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Characterizations of open and semi-open maps of compact

Hausdorff spaces by induced maps
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Abstract

Let f : X → Y be a continuous surjection of compact Hausdorff spaces. By

f∗ : M(X)→ M(Y), µ 7→ µ ◦ f −1 and 2 f : 2X → 2Y , A 7→ f [A]

we denote the induced continuous surjections on the probability measure spaces and hyperspaces,

respectively. In this paper we mainly show the following facts:

(1) If f∗ is semi-open, then f is semi-open.

(2) If f is semi-open densely open, then f∗ is semi-open densely open.

(3) f is open iff 2 f is open.

(4) f is semi-open iff 2 f is semi-open.

(5) f is irreducible iff 2 f is irreducible.
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Let f : X → Y be a continuous map from a topological space X onto another Y . As usual, f is

open iff the image of every open subset of X is open in Y; f is semi-open, or almost open, iff for

every non-empty open subset U of X, the interior of f [U], denoted int f [U], is non-empty in Y .

The “open” and “semi-open” properties are important for the structure theory of compact minimal

dynamics (see, e.g., [21, 20, 8, 9]).

By M(X), it means the set of all regular Borel probability measures on X equipped with the

weak-∗ topology. Then, there exists a naturally induced continuous surjective map:

f∗ : M(X)→ M(Y), µ 7→ µ ◦ f −1.

First of all there are equivalent descriptions of openness and semi-openness of f with the help of

the induced map ofM(X) toM(Y) as follows:

Theorem A (Ditor-Eifler [7]). Let f : X → Y be a continuous surjection of compact Hausdorff

spaces. Then f is open iff the induced map f∗ : M(X) →M(Y) is an open surjection.
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Theorem B′ (Glasner [8, 9]). Let f : X → Y be a continuous surjection between compact metric

spaces. If f is semi-open, then f∗ : M(X)→ M(Y) is a semi-open surjection.

In fact, it turns out that condition “ f is semi-open” is also necessary for that “ f∗ is semi-open” as

follows:

Theorem B′′. Let f : X → Y be a continuous surjection of compact Hausdorff spaces. If the

induced map f∗ : M(X) → M(Y) is semi-open, then f is semi-open.

Proof. Let U , ∅ be an open set in X. We shall prove that int f [U] , ∅ in Y . For that, let

U = {µ ∈ M(X) |U ∩ supp(µ) , ∅}.

Since µ ∈ M(X) 7→ supp(µ) ∈ 2X is lower semi-continuous (cf. [20, Lem. VII.1.4]), U is open in

M(X). As f∗ is semi-open by hypothesis, it follows that there exists an open subset V of M(Y)

with ∅ , V ⊆ f∗[U].

Because co(δY ) = M(Y) where δY = {δy | y ∈ Y} is the set of Dirac measures in Y , we can

choose a measure ν =
∑n

i=1 αiδyi
∈ V with αi > 0 for i = 1, . . . , n and

∑

i αi = 1. Further, we can

choose an ε ∈ UY , the uniformity structure of Y , such that for all (y′1, . . . , y
′
n) ∈ ε[y1] × · · · × ε[yn],

there exists an irreducible convex combination ν′ = α′1δy′1
+ · · · + α′nδy′n

∈ V. By V ⊆ f∗[U], it

follows that there is some µ′ ∈ U with f∗(µ
′) = ν′. As supp(ν′) = {y′1, . . . , y

′
n}, U ∩ supp(µ′) , ∅

and supp(µ′) ⊆ f −1[supp(ν′)] ⊆
⋃n

i=1 f −1(y′i), it follows that

{y′1, . . . , y
′
n} ∩ f [U] , ∅.

Clearly, this implies that ε[yi] ⊆ f [U] for some i with 1 ≤ i ≤ n. Thus, int f [U] , ∅. The proof is

completed.

Consequently we have concluded the following theorem by a combination of Theorem B′ and

Theorem B′′:

Theorem B. Let f : X → Y be a continuous surjection of compact metric spaces. Then f is

semi-open iff f∗ : M(X)→ M(Y) is semi-open.

On the other hand, recall that the (largest) hyperspace, denoted 2X, of X is defined to be the

collection of all non-empty closed subsets of X equipped with the Vietoris topology (see [20, §II.1]

or [13, Thm. I.1.2]). Note here that a base for the Vietoris topology is formed by the sets of the

form

〈U1, . . . ,Un〉 :=
{

K ∈ 2X |K ⊆ U1 ∪ · · · ∪ Un,K ∩ Ui , ∅, 1 ≤ i ≤ n
}

for all n ≥ 1 and all non-empty open sets U1, . . . , Un in X. Then X is a compact Hausdorff space

iff so is 2X, and X is metrizable iff 2X is metrizable (cf. [19], [20, Thm. II.1.1], [13, Thm. I.3.3]).

Since Kelley 1942 [15] the hyperspace theory became an important way of obtaining informa-

tion on the structure of a topological space X (in continua–compact connected metric spaces) by

studying properties of the hyperspace 2X and its hyperspace 22X

. In this note we shall give other

characterizations of open and semi-open maps with the help of the hyperspaces 2X and 2Y (see

Thm. 3 and Thm. 4). Moreover, we shall consider the interrelation of the irreducibility of f and

its induced map 2 f (see Thm. 9B), and improve Theorem B′ (see Thm. 10C).
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1. Let X, Y be compact Hausdorff spaces. Let φ : X → Y be a continuous surjection. Then φ

induces maps

2φ : 2X → 2Y by K ∈ 2X 7→ φ[K] ∈ 2Y and φad : 2Y → 2X by K ∈ 2Y 7→ φ−1[K] ∈ 2X.

Then, 2φ is a continuous surjection. Moreover, φad is continuous iff φad|Y = φ−1 is continuous

where Y is identified with {{y} | y ∈ Y} ⊂ 2Y by Lemma below, iff φ is open; see [19] and [20,

Thm. II.1.3].

Lemma (cf. [20, Rem. II.1.4]). Let X be a compact Hausdorff space and let n ≥ 1 be an integer.

Then the map

in : Xn → 2X defined by (x1, . . . , xn) 7→ {x1, . . . , xn}

is continuous. Moreover, it is locally 1-1 in the points (x1, . . . , xn) with xi , x j for all i , j. Also

note that
⋃

{in[Xn] | n ∈ N} is dense in 2X.

It is natural to wonder about which properties are transmitted between φ and 2φ. This problem

has been addressed by several authors (cf., e.g., [19, 6, 5]). We shall be concerned with the

“openness” and “semi-openness” here.

2 Lemma. Let φ : X → Y be a continuous surjection between Hausdorff spaces with X locally

compact. Then:

(a) φ is semi-open iff the preimage of every dense subset of Y is dense in X (cf. [9, Lem. 2.1]).

(b) φ is semi-open iff the preimage of every residual subset of Y is residual in X.

Proof.

(a): If φ is semi-open and let A ⊂ Y be a dense set and set U = X \ φ−1[A], then φ[U] ∩ A , ∅

whenever U , ∅, a contradiction. Thus, U = ∅ so that φ−1[A] is dense in X. Conversely, suppose

the preimage of every dense subset of Y is dense in X. Let U , ∅ be open in X. If intφ[U] = ∅,

then φ−1[Y \ φ[U]] ∩ U , ∅, a contradiction. Thus, intφ[U] , ∅.

(b)-Necessity: Let A =
⋂∞

i=1 Ai, where Ai, i = 1, 2, . . . are open dense subsets of Y . Then, obvi-

ously, φ−1[A] =
⋂

i φ
−1[Ai]. It follows from (a) that φ−1[Ai] are open dense in X. Thus, φ−1[A] is a

residual subset of X.

(b)-Sufficiency: Let U , ∅ be open in X. If intφ[U] = ∅, then there exists an open set V with

∅ , V ⊆ V̄ ⊆ U such that V̄ is compact in X. Further,

φ−1[Y \ φ[V̄]] ∩ V̄ , ∅ and φ[V̄] ∩ (Y \ φ[V̄]) , ∅,

a contradiction. Thus, intφ[U] , ∅. The proof is completed.

3 Theorem (cf. [11, Thm. 4.3] for X, Y in continua). Let f : X → Y be a continuous surjection

between compact Hausdorff spaces. Then f is open iff 2 f : 2X → 2Y is open.

Proof.

Necessity: LetA be a member of the base of the hyperspace 2X. Then by definition of the Vietoris

topology, it follows that there exist nonempty open sets U1, . . . , Un in X such that
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A = {K ∈ 2X |K ⊆ U1 ∪ · · · ∪ Un,K ∩ Ui , ∅ for 1 ≤ i ≤ n}.

Let U = U1 ∪ · · · ∪ Un. Since f is open, f [U] and f [Ui], 1 ≤ i ≤ n, are all open subsets of Y . Let

B = {K ∈ 2Y |K ⊆ f [U],K ∩ f [Ui] , ∅ for 1 ≤ i ≤ n}.

Clearly, 2 f [A] ⊆ B. In order to prove that 2 f is open, it suffices to prove that 2 f [A] = B. For that,

we need only prove B ⊆ 2 f [A].

Let B ∈ B be arbitrarily given. By definitions, there exist points yi ∈ B∩ f [Ui] for i = 1, . . . , n.

So we can select points xi ∈ Ui with f (xi) = yi for 1 ≤ i ≤ n. Moreover, as f is open and X, Y

compact, it follows that there exists a closed set A′ ∈ 2X with A′ ⊆ U such that f [A′] = B. Let

A = A′ ∪ {x1, . . . , xn}.

Then A ∈ 2X such that A ⊆ U and xi ∈ A ∩ Ui , ∅ for i = 1, . . . , n. Thus, A ∈ A and then

2 f [A] = B.

Sufficiency: Let V ⊆ X be an open nonempty set. We need prove that f [V] is open in Y . As

〈V〉 = {K ∈ 2X |K ⊆ V}

is an open subset of 2X and 2 f : 2X → 2Y is open, it follows that 2 f [〈V〉] ⊆ 2Y is open. Since

V =
⋃

{F | F ∈ 〈V〉}, hence f [V] =
⋃

{K |K ∈ 2 f [〈V〉]}. Given y ∈ f [V], {y} ∈ 2 f [〈V〉] and there

exists an open neighborhood 〈Vy,1, . . . ,Vy,n〉 of {y} in 2Y such that {y} ∈ 〈Vy,1, . . . ,Vy,n〉 ⊆ 2 f [〈V〉].

Then

f [V] ⊆
⋃

y∈ f [V](〈Vy,1, . . . ,Vy,n〉) ⊆
⋃

{K |K ∈ 2 f [〈V〉]} = f [V].

Thus, f [V] =
⋃

y∈ f [V](〈Vy,1, . . . ,Vy,n〉) is open in Y , for each 〈Vy,1, . . . ,Vy,n〉 is open in Y . The proof

is completed.

Let f : X → Y be a continuous surjection between compact Hausdorff spaces. Now define

2X, f = {A ∈ 2X | ∃y ∈ Y s.t. A ⊆ f −1(y)},

which is called the quasifactor representation of Y in X; and, as i1 : Y → 2Y is an embedding (see

Lem. 1), we may identify Y with i1[Y] = {{y} | y ∈ Y} ⊆ 2Y as mentioned before. Thus,

f ′ = 2 f |2X, f : 2X, f → Y .

is a well-defined continuous surjection, called the quasifactor of f . It is of interest to know when

f ′ is actually a factor of f . Then Theorem 3 has an interesting variation as follows:

3′. Theorem. Let f : X → Y be a continuous surjection between compact Hausdorff spaces. Then

f is open iff f ′ is open iff f∗ is open.

Proof. In view of Theorem A we need only prove the first “iff”. Suppose f is open. Then 2 f

is open by Theorem 3. Set Y = {{y} | y ∈ Y}. Then 2X, f = (2 f )−1[Y]. Thus, f ′ is open. Now

conversely, if f ′ : 2X, f → Y is open, then f is obviously open. The proof is completed.

4 Theorem (cf. [12, Lem. 2.3] for “only if” part). Let f : X → Y be a continuous surjection

between compact Hausdorff spaces. Then f is semi-open iff 2 f : 2X → 2Y is semi-open.
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Proof.

Necessity (different with [12]): Let B ⊆ 2Y be a dense subset. By Lemma 2a, we need only prove

thatA := (2 f )−1[B] is dense in 2X. For that, let 〈U1, . . . ,Un〉 be a basic open set in 2X. It is enough

to prove thatA∩ 〈U1, . . . ,Un〉 , ∅. Indeed, since f is semi-open, hence

Vi := int f [Ui] , ∅, i = 1, . . . , n.

Let V = V1 ∪ · · · ∪ Vn, U = U1 ∪ · · · ∪ Un. Then 〈V1, . . . ,Vn〉 is an open non-empty subset of 2Y .

So B∩ 〈V1, . . . ,Vn〉 , ∅. Let B ∈ B∩ 〈V1, . . . ,Vn〉. As V ⊆ f [U] and B ∈ 2Y is compact, it follows

that we can select A ∈ 2X with A ⊆ U such that f [A] = B. Moreover, by B ∩ Vi , ∅, we can take a

point xi ∈ Ui with f (xi) ∈ B for i = 1, . . . , n. Now set

K = A ∪ {x1, . . . , xn}.

Then K ⊆ U, K ∩ Ui , ∅ for all i = 1, . . . , n and f [K] = B. Thus, K ∈ A and further A ∩

〈U1, . . . ,Un〉 , ∅.

Sufficiency: Let U , ∅ be an open set in X. Since 〈U〉 = {K ∈ 2X |K ⊆ U} is open in 2X and 2 f is

semi-open, it follows that 2 f [〈U〉] = { f [K] |K ∈ 〈U〉} has a non-empty interior. Therefore, there

exists a non-empty basic open subset of 2Y , say 〈V1, . . . ,Vn〉 ⊆ 2 f [〈U〉]. Put

B = V1 ∪ · · · ∪ Vn.

Then B , ∅ is open in Y such that B ⊆ f [U]. For, as B ∈ 〈V1, . . . ,Vn〉 ⊆ 2 f [〈U〉], there exists

A ∈ 〈U〉 such that f [A] = B; thus, A ⊆ U implies B ⊆ f [U]. The proof is completed.

Note here that we do not know whether or not Theorem 4 has a variation similar to Theorem 3′.

That is, we do not know how to characterize the semi-openness of f ′ : 2X, f → Y .

5. A flow is a triple (T, X, π), simply denoted X or T y X if no confusion, where T is a topo-

logical group, called the phase group; X is a topological space, called the phase space; and where

π : T × X
(t,x)7→x
−−−−−→ X, the action, is a jointly continuous map, such that ex = x and (st)x = s(tx) for

all x ∈ X and s, t ∈ T . Here e is the identity of T .

Every flow X can induce a so-called hyperflow (T, 2X, 2π) (cf. [16] or [20, Thm. II.1.6]), de-

noted 2X , where the phase group is T , the phase space is 2X and the action is the induced mapping

2π : T × 2X
(t,K)7→tK
−−−−−−→ 2X. Here tK = {tx | x ∈ K} for t ∈ T and K ∈ 2X.

If T x = X ∀x ∈ X, then X is called a minimal flow. Let X be a compact flow; that is, X is a

flow with compact Hausdorff phase space X. If x ∈ X such that T x is a minimal subset of X , then

x is refereed to as an almost periodic (a.p.) point for X . The induced affine flow T y M(X) and

hyperflow 2X of a compact minimal flow X are not minimal unless X = {pt} a singleton. So, the

dynamics on 2X is more richer than that on X . See, e.g., [3, 10, 18, 1, 17, 14].

Let X ,Y be two compact flows. Then φ : X → Y is called an extension if φ : X → Y is

a continuous surjection such that φ(tx) = tφ(x) for all t ∈ T and x ∈ X. If φ : X → Y is an

extension of compact flows, then 2φ : 2X → 2Y is an extension of compact hyperflows (see [20,

Thm. II.1.8]).

6 Lemma (cf. [4, Lem. 3.12.15] or [20, Thm. I.1.4]). If φ : X → Y is an extension of compact

flows with X having a dense set of a.p. points and Y minimal, then φ is semi-open.
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6A. In Definition 5, if T is only a topological semigroup, then X or T y X is refereed to as a

semiflow. In this case, x ∈ X is called a.p. for X iff x ∈ T x and T x is a minimal subset of X . In

fact, it is not known whether or not Lemma 6 is still true if T is only a semigroup. See Theorem 6C

for a confirmative conditional case.

6B. Let φ : X → Y be an extension of compact semiflows. We say that φ is highly proximal (h.p.)

iff, for all y ∈ Y , there is a net tn ∈ T with tnφ
−1(y)→ {pt} in 2X (cf. [20, p.104]).

6C. Theorem. Let φ : X → Y be an extension of compact semiflows such that tφ−1(y) = φ−1(ty)

for all t ∈ T, y ∈ Y. If φ is h.p. and X has a dense set of a.p. points, then φ is semi-open.

Proof. Firstly we claim that every nonempty open subset of X contains a φ-fiber. Indeed, let U ⊂ X

be open with U , ∅. Then there is an a.p. point x0 ∈ U. Since φ is h.p., there is a net tn ∈ T

such that tnφ
−1φ(x0) → {x′}, with x′ = lim tnx0, in 2X. As x0 is a.p., it follows that there is a net

s j ∈ T with s jx
′ → x0. Thus, there is a net τi ∈ T such that τiφ

−1φ(x0) → L ⊆ U, and so that

φ−1φ(τix0) ⊆ U eventually.

Now to prove that φ is semi-open, let U ⊂ X be open with U , ∅. By our claim above, there

exists a point y0 ∈ Y such that φ−1(y0) ⊆ U. Since φad|Y : Y → 2X, y 7→ φ−1(y) is upper semi-

continuous and U is open, there is an open neighborhood V of y0 in Y such that φ−1[V] ⊆ U. Thus,

φ[U] ⊇ V so that intφ[U] , ∅. The proof is completed.

Therefore, if φ : X → Y is an h.p. extension of compact flows with X having a dense set of

a.p. points, then φ is semi-open. A point of Theorem 6C is that Y need be minimal here.

As was mentioned before, 2X need not have a dense set of a.p. points and 2Y are generally

not minimal, so Lemma 6 is not applicable straightforwardly for 2φ : 2X → 2Y . However, using

Theorem 4 we can obtain the following:

7 Corollary. Let φ : X → Y be an extension of compact minimal flows. Then:

(1) 2φ : 2X → 2Y and 22φ : 22X

→ 22Y

both are semi-open extensions of compact hyperflows.

(2) If X and Y both are compact metric spaces, then

φ∗ : M(X) →M(Y) and (φ∗)∗ : T y M(M(X)) → T y M(M(Y))

both are semi-open extensions of compact flows.

Proof. By Lemma 6, Theorem 4 and Theorem B′.

8 Corollary. Let φ : X → Y be an extension of compact flows. Then φ is open iff 2φ : 2X → 2Y

is open iff 22φ : 22X

→ 22Y

is open.

Proof. By Theorem 3.

9 (Irreducibility of maps). In what follows, let φ : X → Y be a continuous surjection between

compact Hausdorff spaces. We say that φ is irreducible if the only member A ∈ 2X with φ[A] = Y

is X itself. This notion is closely related to “highly proximal” in extensions of minimal flows [20].

9A. Lemma. φ is irreducible iff every non-empty open subset U of X contains a fiber φ−1(y) for

some point y ∈ Y.

6



Proof. It is straightforward.

9B. Theorem. φ is irreducible iff 2φ : 2X → 2Y is irreducible.

Proof.

Sufficiency: Assume 2φ is irreducible. Let A ∈ 2X with φ[A] = Y . Then 2A ⊆ 2X is a closed set

such that 2φ[2A] = 2Y . Thus, 2A = 2X and A = X. This shows that φ is irreducible.

Necessity: Suppose φ is irreducible. Let 〈U1, . . . ,Un〉 be a basic open set in 2X. In view of

Lemma 9A, it is sufficient to prove that 〈U1, . . . ,Un〉 includes a fiber of 2φ. Indeed, as φ is ir-

reducible, it follows by Lemma 9A that there is a point yi ∈ φ[Ui] with φ−1(yi) ⊆ Ui for all

i = 1, . . . , n. Let B = {y1, . . . , yn} ∈ 2Y . Then (2φ)−1(B) ⊆ 〈U1, . . . ,Un〉. Thus, 2φ is irreducible.

The proof is completed.

10. Let f : X → Y be a semi-open continuous surjection of compact Hausdorff spaces, where X

is not metrizable. In view of Theorem B′′ we naturally wonder whether or not f∗ : M(X) → M(Y)

is semi-open. The following lemma seems to be helpful for the this question, which is of interest

independently.

10A. Lemma. Let f : X → Y be a continuous surjection between compact Hausdorff spaces,

where X is not necessarily metrizable. Let ψ : X → R be a continuous function and define functions

ψ∗ : Y
y7→ψ∗(y)=sup

x∈ f−1(y)
ψ(x)

−−−−−−−−−−−−−−−−−→ R and ψ∗ : Y
y7→ψ∗(y)=inf

x∈ f−1(y)
ψ(x)

−−−−−−−−−−−−−−−−→ R.

Then there is a residual set Yc(ψ) ⊆ Y such that ψ∗ and ψ∗ are continuous at each point of Yc(ψ).

Proof. Let ρ be a continuous pseudo-metric on X and let ρ̃ be the naturally induced one on 2X.

Since f −1 : Y → 2X, defined by y 7→ f −1y, is upper semi-continuous, hence f −1 : Y → (2X, ρ̃) is

also upper semi-continuous. Thus, there exists a residual set Yρ ⊆ Y such that f −1 is continuous

at every point of Yρ. Now, for every ε > 0, there exists a continuous pseudo-metric ρ on X and a

positive r > 0 such that if x, x′ ∈ X with ρ(x, x′) < r, then |ψ(x) − ψ(x′)| < ε/3. Then there exists a

residual set Yε = Yρ ⊆ Y such that for every y ∈ Yε, we have that |ψ∗(y)−ψ∗(y′)|+ |ψ∗(y)−ψ∗(y
′)| < ε

as y′ ∈ Y close sufficiently to y. Let Yc =
⋂∞

n=1 Y1/n. Clearly, Yc is a residual subset of Y as desired.

The proof is completed.

10B (Densely open mappings). Let f : X → Y be a continuous surjection between compact Haus-

dorff spaces. We say that f is densely open if there exists a dense set Yo ⊆ Y such that f −1 : Y → 2X

is continuous at each point of Yo. For example, if X is a separable metric space, then f is always

densely open. We notice here that the “densely open” is different with “almost open” considered

in [12, Def. 1.5] and [2].

10C. Theorem. Let f : X → Y be a continuous surjection between compact Hausdorff spaces.

Then:

(1) If f is semi-open densely open, then f∗ is semi-open densely open.

(2) If f is densely open, then f∗ is densely open.

7



Proof. Based on Def. 10B, let Yo be the dense set of points of Y at which the set-valued map

f −1 : Y → 2X is continuous. Let δY = {δy | y ∈ Y}.

(1): As f is semi-open, it follows from Lemma 2 that Xo := f −1[Yo] is dense in X. In view of (2),

we need only prove that f∗ is semi-open. For that let U ⊂ M(X) be a closed set with non-empty

interior. We need only show that int f∗[U] , ∅. Suppose to the contrary that int f∗[U] = ∅. We

now fix a measure

µ0 =
∑m

i=1 ciδxi
∈ intU with xi ∈ Xo, 0 < ci ≤ 1,

∑

i ci = 1.

Set

ν0 = f∗(µ0) =
∑m

i=1 ciδyi
where yi = f (xi) ∈ Yo.

Let

ν j =
∑m j

i=1 c j,iδy j,i
∈ co(δY ) \ f∗[U] be a net with ν j → ν0.

So ν j → ν0. Each Q j is a closed convex subset of M(X) and, with no loss of generality, we

may assume that Q = lim Q j exists in 2M(X). Then Q is a compact convex subset of M(X) with

f∗[Q] = {ν0}.

If µ0 ∈ Q, then Q j ∩U , ∅ eventually so that ν j ∈ f∗[U], contradicting our choice of ν j. Thus,

µ0 < Q and by the Separation Theorem there exists a ψ ∈ C(X) and ǫ > 0 such that

µ0(ψ) ≥ q(ψ) + ǫ ∀q ∈ Q.

Define the associated function

ψ∗ : Y → R, by y 7→ ψ(y) = sup{ψ(x) | x ∈ f −1y}, such that ψ∗ ◦ f ≥ ψ.

We can choose points x j,i ∈ X with f (x j,i) = y j,i and ψ∗(y j,i) = ψ(x j,i). Now form the measures

µ j =

m j
∑

i=1

c j,iδx j,i
and assume, with no loss of generality, that µ = lim j µ j exists in M(X). Since

µ j ∈ Q j for each j, we have µ ∈ Q. Thus, µ0(ψ) ≥ µ(ψ)+ ǫ. By our construction ν j(ψ
∗) = µ j(ψ) for

every j. By assumption we have that supp(ν0) = {y1, . . . , ym} is a subset of Yo and therefore, each

yi is a continuity point of ψ∗. Thus, lim ν j(ψ
∗) = ν0(ψ∗). It then follows that

µ(ψ) = lim
j
µ j(ψ) = lim

j
ν j(ψ

∗) = ν0(ψ∗) =

m
∑

i=1

ciψ
∗(yi) ≥

m
∑

i=1

ciψ(xi) = µ0(ψ).

This contradicts the choice of ψ. Therefore f∗ is semi-open.

(2): We will now prove that f∗ is densely open. Suppose to the contrary that f∗ is not densely open.

Then there exists an open set V , ∅ in M(Y) such that f −1
∗ : M(Y) → 2M(X) is not continuous at

every point ofV. Since co(δYo
) is dense inM(Y), there exists a measure of the form

νo =
∑m

i=1 ciδyi
, where yi ∈ Yo and 0 ≤ ci ≤ 1 with

∑

ci = 1,

such that ν0 ∈ V. This implies that there is a measure

µo ∈ f −1
∗ (νo) such that there isU ∈ Nµo

(M(X)) with f∗[U] < Nνo
(M(Y)).

Then we can select a net ν j =
∑m j

i=1 c j,iδy j,i
∈ co(δYo

) \ f∗[U] such that ν j → νo. Next by an

argument as in (1) we can reach a contradiction. The proof is completed.
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