
Multi-Class Quantum Convolutional Neural Networks

Marco Mordacci, Davide Ferrari, and Michele Amoretti

Quantum Software Laboratory, University of Parma, Parma, Italy

Abstract

Classification is particularly relevant to Information Re-
trieval, as it is used in various subtasks of the search pipeline.
In this work, we propose a quantum convolutional neural
network (QCNN) for multi-class classification of classical
data. The model is implemented using PennyLane. The
optimization process is conducted by minimizing the cross-
entropy loss through parameterized quantum circuit opti-
mization. The QCNN is tested on the MNIST dataset with
4, 6, 8 and 10 classes. The results show that with 4 classes,
the performance is slightly lower compared to the classical
CNN, while with a higher number of classes, the QCNN out-
performs the classical neural network.

Index terms— Quantum Machine Learning, Classifica-
tion, Quantum Neural Network

1 Introduction

Research on machine learning for Information Retrieval (IR)
has grown rapidly in the last few years [1–3]. The advent
of quantum computers contributed to a further expansion
of the field, leveraging Quantum Machine Learning (QML)
algorithms [4–6]. Specifically, Quantum Neural Networks
(QNNs) [7] have shown to be able to achieve a significantly
better effective dimension than comparable classical neural
networks [8, 9].

Particular attention has been given to classification tasks,
using hybrid quantum-classical approaches. Within IR, clas-
sification is used in various subtasks of the search pipeline:
preprocessing, content filtering, sorting, ranking, and more.
Since the seminal work by Tacchino et al. [7] that introduced
a quantum binary-valued perceptron, many other attempts
have been made to demonstrate quantum advantage in binary
or multi-class classification tasks [10–13].

In this work, a quantum convolutional neural network
(QCNN) that is able to perform multi-class classification
is presented. A general theoretical framework is proposed,
where classical data are encoded into quantum states and pro-
cessed by means of quantum computations, and the param-
eters of the quantum model are updated according to mea-
surement results. The classifier, which is based on the gen-
eral QCNN architecture introduced by Cong et al. in [14],
consists of convolutional layers composed of two-qubit gates

and pooling layers to reduce the number of qubits within the
network. The parameterized quantum circuit is trained us-
ing classical machine learning methods by minimizing the
cross-entropy loss through gradient descent optimization of
the circuit parameters. A preprocessing circuit is introduced
to improve the performance of the model.

A performance evaluation of the proposed QCNN, consid-
ering the MNIST dataset for the classification of handwrit-
ten digits, is reported. It is shown that, with 6, 8 and 10
classes, the proposed QCNN is more accurate than a classi-
cal CNN of comparable complexity. Furthermore, the QCNN
achieves results comparable to those in [15] but with signif-
icantly fewer parameters. Additionally, it effectively tackles
classification problems involving 6 and 8 classes, delivering
satisfactory outcomes.

The paper provides the following new contributions:

• the use of a preprocessing filter before the convolutional
filters, to enhance expressibility and entanglement;

• simulation results showing that the QCNN outperforms,
in terms of accuracy, the classical CNN when executed
with 6, 8, and 10 classes, when training is based on the
full MNIST dataset;

• simulation results showing that the proposed QCNN still
outperforms the classical CNN, in terms of accuracy,
when training is based on a significantly reduced num-
ber of samples of the MNIST dataset.

The paper is organized as follows. In Section 2, some re-
lated works are discussed. In Section 3, the theoretical frame-
work is described. In Section 4, the application of the pro-
posed framework to the MNIST dataset is presented, with
simulation results that compare the quantum model to a clas-
sical model of equivalent complexity. Finally, Section 5 con-
cludes the paper with a discussion of future work.

2 Related Work
In the last few years, several quantum neural networks for
binary classification have been proposed. On the other hand,
for the multi-class scenario, there are few proposals.

In their seminal work, Tacchino et al. [7] introduced a
quantum algorithm implementing a quantum binary-valued

ar
X

iv
:2

40
4.

12
74

1v
1

 [
qu

an
t-

ph
]

 1
9

A
pr

 2
02

4

perceptron, showing exponential advantage in storage re-
sources over alternative realizations. The model can achieve
an advantage over classical perceptron models in the clas-
sification of 4 and 16 bit strings. Furthermore, Mangini et
al. [16] extended the perceptron model to classify greyscale
images. It is tested on the MNIST dataset taking into account
only images of zeros and ones, for which it achieves an accu-
racy of 98%.

In [10], Chalumuri et al. designed a quantum multi-class
classifier with a variational quantum circuit consisting of one
layer of data encoding followed by three layers for each time
step: Ry gates on data qubits, CNOT gates to entangle data
qubits with each other and with ancillary qubits, Rz and Ry
gates on ancillary qubits. The data encoding is performed
through a layer of H gates on the data qubits and a uni-
tary U(xi) for feature xi on qubit qi such that U(xi)

|0⟩+|1⟩√
2

=

cosxi |0⟩+ sinxi |1⟩. The authors show that with their encod-
ing scheme, they can achieve better accuracy with respect to
amplitude encoding, up to 50% increase on test datasets with
a 91% accuracy, on standard datasets with three classes.

In [12], Silver et al. present Quilt, a framework for multi-
class classification designed to work with current noisy quan-
tum computers. Quilt uses Principal Component Analysis
(PCA) as preprocessing to fit data on small quantum com-
puters and encodes such preprocessed data onto a quantum
state with the well known amplitude encoding algorithm. The
core feature of Quilt is the employment of not just one clas-
sification circuit, but multiple variants of small classification
circuits, called ensembles. The goal is to achieve better accu-
racy by weighting and aggregating the results of each small
circuit. When the ensemble has a low confidence on the clas-
sification result, a OneVsAll classifier is deployed as a sup-
port network to reach a final decision. The authors show
that Quilt can achieve an accuracy of almost 80% with the
MNIST dataset and eight classes.

In [17], Hur et al. introduced a QCNN-based classifier
for binary classification of MNIST digits and MNIST Fash-
ion dataset. They devised a QCNN that solely relies on two-
qubit interactions throughout the entire algorithm, following
a similar approach to [14]. The results achieved about 99%
of accuracy on MNIST dataset and 94% on MNIST Fashion
dataset. The proposed network does not provide accurate re-
sults when used with more than 2 classes.

In [15], Bokham et al. present a QCNN-based classifier
for 4-class classification. The circuit consists of three com-
ponents: the quantum encoding, which is implemented using
amplitude encoding, the convolutional layer and the pooling
layer. The authors show that their network can achieve accu-
racy between 85% and 90% on the MNIST dataset, depend-
ing on the selected classes and an accuracy between 85% and
93% on the fashion MNIST dataset. However, the QCNN
does not outperforms the classical CNN in terms of accuracy.

In [18], Wei et al. present a QCNN framework consist-
ing of an initial state preparation layer, through amplitude
encoding, a convolutional layer, comprising multiple multi-

controlled parameterized operators and a pooling layer. Fi-
nally, after the pooling, a fully connected layer measures the
remaining qubits. The authors show that while the imple-
mented QCNN can reach almost 80% accuracy with 4 classes
of the MNIST dataset with a gate complexity speedup with
respect to a CNN, it never surpasses the CNN.

3 Theoretical Framework
The goal of an L-class classification problem is to assign the
correct label to an unseen data point x ∈CN , given a labelled
data set

D = {(x1,y1),(x2,y2), ...,(xM,yM)}. (1)

To solve the multiclass classification problem, a param-
eterized quantum circuit U(xi,θ) is constructed, which is
generally denoted as Quantum Neural Network (QNN). The
QNN is trained by optimizing the parameters of the quantum
gates in order to minimize a cost function C(θ). After the
training is completed, a test set is used to assess the network’s
generalization capability.

The QNN is composed by the following parts: the encod-
ing circuit, which encodes the classical data into quantum
states; the variational quantum circuit, whose parameters θ

need to be trained; a measurement, that allows the network
to predict a class given an input image, and an optimization
process implemented classically, which has to update the pa-
rameters θ of the variational quantum circuit for minimizing
the cost function C(θ).

In the following, the parts of the proposed QNN are de-
scribed in detail. It will be clear that the designed variational
quantum circuit specializes the QNN into a QCNN (depicted
in Fig. 1).

3.1 Quantum encoding
A transformation, denoted as quantum feature map, performs
an encoding φ : X → H , where X is a dataset and H is
a Hilbert space. This quantum feature map is implemented
as a unitary transformation Uφ (x) applied to the initial state
|0⟩⊗n to produce Uφ (x)|0⟩⊗n = |φ(x)⟩, where n is the number
of qubits.

There are various methods to encode the data [19]. In this
work, two methods are considered to encode the classical
data xi in quantum states.

In the first method, denoted as amplitude encoding, an item
x is encoded in a quantum state by associating the normalized
features with the probability amplitudes of the quantum state.
Given x = (x1,x2, ...,xN)

T , with N = 2n, the quantum state is
as follows:

Uφ (x) : x ∈ RN → |φ(x)⟩= 1
||x||

N

∑
i=1

xi|i⟩, (2)

where |i⟩ is the ith computational basis state. The advantage
of this method is that it can represent exponentially many

|0⟩

E

F
(4)
1

F2

F2 P

F
(6)
1

F2

F2

F
(4)
1

F2

F2

|0⟩
F2

|0⟩
F2 F2

P

F2|0⟩
F2 F2

|0⟩

F
(4)
1

F2 F2

P

F2|0⟩
F2 F2

|0⟩
F2

P F2 F2

|0⟩ F2

Figure 1: General structure of the quantum convolutional neural network for 10-class classification. It consists of several steps:
encoding of the classical data (E), preconvolutional filters (F(n)

1), convolution filters (F2), pooling layer (P) and measurement.

classical data using a low number of qubits, but the quan-
tum circuit that implements the encoding has a depth which
usually grows as O(poly(N)).

The second method, denoted as angle encoding, encodes N
features into the rotation angles of N qubits. Given the data
x = (x1,x2, ...,xN)

T , this method encodes x as

Uφ (x) : x ∈RN → |φ(x)⟩=⊗N
i=1cos(xi)|0⟩+ sin(xi)|1⟩. (3)

This encoding uses O(N) qubits.

3.2 Variational Quantum Circuit

In a QCNN, the variational quantum circuit is composed of
two parts: a convolutional layer and a pooling layer.

In classical CNN, the convolutional layer applies a filter (a
small mask) to the images. This filter is slid over different po-
sitions of the input image; for each position, an output value
is generated by performing the scalar product between the
mask and the covered image. Its goal is to accurately iden-
tify patterns such as angles in the image. In QCNN, this is
done using a circuit applied to pairs of qubits (Fig. 1). Single-
qubit rotations are used to rotate the qubit independently and
the controlled rotations are used to create the entanglement
between the qubits and to correlate their states. The entan-
glement is useful for identifying complex patterns and it can
increase the accuracy of the network.

In this work, the convolutional filter is constructed as fol-
lows. First of all, the circuit F(n)

1 of Fig. 2, acting on n qubits,
is applied prior to the convolutional filter to perform an ini-
tial preprocessing of the images. While in the study [15], the
preprocessing circuit was applied once before all convolution
and pooling layers, here, the circuit is utilized as a preconvo-
lutional circuit, i.e., it is applied before each convolutional
layer, to enhance the performance of the quantum neural net-
work. The circuit was proposed in [20] by Schuld et al. and
it has a low-depth and it achieves good values of express-
ibility and entangling capability, as shown in [21]. For this
reason, the circuit can cover the space effectively (express-
ibility) and can find both short and long-range correlations
(entanglement). After that, the circuit F2 of Fig. 2, which
represents an arbitrary SU(4) gate [22,23], is applied to pairs
of adjacent qubits, following the structure of [14].

In classical CNN, each convolutional layer is followed by
a pooling layer, which reduces the dimensionality of the data
being processed. In QCNN, this is performed by applying a
2-qubit gate and then one qubit is traced out after the con-
trolled gate action. The pooling gate consists of two con-
trolled rotations, following the work of [17] (Fig. 3). It ap-
plies two rotations: Rz(θ1) and Rx(θ2), respectively activated
when the control qubit is 1 and 0. Then, the control qubit is
removed after the operations.

In [17], the pooling layer reduced the number of qubits by
half using one layer. Conversely, in this work, the pooling

F (n)

1 =

.

...

.

Ry(θ1) Rx(θn+1) Ry(θ2n+1) Rx(θ4n−1)

Ry(θ2) Rx(θn+2) Ry(θ2n+2) Rx(θ4n−2)

Ry(θ3) Rx(θn+3) Ry(θ2n+3)

Rx(θ3n+1)

Ry(θn) Rx(θ2n) Ry(θ3n) Rx(θ4n)

F2 =

U3(θ1, ϕ2, λ3) Ry(θ7) Ry(θ9) U3(θ10, ϕ11, λ12)

U3(θ4, ϕ5, λ6) Ry(θ8) U3(θ13, ϕ14, λ15)

Figure 2: Parameterized quantum circuit used in the convolutional layer. Ri(θ) is a rotation around the i axis by an angle of θ .
U3(θ ,φ ,λ) is an arbitrary single-qubit gate that can be expressed as U3(θ ,φ ,λ) = Rz(φ)Rx(−π/2)Rz(θ)Rx(π/2)Rz(λ).

P =

X

Rz(θ1) Rx(θ2)

Figure 3: Parameterized quantum circuit used for implement-
ing the pooling operation [17].

operation is applied only twice (instead of, for example, four
times in the first layer) per layer, enabling the addition of
another convolutional layer before measurement, as depicted
in Fig. 1.

The QCNN for 10-class classification is depicted in Fig. 1.
To conduct 4/6/8-class classification, an additional pooling
layer is added before measurement. This layer aims to reduce
the number of qubits to 2 for the 4-class scenario and to 3 for
6 and 8 classes.

3.3 Optimization
The parameters of the variational quantum circuit are updated
to minimize the cost function. The cross-entropy cost func-
tion is used. Given C classes, with indexes from 0 to C− 1,
the loss is defined as

l(x,y) = L = {l1, l2, ..., lN}T ,

ln =−
C−1

∑
c=0

log
exp(xn,c)

∑
C−1
i=0 exp(xn,i)

yn,c,
(4)

where x is the input, y is the target and N spans the minibatch
dimension.

The training process of the QCNN is carried out using clas-
sical method. In particular, the Adam optimizer is used to
train the parameters θ .

4 Results

The library PennyLane was used for the implementation of
the proposed QCNN. The tests were performed using the
simulator provided by the same library.

The optimization of the quantum circuit is based on gradi-
ent descent, specifically utilizing Adam, with varying learn-
ing rate: 0.01, 0.001 and 0.0005 across 10 epochs. Perfor-
mance evaluation involves measuring accuracy on the com-
plete test set, while precision, recall and F1 score are cal-
culated to help identify the classes where the network faces
recognition challenges.

The implemented QCNN was tested on the MNIST dataset
for the classification of handwritten digits. This dataset is
composed of 60000 training example images and 10000 test-
ing images of size 28x28 with 10 classes. The tests were
executed with 4 (0-3), 6 (0-5), 8 (0-7) and 10 classes.

The images are normalized to one since only that type
of vector can be used by the amplitude encoding algorithm.
Also, features with values closer to each other should lead
to better performance for machine learning algorithms. Af-
ter the normalization, the images are processed with a di-
mensionality reduction technique, called Principal Compo-
nent Analysis (PCA), to reduce the size of the images from
28x28 to 16x16, in the case of amplitude encoding. In this
way, the images consist of 256 pixels and they can be en-
coded into a 8-qubit state space. If the angle embedding is
used, only the 8 most significant features are retained.

The 10-class classification involves measuring 4 qubits,
where only the states from |0000⟩ to |1001⟩ are taken into
consideration and the other states are discarded. For 4/6/8-
class classifications, an additional pooling layer is added be-
fore measurement. In the 4-class classification, states from
00 to 11 are considered. For the 6-class case, states from 000
to 101 are included, and for the 8-class scenario, all the states

2 4 6 8 10
0

20

40

60

80

100

Epochs

A
cc

ur
ac

y

4-class classification accuracy

Amplitude
Angle

2 4 6 8 10
0

20

40

60

80

100

Epochs

A
cc

ur
ac

y

6-class classification accuracy

Amplitude
Angle

2 4 6 8 10
0

20

40

60

80

100

Epochs

A
cc

ur
ac

y

8-class classification accuracy

Amplitude
Angle

2 4 6 8 10
0

20

40

60

80

100

Epochs
A

cc
ur

ac
y

10-class classification accuracy

Amplitude
Angle

Figure 4: Comparison of the classification accuracy between the QCNN using amplitude and angle encoding. The evaluation
involves increasing the number of epochs and varying the number of classes, with learning rate equal to 0.01. In the 4-class
case, classes 0 to 3 are considered, while for 6 classes, classes from 0 to 5 are taken into account, and for 8 classes, classes 0 to
7 are included.

from 000 to 111 are taken into account.

Table 1: Comparison between angle and amplitude encoding
after 10 epochs and with different learning rate.

Classification Accuracy
Classes learning

rate
Angle Amplitude

4 0.01 86% 85%
6 0.01 68% 72.2%
8 0.01 58% 70%
10 0.01 46% 57%
4 0.001 85% 80%
6 0.001 62.5% 63.5%
8 0.001 56% 60.5%
10 0.001 46% 49%
4 0.0005 84.7% 79%
6 0.0005 60% 60%
8 0.0005 50.8% 60%
10 0.0005 45% 48%

The results using angle and amplitude encoding are pre-
sentend in Table 1. In the 4-class classification, both em-
beddings exhibit very similar performance. However, as the
number of classes increases, the performance of angle encod-
ing deteriorates more quickly compared to amplitude encod-
ing. Fig. 4 shows the accuracy of the model as the number

of epochs increases and the number of classes varies. In the
plots, it can be observed that accuracy nearly reaches its peak
value consistently after two epochs across different execu-
tions. The accuracy tends to approach these values within
the first two epochs. The accuracy improvement become
marginal with additional epochs.

Table 2: Comparison between classical CNN and QCNN
with 0.01 of learning rate and amplitude encoding, after 10
epochs.

Classification Accuracy
Classes CNN QCNN
4 90% 85%
6 69% 72%
8 50% 70%
10 38% 57%

The comparison between the QCNN and the CNN is pre-
sented in Table 2. The CNN is constructed using a number of
parameters similar to the number of the QCNN. For 10-class
classification, the QCNN has 105 parameters, while an addi-
tional 2 parameters are added when there are 4/6/8 classes,
since another pooling layer is needed. The CNN is structured
as follows: it comprises 3 convolutional layers, mirroring the
setup of the QCNN. Each layer contains only one kernel (or
filter). The first convolution has a kernel size of 8x8, the sec-

2 4 6 8 10
0

20

40

60

80

100

Epochs

A
cc

ur
ac

y

4-class classification accuracy

CNN
QCNN

2 4 6 8 10
0

20

40

60

80

100

Epochs

A
cc

ur
ac

y

6-class classification accuracy

CNN
QCNN

2 4 6 8 10
0

20

40

60

80

100

Epochs

A
cc

ur
ac

y

8-class classification accuracy

CNN
QCNN

2 4 6 8 10
0

20

40

60

80

100

Epochs
A

cc
ur

ac
y

10-class classification accuracy

CNN
QCNN

Figure 5: Comparison of the classification accuracy of CNN and QCNN. The evaluation involves increasing the number of
epochs and varying the number of classes, with learning rate equal to 0.01. In the 4-class case, classes 0 to 3 are considered,
while for 6 classes, classes from 0 to 5 are taken into account, and for 8 classes, classes 0 to 7 are included.

ond 5x5 and the third 3x3. It has Tanh as activation function
and the pooling operation employed is average pooling, with
a kernel size of 2. Lastly, a fully-connected layer is appended
with a number of output features corresponding to the spe-
cific number of classes (4, 6, 8 or 10). The CNN’s parameter
count varies: it has 109 parameters for 4 classes, 113 for 6
classes, 117 for 8 classes, and 121 for 10 classes.

The QCNN has better performance for 6, 8 and 10 classes.
It achieves 72% of accuracy for 6 classes, 70% for 8 classes
and 57% for 10 classes, while classical CNN attains 69%,
50% and 38% respectively. Even if the CNN is trained for an
additional 90 epochs, it still fails to match the performance
of the QCNN.

In Fig. 5, a detailed depiction of how the performance of
CNN and QCNN varies over epochs is provided. The plots
demonstrate that while the CNN achieves better results when
it sees the same data multiple times, the QCNN does not
show significantly better results. By incrementing the num-
ber of epochs for the classical CNN, while a better result is
obtained with 4 classes, with 6, 8 and 10 classes the CNN
cannot reach the same result of the QCNN.

As a final experiment, the QCNN was tested with only 250
samples per class and the results were compared with those of
the CNN. In Fig. 6, the accuracy over 100 epochs is depicted
for both neural networks. The plots show that the QCNN
almost achieves the same level of performance as when using
the entire dataset, whereas the classical CNN fails to achieve
comparable results with a limited number of samples.

These results can help in the future to study how gener-
alization and overfitting work in the quantum scenario. In
classical scenarios, networks typically achieve better perfor-
mance when provided with more samples. Conversely, in
the quantum case, the quantum networks demonstrate the ca-
pability to achieve comparable result with a smaller number
of samples. Another interesting aspect is that the QCNN
achieves or nearly achieves peak performance with the entire
training set within a limited number of epochs, showing min-
imal improvements with more epochs. This contrasts with
classical networks, which heavily rely on an increased num-
ber of epochs for notable enhancements.

In Table 3, the results achieved by the QCNN for each class
are presented. There are classes where the network achieves
good results (classes: 0, 1, 2, 3 and 7). However, there are
classes, such as class 5, 6 and 9, where the network struggles
to achieve accurate recognition.

All data are available from the corresponding authors upon
reasonable request.

5 Conclusion

Classification is particularly relevant to IR, as it is used in
various subtasks of the search pipeline. With the potential of
quantum computers to handle efficiently an ever-increasing
amount of data, new perspectives on classification algorithms
are opening up.

2 610 20 50 80 100
0

20

40

60

80

100

Epochs

A
cc

ur
ac

y

4-class classification accuracy

CNN
QCNN

2 610 20 50 80 100
0

20

40

60

80

100

Epochs

A
cc

ur
ac

y

6-class classification accuracy

CNN
QCNN

2 610 20 50 80 100
0

20

40

60

80

100

Epochs

A
cc

ur
ac

y

8-class classification accuracy

CNN
QCNN

2 610 20 50 80 100
0

20

40

60

80

100

Epochs
A

cc
ur

ac
y

10-class classification accuracy

CNN
QCNN

Figure 6: Comparison of the classification accuracy of CNN and QCNN with only 250 samples per class. The evaluation
involves increasing the number of epochs and varying the number of classes, with learning rate equal to 0.01. In the 4-class
case, classes 0 to 3 are considered, while for 6 classes, classes from 0 to 5 are taken into account, and for 8 classes, classes 0 to
7 are included.

Table 3: Precision, recall and F1 score of the QCNN for 10
classes, after 10 epochs. Amplitude encoding is used and the
learning rate is equal to 0.01.

Class Precision Recall F1 score
0 61% 67% 64%
1 65% 93% 76.5%
2 60% 66% 63%
3 51% 68% 58%
4 67% 37% 48%
5 27% 11% 15.5%
6 44% 54% 54%
7 55% 80.5% 65%
8 59% 34% 43%
9 72% 18% 29%

In this paper, a QCNN was presented for solving multi-
class classification problems on classical data. The QCNN
has better performance compared to the classical counterpart
for 6, 8 and 10 classes. Furthermore, the proposed quantum
neural network nearly achieves the results of [15] with a sig-
nificantly lower number of parameters.

The tested QCNN uses a parameters count equal to 105 in
the 10-classes scenario, while with 4, 6 and 8 classes, an ad-
ditional 2 parameters are added since another pooling layer is
appended before measurement. The QCNN is characterized
by the following classification accuracy: 86% in the 4-class
scenario, 72% with 6 classes, 70% with 8 classes and 57%
with 10 classes.

In the future, the proposed QCNN framework may be en-
hanced by modifying the convolutional and the pooling lay-
ers. The pooling layer could be modified to transmit informa-
tion about the state of the qubit traced out to multiple qubits,
extending beyond the single adjacent qubit.

Further potential improvements involve the measurement
process. In the scenario with 10 classes, the network per-
forms measurements on 4 qubits, leaving 6 states unused for
predicting the 10 classes. This can introduce noise in the
classification process, potentially impacting performance. A
similar situation arises with 6 classes. One solution could
be to utilize 10 qubits during measurement, associating each
qubit with one of the 10 classes. Each qubit would be set to
state 1 when an image of the respective class is inputted.

Understanding generalization and overfitting is an impor-
tant aspect. Research on this topic has already initiated, as
seen in [24–26]. This paper can help to understand how
generalization and overfitting work in the quantum scenario,
because it seems like the quantum networks can achieve opti-
mal results in generalization with a fewer number of samples.

Another possible future development is to add more ker-
nels (filters) to observe their impact on network performance,
since in the classical scenario this often leads to enhanced
performance.

Acknowledgement
Michele Amoretti acknowledges financial support from the
European Union – NextGenerationEU, PNRR MUR project
PE0000023-NQSTI. This research benefits from the HPC
(High Performance Computing) facility of the University of
Parma, Italy.

References
[1] K. D. Onal, Y. Zhang, I. S. Altingovde, M. M. Rahman,

P. Karagoz, A. Braylan, B. Dang, H.-L. Chang, H. Kim,
Q. McNamara, A. Angert, E. Banner, V. Khetan, T. Mc-
Donnell, A. T. Nguyen, D. Xu, B. C. Wallace, M. de Ri-
jke, and M. Lease, “Neural information retrieval: at the
end of the early years,” Information Retrieval Journal,
vol. 21, no. 2, pp. 111–182, 2018.

[2] H. Zamani, F. Diaz, M. Dehghani, D. Metzler, and
M. Bendersky, “Retrieval-enhanced machine learning,”
in Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, ser. SIGIR ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p.
2875–2886.

[3] A. Salemi, J. Altmayer Pizzorno, and H. Zamani, “A
symmetric dual encoding dense retrieval framework
for knowledge-intensive visual question answering,” in
Proceedings of the 46th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, ser. SIGIR ’23. New York, NY, USA: As-
sociation for Computing Machinery, 2023, p. 110–120.

[4] M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J.
Coles, “Challenges and opportunities in quantum ma-
chine learning,” Nature Computational Science, vol. 2,
no. 9, pp. 567–576, 2022.

[5] S. Mensa, E. Sahin, F. Tacchino, P. K. Barkoutsos, and
I. Tavernelli, “Quantum machine learning framework
for virtual screening in drug discovery: a prospective
quantum advantage,” Machine Learning: Science and
Technology, vol. 4, no. 1, p. 015023, feb 2023.

[6] R. Guarasci, G. De Pietro, and M. Esposito, “Quantum
natural language processing: Challenges and opportu-
nities,” Applied Sciences, vol. 12, no. 11, 2022.

[7] F. Tacchino, C. Macchiavello, D. Gerace, and D. Ba-
joni, “An artificial neuron implemented on an actual
quantum processor,” npj Quantum Information, vol. 5,
no. 1, p. 26, 2019.

[8] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli,
and S. Woerner, “The power of quantum neural net-
works,” Nature Computational Science, vol. 1, no. 6,
pp. 403–409, 2021.

[9] P. J. Coles, “Seeking quantum advantage for neural net-
works,” Nature Computational Science, vol. 1, no. 6,
pp. 389–390, 2021.

[10] A. Chalumuri, R. Kune, and B. Manoj, “A hybrid
classical-quantum approach for multi-class classifica-
tion,” Quantum Information Processing, vol. 20, no.
119, pp. 1–19, mar 2021.

[11] A. Zhang, X. He, and S. Zhao, “Quantum classification
algorithm with multi-class parallel training,” Quantum
Information Processing, vol. 21, no. 358, pp. 1–13, oct
2022.

[12] D. Silver, T. Patel, and D. Tiwari, “Quilt: Effective
multi-class classification on quantum computers using
an ensemble of diverse quantum classifiers,” in Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 36. held virtually: AAAI Press, 2022, pp.
8324–8332.

[13] J. Zhou, D. Li, Y. Tan, X. Yang, Y. Zheng, and X. Liu,
“A multi-classification classifier based on variational
quantum computation,” Quantum Information Process-
ing, vol. 22, no. 412, pp. 1–21, nov 2023.

[14] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolu-
tional neural networks,” Nature Physics, vol. 15, no. 12,
pp. 1273–1278, 2019.

[15] D. Bokhan, A. S. Mastiukova, A. S. Boev, D. N. Trub-
nikov, and A. K. Fedorov, “Multiclass classification us-
ing quantum convolutional neural networks with hy-
brid quantum-classical learning,” Frontiers in Physics,
vol. 10, p. 1069985, 2022.

[16] S. Mangini, F. Tacchino, D. Gerace, C. Macchiavello,
and D. Bajoni, “Quantum computing model of an
artificial neuron with continuously valued input data,”
Machine Learning: Science and Technology, vol. 1,
no. 4, p. 045008, oct 2020. [Online]. Available:
https://dx.doi.org/10.1088/2632-2153/abaf98

[17] T. Hur, L. Kim, and D. K. Park, “Quantum convolu-
tional neural network for classical data classification,”
Quantum Machine Intelligence, vol. 4, no. 1, p. 3, 2022.

https://dx.doi.org/10.1088/2632-2153/abaf98

[18] S. Wei, Y. Chen, Z. Zhou, and G. Long, “A quantum
convolutional neural network on nisq devices,” AAPPS
Bulletin, vol. 32, pp. 1–11, 2022.

[19] M. Schuld and F. Petruccione, Supervised learning with
quantum computers. Berlin: Springer, 2018, vol. 17.

[20] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe,
“Circuit-centric quantum classifiers,” Physical Review
A, vol. 101, no. 3, p. 032308, 2020.

[21] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, “Express-
ibility and entangling capability of parameterized quan-
tum circuits for hybrid quantum-classical algorithms,”
Advanced Quantum Technologies, vol. 2, no. 12, p.
1900070, 2019.

[22] F. Vatan and C. Williams, “Optimal quantum cir-
cuits for general two-qubit gates,” Physical Review A,
vol. 69, no. 3, p. 032315, 2004.

[23] I. MacCormack, C. Delaney, A. Galda, N. Aggarwal,
and P. Narang, “Branching quantum convolutional neu-
ral networks,” Physical Review Research, vol. 4, no. 1,
p. 013117, 2022.

[24] E. Gil-Fuster, J. Eisert, and C. Bravo-Prieto, “Un-
derstanding quantum machine learning also re-
quires rethinking generalization,” arXiv preprint
arXiv:2306.13461, 2023.

[25] M. C. Caro, H.-Y. Huang, M. Cerezo, K. Sharma,
A. Sornborger, L. Cincio, and P. J. Coles, “General-
ization in quantum machine learning from few training
data,” Nature communications, vol. 13, no. 1, p. 4919,
2022.

[26] E. Peters and M. Schuld, “Generalization despite over-
fitting in quantum machine learning models,” Quantum,
vol. 7, p. 1210, 2023.

	Introduction
	Related Work
	Theoretical Framework
	Quantum encoding
	Variational Quantum Circuit
	Optimization

	Results
	Conclusion

