimodal speakerbeam: Single channel
target speech extraction with audio-visual speaker clues.
In INTERSPEECH, pages 2718–2722. ISCA, 2019.

[Pan et al., 2021] Zexu Pan, Ruijie Tao, Chenglin Xu, and
Haizhou Li. Muse: Multi-modal target speaker extrac-
tion with visual cues. In ICASSP, pages 6678–6682. IEEE,
2021.

[Prajwal et al., 2020] K. R. Prajwal, Rudrabha Mukhopad-
hyay, Vinay P. Namboodiri, and C. V. Jawahar. Learning
individual speaking styles for accurate lip to speech syn-
thesis. In CVPR, pages 13793–13802. Computer Vision
Foundation / IEEE, 2020.

[Rix et al., 2001] Antony W. Rix, John G. Beerends,
Michael P. Hollier, and Andries P. Hekstra. Percep-
tual evaluation of speech quality (pesq)-a new method
for speech quality assessment of telephone networks and
codecs. In ICASSP, pages 749–752. IEEE, 2001.

[Roux et al., 2019] Jonathan Le Roux, Scott Wisdom, Hakan
Erdogan, and John R. Hershey. SDR - half-baked or well
done? In ICASSP, pages 626–630. IEEE, 2019.

[Shi et al., 2022a] Bowen Shi, Wei-Ning Hsu, Kushal
Lakhotia, and Abdelrahman Mohamed. Learning audio-
visual speech representation by masked multimodal clus-
ter prediction. In ICLR. OpenReview.net, 2022.

[Shi et al., 2022b] Bowen Shi, Wei-Ning Hsu, and Abdel-
rahman Mohamed. Robust self-supervised audio-visual
speech recognition. In INTERSPEECH, pages 2118–2122.
ISCA, 2022.

[Shi et al., 2022c] Bowen Shi, Wei-Ning Hsu, and Abdel-
rahman Mohamed. Robust self-supervised audio-visual
speech recognition. In INTERSPEECH, pages 2118–2122.
ISCA, 2022.

[Stenzel et al., 2019] Hanne Stenzel, Jon Francombe, and
Philip JB Jackson. Limits of perceived audio-visual spa-
tial coherence as defined by reaction time measurements.
Frontiers in neuroscience, 13:451, 2019.

[Subakan et al., 2021] Cem Subakan, Mirco Ravanelli,
Samuele Cornell, Mirko Bronzi, and Jianyuan Zhong.
Attention is all you need in speech separation. In ICASSP,
pages 21–25. IEEE, 2021.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NIPS, pages 5998–6008, 2017.

[Vincent et al., 2006] Emmanuel Vincent, Rémi Gribonval,
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