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Abstract. The conjugate function method is an algorithm for numerical computation of con-
formal mappings for simply and multiply connected domains. In this paper, the conjugate function
method is extended to cover conformal mappings between Riemannian surfaces. The main challenge
addressed here is the connection between Laplace–Beltrami equations on surfaces and the compu-
tation of the conformal modulus of a quadrilateral. We consider mappings of simply, doubly, and
multiply connected domains. The numerical computation is based on an hp-adaptive finite element
method. The key advantage of our approach is that it allows highly accurate computations of map-
pings on surfaces, including domains of complex boundary geometry involving strong singularities
and cusps. The efficacy of the proposed method is illustrated via an extensive set of numerical
experiments including error estimates.
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1. Introduction. The problem of finding numerical conformal mappings be-
tween plane domains has been widely studied in the literature. Popular methods in
this setting include the Schwarz-Christoffel Mapping [11, 12], the Zipper algorithm
[24], and boundary integral methods [26, 35]. Our earlier work in this topic includes
[16], where the conjugate function method was introduced and its generalization to
multiply connected domains in [17]. Both of these papers make use of the hp-FEM
method introduced in [18] for numerical computation of underlying conformal moduli
and potential functions required by the method, but other approaches can be used
as well. For example in [21], conformal moduli and potential functions are approxi-
mated by using a stochastic Walk-on-Spheres method. For comprehensive surveys on
methods available for numerical conformal mappings in the plane, see e.g. [23, pg.
8–11] and [34].

While, as in the planar case, the existence of conformal mappings between simply
connected Riemannian surfaces is well-known, the possibility of applying aforemen-
tioned algorithms in this setting is not clear, making this topic substantially more
difficult than obtaining mappings between plane domains. Numerical methods for
constructing conformal mappings between surfaces include circle packings [7, 30, 32]
and the differential geometric approach of Gu and Yau [14].

In this paper, we generalize our earlier work on numerical conformal mappings
between plane domains to mappings of a canonical plane domain onto a surface of the
same topological type. Our method is based on conformal modulus, which is applica-
ble in very general settings, and on finding harmonic solutions to Dirichlet-Neumann
mixed boundary value problems on surfaces through state-of-the-art numerical meth-
ods. As a result, we obtain an algorithm that is not only easy to understand but also
very general and accurate even for surfaces of complicated geometric types.
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1.1. PDEs on Surfaces. Partial differential equations defined on general sur-
faces arise in many different contexts. Several methods for defining suitable discretiza-
tions of surfaces and corresponding finite element spaces have been proposed. In this
work, it is assumed that some global parameterization is available for each instance.
It should be mentioned that Demlow [9] mentions that this approach is not sufficiently
flexible to cover many interesting applications such as those with evolving or moving
surfaces, indeed, such problems are not considered here. There are many excellent
references covering approaches where the surface is approximated by a polyhedral sur-
face having triangular faces, and we only list a few, see for instance [10, 5]. Demlow
also considers higher order discretizations within the classical h-version of the finite
element method [8] and Cantwell et al. [6] within the hp-version. Bonito and Demlow
have contributed an implementation to a popular open source library deal.II [2].
Also, some recent work covers more modern discretization techniques such as virtual
finite elements [13].

1.2. Conformal Mappings on Surfaces. The following counterpart of the
Riemann mapping theorem for surfaces is known as the uniformization theorem (see
e.g. [1, Theorem 10-3]):

Theorem 1.1. Every simply connected Riemann surface is conformally equiva-
lent to a disk, to the complex plane, or to the Riemann sphere.

This result was independently proved by Paul Koebe and Henri Poincaré in 1907.
In this paper, we also investigate conformal mappings of doubly and multiply

connected surfaces, where the mapping is constructed onto canonical domains as in
[16, 17]. In these cases, the existence of the conformal mapping is guaranteed by a
more general version of the above result, see e.g. [22, Theorem 3.1].

1.3. Illustrative Example: Cartography. Obtaining a conformal mapping
of an ellipsoid of a revolution onto a rectangular plane domain is a classical problem
which arises from the construction of Mercator type map projections. Haumea is a
dwarf planet located beyond Neptune’s orbit discovered in the 2000’s. Due to its rapid
rotation, its shape is a flattened ellipsoid with dimensions 1, 960 × 1, 518 × 996 km,
which means that it is not an ellipsoid of revolution. For a cartographer this means
that in Mercator type map projections latitudes and longitudes do not intersect at
right angles. This is illustrated in Figure 1. The algorithm used to compute the
mapping is described in detail in the following sections.

1.4. Organization. The rest of the paper is organized as follows: After the
introduction, preliminaries including the finite element method used and the pla-
nar conjugate function method are covered. In short Section 3, the conjugate func-
tion method on surfaces is outlined. In Section 4, two special surfaces, helicoid and
catenoid are discussed, with a focus on their isothermal coordinates. Numerical ex-
periments, highlighting the efficacy of the method over a series of surfaces including a
variety of singularities, are the topic of the Section 5. Finally, conclusions are drawn
in Section 6.

2. Preliminaries. In this section, we review the preliminary material required
for the development of the proposed method. First, the planar conjugate function
method is outlined. Next, the hp-version of the finite element method as well as the
two classes of a posteriori error estimates are reviewed, including the a priori mesh
refinement strategies needed in the numerical experiments below.
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Fig. 1: Haumea. (a) Artist’s impression, (b) latitudes and longitudes, and (c) world
map.

2.1. The Conjugate Function Method on Planar Domains. We call a
Jordan domain Ω ⊂ C together with four distinct oints z1, z2, z3, z4 ∈ ∂Ω defining
the positive orientation of ∂Ω a (generalized) quadrilateral and denote it by Q =
(Ω; z1, z2, z3, z4). We denote the boundary segments connecting the pairs of points
(zj , zj+1) for j = 1, 2, 3, and (z4, z1) for j = 4, respectively, by γj .

It is well-known (see e.g. [1]) that there exists a unique number h > 0 called the
conformal modulus of Q, such that there exists a conformal mapping of the rectangle
Rh = [0, 1] × [0, h] ⊂ C onto Ω, with boundary points z1, z2, z3, z4 corresponding to
the images of the points 0, 1, 1 + ih, ih, respectively. The number h is unique and
it determines the conformal equivalence class of Ω in the sense that there exists a
conformal mapping between quadrilaterals (with boundary point correspondence) if
and only if they have the same modulus. We denote the conformal modulus of a
quadrilateral Q by M(Q).
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The conformal modulus of a quadrilateral can also be determined as follows.
Recall that there exists a (unique) harmonic solution u to the following Dirichlet-
Neumann mixed boundary value problem:

(2.1)


∆u(z) = 0 for z ∈ Ω,
u(z) = 0 for z ∈ γ2,
u(z) = 1 for z ∈ γ4,

∂u(z)/∂n = 0 for z ∈ γ1 ∪ γ3,

where n is the unit exterior boundary normal. Then the conformal modulus is con-
nected to the above boundary value problem by the identity (see e.g. Ahlfors [1,
Theorem 4.5] and Papamichael and Stylianopoulos [28, Theorem 2.3.3]):

(2.2) M(Q) =

∫∫
Ω

|∇u|2 dx dy.

For a quadrilateralQ = (Ω; z1, z2, z3, z4) we call Q̃ = (Ω; z2, z3, z4, z1) its conjugate

quadrilateral and the corresponding problem (2.1) for quadrilateral Q̃ the conjugate

Dirichlet–Neumann problem. It is well-known that if M(Q) = h > 0, then M(Q̃) =
1/h, which leads to the following very useful reciprocal identity: For all quadrilaterals
Q, we have

(2.3) M(Q)M(Q̃) = 1.

Furthermore, we may observe that the canonical conformal mapping of a quadri-
lateral Q = (Ω; z1, z2, z3, z4) onto the rectangle Rh with vertices at 1 + ih, ih, 0, and
1, can be obtained by solving the corresponding Dirichlet–Neumann problem and its
conjugate problem.

Lemma 2.1 ([16]). Let Q be a quadrilateral with modulus h, and suppose u solves
the Dirichlet–Neumann problem (2.1). If v is a harmonic function conjugate to u, sat-
isfying v(Re z3, Im z3) = 0, and ũ represents the harmonic solution for the conjugate

quadrilateral Q̃, then v = hũ.

This lemma gives a method for computing numerical conformal mappings between
plane domains, which we call the conjugate function method. The accuracy of this
method in the planar case is discussed in [16, pg. 348].

2.2. High-Order Finite Element Method. High-order finite element meth-
ods have the capability for exponential convergence provided the discretisation is
constructed properly in both domain (h-version) and in local polynomial order (p-
version). In this paper, the combined hp-FEM is used to discretise the Laplace-
Beltrami operator in the parameter space of the surfaces considered.

In all cases, it is implicitly assumed that the exact parameterisation of the bound-
aries on the parameter space is known. This allows us to benefit from efficient han-
dling of large elements within the p-version without significant loss of accuracy. It
also means that the number of elements can be kept relatively low.

Let us consider the Dirichlet-Neumann problem (2.1) and its weak solution u0.
The following theorem due to Babuška and Guo [3, 4], sets the limit to the rate
of convergence. Notice that the construction of the appropriate spaces is technical,
but can be extended to parameterised surfaces. For rigorous treatment of the theory
involved see Schwab [31] and references therein.
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Theorem 2.2. Let Ω ⊂ R2 be a polygon, v the FEM-solution of (2.1), and let
the weak solution u0 be in a suitable countably normed space where the derivatives of
arbitrarily high order are controlled. Then

inf
v
∥u0 − v∥H1(Ω) ≤ C exp(−b 3

√
N),

where C and b are independent of N , the number of degrees of freedom. Here v is
computed on a proper geometric mesh, where the order of an individual element is set
to be its element graph distance to the nearest singularity. (The result also holds for
meshes with constant polynomial degree.)

2.2.1. Error Estimation. We employ two a posteriori error estimation meth-
ods. The first one is the direct application of the reciprocal equation (2.3) as an error
estimate. We simply monitor the quantity of interest

(2.4) reci(Q) = |M(Q)M(Q̃)− 1|,

which is defined for every quadrilateral Q and will be shown to be applicable also on
surfaces. In fact, existence of this type of relations can even be used as necessary and
sufficient conditions for the existence of quasiconformal parameterization of a surface
in a very general setting [29, Theorem 1.4] of which our results are a special case.

Similarly, the auxiliary subspace error estimation can be defined analogously to
Laplace-Beltrami. Let T be some hp-discretisation on the computational domain Ω.
Assuming that the exact solution u ∈ H1

0 (Ω), defined on T , has finite energy, the
approximation problem is as follows: Find û ∈ V such that

(2.5) a(û, v) = l(v) (= a(u, v)) (∀v ∈ V ),

where a( · , · ) and l( · ), are the bilinear form and the load potential, respectively.
Additional degrees of freedom can be introduced by enriching the space V . This is
accomplished via the introduction of an auxiliary subspace or “error space” W ⊂
H1

0 (Ω) such that V ∩W = {0}. The error problem becomes thus: Find ε ∈ W such
that

(2.6) a(ε, v) = l(v)− a(û, v)(= a(u− û, v)) (∀v ∈W ).

This can be interpreted as a projection of the residual to the auxiliary space.
The main error theorem on auxiliary subspace error estimators for standard dif-

fusion problems is Theorem 2.3. It should be mentioned that even though there exists
compelling numerical evidence that the constant K is in fact independent of p, no
rigorous proofs exist to support this observation.

Theorem 2.3 ([15]). There is a constant K depending only on the dimension
d, polynomial degree p, continuity and coercivity constants C and c, and the shape-
regularity of the triangulation T such that

c

C
∥ε∥H1(Ω) ≤ ∥u− û∥H1(Ω) ≤ K

(
∥ε∥H1(Ω) + osc(R, r, T )

)
,

where the residual oscillation depends on the volumetric and face residuals R and r,
and the triangulation T .
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(a) (b)

Fig. 2: Rule based mesh refinement. Refinement to an edge coupled with corner
refinement. (a) and (b): The first two steps starting from a regular grid. Notice that
the process generates both triangles and quadrilaterals.

2.2.2. A Priori Refinement Strategies. In many problems exponential con-
vergence of the p- and hp-FEM cannot be realised unless conformal meshes with geo-
metric grading are available. Our approach is based on generating a priori optimally
refined meshes using rule based algorithms [20]. One of the interesting requirements
here is that we have to find a way to simultaneously refine the mesh geometrically over
the whole edge or segment of the boundary coupled with standard corner refinement.
The replacement rules are illustrated in Figure 2.

Since the geometric grading strategy relies on a priori information it does not
lend itself well for adaptivity. Modifying the mesh in a posteriori sense requires
changing the a priori strategy, in other words, remeshing the whole domain. Hence,
we only compute error estimates as defined above and do not propose any algorithmic
approach for adaptivity.

3. Conjugate Function Method on Surfaces. In this section, we develop a
version of the conjugate function method introduced in [16, 17] in the case of domains
on Riemannian surfaces. For the case of simply connected surfaces, the existence of
the harmonic conjugate is well-known [1, Corollary 9-2, pg. 135]. Our discussion
covers the variational formulation used in the finite element method.

3.1. Conformal Modulus and Generalized Quadrilaterals of Surfaces.
Suppose Ω ⊂ S is a simply connected domain on a Riemannian surface S so that
its boundary of Ω is a Jordan curve. Let z1, z2, z3, z4 ∈ ∂Ω be four distinct points
on the boundary of Ω defining the positive orientation of ∂Ω. We again call Q =
(Ω; z1, z2, z3, z4) a quadrilateral on S, and define its conformal modulus as the number
h > 0 such that there exists a conformal mapping of the rectangle Rh = [0, 1]×[0, h] ⊂
C onto Ω. with boundary points z1, z2, z3, z4 corresponding to the images of the points
0, 1, 1 + ih, ih, respectively. The number h is unique and it determines the conformal
equivalence class of Ω.

Denote by γj the part of the boundary curve ∂Ω connecting zj , zj+1 for = 1, 2, 3
and z4, z1 for j = 4. As in the planar case (see [18, 2.1]), numerical computation of
the conformal modulus can be based on the following mixed boundary value problem:

∆Su = 0 on Ω,

with Dirichlet boundary conditions 0 on γ2 and 1 on γ4, respectively, and Neumann
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boundary condition ∂u/∂n = 0 on γ1 ∪ γ3, where n is the exterior unit normal at a
boundary point taken at the tangent plane of S. Numerical examples on computation
of conformal moduli of plane quadrilaterals are given in [18].

3.2. Laplace-Beltrami. Our task is to define the Laplacian on some surface S,
that is, we want to define the operator ∆S in the form which is suitable for finite
element implementation. In our setting, the surface is always assumed to be given
in some parameterised form. Let xS : S̄ → S be a parameterisation of a surface S.
The goal is to treat S̄ ⊂ R2 as the reference domain on which the finite elements are
defined. Let Jx be the Jacobian of the mapping, and hence GS = JT

x Jx is the first
fundamental form.

The tangential gradient of some function v : S → R is

(3.1) (∇Sv) ◦ xS := JxG
−1
S ∇(v ◦ xS),

and immediately, using the same notation, the ∆S can be written as

(3.2) ∆S := ∇S · ∇S .

Equipped with this operator, the variational formulation

(3.3)

∫
S

∇Sψ · ∇Sv dx, for all v ∈ H1(S)

on an image K of a given element K̄ in a discretisation of S̄ becomes∫
K

∇Kψ · ∇Kv dx =

∫
K̄

∇(ψ ◦ xK)TG−T
K JT

x JxG
−1
K ∇(v ◦ xK)

√
det(Gk) dx̄(3.4)

=

∫
K̄

∇(ψ ◦ xK)TG−T
K GSG

−1
K ∇(v ◦ xK)

√
det(Gk) dx̄.(3.5)

The integrals are evaluated on standard 2D mapped Gaussian quadratures. In
fact, it is the first equality (3.4) which is compatible with our implementation of the
method. Since the problem has been transformed to a standard 2D planar problem
with variable coefficients, there is no need for additional arguments on the convergence
of the method.

4. Helicoid and Catenoid: Isothermal Coordinates. Isothermal coordi-
nates on a Riemannian manifold are local coordinates where the metric is conformal
to the Euclidean metric. In the context of our study, this leads to two immediate
observations: First, the conformal moduli can be evaluated exactly, if the parameter
space is one of the known conformal domains; second, in the variational formulation
(3.4) the surface contribution to the mapping G−T

K GSG
−1
K

√
det(GK) is an identity

mapping if the parameterisation is isothermal, thus giving us a simple verification
test.

4.1. Catenoid. Consider the graph x = cosh(z) on the xz-plane, which is called
catenary. The surface of revolution generated by rotation of this graph around the
z-axis is called catenoid, and its isothermal coordinates are given by

(4.1) rC(u, v) =
(
x(u) cos(v), x(u) sin(v), z(u)

)
,

where (x(u), z(u)) = (cosh(u), u). Actually, in this case the first fundamental form is
given by cosh2(u)(du2+dv2), in other words, the metric is conformal to the Euclidean
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Fig. 3: Catenoid and Helicoid: Conformal maps on the surfaces.

metric. The mapping information used in the variational formulation is

Jx =

 sinh(u) cos(v) − cosh(u) sin(v)
sinh(u) sin(v) cosh(u) cos(v)

1 0

 , G−1
K =

(
sech2(u) 0

0 sech2(u)

)
,

√
det(GK) = cosh2(u).

Through a straightforward computation one finds that, indeed,

G−T
K GSG

−1
K

√
det(GK) = I.

4.2. Helicoid. Recall that a parameterisation of a helicoid surface is given by

(4.2) rH1(u, v) =
(
u cos(v), u sin(v), v

)
.

This parameterisation is not isothermal. On the other hand, an isothermal parame-
terisation of helicoid exists (see [27]), and can be written as

(4.3) rH2
(u, v) =

(
sinh(u) sin(v),− sinh(u) cos(v), v

)
.

As for the catenoid above, for rH1(u, v), one has

Jx =

 cos(v) −u sin(v)
sin(v) u cos(v)

0 1

 , G−1
K =

(
1 0
0 1

u2+1

)
,

√
det(GK) =

√
u2 + 1,

resulting in

(4.4) G−T
K GSG

−1
K

√
det(GK) =

( √
u2 + 1 0
0 1√

u2+1

)
̸= I.
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Fig. 4: Helicoid: (a) Maps on the parameter space. Isothermal coordinates: Solid
lines, General: Dashed lines. (b) Convergence in the non isothermal parameterisation,
error estimates vs. p. Reciprocal error estimate: Solid line, Auxiliary subspace error
estimate: Dashed line.

For rH2(u, v), one has

Jx =

 cosh(u)(− cos(v)) sinh(u) sin(v)
cosh(u) sin(v) sinh(u) cos(v)

0 1

 , G−1
K =

(
sech2(u) 0

0 sech2(u)

)
,

√
det(GK) = cosh2(u),

and the mapping in the variational formulation reduces to identity.

4.3. Computation of Moduli: Exact Values and Error Estimates. For
both helicoid and catenoid the parameter domain Ω = [−1, 1] × [0, 2π]. The exact
values of the conformal moduli for both quadrilaterals with natural corner points are

(4.5) M(Q) = 1/π, M(Q̃) = π.

The effect of the parameterisation is illustrated in Figure 4a. The conformal map-
ping is perfectly aligned with the coordinate axes if the parameterisation is isothermal,
whereas in the general case of rH1

(u, v) (dashed lines) there is some deviation in the
u-direction. Notice, that in the v-direction there is perfect alignment, as one would
expect since in (4.4) there is no dependence on v.

For isothermal parameterisations linear finite elements are exact. For rH1
(u, v)

in the u-direction this cannot be the case. In Figure 4b convergence graphs for
both reciprocal and auxiliary space error estimators are shown. The convergence
is exponential in p, and interestingly exhibits mild staircasing.

5. Numerical Experiments. The numerical experiments are, broadly speak-
ing, divided into three sections. First we continue the discussion on cartography and
consider the planet Earth, since remarkably the conformal mapping is known and
even pointwise convergence can be estimated. Second, we study problems on parts
of a sphere with different characteristic features, such as singularities induced by the
boundary conditions, cusps, or higher connectivity of the domain. In two specific
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Table 1: Surfaces studied in the numerical experiments. Surface parameterisation
is: (sin(u) cos(v), sin(u) sin(v), cos(u)), i.e., a sphere. For the hyperbolic quadrilateral
and multiply connected examples the parameter domains are nontrivial.

Name Parameter Domain
Hemisphere u ∈ [0, π/2], v ∈ [0, 2π]
Quarter Sphere u ∈ [0, π/2], v ∈ [0, π]
Hyperbolic Quadrilateral HypQuad((3π/16, 3π/16), π

8
√
2
, π/4)

Two Holes D(( 12 ,
1
2 ), 1) \ (D((

1
4 ,

1
4 ),

1
4 ) ∪ D(( 34 ,

3
4 ),

1
4 ))

problems on the sphere, the exact values of the conformal moduli are known, and
hence the convergence rates of the method in various natural norms can be shown
to be exponential provided the meshes are properly refined. As our last example, a
highly complicated non-smooth surface is considered. This section is concluded with
remarks on computational complexity.

5.1. Planet Earth (Ellipsoid). Using values for the equatorial and polar radii
of the planet Earth (as specified by World Geodetic System, 1984), R1 = 6378.1370
and R2 = 6356.7523, respectively, we arrive at the following normalised parametrisa-
tion, where the parameters are the longitude λ and latitude ϕ x = a cos(λ) sin(ϕ),

y = b sin(λ) sin(ϕ),
z = c cos(ϕ),

with a = b = R1/R2, and c = 1. For the reference case, that is, the globe with
a = b = c = 1, the Mercator projection can be computed in closed form, where a
point (ξ, η) on a rectangular map is given as a function of its longitude and latitude
[33, pg. 24]:

(5.1) (ξ, η) =
(
λ, ln tan

(π
4
+
ϕ

2

))
.

As is well-known, the projection is singular at the poles, hence we remove small polar
caps of radius ϵ > 0, and the parameter domain is thus λ ∈ [0, 2π], ϕ ∈ [ϵ, π − ϵ]. We
choose ϵ = 1/100.

For both cases the proposed method is accurate as in the cases above as measured
in the reciprocal error. Since the exact mapping is known, we can measure error also
over the parameter domain. We normalise the projection (5.1) to have values in the
interval [0, 1] along λ = 0 and compute L2-norm and H1-seminorm errors using the
hp-FEM solution. With a boundary layer fitted mesh at p = 10 the norms are ∼ 10−9

and ∼ 10−6 for L2-norm and H1-seminorm, respectively. The convergence graphs are
shown in Figure 5 as well as the effect of the Earth’s flattening on the mapping, which
is illustrated with the difference between the observed and the reference solutions. The
effect is small, but visible.

5.2. Schwarzian Hemisphere. Our first example with singularities is a surface
variant of the famous example by Schwarz. The rim of a hemisphere is divided into
four sections of equal length, in other words, the four corners define a quadrilateral.
The resulting map is shown in Figure 6.
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Fig. 5: Mercator projection. (a) Convergence measured in L2-norm (solid line) and
H1-seminorm (dashed line) vs polynomial order (loglog-plot). (b) Effect of flattening.
Difference between the normalised Mercator projection and the observed one for the
Earth ellipsoid along λ = 0.

Fig. 6: Schwarzian Hemisphere. Mapping on the surface.

The four points zi on the boundary are

z1 = (1, 0, 0), z2 = (0, 1, 0), z3 = (−1, 0, 0), z4 = (0,−1, 0).

Due to symmetry it follows immediately that M(Q) =M(Q̃) = 1.
The construction on the parameter plane is illustrated in Figure 7. The locations

of the symmetries are the same for both the original and conjugate problems and
therefore only one mesh is needed (see Figure 7a). The contour lines of the respective
solutions are shown in Figures 7b- 7c, and brought together in Figure 7d. It is only
after the map is lifted onto the actual surface when the contour lines become locally
orthogonal.

The observed exponential convergence is shown in Figure 10a. Three types of
errors are shown: The reciprocal error, the exact error for M(Q), and its estimated
error. Since the reciprocal error measures the error of a product, it should be an upper
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Fig. 7: Schwarzian Hemisphere. Construction on the parameter plane. (a) Mesh
with geometric grading to all singularities. (b), (c) Contour lines of the solutions of
the original and conjugate problems. (d) Projection of the conformal map onto the
parameter domain.

Fig. 8: Quarter Sphere. Mapping on the surface

bound for both factors in the product. This is indeed the case, also the estimated
error is very accurate and remains asymptotically consistent.

5.3. Quarter Sphere. In the Quarter Sphere problem one of the corners of the
quadrilateral lies on the pole. This singularity becomes an edge singularity due to
mapping. The resulting map is shown in Figure 8. Therefore, it is not sufficient
to refine only near the two singular points on the rim, but one has to add strong
refinement along the whole edge. This is illustrated in Figure 9a. Other steps in the
construction are as in the example above.
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Fig. 9: Quarter Sphere Construction on the parameter plane. (a) Mesh with geometric
grading to all singularities, including a strong geometric refinement along the edge,
corresponding to the singularity at the pole. (b), (c) Contour lines of the solutions of
the original and conjugate problems. (d) Projection of the conformal map onto the
parameter domain.

The four points zi on the boundary are

z1 = (0, 0, 1), z2 = (1, 0, 0), z3 =
( 1√

2
,

1√
2
, 0
)
, z4 =

(
− 1√

2
,
1√
2
, 0
)
.

In this case the exact moduli are not known. However, there is considerable compu-
tational evidence that the following conjecture is true.

Conjecture 5.1. M(Q) =
√
2, M(Q̃) = 1/

√
2.

The observed exponential convergence is shown in Figure 10b. The performance is
not as good as in the case of the Schwarzian hemisphere, probably due to the edge
singularity. Notice, that the reciprocal error and the exact error are perfectly aligned,
whereas the auxiliary space error estimator is optimistic as the polynomial order
increases.

5.4. Cusps: Hyperbolic Quadrilateral on Sphere. Let Qs be the quadri-
lateral whose sides are circular arcs perpendicular to the unit circle with vertices eis,
e(π−s)i, e(s−π)i and e−si. We call quadrilaterals of this type hyperbolic quadrilaterals
as their sides are geodesics in the hyperbolic geometry of the unit disk [19]. For the
general case we use notation HypQuad((x0, y0), R, s), where the unit circle is shifted
to (x0, y0) and scaled to radius R (For this particular instance, see Table 1).

These domains are interesting since they have four cusps at the corners. The
reciprocal relation makes it possible to monitor the accuracy of the solutions even in
such complicated domains. If the configuration considered here would be constrained
to the plane, then the computed moduli would both be identical to one due to sym-
metry. Mapping onto the sphere naturally perturbs this balance. We obtained the
moduli

(5.2) M(Q) = 1.8062303587451534, M(Q̃) = 0.5536392383024755,

with reci(Q) = 1.447375552743324× 10−11.
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Fig. 10: Convergence plots. (a) Schwarzian hemisphere, (b) Quarter sphere. In both
cases log-scale has been used. Three errors vs N (the number of degrees of freedom)
are shown: (i) reciprocal error (solid line), (ii) exact error in M(Q) (dashed line),
and (iii) estimated error in M(Q) (dot-dashed line). Convergence is measured using
a fixed mesh with a constant polynomial order p = 2, . . . , 10. In (a) the observed,
convergence is exponential over the whole range, in (b) there is a slight loss of rate
for p > 8.

(a) (b)

Fig. 11: Featured examples of maps. (a) Hyperbolic quadrilateral. (b) Multiply
connected domain.

5.5. Multiply Connected Domain: Two Holes. The conjugate function
method can also be defined for multiply connected domains. Of course, the imme-
diate question concerns the definition and subsequent construction of the conjugate
problem. Here the so-called Q-type variant has been considered. The algorithm can
be defined as follows [17]:
Assumptions The outer boundary has four corners which define a quadrilateral.
Initialization Solve the problem on the quadrilateral with zero Neumann boundary

conditions on the holes.
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Fig. 12: Multiply Connected Domain. (a) Mesh in the parameter plane. (b) Conver-
gence of the reciprocal error as a function of degrees of freedom. The threshold limit
of 10−7 indicates the best possible accuracy given that the optimisation minimises
the square of the error (loglog-plot).

Optimization Construct the conjugate problem on the outer boundary and find the
potentials on the holes via optimization. The objective is to minimize the
reciprocal error.

The mesh used is shown in Figure 12a. Once the problem on the quadrilateral with
Neumann holes has been solved, the potentials on the holes in the conjugate problem
are found using standard optimization. Here the interior point method is applied as
implemented in Mathematica. The convergence rate is exponential up to the accuracy
limit imposed by the chosen optimization algorithm, see Figure 12b.

The precise description of the problem on the parameter plane is as follows: As
indicated in Table 1, the computational domain is a unit circle centred at (1/2, 1/2),
with two circular holes with radius = 1/4 and centres at (1/4, 1/4) and (3/4, 3/4)
denoted as B1 and B2, respectively. The four corners are selected symmetrically at
zi = (1/2+cos(π(k−1)/2), 1/2+sin(π(k−1)/2)), k = 1, . . . , 4. The optimization step
gives us potentials v1 = 0.5343446377370098 on ∂B1 and v2 = 0.5343446377370098
on ∂B2. Hence the two problems can be summarized as:

(5.3)



∆Su = 0, in Ω,

u = 0, on γ1,

u = 1, on γ3,

∂u/∂n = 0, on γ2, γ4,

∂u/∂n = 0, on ∂B1, ∂B2,

leading to



∆Sv = 0, in Ω,

v = 0, on γ2,

v = 1, on γ4,

v = v1, on ∂B1,

v = v2, on ∂B2,

∂v/∂n = 0, on γ1, γ3.

We obtained moduli

(5.4) M(Q) = 0.7901907571620941, M(Q̃) = 1.2655174148067712,

with reci(Q) = 1.6420797832594758× 10−7.
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Fig. 13: Seashell. Example of a non-smooth surface.

5.6. Seashell. Our last example is a so-called seashell surface

(5.5)

 x = a(1− v/(2π)) cos(nv)(1 + cos(u)) + c cos(nv),
y = a(1− v/(2π)) sin(nv)(1 + cos(u)) + c sin(nv),
z = bv/(2π) + a(1− v/(2π)) sin(u),

where we let n = 1, a = 1, b = 1, and c = 1/10, with u ∈ [0, 2π], v ∈ [−π, π]. The
resulting map is illustrated in Figure 13.

This case is challenging, since the surface is not smooth – for details on this class
of problems we refer to Miklyukov [25]. The parameterization is singular along the
edge u = 2π, and hence we choose an offset ϵ = 1/10 as in the case of Section 5.1.
There are also strong boundary layer -like features along the edges v = ±π, and
therefore the simplest mesh is a regular grid with strong grading along the three
boundaries requiring it. The effect of the sharp tip is visible in the contour lines (see
Figure 14a)suggesting that strong mesh refinement is necessary at that part of the
domain. With proper grading the convergence rate is slightly better than algebraic
(see Figure 14b). We obtained the moduli

(5.6) M(Q) = 1.567020274702868, M(Q̃) = 0.638156772214456,

with reci(Q) = 4.600498992424207× 10−6.

5.7. On Computational Complexity. The proposed method reduces to a 2D
hp-FEM with variable coefficients over the parameter domain. The computational
complexity is, as usual with hp-FEM, dominated by the numerical integration rather
than the solution of the linear systems. For details on the quadrature techniques used,
we refer to [20]. For linear systems, Cholesky factorization is used in all cases.

Let us revisit the seashell example. In the final mesh there are 2365 nodes, 4632
edges, and 2268 quadrilateral elements. With a constant p = 14 the number of degrees
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Fig. 14: Seashell. (a) Contour lines on Q̃ where the effect of the ”tip” is clearly visible.
Mapping onto the surface connects the contour lines periodically. (b) Three errors vs
N (the number of degrees of freedom) are shown: (i) reciprocal error (solid line), (ii)

estimated error inM(Q) (dashed line), and (iii) estimated error inM(Q̃) (dot-dashed
line), (loglog-plot).

of freedom is 445873, and the dimension of the auxiliary error space is 131640. The
elemental quadrature rules are standard Gauss rules with (p + q)2 points, where the
extension q = 5. On average, after the integration of the full system in 2700 seconds,
the subsequent solves for p = 2, . . . , 14 with the error estimation taking 280 seconds,
using one Mathematica 14.0 kernel on an Apple Silicon Macbook Pro (M3 Max, 2023
model).

6. Conclusions. We have the conjugate function method for computation of
conformal mappings on surfaces. Both theoretical and implementation aspects have
been addressed and the efficacy of the method has been demonstrated with a series of
numerical experiments covering problems with specific features such as singularities
and cusps, including multiply connected domains. The fundamental ideas can be
applied to address a much wider class of problems, however. Our method relies on
numerical solution of PDEs and can be applied to general surfaces using standard tools
as long as the suitable global parameterization is available. In terms of computational
cost, the method is competitive especially in cases where the p-version of FEM can
be applied directly.
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