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Abstract. We study the classifying space BDiff(M) of the diffeomorphism group of a connected,

compact, orientable 3-manifold M . In the case that M is reducible we build a contractible space
parametrising the systems of reducing spheres. We use this to prove that if M has non-empty

boundary, then BDiff∂(M) has the homotopy type of a finite CW complex. This was conjectured

by Kontsevich and appears on the Kirby problem list as Problem 3.48. As a consequence, we are
able to show that for every compact, orientable 3-manifold M , BDiff(M) has finite type.
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1. Introduction

For a 3-manifold M , let Diff(M) denote group of diffeomorphisms, equipped with the C∞ topology.
Its classifying space BDiff(M) is the moduli space of M : homotopy classes of maps X → BDiff(M)
are in bijection with concordance classes of smooth M -bundles over X [GRW20]. When M has
boundary, we let Diff∂(M) < Diff(M) denote the subgroup of those diffeomorphisms that fix the
boundary pointwise and consider BDiff∂(M), which classifies smooth bundles with trivialised bound-
ary. We prove the following conjecture of Kontsevich [Kir97, Problem 3.48].

Theorem 6.1. LetM be a compact, connected, orientable 3-manifold with non-empty boundary ∂M .
Then BDiff∂(M) is homotopy finite, i.e. it has the homotopy type of a finite CW complex.

When M is irreducible, this was proven by Hatcher and McCullough [HM97] (we restate this in
Theorem 1.1) using that in this setting BDiff(M) is aspherical. In fact we prove a slightly stronger
version of the conjecture, where we only fix a union of boundary components F , such that ∂M \ F
consists of spheres and incompressible tori. This theorem implies that the group cohomology of
the topological group Diff∂(M) is finitely generated and that it has finite cohomological dimension.
(Under the simplifying assumption that each prime factor of M has non-empty boundary, this
(co)homological version of Kontsevich’s conjecture was proven by Nariman [Nar21].) Our results are
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effective in the sense that for any given M one can read off a bound on the cohomological dimension
by going through the steps of the proof, but we have not attempted to give a closed formula as the
many case distinctions make this quite cumbersome.

Recall that every topological 3-manifold admits an essentially unique PL and smooth structure, by
work of Cairns [Cai40] and Whitehead [Whi40], Moise [Moi52, Moi54] and Bing [Bin54] (see also
[Bin59]), and Munkres [Mun59, Mun60a, Mun60b] andWhitehead [Whi61]. Moreover, a combination
of work by Cerf [Cer59] and Hatcher [Hat83] shows that Diff(M) ≃ PL(M) ≃ Homeo(M) so our
statements hold for all of these groups. (The equivalence of PL(M) with the other two relies on a
theorem attributed to Morlet but first proven by Burghelea–Lashof [BL74], see Kirby–Siebenmann
[KS77, Essay V] for more details.)

The analogue of Theorem 6.1 for surfaces is true as a consequence of results of Earle–Schatz [ES70]
and Gramain [Gra73], but fails in dimensions n ≥ 6: π0 Diff∂(S

1 ×Dn−1) is not finitely generated
by work of Hatcher–Wagoner [HW73, n ≥ 7: Part II, Corollary 5.5, n = 6: p230]. Budney–Gabai
[BG21] prove that the mapping class group of S1 ×D3 relative to the boundary is also not finitely
generated in both the smooth and topological categories. Thus for n = 4 or n ≥ 6, BDiff∂(S

1×Dn−1)
is not even of finite type. (Recall that a space is said to be of finite type if it is homotopy equivalent
to a CW complex with finite n-skeleton for each n.)

When a 3-manifoldM is closed or when the boundary is not fixed, BDiff(M) rarely has the homotopy
type of a finite CW complex, but we can ask when it is of finite type. Hatcher–McCullough showed
mapping class groups of 3-manifolds are finitely presented [HM90] so, unlike in higher dimensions,
counterexamples arising from M having infinitely generated mapping class groups do not exist.
Using Theorem 6.1, we deduce the following for all 3-manifolds.

Theorem 6.12. Let M be a compact, orientable 3-manifold. Then BDiff(M) is of finite type.

This completes the picture for all manifolds of dimension ≤ 3. We briefly survey for which cases
we know that BDiff(M) is of finite type. In dimension 1, since Diff(S1) ≃ O(2), one knows that
BDiff(S1) ≃ BO(2) is of finite type. The corresponding result for closed orientable surfaces combines
work of Smale [Sma59], who showed BDiff(S2) ≃ BO(3), and Earle–Eells [EE69] for surfaces of
genus g ≥ 1. In fact, when g ≥ 2, they prove that Diff0(M) is contractible, whence BDiff(M) ≃
Bπ0 Diff(M) = K(Mod±g , 1), where Mod±g is the (full) mapping class group of the surface of genus g.

In this case, finiteness fails because of torsion in Mod±g , but BMod±g is of finite type because Mod±g
has a finite index subgroup whose classifying space is homotopy finite, see Ivanov [Iva89, §6.4]. In
higher dimensions n ̸= 4, 5, 7, Kupers showed that BDiff(Sn) and BDiff∂(D

n) are of finite type
[Kup19], and in even dimensions 2n ≥ 6, Bustamante–Krannich–Kupers [BKK23] showed that
if π1(M) is finite, then BDiff(M) is of finite type.

1.1. Overview of the proof. We will prove the following generalisation of Kontesevich’s conjec-
ture. Here, for a union of boundary components F ⊆ ∂M , we let DiffF (M) ≤ Diff(M) denote the
subgroup of those diffeomorphisms that fix F pointwise.

Theorem 6.2. LetM be a compact, connected, orientable 3-manifold, and let ∅ ≠ F ⊆ ∂M be a non-
empty union of connected components. Assume that ∂M \ F consists of spheres and incompressible
tori. Then BDiffF (M) is homotopy finite.

Let M̂ denote the spherical closure of M : the 3-manifold obtained by filling in spherical boundary
components. Kneser [Kne29] showed that every oriented 3-manifold M without 2-spheres in its
boundary admits a connected sum decomposition into oriented irreducible factors Pi that are not
homeomorphic to S3 and some number of copies of S1 × S2. Milnor [Mil62] then proved this
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decomposition is uniquely determined up to reordering. Therefore every oriented 3-manifold M can
be written as

M ∼=
(
P1# · · ·#Pn#(S1 × S2)#g

)
\ {⨿mD̊

3}
where the Pi and g copies of S1 × S2 are the prime factors of its spherical closure M̂ and m is the
number of spherical boundary components.

The S1 × S2 factors arising in the prime decomposition correspond to a maximal collection of
non-separating spheres in M . By allowing cuts along both separating and non-separating spheres,
one can obtain a decomposition of M̂ into only irreducible components, at the expense of possibly
introducing copies of S3 (we make the notion of cutting along a sphere precise in Section 2). While
the diffeomorphism classes (counted with multiplicity) of irreducible factors Pi ̸= S3 appearing in
such a decomposition are uniquely determined, the spheres along which M is cut into irreducible
pieces are not, even when considered up to isotopy. With this in mind, we build a space Sep(M) that
parameterises all such decompositions of a given 3-manifold M . A point in this space corresponds
to a collection of disjointly embedded spheres Σ that cut M into irreducible pieces, which we call a
separating system for M . A schematic of a 3-manifold with two examples of separating systems are
shown in Figure 1.

Σ Σ′

P1 \ ⨿2D̊
3

P2 \ D̊3

P3 \ ⨿3D̊
3

P1 \ ⨿2D̊
3

P2 \ ⨿2D̊
3

P3 \ ⨿5D̊
3

Figure 1. A schematic for the 3-manifold M ∼=
(
P1#P2#P3#(S1 × S2)#2

)
\ D̊3.

M has one spherical boundary component and one genus 2 surface boundary com-
ponent. In this case P1 and P3 are closed, and P2 has boundary a genus 2 surface.
Two separating systems Σ and Σ′ are shown. Note that Σ is obtained from Σ′ by
adding two spheres, thus Σ′ ⊂ Σ.

We then restrict to a subspace Sep∦(M) ⊂ Sep(M) of separating systems Σ ⊂ M such that no two
spheres in Σ are isotopic. This is a topological poset under inclusion of separating systems, e.g. in
Figure 1, Σ′ ⊂ Σ. A key step in the proof of Theorem 6.2 is showing that when M ̸∼= S1 × S2 the
geometric realisation of the nerve of this poset is contractible.

Theorem 3.20. Suppose M ̸∼= S1 × S2. Then ∥ Sep∦•(M)∥ ≃ ∗.

Because DiffF (M) acts on Sep∦(M), there is an induced action on ∥Sep∦•(M)∥, and thus we acquire
a model for the classifying space:

BDiffF (M) ≃ ∥Sep∦•(M)∥//DiffF (M)

where the notation // denotes the homotopy orbit construction. Since no two spheres in Σ ∈ Sep∦(M)
are isotopic, the poset has finite depth, i.e. there is a bound on the longest non-degenerate descending

chain. We use this fact and some additional properties of Sep∦•(M) to arrive at an inductive argument
to prove Theorem 6.2. The induction is over the number of irreducible pieces into which a separating
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system Σ cuts M , the base case being when M̂ is irreducible. When M = M̂ is itself irreducible
(i.e. M has no spherical boundary components) this is due to Hatcher and McCullough [HM97],
see Theorem 1.1. In the case where M has spherical boundary, the base case further reduces to
the following theorem, equivalent to the conjecture when M̂ is irreducible and M has exactly one
spherical boundary component that is fixed.

Theorem 4.1. Let M be an irreducible 3-manifold with either empty or incompressible toroidal
boundary, and let D3 ⊂ M̊ be an embedded disk. Then BDiffD3(M) has the homotopy type of a
finite CW complex.

The proof of this theorem comprises a large portion of our work and breaks down into many sub-cases.
Via a fiber sequence argument, it is equivalent to showing that Fr(M)//Diff(M) has the homotopy
type of a finite CW complex, where Fr(M) is the frame bundle of M . In a similar vein to the proof
of Theorem 6.2, we cut M up along embedded tori and prove the result for the simpler pieces, via
a combination of the JSJ and geometric decompositions of our irreducible 3-manifold. We use this
to reduce the proof to the case of hyperbolic manifolds, non-Haken Seifert-fibered manifolds, Haken
Seifert-fibered manifolds, and Sol manifolds that are torus bundles over the circle. A schematic of
the proof and its breakdown into cases is depicted in Fig. 3.

For hyperbolic or non-Haken Seifert-fibered manifolds, as well as torus bundles admitting Sol geom-
etry, the proof of Theorem 4.1 relies on the fact that the (strong) generalised Smale conjecture holds:
Isom(M) ↪→ Diff(M) is a homotopy equivalence. The case of Haken Seifert-fibered manifolds splits
up further into several subcases, depending on the topology of the space of Seifert fiberings and the
presence of singular fibers. The space of Seifert fiberings of such a manifold is completely determined
by work of Hong–Kalliongis–McCullough–Rubinstein [HKMR12], and, in particular, there are only
six orientable Haken Seifert-fibered manifolds for which there does not exist a unique Seifert fibering
up to isotopy. Apart from these exceptional cases, we use the fibering to reduce the question of
finiteness to that of diffeomorphisms of the base surface fixing a disk.

For compact manifolds M such that ∂M is either empty or consists of spheres and incompressible
tori, our proof that BDiff(M) is of finite type (Theorem 6.12) follows directly from Theorem 6.2 by
delooping the fiber sequence

DiffD3(M) −→ Diff(M) −→ Emb(D3, M̊).

For the general case, when M has higher genus or compressible boundary, we again use the con-

tractibility of ∥Sep∦•(M)∥ to reduced the claim to irreducible M with ∂M ̸= ∅. For these, McCul-
lough [McC91] showed that the mapping class group π0 Diff(M) is of finite type and Hatcher and
Ivanov [Hat76, Iva76] showed that Diff0(M) ≃ (S1)×b for b ∈ {0, 1, 2}, so BDiff(M) is of finite
type.

1.2. History and previous work on the conjecture. Kontsevich formulated his conjecture in
the mid 1980s after reading notes of Thurston on the geometrisation conjecture [Kon24]. The original
formulation of the conjecture was that BDiffD3(M) was homotopy finite for closed M – similar to
the formulation that appears in our Theorem 4.1. In the 1990s, Kirby and Kontsevich adapted the
conjecture to the more general setting of M with non-empty boundary – the form stated in the
Kirby problem list [Kir97, Problem 3.48]. This is the conjecture we call ‘Kontsevich’s conjecture’
and prove in Theorem 6.1.

As we noted above, Hatcher and McCullough [HM97] proved Kontsevich’s conjecture when M is
an irreducible 3-manifold. In fact, as is the case for our result, their result holds in a more general
setting when only a subset of the boundary is required to be fixed.
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Theorem 1.1 ([HM97, Main Theorem]). Let M be an irreducible compact connected orientable
3-manifold and let F be a non-empty union of components of ∂M , including all the compressible
ones. Then BDiffF (M) has the homotopy type of an aspherical finite CW complex.

Any M that is irreducible and has non-empty boundary is automatically Haken, hence in this case
it was known from work of Hatcher [Hat83, Hat76] and Ivanov [Iva76] that the classifying spaces
BDiff∂(M) are aspherical. Thus, Hatcher–McCullough prove their theorem by showing that the
classifying space of the mapping class group π0 Diff∂(M) has the homotopy type of a finite CW
complex. They remark that this is not true for closed irreducible 3-manifolds in general, but had
been previously shown to be virtually true for Haken manifolds by McCullough [McC91].

More recently, a homological version of Kontsevich’s conjecture was shown to be true by Nariman
[Nar21], who proved that BDiff∂(M) has finitely many non-zero homology groups which are all
finitely generated, in the case of M being a connected sum of irreducible 3-manifolds such that
each irreducible piece has nontrivial boundary. In particular, this additional assumption means
that the case of an irreducible manifold with a fixed disk, which we cover in Theorem 4.1, is not
necessary in his paper. Nariman builds semi-simplicial spaces of separating spheres similar to some
of the intermediate spaces in our arguments, and we utilise one of his contractibility results in
Section 3.

1.3. Background on 3-manifold diffeomorphisms. For prime 3-manifolds, the homotopy type
of Diff(M) has been studied extensively. We provide a brief, by no means exhaustive, overview of
this history prior to geometrisation here, and refer the reader to Section 4 for more references and
recent results. Early work focused on the Smale conjecture (which asserts that Diff(S3) ≃ O(4))
and mapping class groups of 3-manifolds. Initially, Cerf proved that π0 Diff(S3) ∼= π0(O(4)) ∼= Z/2
[Cer61], before Hatcher confirmed the Smale conjecture in [Hat83]. Hatcher [Hat81] also showed
Diff(S1 × S2) ≃ ΩSO(3)×O(3)×O(2), and Ivanov [Iva79, Iva82] calculated the homotopy type of
Diff(M) for certain classes of lens spaces. For closed Haken 3-manifolds, Waldhausen [Wal68] proved
that π0 Diff(M) ∼= Out(π1(M)), the outer automorphism group of π1(M) (when ∂M ̸= ∅, one must
also preserve the peripheral structure). The results of Hatcher [Hat76] and Ivanov [Iva76] mentioned
above imply that for Haken 3-manifolds, Diff0(M) is homotopy equivalent to a torus of dimension
at most 3. Combined with Waldhausen’s theorem, this largely reduces questions of homotopy type
of Diff(M) to those of π0 Diff(M).

Mapping class groups of Haken Seifert-fibered 3-manifolds can be computed in terms of their
base orbifold surfaces, while Thurston’s proof of hyperbolisation for Haken atoroidal 3-manifolds
[Thu86] implies that in this case π0 Diff(M) ∼= Isom(M), a finite group. More generally, re-
sults of McCullough [McC91] imply that π0 Diff(M) has finite type for any Haken 3-manifold.
For certain classes of non-Haken Seifert-fibered 3-manifolds such as lens spaces, analogous results
to Waldhausen’s theorem were obtained along with computations of mapping class groups (e.g.
[Asa78, Rub79, Bon83b, RB84, Sco85, BO86]).

Since the Smale conjecture asserts that Diff(S3) ≃ O(4) = Isom(S3), following Perelman’s proof
of the geometrisation theorem [Per02, Per03b, Per03a] it is natural to ask whether a similar state-
ment holds for other geometric 3-manifolds. We refer to the statement that Isom(M) ↪→ Diff(M)
is a homotopy equivalence as the strong generalised Smale conjecture, and to the statement that
Isom0(M) ↪→ Diff0(M) is a homotopy equivalence as the weak generalised Smale conjecture. The
strong form is generally false, even among irreducible geometric 3-manifolds. For example, the
isometry group of any flat metric on the torus T 3 has finitely many connected components, while
π0 Diff(T 3) ∼= GL3(Z) by Waldhausen’s theorem. However, for irreducible geometric manifolds, the
weak form always holds, and furthermore, the homotopy type of Diff0(M) is known. We discuss
this further, with a complete list of references, as part of our proof in Section 4.
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For reducible 3-manifolds, less is known about the homotopy type of Diff(M). Hatcher showed that
for M ∼= P1#P2 the connected sum of two irreducible 3-manifolds, one can reduce the calculation
of the homotopy type of Diff(M) to the calculation for Diff(P1) and Diff(P2) [Hat81]. We give
an alternative proof of this result at the end of Section 3. In general, however, Diff0(M) need
not be homotopy equivalent to a finite CW complex as in the irreducible case; indeed if M has
at least 3 prime factors, McCullough and Kalliongis show that π1 Diff0(M) is infinitely generated
[KM96].

In foundational work, Laudenbach [Lau73] established that homotopy implies isotopy for 2-spheres
in any 3-manifold M (assuming the Poincaré conjecture). He used this to show that the mapping
class group of a connected sum (S1 × S2)#g is an extension of Out(Fg) by (Z/2)g, where Fg is the
free group of rank g. More generally, mapping class groups of Haken 3-manifolds were shown to be
finitely presented by Waldhausen [Wal68] and Grasse [Gra89], and mapping class groups of reducible
3-manifolds were shown to be finitely presented by Hatcher and McCullough [HM90]. As part of
this proof they build a complex whose vertices are given by isotopy classes of embedded spheres,
and prove this complex is simply connected [HM90, Proposition 2.2]. Note that in our proof we do
not define our complexes of spheres in terms of isotopy classes – this is because the isotopy class of
an embedded sphere in a 3-manifold is not contractible in general.

A program announced by César de Sá and Rourke [CdSR79], then completed by Hendriks and
Laudenbach [HL84], and Hendriks and McCullough [HM87], aimed to study Diff∂(M) for reducible
M in terms of the irreducible prime pieces Pi appearing in the decomposition of M . They describe
Diff∂(M) as fitting into a fiber sequence with base space an embedding space of punctured 3-disks
in M that give a decomposition into (once-punctured) irreducible prime pieces and 1-handles, and
with fiber the product of boundary-fixing diffeomorphism groups of these complementary pieces.
We do not utilise these fiber sequences during our proofs, but these papers and Hatcher’s unfinished
draft [Hat] provided inspiration at the outset of this project, and in particular for our upcoming
work which we now outline.

1.4. Motivation and upcoming work. One motivation for this work came from previous work of
the first two authors [BB22], in which the homotopy type of the embedding space of a split link is
studied. Dropping the assumption thatM be compact, when the 3-manifoldM is the complement of

a link ρ in R3, our space Sep∦(M) agrees with the space Sep(ρ) defined in [BB22], and the associated
semisimplicial space ∥ Sep(ρ)•∥ is shown to be contractible in [BB22, Theorem A].

Another motivation came from the perspective of modular ∞-operads, based on the third author’s
joint work with Barkan on ∞-properads [BS22]. Operadic structures have been used effectively to
organise collections of moduli spaces, for example in Budney’s work on long knots [Bud07], Costello’s
work on Riemann surfaces with boundary [Cos04], and Giansiracusa’s work on diffeomorphisms of
handlebodies [Gia11]. In upcoming work, we will explain how the moduli spaces of connected 3-
manifolds assemble into a modular ∞-operad whose composition operation is given by connected

sum, and how the contractibility of ∥ Sep∦•(M)∥ implies that this modular ∞-operad is freely gener-
ated by irreducible manifolds.

Further to the above, inspired by the program of [CdSR79], [HL84], [HM87], and [Hat] outlined
above, in our upcoming work we will also construct a map on the level of classifying spaces
from BDiff(M) to BDiff(⨿iPi) where the Pi are the irreducible prime factors of M . We describe
the fiber of this map as a homotopy colimit of certain framed configuration spaces on the Pi,
enabling effective computations. We illustrate this by computing the rational cohomology ring
of BDiff

(
(S1 × S2)#2

)
. We will discuss past work on this topic in greater detail in this upcoming

paper.

1.5. Outline. In Section 2 we give background on several topics, set up notation and prove general
results that we quote in some specific settings later. This includes subsections on 3-manifolds, fiber
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sequences, the homotopical orbit-stabiliser theorem, homotopy finite spaces, and topological posets.
We then introduce sphere systems in Section 3 and prove in Theorem 3.20 that the space of non-
parallel separating systems is contractible. We also reprove Hatcher’s result on connected sums of
irreducible manifolds (Theorem 3.21). In Sections 4 and 5, we prove the base case Theorem 4.1
of the conjecture for an irreducible manifold with a disk removed. Following this, in Section 6
we prove Kontsevich’s conjecture to be true in Theorem 6.2, and prove BDiff(M) is finite type in
Theorem 6.12.

1.6. Acknowledgements. We would like to thanks Oscar Randal-Williams for many insightful
conversations, in particular at the outset of this project. We also extend thanks to Henry Wilton,
specifically for discussions and suggestions relating to Section 4. We would also like to thank
the participants of the Glasgow reading group on mapping class groups of 3-manifolds, and the
Copenhagen question seminar for conversations related to this paper. Finally we would like to
thank Mark Powell and Nathalie Wahl for helpful comments on a draft.
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ship EP/V043323/1 and EP/V043323/2. The second author was supported by NSF grant DMS-
2401403. The third author was supported by the Independent Research Fund Denmark (grant
no. 10.46540/3103-00099B) and the Danish National Research Foundation through the ‘Copenhagen
Centre for Geometry and Topology’ (grant no. CPH-GEOTOP-DNRF151).

2. Background on 3-manifolds and homotopy theory

In this section we set up notation concerning 3-manifolds and notions of finiteness, recall some
results about fiber sequences, topological posets, and the homotopy orbit construction, and prove a
homotopical orbit stabiliser lemma.

2.1. 3-manifolds. All manifolds we consider are smooth. Throughout, M will be a compact, ori-
entable 3-manifold, possibly with boundary, which we denote ∂M . In general, we will not assume
thatM is connected and instead specify when we do. We will use the notation M̂ to denote the man-
ifold obtained from M by filling all boundary 2-spheres with 3-balls, and we call this the spherical
closure of M .

We say M is irreducible if every embedded 2-sphere in M bounds a 3-ball. M is reducible if it is
not irreducible. A connected 3-manifold M without 2-spheres in its boundary is prime if whenever
we decompose M as a nontrivial connected sum M = M1#M2, then at least one of M1 or M2

is diffeomorphic to S3. A well-known theorem due to Kneser [Kne29] states that every connected
oriented 3-manifold without 2-spheres in its boundary admits a connected sum decomposition M =
P1# · · ·#Pn where the prime factors Pi are prime and not diffeomorphic to S3. Moreover Milnor
showed that the oriented prime factors appearing in this decomposition are uniquely determined
up to reordering [Mil62]. By convention, S3 has 0 prime factors. Note that S1 × S2 is the unique
connected 3-manifold without boundary which is prime but not irreducible. We can therefore refine
the decomposition to beM ∼= P1# · · ·#Pn#(S1×S2)#g where the Pi are the prime factors which are
also irreducible. The reader is referred to Hempel [Hem04] for proofs of these and other foundational
results on 3-manifolds.

In this paper we often work in the setting whereM has spherical boundary components. In this case
we will never talk about prime factors of M but only discuss prime factors of the spherical closure
M̂ . We also extend this definition to disconnected manifolds: in this case a prime factor of M is a
prime factor of one of the connected components.

If Σ ⊂ M̊ is a codimension 1 submanifold, such as a disjoint union of embedded 2-spheres, thenM \Σ
is diffeomorphic to the interior of a compact 3-manifold with boundary, which we denote as M |Σ.
Intuitively, M |Σ is the manifold obtained from cutting M along Σ. In particular, (M |Σ)◦ = M̊ \Σ.
Note that the boundary of M |Σ contains two spheres for each sphere in Σ. We let 2Σ ⊂ ∂(M |Σ)
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denote the newly created boundary components. There is a canonical map 2Σ → Σ that is a double
cover, and for us this will always be a trivial double-cover because Σ will be 2-sided/coorientable.
A schematic is shown in Figure 2.

Σ 2ΣM M |Σ

P1 \ ⨿2D̊
3

P2 \ ⨿2D̊
3

P3 \ ⨿5D̊
3

P1 \ ⨿2D̊
3

P2 \ ⨿2D̊
3

P3 \ ⨿5D̊
3

Figure 2. A disjoint union of embedded 2-spheres Σ ⊂ M and the compact 3
manifold M |Σ. We remark that the irreducible prime factors of both manifolds are
the same.

2.2. Fiber sequences of embedding spaces. In this section we review results on fiber sequences
of embedding spaces due to Palais [Pal60] in the closed case and independently by Cerf [Cer61] for
manifolds with with corners and in greater generality (see also Lima [Lim64], who gave a simplified
proof of Palais’ result). The treatment we give here closely follows the exposition in §2 of Cantero
Morán–Randal-Williams [CMRW17].

For manifolds M and V , we let Emb(V,M) denote the space of embeddings of V into M , equipped
with the C∞-topology. The group of diffeomorphisms of M is denoted Diff(M). If V ⊆ M is a
submanifold, we denote by DiffV (M) the subgroup of Diff(M) consisting of diffeomorphisms which
fix V pointwise, and by Diff(M,V ) the subgroup of Diff(M) consisting of diffeomorphisms which
preserve V setwise, i.e. φ ∈ Diff(M,V ) if and only if φ(V ) = V . We denote the subgroup Diff∂M (M)
by Diff∂(M).

Consider a compact manifold M and a compact submanifold V ⊂ M̊ . Both M and V may have
boundary. Palais and Cerf showed that there is a fiber sequence

DiffV (M) ↪→ Diff(M) → Emb(V, M̊)

where the fibration is given by acting with Diff(M) on the standard embedding V ⊂ M [Pal60,
Cer61]. To prove this, it in fact suffices to construct a local section of the action map, which then
can be used to obtain local trivializations. This can be formalised using the concept of G-locally
retractile spaces, as explained in [CMRW17, §2.3].

Definition 2.1. A space X with an action of a topological group G is G-locally retractile if for each
x ∈ X there is a neighbourhood U ⊂ X and a map ξ : U → G such that ξ(u).x = u holds for all
u ∈ U .

These G-locally retractile spaces will prove useful for showing that certain maps are locally triv-
ial fiber bundles. We will need the following elementary properties [CMRW17, Lemmas 2.4, 2.5,
2.6].

Lemma 2.2. Let X be a G-locally retractile space.

(1) Any G-equivariant map f : Y → X is a locally trivial fiber bundle.
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(2) If a G-equivariant map g : X → Z has local sections, then Z is also G-locally retractile.

(3) If X is locally path connected, then X is also G0-locally retractile for G0 ⊂ G the path component
of the identity.

(4) If G < H is a larger topological group such that the G-action on X extends to an H-action, then
X is also H-locally retractile.

Now Palais’ and Cerf’s theorem can be stated as follows. As before,M and V are compact manifolds,
possibly with boundary.

Theorem 2.3. The embedding space Emb(V, M̊) is Diffc(M̊)-locally retractile.

Here Diffc(M̊) is the group of diffeomorphisms of M̊ with compact support, which we can equivalently
think of as the subgroup of Diff∂(M) containing those diffeomorphisms that fix some (unspecified)
neighbourhood of the boundary. Using Lemma 2.2(4), we see that Emb(V, M̊) is also Diff∂(M)-
and Diff(M)-locally retractile. Moreover, Emb(V, M̊) is locally path connected, so we may restrict
to the path component of the identity in these groups. Cerf not only considers the case where V is
embedded in the interior of M , but also allows for more general “face constraints”, see [CMRW17,
§2.2 and Proposition 2.9]. The specific case we will need is the following:

Theorem 2.4. The embedding space Emb(V, ∂M) is Diff(M)-locally retractile. In particular Diff(∂M)
is Diff(M)-locally retractile.

There is a natural right action of Diff(V ) on Emb(V, M̊) by precomposition. This action is free and
has the effect of reparametrising an embedding, hence the quotient

Sub(V, M̊) := Emb(V, M̊)/Diff(V )

is the space of unparametrised embeddings of V into N . As a set we can identify this with the set
of submanifolds of M̊ that happen to be diffeomorphic to V . By Binz–Fisher[BF81] and Michor
[Mic80, 13.11], the quotient map Emb(V, M̊) → Sub(V, M̊) is a locally trivial fiber bundles with
fiber Diff(V ). (This is proved only when V is closed but, as pointed out in [CMRW17, Propositon
2.11], the proofs adapt to the setting of manifolds with boundary.) Crucially for us, this implies
that the unparametrised embedding space is Diff(V )-, and hence Diff(M)-, locally retractile.

Corollary 2.5. The space of unparametrised embeddings Sub(V, M̊) is Diff∂(M)-locally retractile.

As before this implies that Sub(V, M̊) is Diff(M) and also Diff0(M)-locally retractile. The stabiliser
groups of the action by Diff(M) are precisely Diff(M,V ), so we have a fiber sequence

Diff(M,V ) −→ Diff(M) −→ Sub(V, M̊).

We will also use the following standard results about the contractibility of collars.

Theorem 2.6 ([Cer61, 5.2.1, Corollaire 1]). The space of collars

Emb∂M×{0}(∂M × I,M) = {i ∈ Emb(∂M × [0, 1],M) | i|∂M×{0} = id∂M}

is weakly contractible. It follows that the subgroup inclusion

DiffU (M) → Diff∂U (M \ Ů)

is a weak equivalence for any compact codimension 0 submanifold U ⊂ M̊ .
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2.3. The homotopy orbit construction. Given a topological group G, we say that a G-space
X is principal if X → X/G is a G-principal bundle. For each G, we fix a weakly contractible
G-principal space EG. Then the homotopy orbit construction of a G-space X is defined as

X//G := (X × EG)/G

and we also refer to it as the homotopy quotient of X by G. This fits into a fiber sequence

X −→ X//G −→ ∗//G = BG.

Definition 2.7. A principal short exact sequence is a short exact sequence of topological groups

1 → G1 → G2 → G3 → 1

such that the map G2 → G3 is a G1-principal bundle. Equivalently, we can say that G3 is G2-locally
retractile with stabiliser G1.

The following lemma allows us to combine principal short exact sequences of groups and equivariant
fiber sequences to obtain a homotopy fiber sequence of homotopy quotients. See Basualdo Bonatto
[BB23, Corollary 2.11] for a detailed proof.

Lemma 2.8. Suppose we have a principal short exact sequence of topological groups Gi as above
and let Si be a Gi-space such that there exists a fiber sequence of equivariant maps S1 → S2 → S3.
Then the maps on quotients form a homotopy fiber sequence

S1//G1 −→ S2//G2 −→ S3//G3.

The following fact about principal bundles seems to be well-known, but we provide a proof as we
could not find a reference.

Lemma 2.9. If H ≤ G is a topological subgroup such that G→ G/H is an H-principal bundle and
X is a principal G-space, then X is also a principal H-space.

Proof. First we prove that X is a principal G-space if and only if we can find a family of subsets
{Ui ⊂ X}i∈I such that the action maps Ui ×G ↪→ X are open embeddings and jointly cover X. If
p : X → X/G is a G-principal bundle, then there is an open covering {U ′

i}i∈I of X/G such that there
are equivariant homeomorphisms αi : U

′
i ×G ∼= p−1(U ′

i) over U
′
i . We can then set Ui = αi(U

′
i ×{1}).

Conversely, if we have {Ui ⊂ X}i∈I , then U
′
i := p(Ui) is open because it is the image of the open

map Ui ×G ↪→ X → X/G, and p will be trivial over these U ′
i .

Applying this to G → G/H we find {Vj ⊂ G}j∈J such that Vj × H ↪→ G are open embeddings
covering G. Now we can set Wi,j to be the image of the embedding Ui × Vj ⊂ Ui × G ↪→ X and
these will be such that

Wi,j ×H ∼= Ui × Vj ×H ↪→ Ui ×G ↪→ X

are open embeddings covering X. Therefore X → X/H is an H-principal bundle. □

Another useful source of homotopy fiber sequences will be the homotopical orbit stabiliser lemma.
First we consider the case of a transitive action.

Lemma 2.10. If X is a G-locally retractile space and the G action on X is transitive, then

X//G ≃ BStabG(x)

for StabG(x) < G the stabiliser group of some x ∈ X. Moreover, there is a homotopy fiber sequence

X −→ BStabG(x) −→ BG.
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Proof. For each orbit the map G → X defined by acting on any point x ∈ X is a quotient map, so
since the action is transitive we can identify X with the left quotient H \G by the stabiliser group
H = StabG(x). We now compute

X//G = ((H \G)× EG)/G ∼= H \ ((G× EG)/G) ∼= H \ EG

BecauseH = StabG(x) < G is such that G→ H\G is a principalH-bundle and EG→ G\EG = BG
is also a principal bundle, Lemma 2.9 says that EG→ H \EG is a principal bundle. Hence we may
define EH := EG such that X ≃ H \ EG = BH = BStabG(x). The homotopy fiber sequence is
obtained from X → X//G→ BG by rewriting the middle term. □

Lemma 2.11 (Homotopical orbit-stabiliser lemma). Let X be a G-locally retractile space and assume
that X is locally path-connected. Then there is an equivalence

X//G ≃
∐

[x]∈X/G

BStabG(x)

where the coproduct runs over orbit representatives [x] ∈ X/G.

Proof. Because X is G-locally retractile and locally path-connected, each orbit of the G-action
is a union of path components. We further have X/G = π0(X)/π0(G) = π0(X//G). Writing
X =

∐
iXi as the disjoint union of its orbits we have X//G =

∐
iXi//G and the claim follows from

Lemma 2.10. □

Lemma 2.12. The homotopy orbits functor (−)//G : G−Top −→ Top

(1) commutes with all colimits,

(2) commutes with products with trivial G-spaces: if X is any G-space and Y has the trivial
G-action then (X × Y )//G ∼= X//G× Y ,

(3) preserves weak equivalences,

(4) preserves homotopy pushout squares, and

(5) preserves (fat) geometric realisations.

Proof. All of these properties are standard, but we recall them here for the convenience of the reader.
The homotopy orbits functor is the composite of the functor (−)×EG and the functor (−)/G. In a
convenient category of topological spaces the cartesian product preserves all colimits in each variable,
and the second functor preserves colimits because colimits commute, hence (1) follows. For (2) we
note that (−)× Y certainly commutes with the first functor and it also commutes with the second
functor because (−)× Y preserves all colimits and hence in particular preserves taking orbits by G.
Item (3) follows form the long exact sequence for the fiber sequences X → X//G → BG. Because
we now know that (−)//G preserves weak equivalences, to show (4) it will suffice to prove that the
functor preserves the standard construction of the homotopy pushout as

X ∪h
Y Z = X ∪Y (Y × [0, 1]) ∪Y Z.

This indeed is preserved because we already noted that (−)//G preserves pushouts and products with
trivial G-spaces. Finally, for (5), let X• be semi-simplicial G-space. Then there is a homeomorphism
∥X•//G∥ ∼= ∥X•∥//G because the fat geometric realisation is a colimit of products with the topological
n-simplices, which are trivial G-spaces. □
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2.4. Homotopy finite spaces. We make precise the notion of finiteness that are used throughout
the paper and prove the fiber sequence lemma that is our most-used tool for showing finiteness.

Definition 2.13. We say that a topological space X is homotopy finite if there is a CW complex
C with finitely many cells and a weak equivalence C ≃ X.

Remark 2.14. If X is homotopy finite, then π1(X) is finitely presented, Hn(X) is finitely generated
for all n ≥ 0, and there is a d ∈ N such that Hn(X) = 0 for n ≥ d. A discrete group is G called type
F if BG is homotopy finite. In this case G must be finitely presented and have finite cohomological
dimension.

Homotopy finite spaces are closed under finite disjoint union and homotopy pushouts. They are also
closed under extensions in the following sense.

Lemma 2.15. Let p : E → B be a map such that B is homotopy finite and the homotopy fiber of p
at any b ∈ B is homotopy finite. Then E is homotopy finite.

Proof. Without loss of generality B itself is a finite CW complex and p is a fibration. We proceed by
induction on the dimension of B and the number of cells in B. If B is a disk, then E is equivalent to
the homotopy fiber and the claim follows. Otherwise, we can find an open decomposition B = U ∪V
where U , V , and U ∩ V are all equivalent to finite CW complexes that have either fewer cells than
B or a lower dimension. (Let, for instance, U ⊂ B be an open cell, x ∈ U and V = B \ {x}.) By
induction hypothesis, we see that p−1(U), p−1(V ) and p−1(U ∩ V ) must all be equivalent to finite
CW complexes, as they are fibrations over a homotopy finite space and have homotopy finite fibers.
Now E = p−1(U) ∪p−1(U∩V ) p

−1(V ) is a homotopy pushout of homotopy finite spaces and as such
it is homotopy finite as claimed. □

2.5. Topological posets. Recall that a topological poset (P,≤) is a poset together with a topology
on the underlying set P . A map of topological posets (P,≤) → (Q,≤) is a continuous map f : P → Q
such that x ≤ y ⇒ f(x) ≤ f(y). We let N(P ) denote the nerve, i.e. the simplicial space defined
by

Nn(P ) = {p0 ≤ · · · ≤ pn} ⊂ Pn+1

and we define the classifying space BP := ∥N•(P )∥ to be the fat geometric realisation of the
nerve. We use the fat geometric realisation as opposed to the thin one as we will apply tools from
Galatius–Randal-Williams [GRW18] and Ebert–Randal-Williams [ERW19], who work with semi-
simplicial spaces. We will often use the following elementary technique for constructing equivalences
of posets, see [ERW19, Lemma 3.4] for a proof.

Lemma 2.16. If f, g : P → Q are maps of topological posets such that f(x) ≥ g(x) for all x ∈ P ,
then the induced maps on classifying spaces B(f), B(g) : BP → BQ are homotopic.

The topological posets we encounter usually arise from a specific construction. Fix X a Haus-
dorff topological space and let ⊥ be a symmetric and anti-reflexive relation on X such that the
subspace

{(x, y) ∈ X2 | x ⊥ y} ⊂ X2

defining ⊥ is an open subset. We say that x and y are orthogonal when x ⊥ y and that an n-tuple
of points (x1, . . . , xn) ∈ Xn is orthogonal if and only if xi ⊥ xj ∀i ̸= j. As an example, we will
mainly be interested in the setting where X = Sub(S2, M̊) and S0 ⊥ S1 if and only if S0 ∩ S1 = ∅.
In particular, ⊥ will usually not be transitive.
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Definition 2.17. Let S(X,⊥) denote the (discrete) simplicial complex where vertices are points
in X and n + 1 vertices span an n-simplex if and only if they are orthogonal. Let C(X,⊥) denote
the space of non-empty unordered orthogonal configurations, i.e. the subspace of

∐
k≥0X

k/ Symk

of those x = [x1, . . . , xk] such that xi ⊥ xj holds for all i ̸= j. We make C(X,⊥) into a topological
poset with respect to the subset ordering ⊆. For any orthogonal y = (y1, . . . , yn) we define S(X,⊥
)⊥y ⊂ S(X,⊥) as the full subcomplex on those vertices x that are orthogonal to all yi. Similarly, we
define C(X,⊥)⊥y ⊂ C(X,⊥) as the topological subposet containing those configurations that are
orthogonal to y.

The goal of this section is to prove the following useful tool, which is a variation of a technique by
Galatius–Randal-Williams [GRW18].

Proposition 2.18. Suppose that X is a Hausdorff space with an open, symmetric, and anti-reflexive
relation ⊥ as above. Suppose further that

(1) the simplicial complex S(X,⊥) is n-connected, and

(2) for all orthogonal tuples y = (y1, . . . , yq) the simplicial complex S(X,⊥)⊥y is (n − 1)-
connected.

Then the classifying space B(C(X,⊥)) of the poset C(X,⊥) is n-connected.

Proof. Write C := C(X,⊥) and S := S(X,⊥), and let Cδ be C equipped with the discrete topology.
First, note that C is the poset of simplices of S and hence B(Cδ) = |N•C

δ| is the barycentric
subdivision of |S|. In particular they are homeomorphic, and similarly |N•(C

⊥y)δ| ∼= |S⊥y|. From
now on all geometric realisations are “fat”, i.e. we do not quotient by the relations imposed by the
degeneracy maps. For simplicial sets the fat and thin geometric realisations are always equivalent
[ERW19, Lemma 1.7].

We define the following bisimplicial subspace of (N•C)
δ ×N•C:

Dp,q := {((x0 ⊆ · · · ⊆ xp), (y0 ⊆ · · · ⊆ yq)) ∈ NpC
δ ×NqC | xp ⊥ yq}.

Note that by xp ⊥ yq we mean that xi ⊥ yj for all i and j. We will also need the diagonal of D•,•,
which is the simplicial space given by (∆D)p := Dp,p. Consider the diagram

∥N•C
δ∥

∥(∆D)•∥ ∥∥D•,•∥∥

∥N•C∥

ι
α
≃

ε

γ

where the map ι is the canonical map from the discretisation, γ projects to the xi and ε projects
to the yj . The map α is the inclusion of the diagonal and it is a weak equivalence by [ERW19,
Theorem 7.1].

Claim: The outside diagram commutes up to homotopy, i.e. ι ◦ γ ◦ α ≃ ε ◦ α.

Proof of claim: Consider the topological subposetQ ⊂ Cδ×C containing those tuples (x, y) satsifying
x ⊥ y. The nerve of Q is isomorphic to the diagonal ∆D: the homeomorphism NpQ ∼= (∆D)p = Dp,p

is given by the tautological map

((x0, y0) ⊆ · · · ⊆ (xp, yp)) 7−→ ((x0 ⊆ · · · ⊆ xp), (y0 ⊆ · · · ⊆ yp)).
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The two maps ι◦γ◦α and ε◦α are obtained as the realisation of the two poset-maps pr1,pr2 : Q→ C
defined by pr1(x, y) := x and pr2(x, y) := y, respectively. We can also define a third map q : Q→ C
by q(x, y) = x ∪ y, which is well-defined since x ⊥ y in Q, and therefore it follows that x and y are
disjoint as subsets of X (⊥ is anti-reflexive). Now, since x ⊆ (x ∪ y) ⊇ y, Lemma 2.16 implies that

ι ◦ γ ◦ α = B(pr1) ≃ B(q) ≃ B(pr2) = ε ◦ α,

which proves the claim.

For fixed q the projection map εq : ∥D•,q∥ → NqC is a micro Serre fibration by [GRW18, Proposition
2.8]. (To apply this proposition observe that NqC

⊥x ⊆ NqC is open.) The fiber ε−1(β) of this at

some β = (y0 ⊆ · · · ⊆ yq) ∈ NqC is isomorphic to the simplicial set N•(C
⊥yq

)δ. The realisation of

this is homeomorphic to B((C⊥yq

)δ) ∼= ∥S⊥yq

∥, which we assumed to be (n− 1)-connected. Hence,
by [GRW18, Proposition 2.6] the map εq : ∥D•,q∥ → NqC is n-connected. Moreover, combining this
with [GRW18, Proposition 2.7] we see that ε : ∥∥D•,•∥∥ → ∥N•C∥ is n-connected.

We have hence shown that the map ε ◦α : ∥(∆D)•∥ → ∥N•C∥ induces a surjection on πk for k ≤ n.
But this map is homotopic to ι ◦ γ ◦ α, which factors through ∥N•C

δ∥ ∼= ∥Sδ∥, which we assumed
to be n-connected. It follows that πk∥N•C∥ is 0 for k ≤ n, i.e. ∥N•C∥ is n-connected. □

The following is a special case of Quillen’s Theorem A for topological categories [ERW19, Theorem
4.8].

Corollary 2.19. Let (D,≤) be a topological poset and C ⊂ D a sub-poset such that:

(1) For all d ∈ D the sub-poset Cd≤ := {c ∈ C | d ≤ c} has a contractible classifying space.

(2) D is left-fibrant, i.e. the map

{(d0, d1) ∈ D2 | d0 ≤ d1} −→ D, (d0, d1) 7−→ d0

is a Serre fibration.

(3) C ⊂ D is a union of path components.

Then the inclusion BC → BD is a weak equivalence.

Proof. We need to verify conditions (i) and (v) of [ERW19, Theorem 4.8]. Our condition (1) is
exactly condition (i), since N•(Cd≤) = (d/F )• for F : C → D the inclusion. To check condition (v)
we may use [ERW19, Lemma 4.6.(vi)]. We need to show that C and D are left-fibrant, C → D is a
Serre fibration and D is unital. All posets are unital as c ≤ c provides identity morphisms. C → D
is a Serre fibration since it is the inclusion of a union of path components. Condition (2) exactly tells
us that D is left-fibrant and it follows that C is left-fibrant by restricting to path components. □

3. Systems of spheres

In this section we introduce complexes and semi-simplicial spaces of embedded unparametrised
spheres which cut a 3-manifold into irreducible pieces. In each subsection we introduce a variant
with more constraints, and show it is contractible, using contractibility of the previously consid-
ered complexes. As our starting point we sketch the proof of a contractibility result due to Nari-
man [Nar21], adjusted to our requirements. These contractibility results are a key input to the proof
of our main theorem. We end the section by reproving a theorem of Hatcher, in the setting where
M is a connected sum of two irreducible manifolds.
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3.1. Single spheres. First we consider a complex where vertices are single spheres.

Definition 3.1. An embedded unparametrised sphere S ⊂ M is essential if it represents a non-
trivial class in π2(M,p) for some p ∈ M . We call an essential sphere S ⊂ M reducing if each
connected component of the spherical closure M̂ |S ofM |S has fewer prime factors than the spherical
closure of M .

Remark 3.2. It follows from the Poincaré conjecture that an embedded sphere S ⊂M is essential
if and only if it does not bound B3 ⊂M . Therefore, a sphere S ⊂M is reducing if and only if S is
essential in the spherical closure M̂ .

Definition 3.3. The sphere complex S(M) of a compact 3-manifold M is the (discrete) simplicial
complex where vertices are reducing spheres in M and p-simplices are spanned by finite sets of
vertices {S0, . . . , Sp} such that the Si are pairwise disjoint.

Hatcher was the first to consider such a complex when he introduced and studied the complex of
isotopy classes of essential spheres in S1 × S2 in [Hat95]. He proved this complex was contractible
[Hat95, Theorem 2.1] using a surgery argument that has since been adapted by Mann–Nariman
[MN20], Nariman [Nar21, Proposition 2.7], and the first and second authors [BB22, Theorem 3.7]
among others, in various settings where embedded spheres satisfying certain additional properties
are no longer considered up to isotopy. Our next result is another such adaptation.

Proposition 3.4. For every compact 3-manifold M , the complex S(M) is either empty or con-
tractible.

Proof. The argument from the proof of Proposition 2.7 in [Nar21] works with some minor changes,
since we consider reducing spheres but Nariman considers the larger class of essential spheres that
are not boundary parallel. We sketch the proof with modifications here.

Suppose S(M) is nonempty and let κ : M → M̂ be the natural inclusion which caps all 2-sphere
boundary components ofM . We will show that any continuous map f : Sk → S(M) is nulhomotopic.
We may assume that f is simplicial with respect to some triangulation K of Sk. As transverse
embeddings are residual [Hir76, Theorem 2.1], after a simplicial homotopy we may assume that the
images of the vertices of K under f are pairwise transverse. Choose a vertex v ∈ K. Then f(v) is
a reducing sphere in M which is transverse to all other spheres in f(K(0)).

We now perform a sequence of surgeries on the spheres in f(K(0)) to homotope the image of f into
the star of f(v). For every other vertex w ∈ K the intersection f(v) ∩ f(w) is a union of circles.
Let N be total number of intersection circles in f(v), i.e. the number of circles in f(v) ∩ f(w),
summed over all w ̸= v. Consider all such circles, take a maximal disjoint family, and consider an
innermost circle C in this family. (Here, innermost means that C bounds a disk in f(v) containing
no other circle in the maximal collection.) Then C is an intersection between f(v) and a reducing
sphere f(w) for w ∈ K. For the surgery step, we need to show that if we surger f(w) at C with
respect to the transverse sphere f(v) to obtain two spheres S0 and S1 (see [Nar21, Figure 2]) then at
least one of S0 or S1 is still reducing. Since f(w) and f(v) lie in the interior of M , we may perform
the surgery entirely in M̊ . Passing to M̂ via κ, we may perform the same surgery away from the
added 3-balls. By assumption, f(w) and f(v) are reducing, hence essential in M̂ by Remark 3.2. In
π2(M̂, p) we have [S0]+[S1] = [f(w)]. As [f(w)] is nontrivial, at least one of [S0] or [S1] is nontrivial.
Thus we can pick i ∈ {0, 1} such that the sphere Si is still essential in M̂ and therefore reducing in
M .

The map f is now replaced with a homotopic map f ′ that agrees with f on all vertices except w,
but sends w to Si instead of f(w). (The original map f sends all vertices in linkK(w) to spheres
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disjoint from Si since C was chosen to be innermost, and after a small translation Si is also disjoint
from f(w), so f ′ sends all of starK(w) to the star of f(w) in S(M). This is what allows us to find
this homotopy – see [BB22, Figure 4] for a schematic.) Since f ′(w) = Si no longer intersects f(v)
at C, for this new map f ′ the number of intersections N has been reduced by one, so by induction
we can reduce N to zero i.e. until f sends all of K into the star of f(v). Hence, f is nullhomotopic
and S(M) is contractible as required. □

3.2. Systems of spheres. We now consider posets of systems of spheres which satisfy certain
properties.

Definition 3.5. A cut system for a 3-manifold M is a (possibly empty) collection of spheres Σ ∈
Sub(⨿kS

2,M), for k ∈ N, such that every sphere in Σ is reducing.

We let Cut(M) denote the space of cut systems, topologised as a subspace

Cut(M) ⊂
∐
k≥0

Sub(⨿kS
2,M).

This is a topological poset with respect to the partial order ⊆ defined by inclusion.

Note that Σ is allowed to be empty, which occurs when k = 0. The empty cut system is minimal
with respect to the partial order. If Σ ̸= ∅ ∈ Cut(M) then each component of M̂ |Σ has strictly

fewer prime factors than M̂ . Let Cut ̸=∅(M) be the subspace of Cut(M) consisting of non-empty cut
systems.

Definition 3.6. Let Cut•(M) and Cut ̸=∅
• (M) denote the simplicial spaces obtained as the nerve of

the poset (Cut(M),⊆) and (Cut̸=∅(M),⊆) respectively. Concretely, the space of p-simplices in each
case is

Cutp(M) = {Σ0 ⊆ · · · ⊆ Σp ∈ Cut(M)} ⊂ Cut(M)×p+1, and

Cut ̸=∅
p (M) = {∅ ≠ Σ0 ⊆ · · · ⊆ Σp ∈ Cut(M)} ⊂ Cut̸=∅(M)×p+1.

Since Σ = ∅ is minimal with respect to the partial order, it acts as a cone point for the realisation
of Cut(M), and therefore ∥Cut•(M)∥ ≃ ∗. The set of reducing spheres in M is empty if and only

if M̂ is irreducible, so in this case Cut(M) = {∅}, and Cut̸=∅(M) is empty.

Proposition 3.7. Suppose M̂ is not irreducible. Then the classifying space of the poset of non-empty

cut systems is contractible, i.e. ∥Cut̸=∅
• (M)∥ ≃ ∗.

Proof. Cut ̸=∅
• (M) is non-empty, since we assumed that M̂ was not irreducible. Following the frame-

work of Section 2.5, let X be the subspace of Sub(S2,M) consisting of reducing spheres, and ⊥ be

the symmetric and anti-reflexive relation on X given by S0 ⊥ S1 iff S0 ∩ S1 = ∅. Then Cut ̸=∅
• (M)

is the nerve of the associated topological poset C(X,⊥) from Definition 2.17. We now apply the
adaptation of the discretisation technique of Galatius and Randal-Williams [GRW18] given in Propo-
sition 2.18. First note that S(X,⊥) (Definition 2.17) is contractible since it is precisely the complex
S(M), which is contractible by Theorem 3.4. Hence condition (1) of Proposition 2.18 is satisfied

for all n. For condition (2) we fix a cut system Σ ∈ Cut ̸=∅
• (M) (which will function as y in the

proposition) and consider the simplicial complex S(X,⊥)⊥Σ. This complex is contractible – for any
map f : Sk → S(X,⊥)⊥Σ, there exists a sphere S disjoint from all vertices in im(f) (for example,
take S to be a parallel copy of a sphere in Σ). S is therefore a vertex in S(X,⊥)⊥Σ which acts as
a cone point for im(f) and thus S(X,⊥)⊥Σ ≃ ∗. Therefore (2) is also satisfied for all n. Applying

Proposition 2.18 gives that ∥Cut̸=∅
• (M)∥ is n-connected for all n, and thus contractible. □
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3.3. Separating systems. Now we are ready to restrict to cut systems that are separating.

Definition 3.8. A cut system Σ on a 3-manifold M is called separating if each component of M̂ |Σ
is irreducible. Let Sep(M) ⊆ Cut(M) denote the subspace of separating cut systems.

For q ≥ 1 we say that a cut system Σ is q-separating if each component of M̂ |Σ has at most q prime
factors. Let Cutpf≤q(M) ⊆ Cut(M) denote the subspace of q-separating cut systems.

Then Sep(M) and Cutpf≤q(M) are posets with respect to⊆ and we denote their nerves by Sep•(M) ⊂
Cut•(M) and Cutpf≤q

• (M) ⊂ Cut•(M).

There are inclusions

Sep(M) ⊆ Cutpf≤1(M) ⊂ · · · ⊂ Cutpf≤q−1(M) ⊂ Cutpf≤q(M) = Cut(M)

where q is the number of prime factors of M . Note that the first inclusion is strict exactly when M̂
has S1 × S2 as a prime factor, since S1 × S2 is the only closed 3-manifold which is prime but not
irreducible. Since every reducing sphere cuts M into components with strictly fewer prime factors

than M , it follows that Cutpf≤q−1(M) = Cut̸=∅(M).

Example 3.9. When M̂ = S1 × S2, Sep(M) = Cut̸=∅(M) and Cutpf≤1(M) = Cut(M).

We record the following for later use.

Lemma 3.10. The map

φn : Sepn(M) −→ Sep0(M) = Sep(M), (Σ0 ⊆ · · · ⊆ Σn) 7→ Σn

is a finite covering.

Proof. The map is a locally trivial fiber bundle because it is Diff(M)-equivariant and Sep(M) is
locally Diff(M)-retractile, so apply Lemma 2.2(1). Therefore it will suffice to check that the fiber
φ−1
n (Σ) is a finite set. (It then automatically has the discrete topology because Sepn(M) is Haus-

dorff.) Indeed, this fiber is the set of sequences of cut systems Υ0 ⊆ · · · ⊆ Υn = Σ such that each Υi

is a separating system. As there are only finitely cut systems contained in Σ, this set is finite. □

Proposition 3.11. The spaces ∥Cutpf≤p
• (M)∥ are contractible for all p ≥ 1 and all M .

Proof. Let q be the number of prime factors in M . For p ≥ q the poset Cutpf≤p(M) contains the

empty cut system, which is initial and hence acts as a cone point for ∥Cutpf≤p
• (M)∥. We show that

∥Cutpf≤p
• (M)∥ → ∥Cutpf≤p+1

• (M)∥ is a homotopy equivalence for all p ≥ 1.

We invoke Quillen’s Theorem A for topological categories [ERW19, Theorem 4.8] as recalled in
Corollary 2.19, noting that 2.19(3) is true since connected components correspond to isotopy classes
of cut systems, and 2.19(2) is true because the map

Cut1(M) = {Σ0 ⊆ Σ1 ∈ Cut(M)} → Cut(M), (Σ0 ⊆ Σ1) 7→ Σ0

is a Diff(M)-equivariant map into a Diff(M)-locally retractile space and hence a fiber bundle by
Lemma 2.2(1).

It therefore suffices to show 2.19(1): the slice category of the inclusion functor at every object

Υ ∈ Cutpf≤p+1(M) has a contractible classifying space. In the case at hand this slice category is
the poset

Cutpf≤p(M)Υ⊆ = {Σ ∈ Cutpf≤p(M) | Υ ⊆ Σ}.
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Any separating system Σ containing Υ decomposes as the disjoint union Σ = Υ ⊔ Υc and it will
suffice to keep track of Υc. Note that while Υc is p-separating inM |Υ, it may contain spheres which
are not reducing in M |Υ (for example, they may be boundary parallel, if they were parallel to a
sphere in Υ).

We introduce the following modification of Cutpf≤p(M) to account for this. Let N be a 3-manifold
and let B ⊂ ∂N be a union of 2-sphere boundary components. Let NB̂ denote be the manifold
obtained by filling each 2-sphere of B with a disk. Define Cpf≤p(N,B) to be collections of disjointly

embedded spheres in N that are essential in NB̂ and p-separating, and let Cpf≤p
• (N,B) be the nerve

of the associated poset. In particular, Cutpf≤p(N) = Cpf≤p(N, ∂N) ⊆ Cpf≤p(N,B) but the essential
spheres appearing in collections in Cpf≤p(N,B) are not necessarily reducing.

Let U be a connected component of M |Υ. Each boundary sphere of M lies in a unique such
component U . Let BU be the union of all 2-spheres in ∂U that come from ∂M . Then there is a
homeomorphism

Cutpf≤p(M)Υ⊆ ∼=
∏

U∈π0(M |Υ)

Cpf≤p(U,BU ).

Since Υ ∈ Cutpf≤p+1(M), the components of M̂ |Υ have at most p+ 1 prime factors. Therefore, for
each U there are two possibilities:

• if Û has at most p prime factors, then Cpf≤p(U,BU ) contains the empty sphere system,

which is an initial object and hence ∥Cpf≤p
• (U,BU )∥ is contractible.

• If Û has exactly p + 1 prime factors, then every Σ ∈ Cpf≤p(U,BU ) must contain at least

one reducing sphere. Therefore the inclusion Cut̸=∅(U) ⊆ Cpf≤p(U,BU ) admits a retraction

F : Cpf≤p(U,BU ) → Cut̸=∅(U) that forgets spheres which are not reducing. By Lemma 2.16

this is homotopic to the identity map, so Cut ̸=∅
• (U) is a deformation retract of Cpf≤p(U,BU ).

Since ∥Cut̸=∅
• (U)∥ is contractible by Proposition 3.7, it follows that ∥Cpf≤p

• (U,BU )∥ is con-
tractible.

Therefore, ∥Cpf≤p
• (U,BU )∥ is always contractible. The fat geometric realisation of a product of

simplicial spaces is equivalent to the product of the fat geometric realisations [ERW19, Theorem

7.1], so ∥Cutpf≤p
• (M)Υ⊆∥ is contractible, and applying Corollary 2.19 completes the proof. □

We now extend this one step further.

Proposition 3.12. The space ∥Sep•(M)∥ is contractible for all M .

Proof. Paralleling Proposition 3.11, we will show that ∥Sep•(M)∥ → ∥Cutpf≤1
• (M)∥ is weak equiv-

alence by proving that for every Υ ∈ Cutpf≤1(M) the poset

Sep(M)Υ⊆ = {Σ ∈ Sep(M) | Υ ⊆ Σ}.

has a contractible classifying space.

We define CSep
• (N,B) ⊂ Cpf≤1

• (N,B) as the subspace of those Σ ⊂ N such that every component of
N̂ |Σ is irreducible. In particular Sep(N) ⊆ CSep(N,B) but the latter contains systems with essential
spheres that are not necessarily reducing. As before we have a product

Sep(M)Υ⊆ ∼=
∏

U∈π0(M |Υ)

CSep(U,BU ).

Now, since Υ ∈ Cutpf≤1(M), each U has at most one prime factor. There are two cases:
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• if U admits no reducing spheres then Û must be irreducible and CSep(U,BU ) contains the

empty sphere system, which is an initial object and hence ∥CSep
• (U,BU )∥ is contractible.

• If U admits a reducing sphere, then because Û is prime, U must be S1 × S2 \ ⨿kD̊
3. As in

the proof of Proposition 3.11, CSep(U,BU ) has a deformation retraction to Sep(U). But in

this case Sep(U) = Cut̸=∅(U), and thus ∥CSep
• (U,BU )∥ is contractible by Proposition 3.7.

As in Proposition 3.11, assembling these results together completes the proof. □

3.4. Removing parallel spheres. We now turn our attention to the presence of unnecessary
‘parallel’ spheres in our separating systems, and show these can be removed.

Definition 3.13. We say that two spheres S0, S1 ⊂ M are parallel if they bound an embedded
S2 × I, i.e. if there is an embedding e : S2 × [0, 1] ↪→M with e(S2 × {i}) = Si.

Let Sep∦(M) ⊂ Sep(M) denote the sub-poset consisting of those separating systems Σ ∈ Sep(M)
such that no two spheres in Σ are parallel.

Note that there is a maximum possible number N of spheres in any given separating system Σ ∈
Sep∦(M). (In Lemma 6.5 we give an upper bound for N in terms of the prime decomposition of
M .) Therefore all chains of length > N in the poset must include an equality, i.e. when i > N , all

simplices in Sep
∦
i (M) are degenerate. This is our motivation for passing to the space Sep∦(M).

It is useful to have the following alternative characterisation of parallel spheres.

Lemma 3.14. Two essential spheres S0, S1 ⊂ M are parallel if and only if they are disjoint and
(unparametrised) isotopic.

Proof. By [Lau73, Lemma 2.1], if two disjoint essential spheres are homotopic, they bound an h-
cobordism inM . As a consequence of the Poincaré conjecture any such h-cobordism is trivial, i.e. an
embedded S2 × [0, 1], so the spheres are parallel. □

The goal of this section is to prove the following result.

Proposition 3.15. For M ̸∼= S1 × S2 the inclusion Sep∦(M) ⊂ Sep(M) induces an equivalence

∥ Sep∦•(M)∥ ≃−−→ ∥ Sep•(M)∥.

In order to show that ∥Sep∦•(M)∥ → ∥ Sep•(M)∥ is an equivalence we will need to choose a way
of ordering parallel spheres. To do so we make a non-canonical choice and use this to define some
auxiliary posets encoding the ordering. To show this choice is well-defined we include the following
lemma.

We would like to thank the Copenhagen “homotopy theory problem seminar” who worked out
the following proof and showed more generally that if M is a closed oriented n-manifold (n ̸= 4)
such that there is an Sn−1 ⊂ M that admits an orientation-reversing isotopy, then M is an exotic
n-sphere.

Lemma 3.16. Essential spheres do not admit orientation-reversing self-isotopies: if i, j : S2 ↪→ M
are isotopic embeddings of an essential sphere such that j(S2) = i(S2), then j−1 ◦ i ∈ Diff(S2) is
orientation preserving.
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Proof. Suppose such an orientation-reversing isotopy exists. By isotopy extension, we can find an
isotopy from IdM to a diffeomorphism h reversing the coorientation on S. Since M is orientable,
h must reverse the orientation on S as well. We first claim S separates M . If not, there is a
simple closed curve γ ⊂ M that intersects S in exactly one point. Hence γ and S are duals for the
intersection pairing onM , so [S] ∈ H2(M) generates a nontrivial free factor. But then h∗[S] = −[S],
contradicting h ≃ IdM .

So we may assume S separates M . Since h reverses the coorientation on S, it exchanges the two
(necessarily homeomorphic) components M0 and M1 of M |S. If neither M0 nor M1 are simply
connected, then π1(M0) ∼= π1(M1) ∼= G for some nontrivial G. Moreover, π1(M) ∼= G ∗ G and h∗
exchanges the two factors. Since h∗ preserves the kernel of the natural homomorphismG∗G→ G×G,
it induces an automorphism of G × G, which cannot be not inner, since no nontrivial element of
G × {1} is conjugate to an element of {1} × G. Thus, h∗ : π1(M) → π1(M) is not inner, again
contradicting h ≃ IdM . Finally, if M0 and M1 are simply connected, they are each homeomorphic
to S3 \ (

∐
k D̊

3), and since S is essential, we must have k ≥ 2. But then h would have to permute
the boundary spheres, and it cannot because it is isotopic to the identity. □

For each essential sphere S ⊂M we now choose a coorientation and use it to define (locally around
S) a left side and a right side of S. To be precise, we make this choice once for one representative in
each isotopy class, and then define the coorientation on any essential sphere by transporting it along
an isotopy from the representative in its isotopy class. By Lemma 3.16 self-isotopies of essential
spheres cannot reverse coorientation, so this procedure is well-defined.

For two parallel spheres S0, S1 ⊂ M we say that S0 is to the left of S1 if the part of M |(S0 ∪ S1)
that is right of S0 and left of S1 is diffeomorphic to S2 × [0, 1]. Conversely we define to the right of.
Note that if S0 is both left of and right of S1, then M ∼= S2 ×S1. From now on we will assume that
M ̸∼= S2 × S1.

Within an isotopy class of reducing spheres, we will need to understand the subspace of all spheres
to the left of a fixed sphere S0. Equivalently, we can regard this as a space of spheres parallel to a
fixed boundary component of M |S0. For this, we have the following lemma.

Lemma 3.17. Let M be a compact 3-manifold and S0 ⊂ ∂M a preferred boundary sphere. Then
the space of unparametrised embeddings

P (S0;M) := {S ⊂ M̊ | S is parallel to S0} ⊂ Sub(S2, M̊)

is contractible.

Proof. The Diff∂(M)-equivariant map

p : EmbS0×{0}(S0 × [0, 1],M) → Sub(S0, M̊), i 7→ i(S0 × {1})

is a fiber bundle because Sub(S0,M) is Diff∂(M)-locally retractile by Corollary 2.5. Moreover, by
the definition of parallel, the image of this map is exactly the connected component P (S0;M) ⊂
Sub(S0, M̊). Let S1 ∈ P (S0;M) be some unparametrised sphere parallel to S0. The fiber p at some
unparametrised sphere S1 ∈ P (S0;M), which is parallel to S0, is the space of those embeddings
ι : S0 × [0, 1] ↪→ M that are the identity on S0 × {0} and send S0 × {1} to S1. The image of such
an embedding is always exactly the connected component U ⊂ M |S1 that lies between S0 and S1.
U is necessarily diffeomorphic to S2 × [0, 1]. Specifying another embedding ι′ ∈ p−1(S1) is hence
equivalent to specifying a diffeomorphism S0 × [0, 1] ∼= U that is the identity on S0 ×{0}. Therefore
we have a fiber sequence

DiffS0×{0}(S0 × [0, 1]) → EmbS0×{0}(S0 × [0, 1],M) → P (S0;M).
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The left term is the group of pseudo-isotopies of S2, which is contractible by Hatcher’s proof of
the Smale conjecture [Hat83]. The middle term is the space of collars of S0 in M , which is also
contractible by [Cer61], as recalled in Theorem 2.6. Therefore P (S0;M) is contractible. □

Definition 3.18. For a sphere system Σ we let L(Σ) ⊆ Σ denote the sphere system that selects

the left-most sphere from each isotopy class represented in Σ. Then the topological poset SepL(M)

is defined as follows. Its underlying space is the subspace SepL(M) ⊆ Sep(M) of those separating
systems where each isotopy class contains either no sphere or at least two spheres. The relation is
defined as Σ ≤ Σ′ if and only if Σ ⊆ Σ′ and L(Σ) ⊆ L(Σ′). Define SepL,2(M) ⊂ SepL(M) as the full
subposet on those separating systems where each isotopy class has either no sphere or exactly two
spheres.

By construction, L defines a map of posets L : SepL(M) −→ Sep∦(M), and we can also define

R : SepL(M) −→ Sep(M), via R(Σ) := Σ \ L(Σ). Thus the map R removes the left-most sphere
from each isotopy class. This is still a separating system as we assumed that every non-empty
isotopy class of Σ ∈ SepL(M) contains at least two spheres. The following shows that forgetting the
left-most sphere does not change the homotopy type of the space of separating systems.

Lemma 3.19. Assume M ̸∼= S2 × S1. Then the map

R : SepL(M) −→ Sep(M)

that discards the left-most sphere from each isotopy class is a trivial Serre fibration. As a con-

sequence, the maps R : ∥ SepL• (M)∥ → ∥Sep•(M)∥ and L : ∥ SepL,2• (M)∥ → ∥Sep∦•(M)∥ are weak
equivalences.

Proof. By Corollary 2.5, Sep(M) is a locally Diff(M)-retractile space and so by Lemma 2.2(1) any
Diff(M)-equivariant map into it is a locally trivial fibration.

For an isotopy class a ∈ π0 Sub(S
2,M), let Sepa(M) ⊂ Sep(M) denote the subspace of those

separating systems Σ such that the number of spheres of Σ that are in the isotopy class a is at least
2. This only depends on the isotopy class of Σ, hence Sepa(M) is a union of path components of
Sep(M). Then we can define a map

Ra : Sepa(M) → Sep(M)

that forgets the left-most sphere from the isotopy class a. This map is again a fiber bundle because
Sep(M) is locally Diff(M)-retractile. Each path component of SepL(M) belongs to Sepa(M) for only
finitely many a, hence restricted to each path component the map R is equal to a finite composite
of maps of the form Ra. Thus, it will suffice to show that each Ra is a trivial Serre fibration.

We therefore have to show that the fiber R−1
a (Σ) is contractible at any Σ ∈ Sep(M) in the image

of Ra. A point in this fiber is of the form Σ ⊔ S for some S ∈ Sub(S2,M) such that S is disjoint
from Σ, S is in the isotopy class a, and (within Σ ⊔ S) S is the left-most sphere in its isotopy class.
Let S0 be the left-most sphere in Σ that is in the isotopy class a. Then we can equivalently write
the fiber as the subspace of those unparametrised spheres that are parallel to S0 ⊂ ∂(M |Σ). (Here
there are two ways of thinking of S0 as a sphere in the boundary of M |Σ. We choose the one that
corresponds to the left side of S0 ⊂M .)

R−1
a (Σ) ∼= {S ∈ Sub(S2, (M |Σ)◦) | S parallel to S0}

Contractibility now follows from Lemma 3.17.
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To prove the final claim, we first consider the commutative square

SepLn(M) Sepn(M)

SepL0 (M) Sep0(M)

Rn

R0

where the vertical maps send (Σ0 ⊆ · · · ⊆ Σn) to Σn. These vertical maps are finite coverings
by Lemma 3.10 and the horizontal map induces a bijection on fibers, so the square is a pullback
and hence Rn is also a trivial Serre fibration. Fat geometric realisation preserves weak equivalences
[ERW19, Theorem 2.2] so ∥R∥ is a weak equivalence. The proof for L is entirely analogous. □

Using these intermediate spaces we can now prove Proposition 3.15.

Proof of Proposition 3.15. Consider the following (non-commutative!) diagram of maps of topolog-
ical posets.

SepL,2(M) SepL(M)

Sep∦(M) Sep(M)

I

L
L

R

I

Here the maps labelled I are inclusions and L and R are as defined above. The top triangle in this
diagram commutes. Consider the three maps

L,F,R : SepL(M) −→ Sep(M)

where F is the forgetful map (i.e. the inclusion on underlying spaces). For every Σ we have inclusions
L(Σ) ⊂ F (Σ) = Σ ⊃ R(Σ). Therefore Lemma 2.16 provides us with homotopies |L| ≃ |F | ≃ |R|, so
the following diagram commutes up to homotopy.

∥ SepL,2• (M)∥ ∥ SepL• (M)∥

∥ Sep∦•(M)∥ ∥ Sep•(M)∥

∥I∥

∥L∥
∥L∥

∥R∥

∥I∥

By Lemma 3.19 the two vertical maps in the above square are weak equivalences. Now it follows
from the 2-out-of-6-property that all maps in the diagram are weak equivalences. (Alternatively, one
can apply the functor πk(−) to the diagram and then show that the diagonal map is both injective
and surjective.) □

By combining Proposition 3.15 and Proposition 3.12 we obtain the following theorem, which we will
use in the proof of our main theorem in Section 6.

Theorem 3.20. Suppose M ̸∼= S1 × S2. Then ∥ Sep∦•(M)∥ ≃ ∗.

3.5. The connected sum of two irreducible manifolds. Theorem 3.20 allows us to reprove the
following result of Hatcher’s, which is given in the final remark of [Hat81], and also discussed after
the main theorem in a revision of that same article [Hat03].

Theorem 3.21 ([Hat81]). Let M ∼=M1#M2, where the Mi are irreducible and not S3. Let S ⊂M
be a reducing 2-sphere. Then the inclusion Diff(M,S) ↪→ Diff(M) is an equivalence.
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Proof. Note that since the Mi are irreducible, the prime decomposition of M contains no S1 × S2

factors and therefore any essential sphere is separating and induces a connected sum decomposition
ofM into two pieces. We claim that any two disjoint reducing spheres inM must be parallel. Indeed
if S0 and S1 are disjoint embedded spheres, then they induce a connected sum decomposition of
M into three pieces: M ∼= N1#S0

N2#S1
N3. Since M has two prime factors, it follows that one of

the Ni is homeomorphic to S3, and it cannot be N1 or N3, since the Si are reducing. Therefore
N2 is homeomorphic to S3, and N2 \ (S0 ⊔ S1) ∼= S2 × I determines an embedding with boundary

components S0 and S1, so S0 and S1 are parallel. Consequently, any Σ ∈ Sep∦(M) consists of a

single sphere, in other words Sep∦(M) ⊂ Sub(S2, M̊) is the space of essential spheres. In particular,

there are no non-degenerate chains in (Sep∦(M),⊆) and it follows that ∥ Sep∦•(M)∥ ≃ Sep∦(M), so

Theorem 3.20 implies that Sep∦(M) ≃ ∗.

By the discussion following Corollary 2.5 we have the fibration sequence

Diff(M,S) ↪→ Diff(M) → Sub(S2, M̊).

The fibration lands in the subspace Sep∦(M) ⊂ Sub(S2, M̊) of essential spheres (because the ac-
tion of Diff(M) preserves these) which we have shown is contractible. Therefore the inclusion of
Diff(M,S) → Diff(M) must be an equivalence as claimed. □

The above theorem is a powerful computational tool, because when the Mi are distinct we can
describe Diff(M,S) using the homotopy fiber sequence

Diff∂(M1 \ D̊3) −→ Diff(M,S) −→ Diff(M2 \ D̊3),

which can be used to describe Diff(M) in terms of Diff(Mi) for the irreducible pieces Mi.

4. Homotopy finiteness via the (strong) generalised Smale conjecture

In Section 6 we will use contractibility of ∥ Sep∦•(M)∥ to prove Theorem 6.1 via an inductive argu-
ment. The base case of our argument is homotopy finiteness for BDiff∂(M) where M̂ is an irreducible
manifold. In the case that M itself is irreducible (i.e. has no spherical boundary components) this is
a theorem of Hatcher–McCullough [HM97], as recalled in Theorem 1.1. We will show in Theorem 6.4
that the general case can be reduced to either Hatcher–McCullough’s result or the following theorem,
which is equivalent to the case in which M has one fixed spherical boundary component.

Theorem 4.1. Let M be an irreducible 3-manifold with either empty or incompressible toroidal
boundary, and let D3 ⊂ M̊ be an embedded disk. Then BDiffD3(M) has the homotopy type of a
finite CW complex.

The proof of this theorem will occupy Sections 4 and 5. For its proof, we exploit the JSJ and
geometric decompositions of M , which we recall now. Let M be a prime orientable 3-manifold
with empty or incompressible toroidal boundary. Then there exists a minimal collection TJSJ of
embedded, incompressible tori and annuli such that each of the components of M \ TJSJ are either
Seifert-fibered or atoroidal, and this collection is unique up to isotopy. (Recall that an irreducible
manifold is called atoroidal if every essential immersed torus is homotopic to the boundary.) This
decomposition of M is known as the JSJ decomposition, having been discovered independently by
Jaco–Shalen [JS78] and Johannson [Joh79a]. Moreover, since ∂M consists only of tori, no annuli
appear in this decomposition (see e.g. [Jac80]).

Definition 4.2. A prime 3-manifold with empty or incompressible toroidal boundary has trivial
JSJ decomposition if it is either Seifert fibered or atoroidal (i.e. if TJSJ is empty).
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On the other hand, Thurston’s geometrisation conjecture states that there exists a collection TG of
incompressible 2-sided tori and 1-sided Klein bottles embedded in M such that each component of
M \ TG admits a finite-volume Riemannian metric locally isometric to one of 8 model geometries:

S3, E3, H3, S2 ×R, H2 ×R, Nil, Sol, or P̃SL2(R), unless M = T 2 × I or K×̃I, the twisted I-bundle
over the Klein bottle. This collection TG is unique up to isotopy. Except for H3 and Sol, the
remaining geometries are all Seifert-fibered. Thurston proved his conjecture in the case of Haken
3-manifolds, showing in particular that every closed atoroidal Haken 3-manifold admits a finite-
volume metric based on H3 [Thu86]. (Recall an orientable manifold is Haken if it is irreducible
and contains an orientable incompressible surface.) The full conjecture was proven by Perelman
[Per02, Per03b, Per03a] (see also [CZ06, BBM+10, MT14]).

Definition 4.3. A compact, connected 3-manifold M is called geometric if M̊ admits a complete,
finite-volume metric locally modeled on one of the 8 Thurston geometries.

Geometric 3-manifolds necessarily have incompressible boundary, which is diffeomorphic to a (possi-
bly empty) disjoint union of tori (see, e.g. [Bon02, §2]). The decomposition of M along TG is called
the geometric decomposition of M , and is nearly the same as the JSJ decomposition, except that TG
may contain 1-sided Klein bottles, and that closed manifolds supporting Sol-geometry have a trivial
geometric decomposition but a nontrivial JSJ decomposition.

IfM is an orientable T 2-bundle over S1 that is not Seifert-fibered, thenM is called an Anosov bundle
and admits Sol-geometry. Although not all Sol-manifolds are of this form, such bundles will be a
special case of Theorem 4.1 that we will not be able to treat in the same way we treat other manifolds
with nontrivial JSJ decomposition. Conversely, if M is orientable, irreducible and has trivial JSJ-
decomposition then M is geometric unless M = T 2 × I or M = K×̃I. Thus when decomposing
manifolds, we cannot completely exclude the case of manifolds with non-trivial JSJ decomposition
nor the case of non-geometric manifolds. However, if M has nontrivial JSJ decomposition, and is
not an Anosov bundle, the components of M |TJSJ all have nonempty toroidal boundary and thus
are either Haken Seifert-fibered (and not T 2 × I) or hyperbolic.

The flowchart in Fig. 3 explains how the proof of Theorem 4.1 breaks up into cases depending on
the geometry of M . Each leaf contains a reference to the result in which we prove BDiffD3(M) is
homotopy finite for such M . Arrows correspond to straightforward case distinctions, except in one
case where a proposition is required to reduce to the case whereM has trivial JSJ decomposition. In
order to prove Theorem 4.1 whenM has nontrivial JSJ decomposition and is not an Anosov bundle,
we will need a stronger finiteness condition on BDiff for components of M |TJSJ. We introduce this
condition, called hereditary finiteness (Definition 5.2) in the next section and prove it holds in the
(fiber-rigid) Haken Seifert-fibered and hyperbolic cases, as only these can arise in M |TJSJ. The
leaves for which we prove hereditary finiteness are coloured in blue in Fig. 3.

Recall that we have a fiber sequence

DiffD3(M) −→ Diff(M) −→ Emb(D3, M̊)

whence BDiffD3(M) is equivalent to a connected component of Emb(D3, M̊)//Diff(M). The quo-
tient Emb(D3, M̊)//Diff(M) is connected if M admits an orientation reversing diffeomorphism, and
otherwise it has two connected components.

Let Fr(M) denote the frame bundle of M . Since M is parallelisable, Fr(M) ∼= M × GL3(R). We

will also consider the oriented orthonormal frame bundle Fr⊥(M), which is homotopy equivalent to

Fr(M). Again by parallelisability, Fr⊥(M) ∼= M × O(3). Since Emb(D3, M̊) ≃ Fr(M), we obtain
that BDiffD3(M) is equivalent to a connected component of Fr(M)//Diff(M). The overall strategy
for proving Theorem 4.1 when M has trivial JSJ decomposition will be to exploit the geometry on
M to find a suitable subgroup G < Diff(M) such that G ↪→ Diff(M) is a homotopy equivalence
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Figure 3. Flowchart of the proof of Theorem 4.1

and Fr(M)//G is homotopy finite. In this case the basepoint component of Fr(M)//G, which we can
also write as Fr+(M)//G+ by restricting to oriented frames and oriented diffeomorphisms, will be a
model for BDiffD3(M). The simplest case will be when G is a Lie group acting freely on Fr(M).
For example, if G = Isom(M) for some Riemannian metric on M , we learnt the idea of the following
proof from Sam Nariman.

Lemma 4.4. Suppose (M, g) is a Riemannian 3-manifold such that the inclusion Isom(M) →
Diff(M) is a homotopy equivalence. Then BDiffD3(M) is homotopy finite.

Proof. As argued above BDiffD3(M) is a connected component of

Fr(M)//Diff(M) ≃ Fr(M)// Isom(M) ≃ Fr⊥(M)// Isom(M).

The isometry group Isom(M) is a compact Lie group acting freely on the compact manifold Fr⊥(M),

so Fr⊥(M)// Isom(M) ≃ Fr⊥(M)/ Isom(M) and this quotient is a compact manifold [Lee13, Theorem
7.10], and hence is homotopy finite. □

Recall from the introduction that we refer to the statement that Isom(M) ↪→ Diff(M) is a homotopy
equivalence as the strong generalised Smale conjecture, and to the statement that Isom0(M) ↪→
Diff0(M) is a homotopy equivalence as the weak generalised Smale conjecture. For the rest of
Section 4, we will prove all cases of Theorem 4.1 (corresponding to leaves in the flowchart in Fig. 3)
where there exists a Lie group G < Diff(M) acting freely on Fr(M) and such that G ↪→ Diff(M)
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is a homotopy equivalence. Except for T 3 and T 2 × I, the strong generalised Smale conjecture will
hold, allowing us to take G = Isom(M) and apply Lemma 4.4.

4.1. The generalised Smale conjecture. The strong form of the generalised Smale conjecture is
false, even among irreducible geometric 3-manifolds. However, for irreducible geometric manifolds,
the weak form always holds.

Theorem 4.5 (Weak generalised Smale conjecture). Let (M, g) be an irreducible geometric 3-
manifold. Then the inclusion Isom0(M) ↪→ Diff0(M) is a homotopy equivalence.

The proof of Theorem 4.5 combines the results of several authors spanning decades. For Haken
geometric 3-manifolds, it follows from results of Hatcher [Hat76] and, independently, Ivanov [Iva76]
on spaces of incompressible surfaces. Hatcher and Ivanov’s work covers all Haken cases and thus all
cases when M has non-empty boundary, all cases with Sol-geometry, and many of the hyperbolic
and Seifert-fibered cases except possibly when the base-orbifold is homeomorphic to S2.

ForM = S3, Theorem 4.5 follows from Hatcher [Hat83]. It was proven for quotients of S3 containing
one-sided incompressible Klein bottles (prismatic and quaternionic) and lens spaces other than RP3

using topological techniques [Iva79, Iva82, HKMR12]. Bamler–Kleiner [BK23b, BK19] used Ricci
flow techniques to prove the remaining cases (tetrahedral, octahedral, icosahedral, and RP3) and
gave a unified proof for all spherical 3-manifolds. In particular, their approach offers a new proof of
the Smale conjecture.

In the H3-case, Gabai [Gab01] proved that Diff0(M) is contractible, and the techniques of [BK23b]
also reprove this case. Since (M, g) is negatively curved, Isom(M) is discrete (see e.g. [KN63,

Corollary 5.4]) so Theorem 4.5 follows. The non-Haken cases of H2 × R- and P̃SL2(R)-geometry
were proven by McCullough and Soma [MS13]. Recently, Bamler–Kleiner [BK23a] proved the last
remaining non-spherical case, namely closed manifolds admitting Nil-geometry and whose base-
orbifold is homeomorphic to S2.

We note that in each case, the actual homotopy type of Diff0 is known. For irreducible 3-manifolds
that are spherical, see Tables 1 and 2 in [HKMR12]. For non-spherical geometric 3-manifolds, the
homotopy type of Diff0 is simpler to describe, and since we will refer to it later we state it here.

Corollary 4.6 (Haken [Hat76, Iva76, Iva79], Non-Haken [MS13, BK23a]). Let M be an irreducible
geometric 3-manifold that is not covered by S3.

(1) If M is not Seifert-fibered, then Diff0(M) ≃ ∗.

(2) IfM is Seifert-fibered then Diff0(M) ≃
∏
b

SO(2), where b is the rank of the center Z(π1(M)).

Theorem 4.5 tells us that Isom(M) and Diff(M) can only differ with respect to π0, the group of
path components. The group π0 Diff(M) is known as the mapping class group of M . We briefly
survey some results on mapping class groups of geometric manifolds. The computation of the
mapping class group for S3 is a consequence of work of Cerf [Cer68], for S1 × S2 it is due to
Gluck [Glu62], and for lens spaces it is due to Bonahon [Bon83b], although some cases were known
[Rub79, Iva79, Iva82, RB84]. More generally, the results for all spherical 3-manifolds are surveyed in
[HKMR12], and include work of Asano [Asa78], Rubinstein [Rub78, Rub79], Boileau–Otal [BO86],
and Birman–Rubinstein [RB84]. Johannson [Joh79b] showed that Haken 3-manifolds with incom-
pressible boundary that are atoroidal and anannular have finite mapping class groups, and McCul-
lough [McC91] showed more generally that mapping class groups of Haken 3-manifolds are finitely
presented, and investigated other finiteness properties.

In many cases, the strong form of the generalised Smale conjecture is also known to hold.
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Theorem 4.7. Suppose M is an irreducible geometric 3-manifold that is either hyperbolic or non-
Haken Seifert-fibered. Then the inclusion Isom(M) ↪→ Diff(M) is a homotopy equivalence.

The non-Haken Seifert-fibered manifolds in the above theorem include all those with S3-geometry
completed by [HKMR12, BK19, BK23b], see references therein for a comprehensive history. All

other irreducible non-Haken Seifert-fibered cases carry either the geometry of H2 × R, P̃SL2(R), or
Nil, and fiber over the 2-sphere with 3 cone points. Theorem 4.7 was proven for the H2 × R and

P̃SL2(R) cases in [MS13], and for the Nil case in [BK23a]. (In fact, Theorem 4.7 also holds when
M fibers over S2 with 3 cone points and carries E3-geometry [MS13], although these are Haken.)
The hyperbolic case follows from Mostow–Prasad rigidity (see e.g. [Gro81]) and the work of Gabai
[Gab01] and Gabai–Meyerhoff–Thurston [GMT03]. Combining Theorem 4.7 with Lemma 4.4 we
obtain the following corollary.

Corollary 4.8. Let M be an irreducible geometric 3-manifold that is either hyperbolic or non-Haken
Seifert-fibered. Then BDiffD3(M) is homotopy finite.

In Proposition 4.17 and Theorem 4.20 we show that the generalised Smale conjecture also holds for
the Hantzsche-Wendt manifold MHW (see Section 4.3 below) and T 2-bundles over the circle that
have Anosov monodromy.

4.2. Haken Seifert-fibered manifolds – overview. The strong form of the generalised Smale
conjecture often does not hold for Haken Seifert-fibered 3-manifolds, essentially because the mapping
class group of the base surface may be infinite. Our proof of Theorem 4.1 for these manifolds will
rely on understanding the space of all Seifert fiberings.

We say two Seifert fiberings of M are equivalent if there is a diffeomorphism from M to itself taking
the fibers of one to the fibers of the other. Given a fixed Seifert fibering φ of M , let Difff (M ; [φ])
denote the subgroup of fiber-preserving diffeomorphisms of φ, i.e. those diffeomorphisms which map
fibers of φ diffeomorphically to fibers. On the other hand, in Section 5 we also study the subgroup
of vertical diffeomorphisms Diffv(M ; [φ]), consisting of diffeomorphisms f ∈ Diff(M) that satisfy
φ ◦ f = φ, i.e. they preserve each fiber setwise.

If φ and φ′ are equivalent, then Difff (M ; [φ]) and Difff (M ; [φ′]) are conjugate subgroups of Diff(M).
Following [HKMR12, Definition 3.13], we define the space of Seifert fiberings isomorphic to φ to be

the coset space SF(M ; [φ]) = Diff(M)/Difff (M, [φ]). Theorems 3.12 and 3.14 of [HKMR12] state
that the quotient map Diff(M) → SF(M ; [φ]) is a locally trivial fiber bundle and that the components
of SF(M ; [φ]) are contractible.

For many Haken Seifert-fibered 3-manifolds, SF(M ; [φ]) is also connected, which is to say that
any diffeomorphism of M is isotopic to a fiber-preserving diffeomorphism. Indeed, by results of
Waldhausen [Wal67, Theorem 10.1] (see also Jaco [Jac80, Theorem VI.18] for the case where M has
boundary), there are only finitely many orientable Haken Seifert-fibered 3-manifolds for which there
does not exist a unique Seifert fibering up to isotopy. These six manifolds, which we call exceptional,
are:

• S1 ×D2,

• T 3, the 3-torus,

• T 2 × I, the trivial I-bundle over the 2-torus,

• MHW , the Hantzsche-Wendt manifold (first studied in [HW35]),

• K×̃I, the orientable I-bundle over the Klein bottle K, and

• D(K×̃I) the double of K×̃I.
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We remark that although S1 ×D2 and its fiberings will play a major role in Section 5, we do not
need to prove Theorem 4.1 for S1 × D2, as it has compressible boundary. Indeed, S1 × D2 is the
only Haken Seifert-fibered 3-manifold with compressible boundary.

Definition 4.9. A Haken Seifert-fibered manifold M is fiber-rigid if it admits a Seifert fibering
φ : M → S such that the inclusion Difff (M ; [φ]) ↪→ Diff(M) is a homotopy equivalence. (Or
equivalently such that SF(M ; [φ]) is contractible.) Otherwise we say M is flexible.

Theorem 4.10. Let M be orientable and Haken Seifert-fibered. If M is not S1 ×D2, T 3, T 2 × I,
or MHW , then M is fiber-rigid.

Proof. By Theorem 3.15 of [HKMR12] all orientable Haken Seifert-fibered manifolds that are not
exceptional are fiber-rigid. In fact, their theorem says that for non-exceptional cases SF(M ; [φ]) is
contractible for any choice of φ. Thus it remains to prove that for K×̃I and D(K×̃I) there exists

a fibering φ for which Difff (M ; [φ]) → Diff(M) is surjective on π0.

If M = K×̃I, then M ≃ K so π1(M) ∼= π := ⟨a, t | tat−1 = a−1⟩. By Waldhausen’s theorem
[Wal68], π0 Diff(M) is isomorphic to the subgroup of Out(π) preserving π1(∂M). In the case at
hand π1(∂M) ∼= Z2 is the subgroup ⟨a, t2⟩ ≤ π, which is characteristic, so π0 Diff(M) ∼= Out(π) ∼=
Z/2 × Z/2. The generators of Out(π) are σ1 : t 7→ t−1, a 7→ a and σ2 : t 7→ ta, a 7→ a. There are
two distinct Seifert fiberings φ1, φ2 of M corresponding to the two maximal normal infinite cyclic
subgroups of π, namely ⟨a⟩ and ⟨t2⟩, respectively. The base surface of φ1 is Möbius strip and there
are no singular fibers. The base orbifold of φ2 is a disk with two cone points of order 2. These two
cone points correspond to the conjugacy classes of t and ta respectively. Both σ1 and σ2 can be
realised by diffeomorphisms of K×̃I that preserve both fiberings: σ1 is a reflection that reverses the
orientation of each fiber of φ2, preserving each setwise, while σ2 rotates each fibers of φ1 by 180◦ and
permutes the fibers of φ2, exchanging the two singular fibers (see Figure 4). Thus π0 Difff (M ; [φi])
surjects onto π0 Diff(M) for i = 1, 2. Using either φ1 or φ2 proves the theorem in this case.

Finally, consider M = D(K×̃I), the double of K×̃I. Then M supports a flat metric, and by [CV73,
Theorem 1], the group of affine automorphisms Aff(M) fits into a short exact sequence

1 → Aff0(M) → Aff(M) → Aff(M)/Aff0(M) → 1,

where Aff0(M) = Isom0(M), and Aff(M)/Aff0(M) ∼= Out(π1(M)). Therefore by Theorem 4.5 and
Waldhausen’s theorem [Wal68], the inclusion Aff(M) → Diff(M) is a homotopy equivalence. On
the other hand, the quotient map φ0 : M → M/Aff0(M) is a Seifert fibering with base surface
a sphere with 4 cone points of order 2. Since Aff0(M) is normal in Aff(M), every element of
Out(π1(M)) ∼= Aff(M)/Aff0(M) is realised by a fiber-preserving diffeomorphism of M . Thus,
π0 Diff(M ; [φ0]) → Out(π1(M)) ∼= π0 Diff(M) is surjective. □

Remark 4.11. For a Seifert fibering φ : M → S whereM has non-trivial boundary andM ̸∼= T 2×I
and M ̸∼= S1 × D2, we have Difff (M ; [φ]) ≃ Diff(M). This is because any irreducible M with
boundary is Haken in which case the only exceptional cases we need to consider are T 2 × I and
K×̃I, but for the latter we just checked that both the non-singular fibering and singular fibering is
rigid.

For the sake of completeness, in the next subsection we will show that the converse to Theorem 4.10
is also true. That is, the four excluded manifolds S1×D2, T 3, T 2×I andMHW are the only flexible
Haken Seifert-fibered 3-manifolds. As alluded to above, the proof of Theorem 4.1 for T 3, T 2× I and
MHW fits into the same schema as those addressed in Section 4.1, while we deal with the fiber-rigid
case in Section 5.
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φ1

φ2

A

A

B

B

Figure 4. K×̃I is formed by identifying sides of a cube as indicated above. The
vertical axis is the I-direction while the central square is the core K. Projecting
onto the B-face is the nonsingular fibering φ1 over the Möbius band, and the pro-
jection φ2 onto the A-face has two singular fibers of order 2, shaded in blue and
red respectively. Reflection in the plane perpendicular to the red line induces σ1,
while the rotation of K that exchanges the blue and red curves extends to K×̃I
as σ2. The top and bottom faces of the cube glue up to form a torus T 2, and the
projection onto the core K is the orientation double cover T 2 → K.

4.3. Flexible Seifert-fibered manifolds. We now deal with T 3, T 2 × I, and MHW . First, we
recall basic facts about their fiberings and show that all three of these are flexible. For M = T 2 × I
or M = T 3, there infinitely many Seifert fiberings, each one corresponding to an infinite cyclic
free factor of π1(M). For T 3, the base surface is always T 2 and there are no singular fibers, while
for T 2 × I the base surface is always S1 × I, again without singular fibers. In each case, any two
fiberings are equivalent, since the mapping class group acts transitively on free factors of π1(M).
Thus, for any fibering φ the components of SF(T 3; [φ]) (respectively SF(T 2 × I; [φ])) are in one-

to-one correspondence with the cosets GL3(Z)/GL
⟨e1⟩
3 (Z) (respectively GL2(Z)/GL

⟨e1⟩
2 (Z) ), where

GL⟨e1⟩
n (Z) denotes the GLn(Z)-stabiliser of the subgroup ⟨e1 := (1, 0, . . . , 0)⟩ ≤ Zn. In particular,

both T 3 and T 2 × I are flexible.

To see that MHW is flexible, we first recall its construction (see [HKMR12, Section 3.9] for more
details). The I-bundle K×̃I can be thought of as the mapping cylinder of the oriented double cover
T 2 → K, and as such its boundary is T 2 (see Fig. 4). Take two copies of K×̃I and let T1 and T2 be
the two boundary tori. While the double D(K×̃I) identifies longitude to longitude and meridian to
meridian, MHW is formed by identifying the meridian of T1 with the longitude of T2, and vice versa.
There are two Seifert fiberings of MHW , one where the meridians of T1 are fibers, and the other
where the longitudes of T1 are fibers. However, there is a diffeomorphism of MHW which exchanges
the two copies of K×̃I and simultaneously swaps the meridian and longitude of T1. This is not
fiber-preserving, so MHW is flexible.

To prove BDiffD3(M) is homotopy finite for these three manifolds, we exhibit a subgroup G ≤
Diff(M) such that the inclusion G → Diff(M) is a homotopy equivalence and G acts freely on
Fr(M) with homotopy finite quotient. When M is MHW , we will exhibit a metric on M such that
G = Isom(M), and apply Lemma 4.4. When M is T 2 × I or T 3, π0 Diff(M) is infinite, so no such
metric exists; nevertheless, π0 Diff(M) does lift to a group of diffeomorphisms.

Let us first proceed with the proof for T 2 × I. Note that the results in this case will also be needed
in Section 5. We begin with some finiteness results for diffeomorphisms of surfaces.
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Lemma 4.12. Let S be a surface (not necessarily orientable). Then BDiffD2(S) is homotopy finite.

Proof. Let S′ = S \ D̊2, and let b be the boundary component of S′ corresponding to ∂D2. Then
BDiffD2(S) ≃ BDiffb(S

′). By [Gra73, Proposition 6], the connected components of BDiffb(S
′) are

contractible, so it suffices to show that π0 Diffb(S
′) has finite classifying space. This is proved in

[HM97, Lemma 1.2]. □

Given a closed, compact manifold M , the pseudo-isotopy group is defined to be

PI(M) := DiffM×{0}(M × I).

For surfaces, Hatcher proved the following.

Theorem 4.13 (S ̸= S2 [Hat76], S = S2 [Hat83]). Let S be an orientable surface. Then PI(S) is
contractible.

Corollary 4.14. Let S be an orientable surface. Then Diff(S × I) ≃ Diff(S)× Z/2.

Proof. Let S0 = S ×{0} and S1 = S ×{1}. Diff(S × I) may permute the boundary components, so
we have principal short exact sequence

1 → Diff(S × I, S0) → Diff(S × I) → Z/2 → 1.

Letting r : S × I → S × I be the reflection r(x, t) = (x, 1 − t) we see this sequence splits. On the
other hand, by restricting to S0 we get another (split) principal short exact sequence

1 → PI(S × I) → Diff(S × I, S0) → Diff(S0) → 1.

with splitting given by f 7→ f × idI . By Theorem 4.13, the fiber is contractible, so Diff(S× I, S0) ≃
Diff(S0) = Diff(S). Finally, r commutes with f × idI , so the inclusion Diff(S)× Z/2 → Diff(S × I)
is a homotopy equivalence. □

We apply the previous corollary to the case where S = T 2.

Proposition 4.15. Let D3 ⊂ (T 2 × I)◦. Then BDiffD3(T 2 × I) is homotopy finite.

Proof. We know that Diff(T 2 × [0, 1]) ≃ Z/2×Diff(T 2), so we can write

BDiffD3(T 2 × [0, 1]) ≃ Fr(T 2 × [0, 1])//Diff(T 2 × [0, 1]) ≃ Fr(T 2 × [0, 1])//(Z/2×Diff(T 2)).

There also is a homotopy fiber sequence

Fr(T 2)× Z/2 −→ Fr(T 2 × [0, 1]) −→ RP2

where the fibration is defined by recording the line spanned by last vector in the frame. The first
map is Diff(T 2)× Z/2-equivariant and the second map Diff(T 2)× Z/2-invariant, so by Lemma 2.8
we get a homotopy fiber sequence

(Fr(T 2)× Z/2)//(Diff(T 2)× Z/2) −→ Fr(T 2 × [0, 1])//(Diff(T 2)× Z/2) −→ RP2.

The base is a finite CW complex and the fiber is homotopy equivalent to Fr(T 2)//Diff(T 2) ≃
BDiffD2(T 2), which is homotopy finite by Lemma 4.12. □

To prove Theorem 4.1 for T 3, we will use the fact that π0 Diff(T 3) ∼= GL3(Z) acts on T 3 by diffeo-
morphisms.

Proposition 4.16. Let D3 ⊂ T̊ 3 be an embedded disk. Then BDiffD3(T 3) is homotopy finite.
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Proof. Since T 3 is closed and Haken, Waldhausen’s theorem [Wal68] implies that the natural map
π0 Diff(T 3) → Out(π1(T

3)) ∼= GL3(Z) is an isomorphism. The standard action of GL3(Z) on
R3 preserves the Z3 lattice, hence descends to a group of diffeomorphisms of T 3 = R3/Z3. By
Theorem 4.5, the group of translations of T 3, which is equal to Isom0(T

3) and which we denote by
T3, is homotopy equivalent to Diff0(T

3). Hence the inclusion T3⋊GL3(Z) ↪→ Diff(T 3) is a homotopy
equivalence.

Let Fr(T 3) be the space of frames on T 3. There is a diffeomorphism Fr(T 3) ∼= T 3 × GL3(R),
and using the standard flat metric on T 3, this diffeomorphism is compatible with the action of
T3⋊GL3(Z): the translation action is trivial on the GL3(R) factor and freely transitive on T 3, while
GL3(Z) acts on GL3(R) via the standard right action. In particular, the action is free with quotient
GL3(R)/GL3(Z). By the preceding discussion, we have

BDiffD3(T 3) ≃ Fr(T 3)//Diff(T 3) ≃ (T 3 ×GL3(R))//(T3 ⋊GL3(Z))
∼= GL3(R)/GL3(Z).

To see that the latter is homotopy finite, recall that there is a fiber bundle O(3) ↪→ GL3(R) → Q3,
where Q3 is the space of positive definite 3 × 3 matrices over R. By a result of Soulé [Sou78], Q3

admits a GL3(Z)-equivariant deformation retraction onto a cell complex X3 ⊂ Q3 on which the
action of GL3(Z) is cocompact. Lifting this deformation retraction to GL3(R), we find a subspace

X̃3 ⊂ GL3(R) on which the action of GL3(Z) is free, properly discontinuous and cocompact. □

To complete the flexible cases of Theorem 4.1, forMHW we will show there exists a metric satisfying
the strong generalised Smale conjecture.

Proposition 4.17. Let D3 ⊂MHW be an embedded disk. Then BDiffD3(M) is homotopy finite.

Proof. Let M =MHW and π = π1(MHW ). Recall that M admits a flat metric, and let Aff(M) de-
note the group of affine diffeomorphisms ofM . By [CV73, Theorem 1, p474], the identity component
Aff0(M) equals Isom0(M) ∼=

∏
b SO(2) for any flat metric on M , where b is the rank of the center of

π. Moreover, Aff(M)/Aff0(M) ∼= Out(π). The center of π is trivial, hence Aff(M) ∼= Out(π), which
is a finite group [CV73, Example 1] (see [Zim90] for a correct calculation of Out(π)). Moreover,
by Corollary 4.6 and Waldhausen’s theorem, this implies that Aff(M) ↪→ Diff(M) is a homotopy
equivalence.

By a result of Zieschang–Zimmermann [ZZ79, Satz 3.17], for any flat manifold M and any finite
subgroup F ≤ Aff(M) there exists a flat metric on M realising F by isometries. Applying this
to Out(π) itself, we find a flat metric on M such that Isom(M) ∼= Aff(M) ≃ Diff(M). Applying
Lemma 4.4 completes the proof. □

4.4. Anosov torus bundles over the circle. As noted above, some T 2-bundles over S1 are not
Seifert-fibered, and hence have non-trivial JSJ decomposition. Such manifolds are geometric and
admit Sol-geometry. We will prove that these manifolds satisfy the generalised Smale conjecture.
Although this result seems to be known to experts (see the remarks following Problem 3.47 in [Kir97])
we could not find it written down explicitly, so we included it for the sake of completeness.

If M is any orientable T 2-bundle over S1 then, by the clutching construction, the diffeomorphism
type of M is completely determined by its monodromy A ∈ SL2(Z) ∼= π0 Diff+(T 2). In this case,
SL2(Z) acts on T 2 by diffeomorphisms, and we let MA denote the T 2-bundle with monodromy A.
Then MA is aspherical and π1(MA) is the semi-direct product π1(MA) := GA = Z2⟨x, y⟩ ⋊A Z⟨t⟩,
where conjugating Z2 by t acts via A. We obtain a presentation

(1) GA = ⟨x, y, t | [x, y] = 1, txt−1 = Ax, tyt−1 = Ay⟩.
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Recall that a matrix A ∈ SL2(Z) is Anosov if | tr(A)| > 2. When A is Anosov, A has two real
irrational roots λ, 1

λ , and thus no eigenvectors in Q2. In particular, (I −A) is invertible over Q and

(I −A) ·Z2 has finite index in Z2. It follows that the group of co-invariants FA := Z2/((I −A) ·Z2)
is finite.

Lemma 4.18. Let GA = Z2 ⋊A Z with A ∈ SL2(Z) an Anosov matrix. Then Z2 is characteristic
in GA.

Proof. From the presentation in Equation (1), the abelianisation of GA is isomorphic to FA ⊕ Z.
Thus, since FA is finite, Z2 is the kernel of any nontrivial homomorphism GA → Z, and as such is
characteristic. □

Let f = I − A be regarded as an endomorphism fT : T2 → T2 of the group of translations of T 2.
The kernel ker(fT) is the subgroup of translations that commute with A, or equivalently the group
of fixed points for the action of A. Applying the snake lemma to

1 Z2 R2 T2 1

1 Z2 R2 T2 1

f f∼= fT

we see that FA
∼= ker(fT).

Let NA be the normaliser of A in GL2(Z). Since ⟨A⟩ is infinite cyclic, BAB−1 = A±1 for every
B ∈ NA. Each element of NA also acts on T 2 and preserves FA, hence we get a semi-direct product
FA ⋊NA. Since ⟨A⟩ is normal in NA and acts trivially on FA, it is also normal in FA ⋊NA. Define
NA := NA/⟨A⟩ to be the quotient and IA := FA ⋊NA = (FA ⋊NA)/⟨A⟩.

We claim that the groups NA and IA defined above are both finite. This follows from the fact that
GL2(Z) is virtually free and A generates a Z subgroup and so has finite index in its normaliser, since
the same is true for free groups.

Lemma 4.19. Let A ∈ SL2(Z) be Anosov, and let GA and IA be as above. Then Out(GA) ∼= IA.

Proof. Let Inn(GA) denote the group of inner automorphisms. Observe that Z2 injects into Aut(GA)
as the subgroup ⟨ℓv | v ∈ Z2⟩, where ℓv acts trivially on Z2 and sends t 7→ vt. Now let φ ∈ Aut(GA)
be any automorphism. By Lemma 4.18, φ induces φ : Z → Z and φ′ : Z2 → Z2. Since φ(t) = t±1,
we may assume after composing with ℓv that φ(t) = t±1. Represent φ′ by the matrix B with respect
to the generators x, y. From the presentation in Equation (1), we see that:

(1) if φ(t) = t then B satisfies BAB−1 = A.

(2) If φ(t) = t−1 then B satisfies BAB−1 = A−1.

Conversely, any B satisfying (1) or (2) induces an automorphism of GA (t gets inverted according
to whether B satisfies (1) or (2)). The collection of B ∈ GL2(Z) satisfying (1) or (2) is exactly NA.

Thus, NA injects into Aut(GA), and ⟨ℓv⟩ ∩ NA = 1 since ⟨ℓv⟩ acts as the identity on Z2 ≤ GA

but NA does not. Moreover, NA normalises ⟨ℓv⟩ since BℓvB
−1 = ℓBv for every B ∈ NA. Hence

Aut(GA) = ⟨ℓv⟩ ⋊ NA. On the other hand, conjugation by v ∈ Z2 acts trivially on Z2 and sends
t 7→ vtv−1 = v(tv−1t−1)t = ((I − A)v)t, while conjugation by t acts trivially on t and by A on
Z2. Therefore ⟨ℓv⟩ ∩ Inn(GA) = ⟨ℓ(I−A)v | v ∈ Z2⟩ ∼= (I − A) · Z2 while NA ∩ Inn(GA) = ⟨A⟩. We

conclude that Out(GA) ∼= (Z2/(I −A) · Z2)⋊ (NA/⟨A⟩) = FA ⋊NA = IA as desired. □
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Recall that Sol is a 3-dimensional solvable Lie group which decomposes as a semi-direct product
R2 ⋊ R, where the R factor acts on R2 via the 1-parameter family of diagonal matrices of the
form (

et 0
0 e−t

)
.

Choosing a left-invariant metric at the identity for which the standard basis vectors of R3 are
orthonormal, Isom(Sol) ∼= Sol⋊D8, where Sol acts on itself by left translations, and D8 is the
dihedral group of order 8 [Sco83]. In coordinates (x, y, t) where (x, y, 0) span the R2-factor and
(0, 0, t) spans the R-factor, D8 is the group of 8 elements R(ϵ1, ϵ2), S(ϵ1, ϵ2) for ϵi = ±1 acting as
R(ϵ1, ϵ2) : (x, y, t) 7→ (ϵ1 · x, ϵ2 · y, t), and S(ϵ1, ϵ2) : (x, y, t) 7→ (ϵ1 · y, ϵ2 · x,−t).

If A is Anosov, thenMA admits Sol-geometry. Let Isom(MA) be the group of isometries ofMA with
respect to this geometric structure.

Theorem 4.20. Let MA be a T 2-bundle over S1 with Anosov monodromy A ∈ SL2(Z). The inclu-
sion Isom(MA) → Diff(MA) is a homotopy equivalence. In particular, BDiffD3(MA) is homotopy
finite.

Proof. Let ρ : MA → S1 be the bundle projection. Write GA = π1(MA) = Z2⟨x, y⟩ ⋊A Z⟨t⟩.
Combining Corollary 4.6 part (1), which states that Diff0(MA) ≃ ∗, with Waldhausen’s theorem
[Wal68] that π0 Diff(MA) ∼= Out(GA), we conclude that Diff(MA) → Out(GA) is a homotopy
equivalence. We will show that Isom(MA) → Out(GA) is an isomorphism.

By Lemma 4.19, Out(GA) ∼= IA = (FA ⋊ NA)/⟨A⟩. Recall that IA is finite. We claim IA can be
realised as a finite group of diffeomorphisms of MA, i.e. we construct a splitting of Diff(MA) →
Out(GA). Let M̃A →MA be the regular cover of induced by ρ∗ : GA → Z. Then M̃A

∼= T 2 × R and
projection onto R is the lift ρ̃ of ρ. Recall that FA is the group of fixed points of A acting on T 2. For
any f ∈ FA and v ∈ T 2, we have A(v + f) = Av + f . Hence acting trivially on R and translating of
each fiber of ρ̃ by f gives a well-defined diffeomorphism of M̃A that commutes with the deck group.
Any B ∈ NA acts on T 2 as a linear map in the standard way, and on R via the action of NA on the
axis γ ⊂ H2. The action of NA normalises the translations FA so we obtain an action of FA⋊NA on
M̃A. Since FA ⋊NA normalises A, this action normalises the deck group ⟨A⟩ action hence descends
to an action of IA on the quotient MA. Thus we have constructed our splitting and Out(GA) acts
on MA by diffeomorphisms. By a result of Meeks–Scott [MS86, Theorem 8.2], finite group actions
on Sol manifolds preserve the geometric structure. As IA is finite, Out(GA) can be realised on MA

by isometries in the Sol-metric. This implies Isom(MA) → Out(GA) is onto.

For injectivity, let ϕ ∈ Isom(MA) and suppose that ϕ∗ ∈ Out(GA) is trivial. Lift ϕ to ϕ̃ : Sol → Sol .
We can choose ϕ̃ so that g ◦ ϕ̃ = ϕ̃ ◦ g for all g ∈ GA, which implies that ϕ̃ centralises GA. Since
GA ∩ R2 is a lattice and no element of D8 commutes with an entire lattice in R2, we must have
ϕ̃ ∈ Isom0(Sol) ∼= Sol. But the centraliser of any element of R2 is R2, while the centraliser of
any element projecting nontrivially to R is the one 1-parameter subgroup containing it. Since GA

contains elements of both types, its centraliser is trivial. Thus ϕ̃ is the identity, and it follows that
Isom(MA) ∼= Out(GA). We conclude that BDiffD3(MA) is homotopy finite by Lemma 4.4. □

5. Decomposing irreducible 3-manifolds

In Section 4 we used the strong generalised Smale conjecture and results of a similar nature to prove
Theorem 4.1 for certain geometric manifolds, appearing in the geometric or JSJ decomposition of
M . In this section we complete our proof of homotopy finiteness of BDiffD3(M) for M irreducible.
One key step of our proof will be to glue M together from its JSJ pieces, and we use a similar
gluing argument when dealing with singular Seifert fibered manifolds. In order to assemble the
proof of homotopy finiteness for these pieces into a proof for M , we first introduce a stronger
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notion of finiteness, where we require that the finiteness is inherited by classifying spaces of certain
subgroups.

In general, we wish to start with a fiber sequence of the form

DiffU (M) −→ Diff(M,U) −→ Diff(U),

and use Lemma 2.8 to get a homotopy fiber sequence of classifying spaces. However, a fundamental
problem is that the above sequence need not be a principal short exact sequence (Definition 2.7)
because the fibration might not be surjective. Its image is the subgroup Diff ′(U) ⊆ Diff(U) of those
diffeomorphism of U that can be extended to a diffeomorphism of M . Restricting to Diff ′(U) in
the base, the map from Diff(M,U) is indeed a DiffU (M)-principal bundle, and so we can apply
Lemma 2.8. The homotopy fiber sequence that we get on classifying spaces is

BDiffU (M) −→ BDiff(M,U) −→ BDiff ′(U).

Therefore to deduce homotopy finiteness of the middle term we will need to know homotopy finiteness
of this base, rather than of BDiff(U). It can be a little annoying that Diff ′(U) depends on M and
not just on U , so we instead describe a suitable class of subgroups of Diff(U) whose finiteness we
might need to know. Whether or not a diffeomorphism φ of U can be extended to M only depends
on the mapping class [φ|∂ ] ∈ π0 Diff(∂U) on the boundary, so we restrict ourselves to considering
subgroups of π0 Diff(∂U).

Definition 5.1. For N a 3-manifold and Γ < π0 Diff(∂N) a subgroup of the mapping class group of

its boundary we let DiffΓ(N) ⊂ Diff(N) denote the subgroup of those diffeomorphisms φ : N → N
for which [φ|∂N ] is in Γ.

Definition 5.2. Let (M,F ) be a pair consisting of a compact 3-manifold and a (possibly empty)
union of boundary components F ⊂ ∂M . We say that (M,F ) is hereditarily finite if for any subgroup

Γ ≤ π0 Diff(∂M) the space BDiffΓ
F (M) is homotopy finite.

Remark 5.3. Once we have checked that BDiffΓ
F (M) is homotopy finite for some Γ, it follows that

BDiffΓ′

F (M) is also homotopy finite for all finite index subgroups Γ′ < Γ because the map

BDiffΓ′

F (M) −→ BDiffΓ
F (M)

is a finite covering (this is a special case of Lemma 2.9 where G/H is finite). Moreover, without

loss of generality it suffices to check finiteness of BDiffΓ
F (M) only for those subgroups Γ that are

contained in the image of

π0 DiffF (M) −→ π0 Diff(∂M).

Since this map factors through π0 Diff(M), if π0 DiffF (M) or π0 Diff(M) is finite, to show hereditary
finiteness it suffices to check the case where Γ is the entire group. In particular, if ∂M is a disjoint
union of spheres then π0(Diff(∂M)) is the finite group (Z/2) ≀ Symn, so it suffices to check that
BDiffF (M) is homotopy finite.

In their paper [HM97] on the homotopy finiteness of BDiffF (M) for irreducible M , Hatcher and
McCullough in fact show hereditary finiteness. While we believe that their argument can be used
to show hereditary finiteness for any irreducible manifold M , we will only need it for the cases that
appear as part of the JSJ decomposition.

Theorem 5.4 (Hatcher–McCullough). Let M be an irreducible 3-manifold that is either hyperbolic
or Seifert-fibered. Let F ⊂ ∂M be a non-empty union of boundary components, including all the
compressible ones. Then (M,F ) is hereditarily finite.
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Proof. The main theorem of [HM97] states that BDiffF (M) is homotopy equivalent to an aspherical
finite CW complex. In the hyperbolic case π0 DiffF (M) is a finitely generated free abelian group

[HM97, Proposition 3.2], so any π0 DiffΓ
F (M) must also be a finitely generated free abelian group

and hence must have a finite classifying space.

In the case of a Seifert-fibered manifold φ : M → S the authors argue [HM97, p108] that π0 DiffF (M)
must have a finite classifying space. During this proof, they construct an intermediate group
G ≤ π0 DiffF (M) and prove that G has finite classifying space, using only that π0 Diff∂(M) ≤ G.

Therefore their proof applies to π0 DiffΓ
F (M) for any Γ ≤ π0 Diff(∂M). □

The argument that the strong generalised Smale conjecture for M implies finiteness of BDiffD3(M)
can easily be improved to also show hereditary finiteness.

Lemma 5.5. Suppose (M, g) is a Riemannian 3-manifold such that the inclusion Isom(M) →
Diff(M) is a homotopy equivalence. Then (M \ D̊3, S2) is hereditarily finite.

Proof. This works analogously to Theorem 2.6 since the subgroup IsomΓ(M) ≤ Isom(M) is still a

compact Lie group acting freely on the closed manifold Fr⊥(M). □

There are three cases in which we need to show hereditary finiteness, shown as blue leaves in Fig. 3.
The case of hyperbolic manifolds is dealt with by combining Lemma 5.5 above with Theorem 4.7,
so it remains to consider fiber-rigid Haken Seifert-fibered manifolds, both with and without singu-
larities.

Example 5.6. The pair (T 2×I\D̊3, S2) is not hereditarily finite. Let Γ < GL2(Z) be any subgroup,
which we may regard as a subgroup of the diagonal in π0 Diff(∂(T 2 × I)) ∼= GL2(Z)×GL2(Z). By
the argument of Proposition 4.15 there is a homotopy fiber sequence

Fr(T 2)//DiffΓ(T 2) −→ BDiffΓ
D3(T 2 × I) −→ RP2

and furthermore the left term is equivalent to GL2(R)//Γ. If we let Γ < GL2(Z) be some infinite rank

free group, then one can check using the long exact sequence on homotopy groups that π0 DiffΓ
D3(T 2×

I) cannot be finitely generated. In particular BDiffΓ
D3(T 2 × I) cannot be equivalent to a finite CW

complex.

5.1. Canonical submanifolds. We now explain the general strategy for deducing finiteness of
BDiffD3(M) by decomposingM along certain canonical submanifolds N ⊂M . These are analogous
to characteristic subgroups H < G, which are preserved by all group automorphisms.

Definition 5.7. We say that a submanifold N ⊂M is canonical if the inclusion

Diff(M,N) → Diff(M)

is a homotopy equivalence.

Let us discuss some examples. If M is a manifold with boundary and N ⊂ ∂M is the union of all
spherical boundary components then N is a canonical submanifold because every diffeomorphism
must preserve it, and in fact Diff(M,N) = Diff(M). However, canonical submanifolds need not
always be strictly preserved. For example, {0} ⊂ Dn is a canonical submanifold because there is a
fiber sequence Diff(Dn, {0}) → Diff(Dn) → D̊n. To give a more sophisticated example, let P1 and
P2 be two irreducible 3-manifolds, neither of which is S3. Then any essential sphere S2 ⊂ P1#P2 is
canonical by a theorem of Hatcher [Hat81], which we reproved in Theorem 3.21.
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From now on, we let M be a compact connected oriented 3-manifold, F ⊂ ∂M a non-empty union
of boundary components and T ⊂ M̊ a closed orientable codimension 1 submanifold (not necessarily
connected). Similar to our notation 2Σ, which we use to denote new boundary created in M after
cutting along Σ, let 2T = ∂(M |T ) \ ∂M denote the new boundary components created after cutting
along T .

Proposition 5.8 (Cutting along submanifolds). Let M , F ⊂ ∂M , T ⊂ M̊ , and 2T ⊂ ∂(M |T ) be
as above. Suppose that

(†0) there is a component N0 ⊂M |T such that N0∩F ̸= ∅ and (N0, N0∩F ) is hereditarily finite.

(†) For every other component N ⊂M |T and any non-empty union of components ∅ ≠ F ′ ⊂ ∂N
containing N ∩ F , (N,F ′) is hereditarily finite.

Then BDiffΓ
F (M,T ) is homotopy finite for all Γ ≤ π0 Diff(∂M). In particular, if T ⊂M is canonical,

then (M,F ) is hereditarily finite.

Note that in the proposition, if we know (†) for every component N ⊂M |T , then we also know (†0).
This is because (†0) is a weaker condition on N0 than (†) would be.

Proof. The boundary 2T created when cutting M along T is diffeomorphic to two copies of T . In
this proof it will be helpful to utilise this and hence we write 2T as T+ ⊔ T−. (This decomposition
into T+ and T− is non-canonical and depends on a coorientation of T that we choose arbitrarily.)
Hence ∂(M |T ) = ∂M ⊔ T+ ⊔ T−.

We proceed by induction over the number of connected components of M |T , starting with the case
where M |T is connected, so N0 =M |T . There is a canonical injective group homomorphism

Diff(T ) ↪→ Diff(T+ ⊔ T−), φ 7→ φ ⊔ φ
and we define the space of matchings MT as the coset space Diff(T+ ⊔ T−)/Diff(T ). We have

MT
∼=

∐
µT

∏
A∈π0(T )

Diff(A)

where µT is the finite set of matchings of π0(T ) (such that matched components are diffeomorphic)
and the product runs over all connected components A ⊂ T . Given a matching in µT , the product
measures the difference between diffeomorphisms on each matched pair of manifolds: there is one
such pair for each A ∈ π0(T ). In particular, the connected components of MT are homotopy finite
because Diff0(A) is either SO(3), S1 × S1, or a point, depending on the genus of A. The group
DiffF (M |T ) acts on MT via the group homomorphism

DiffF (M |T, 2T ) −→ Diff(T+ ⊔ T−)

given by restricting to the boundary. Using Theorem 2.4 one can show that MT is DiffF (M |T, 2T )
locally retractile. The stabiliser of this action is the subgroup of DiffF (M |T, 2T ) consisting of
those diffeomorphism that can be glued to a homeomorphism of M . Because the space of collars is
contractible (Theorem 2.6), this stabiliser is equivalent to the smaller subgroup of those diffeomor-
phisms that can be glued to a diffeomorphism of M and this group is isomorphic to DiffF (M,T ).
By Lemma 2.10 we obtain a homotopy fiber sequence

X −→ BDiffF (M,T ) −→ BDiffF (M |T, 2T )
where X ⊂ MT is the orbit of the basepoint of MT under the action of BDiffF (M |T, 2T ). In

fact, we would like to study the smaller group DiffΓ
F (M |T, 2T ) for some Γ ≤ π0 Diff(∂M). Let

Γ′ ≤ π0 Diff(∂(M |T )) be the subgroup defined as the image of the composite map

DiffΓ
F (M,T ) → DiffF (M |T ) → π0 Diff(∂(M |T )).
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This in particular ensures that elements of DiffΓ′

F (M |T ) preserve 2T ⊆ ∂(M |T ) setwise. Then

DiffΓ
F (M,T ) → DiffΓ′

F (M |T ) hits all components. So if we let X ′ ⊂ MT be the orbit of the base

point under the DiffΓ′

F (M |T )-action, then X ′ is connected and as it is a connected component of
MT , it is homotopy finite. Now we apply Lemma 2.10 again to get the homotopy fiber sequence

X ′ −→ BDiffΓ
F (M,T ) −→ BDiffΓ′

F (M |T ).

We have already argued that X ′ is homotopy finite, and the base is homotopy finite by assumption
(†0) (with N0 = M |T ). Therefore the total space is homotopy finite, which proves the base of the
induction.

Now suppose that M |T has n connected components and that the proposition holds for manifolds
T ′ ⊂ M̊ ′ such that M ′|T ′ has n′ connected components and n′ < n. From (†0) there exists a
component N0 ⊂M |T , which by assumption satisfies that F0 = ∂N ∩ F is non-empty.

We can decompose T = T0 ⊔ T1 ⊔ T2 where Ti ⊂ T is the union of those connected components that
contribute i boundary components to N0. Let N be the image of N0 under the map M |T →M that
glues 2T back together. (So T2 ⊂ N̊ , T1 ⊂ ∂N , and T0 ⊂M \ N̊ .) Then there is a fiber sequence

Diff(F\F0)⊔N (M,T0) −→ DiffF (M,T )
r−→ DiffF0

(N,T2).

Given Γ ≤ π0 Diff(∂M) we can choose Γ′ ≤ π0 Diff(∂N) such that r(DiffΓ
F (M,T )) is precisely

DiffΓ′

F0
(N,T2), so that we get a homotopy fiber sequence

BDiffΓ
(F\F0)⊔N (M,T0) −→ BDiffΓ

F (M,T )
r−→ BDiffΓ′

F0
(N,T2).

The base is homotopy finite by the base of the induction, asN |T2 is connected. The fiber is equivalent
to

BDiffΓ′′

(F\F0)⊔T1
(M \ N̊ , T0)

where Γ′′ ≤ π0 Diff(∂(M \ N̊)) is chosen by restricting Γ. The manifold (M \ N̊)|T0 has strictly
fewer connected components than M |T by construction, so by the induction hypothesis this space is
homotopy finite. (Note that because we introduce new boundary components coming from T1 that
must be fixed, we need the stronger statement (†) to ensure that this new manifold still satisfies

(†0).) Consequently, by Lemma 2.15 the above homotopy fiber sequence shows that BDiffΓ
F (M,T )

is homotopy finite, concluding the proof. □

When cutting along spheres the same argument also applies without the assumption of hereditary
finiteness.

Corollary 5.9 (Cutting along spheres). Let M be a compact connected 3-manifold, F ⊂ ∂M a
non-empty union of boundary components and Σ ⊂M a sphere system. Suppose that

(‡) for every component N ⊆M |Σ and every union of boundary components F ′ ⊆ ∂N satisfying
F ′ ̸= ∅ and F ′ ⊇ ∂N ∩ F we know that BDiffF ′(N) is homotopy finite.

Then BDiffF (M,Σ) is homotopy finite.

Proof. Inspecting the proof of Proposition 5.8 we see that if we start out with Γ = π0 Diff(∂M),
then each subsequent Γ′ can be chosen as a finite index subgroup because it is obtained by imposing
a restriction on the spherical part of the boundary and π0 Diff(

∐
k S

2) ∼= (Z/2) ≀ Symk is a finite
group. Since hereditary finiteness for finite index subgroups is automatic, the proof indeed works
without the assumption that (N,F ′) is hereditarily finite. As remarked below Proposition 5.8 we
do not need to require an analogue of (†0), if we simply require the stronger condition (‡) for all
components. □
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As we are about to cut along 2-tori we will need a form of hereditary finiteness for them. Note that
the following is in contrast with Example 5.6.

Lemma 5.10. Let Γ < GL2(Z) be a finite subgroup. Then the induced subgroup DiffΓ
D2(T 2) <

DiffD2(T 2) has a finite classifying space.

Proof. The Teichmüller space of marked, flat 2-tori can be identified with the upper half plane
H2, equipped with its natural hyperbolic metric. GL2(Z) acts properly discontinuously on H2 by
isometries, altering the marking by a change of basis. Since H2 is complete, simply connected, and
nonpositively curved, any finite subgroup Γ < GL2(Z) has a global fixed point. This corresponds
to a flat metric on T 2 which realises Γ by isometries. Since the identity component of Diff(T 2)

is homotopy equivalent to T2, the group of translations, DiffΓ(T 2) is homotopy equivalent to a

subgroup T2 ⋊ Γ that acts freely on Fr⊥(T 2). Lemma 5.5 now completes the proof. □

In the next proof we decompose the frame bundle Fr(M) as a pushout according to the JSJ de-
composition. A version of this idea appeared in Nariman’s preprint [Nar21], though we choose a
different decomposition.

Proposition 5.11. Let M be a compact connected 3-manifold and T ⊂ M̊ a union of tori. Assume
that T is canonical, i.e. the inclusion Diff(M,T ) ↪→ Diff(M) is an equivalence. Suppose that any
connected component N of M |T satisfies:

(1) (N \ D̊3, S2) is hereditarily finite.

(2) For any non-empty union of boundary components F ⊂ (2T ∩ ∂N), (N,F ) is hereditarily
finite.

(3) The image of Diff(M,T ) → π0(Diff(T )) is a finite group.

Then (M \ D̊3, S2) is hereditarily finite.

Proof. Let Fr3(T ) ⊂ Fr(M) denote the subspace of those framed points based in T . An element of
Fr3(T ) is a tuple of a point p ∈ T and a frame for Tp(T ) ⊕ R, so in particular Fr3(T ) is different
from Fr(T ) .

Recall that 2T = ∂(M |T ) \ ∂M . This is the co-orientation double cover of T and we can picture
this as being obtained from T by translating it infinitesimally in both normal directions. Since T is
two-sided (i.e. co-oriented in M) we know that 2T ∼= T ⊔ T , but this identification is not canonical
as it requires choosing a coorientation for each component, which we do not do in this proof as the
action of Diff(M,T ) will not necessarily preserve the decomposition.

We can re-glue M as (M |T )∪2T T , and similarly we can write the frame bundle on M as a pushout

Fr(M) = Fr(M |T ) ∪Fr3(2T ) Fr3(T ).

This is in fact a homotopy pushout because submanifold inclusions are cofibrations. It is moreover
equivariant for the group DiffΓ(M,T ), so by Lemma 2.12 we obtain the following homotopy pushout
square.

Fr3(2T )//DiffΓ(M,T ) Fr(M |T )//DiffΓ(M,T )

Fr3(T )//DiffΓ(M,T ) Fr(M)//DiffΓ(M,T )

The bottom right term is Fr(M)//DiffΓ(M,T ) ≃ Fr(M)//DiffΓ(M) ≃ DiffΓ
D3(M), so to prove the

claim it will suffice to show that the three other terms in the square are homotopy finite.
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We begin with the top right term Fr(M |T )//DiffΓ(M,T ). We can equivalently replace Fr(M |T ) by
Emb(D3, (M |T )◦). The space Emb(D3, (M |T )◦) is Diff0((M |T )◦)-locally retractile by combining
Theorem 2.3, with Lemma 2.2(3) and (4). We conclude it is locally retractile for the action of the

larger group DiffΓ(M,T ) by Lemma 2.2(4). We may then apply the homotopy orbit stabiliser lemma
(Lemma 2.11) to compute

Emb(D3, (M |T )◦)//DiffΓ(M,T ) ≃
∐

[i : D3↪→(M |T )◦]

BDiffΓ
i(D3)(M,T ).

Here the coproduct runs over the set of orbits of the action of DiffΓ(M,T ) on π0 Emb(D3, (M |T )◦),
which is finite because π0 Fr(M |T ) is finite. In each orbit we pick an embedded i : D3 ↪→ (M |T )◦ as a
representative and the corresponding term in the coproduct is the classifying space of the stabiliser
group DiffΓ

i(D3)(M,T ). This is equivalent to BDiffΓ
∂D3(M \ D̊3, T ), which is homotopy finite by

applying Proposition 5.8 to T ⊂M \D̊3 with F = S2. (Condition (†0) is satisfied for the component
where we removed the disk by (1) and condition (†) is satisfied by (2).)

We still have to deal with the two left hand terms in the homotopy pushout square, but the left ver-
tical map in the square is a double-covering, so it suffices to show finiteness of Fr3(T )//DiffΓ(M,T ).
Choose at each point p ∈ T a normal vector up to sign ±ξp smoothly depending on p. This is a

contractible space of choices, so the subgroup DiffΓ
±ξ(M,T ) ⊂ DiffΓ(M,T ) of those diffeomorphism

φ satisfying Dφ(ξp) = ±ξφ(p) is equivalent to the entire group. We then have a fiber sequence

Fr±ξ(T ) −→ Fr3(T ) −→ (R3 \ 0)/±

where the fibration sends a framed point (p ∈ T, θ : R3 ∼= TpM) to θ−1(±ξp). The fiber Fr±ξ(T )
is the subspace of those framed points on T whose first vector is ξp or −ξp. There is a homotopy
equivalence Fr(2T ) ≃ Fr±ξ(T ) defined by extending the 2-framing to a 3-framing by adding ±ξp
with the sign depending on the coorientation. Taking homotopy orbits via Lemma 2.8 applied to
the short exact fiber sequence DiffΓ

±ξ(M,T ) → DiffΓ
±ξ(M,T ) → ∗, we get a homotopy fiber sequence

Fr(2T )//DiffΓ
±ξ(M,T ) −→ Fr3(T )//DiffΓ

±ξ(M,T ) −→ (R3 \ 0)/±

where the base is equivalent to the finite CW complex RP2. By the homotopy orbit stabiliser lemma
(Lemma 2.11), the fiber has finitely many connected components (since π0(Fr(2T )) is finite) each of
which is equivalent to

BDiffΓ,+
D2 (M,T )

where we fix some 2-disk in T as well as its co-orientation in M . (Together with the fixed 2-disk,
the latter is equivalent to being orientation-preserving.) Now there is a homotopy fiber sequence

BDiffΓ,+
T0

(M,T ) −→ BDiffΓ,+
D2 (M,T ) −→ BDiffΓ′

D2(T0)

where T0 ⊂ T is the connected component containing the disk and Γ′ < π0(Diff(T0)) consists

of those isotopy classes that can be extended to a diffeomorphism in DiffΓ,+(M,T ). The base is
homotopy finite by Lemma 5.10 because Γ′ is finite by assumption (3). The fiber is equivalent to

BDiffΓ
2T0

(M |T0, T \ T0) where we write 2T0 ⊂ ∂(M |T0) for the two new tori created by cutting
along T0. This space is homotopy finite by Proposition 5.8 applied to T \ T0 ⊂ M |T0 with F = T0.
(M |T0 might not be connected, but because the components cannot be permuted, we can apply
Proposition 5.8 to each component individually.) Applying Lemma 2.15 completes the proof. □

5.2. Seifert-fibered solid tori. In order prove hereditary finiteness for (M \ D̊3, S2) when M is
Haken Seifert-fibered and not exceptional, in the presence of singular fibers we will require results
about fibered solid tori. Of course, there are many Seifert fiberings of S1 ×D2, and we consider all
of them.
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Any Seifert fibering of a solid torus is determined by a pair (p, q) of coprime integers with 0 < q < p,
from which it can be constructed as follows. (We additionally allow (p, q) = (1, 0) to get the non-
singularly fibered torus.) Equip S1 and D2 with their standard Euclidean metrics and let Z/p act on
the product S1×D2 diagonally by (x, y) 7→ (ζp ·x, ζqp ·y), where ζp = e2πi/p is a primitive pth root of

unity. This action is by isometries and permutes the fibers of the trivial fibering S1×D2 → D2. Thus
the quotient, which is still diffeomorphic to S1×D2, inherits a Euclidean metric and a Seifert fibering
φ = φ(p,q) : S

1×D2 → D2/(Z/p). With respect such a fibering φ, we have the diffeomorphism groups

Diffv(S1 ×D2; [φ]) ≤ Difff (S1 ×D2; [φ]) ≤ Diff(S1 ×D2). To simplify notation, we will suppress
writing [φ] unless it is unclear which fibering we are discussing.

Lemma 5.12. Let φ : M = S1 ×D2 → D = D2/(Z/p) be any Seifert-fibering of the solid torus. If
p ≥ 3 and 0 < q < p, then the inclusion

SO(2) ↪→ Diffv(S1 ×D2; [φ])

defined by applying the same rotation to each non-singular fiber is a homotopy equivalence. If p = 1
or (p, q) = (2, 1), then we can also reflect fibers and have O(2) ≃ Diffv(S1 ×D2).

Proof. We may assume that the fibering is of the standard form φ(p,q) : M = (S1 × D2)/(Z/p) →
D2/(Z/p) described above. We have subgroup inclusions Z/p ≤ SO(2) ≤ Diff(S1) such that the
generator of Z/p is sent to the diffeomorphism that rotates by ζp = e2πi/p. We let Diff(S1)Z/p denote
the fixed points of the conjugation action by ζ, or in other words the centraliser of Z/p. There is a
group homomorphism

α : Diff(S1)Z/p −→ Diffv(M), f 7−→ ([x, y] 7→ [f(x), y])

which is well defined because [ζpx, ζ
q
py] 7→ [f(ζpx), ζ

q
py] = [ζpf(x), ζ

q
py]. A Z/p-equivariant diffeomor-

phism f ∈ Diff(S1)Z/p induces a diffeomorphism f̄ ∈ Diff(S1/(Z/p)), and α(f) is the diffeomorphism
of M that is f̄ on the central fiber and f on the non-singular fibers. In particular, we can define
a one-sided inverse to α by restricting a vertical diffeomorphism g ∈ Diffv(M) to any non-singular
fiber, and therefore α is an embedding. The image of α consists of those g that induce the same dif-
feomorphism on all non-singular fibers. We can construct a deformation retraction to this subgroup
by setting

H : Diffv(S1 ×D2)× (0, 1] −→ Diffv(S1 ×D2), g 7−→ ([x, y] 7→ [g|S1([x, ty]), y])

and then continuously extending this to [0, 1]. Alternatively H(g, t)([x, y]) can be obtained by
multiplying the second coordinate of g([x, ty]) by 1

t . This H defines a homotopy such that H(−, 1)
is the identity and H(−, 0) is a retraction onto the subspace that is the image of Diff(S1)Z/p.

We will construct a Z/p-equivariant deformation retraction from Diff(S1) to O(2). Any orientation-

preserving diffeomorphism f ∈ Diff+(S1) can be represented by a Z-equivariant f̃ ∈ Diff+(R) and
two such lifts represent the same element of Diff+(S1) if they differ by a constant integer. We define

the average offset of f̃ as a =
∫ 1

0
f̃(x)− x dx and then construct the affine isotopy

f̃t(x) := (1− t) · f̃(x) + t · (x+ a).

This is still Z-equivariant and the equivalence class [f̃t] ∈ Diff+(S1) is independent of the choice of f̃ .

Therefore h : [0, 1]×Diff+(S1) → Diff+(S1) given by h(t, f) = [f̃t] defines a deformation retraction of
Diff+(S1) onto SO(2), which is equivariant for the Z/p-action given by conjugation with ζ. (Indeed,
the deformation retraction is equivariant for the conjugation action by SO(2) because it comes
from an R-equivariant deformation retraction on Diff(R).) The orientation-reversing case is treated
similarly.

In summary, Diff(S1) deformation retracts Z/p-equivariantly to O(2) and passing to fixed points we
see that Diff(S1)Z/p ≃ Diffv(S1 × D2) is equivalent to the space of Z/p-fixed points on O(2). For
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p = 1 this is O(2). For p = 2 it is also O(2) because ζ2 = −1 is central in O(2). For p ≥ 3 (and
0 < q < p) it is SO(2) because this is the centraliser of ζ in O(2). □

The non-trivial vertical mapping class α ∈ Diffv(S1 × D2; [φ(p,q)]) that exists for (p, q) = (2, 1)

or (1, 0), can be described as α([x, y]) = [x, y] using the complex conjugation on S1 ⊂ D2 ⊂ C.
For general (p, q) we also have the fiberwise diffeomorphism β ∈ Difff (S1 ×D2; [φ(p,q)]) defined by
β([x, y]) = [x, y].

Corollary 5.13. For φ : M = S1 ×D2 → D = D2/(Z/p) any Seifert-fibering of the solid torus, the
following statements hold.

(1) Diffv
∂(M) is contractible.

(2) Difff
∂(M) is contractible.

(3) π0 Difff (M) ∼= {[id], [α], [β], [αβ]} for p = 1, 2 and π0 Difff (M) ∼= {[id], [β]} for p ≥ 3.

(4) If φ ∈ Difff (∂M) can be extended to a diffeomorphism on M , then it can be extended to a
fiberwise diffeomorphism.

Proof. By [HKMR12, Corollary 3.8(ii)] there is a locally trivial fiber sequence

Diffv
∂(M) −→ Diffv(M) −→ Diffv(∂M).

Since the boundary ∂M → ∂D of the Seifert fibering is always diffeomorphic to the trivial fibration
S1 × S1 → S1, a diffeomorphism in Diffv(∂M) is simply a smooth S1-family in Diff(S1). Therefore
Diffv(∂M) ≃ Map(S1,O(2)) ≃ Z × O(2). Combining this with Lemma 5.12 we see that the map
Diffv(M) → Diffv(∂M) is equivalent to either SO(2) → Z×O(2) or O(2) → Z×O(2). In either case
it is a homotopy equivalence onto the components it hits and hence its fiber Diffv

∂(M) is contractible,
proving (1).

Claim (2) is now a consequence of combining (1) with the fiber sequence

Diffv
∂(M) → Difff

∂(M) → Diff∂(D)

from [HKMR12, Theorem 3.9]. The base and fiber are contractible, and hence so is the total space.

To show (3), note that by Lemma 5.12 π0 Diffv(M) is trivial if p ≥ 3 and {[id], [α]} if p ≤ 2.
Inspecting the long exact sequence of the fiber sequence (again from [HKMR12, Theorem 3.9])

Diffv(M) → Difff (M) → Diff(D)

we see that because π0 Diff(D) = Z/2 generated by the (complex) reflection, π0 Difff (M) is indeed
generated by β (and α if p ≤ 2), proving (3).

For (4), we first note that the map π0 Difff (∂M) → GL2(Z), which records the action on first
homology, is injective and its image consists of those matrices that preserve the homology class of the
fiber up to sign. If φ ∈ Difff (∂M) can be extended to a diffeomorphism ofM , then φ it also preserves
the homology class of the meridian (which bounds in M) up to sign. A basis for H1(∂M) ∼= Z2

is given by the fiber (p, q) and the meridian (0, 1). Then we have that φ∗(p, q) = ±(p, q) and
φ∗(0, 1) = ±(0, 1). If (p, q) = (1, 0) or (2, 1), then there are four elements of GL2(Z) satisfying
these equations and if p ≥ 3, then only id and −id satisfy them. Therefore φ must be isotopic (in

Difff (∂M)) to one of {id, β∂M , α∂M , (αβ)∂M}, where the latter two are only possible if p ≤ 2. In
any of these cases, φ can be extended to a fiberwise diffeomorphism of M . □
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In the next subsection, we will prove that when M is fiber-rigid and nonsingular, then (M \ D̊3, S2)
is hereditarily finite. When M is singular, the strategy for proving the analogous statement is to
cut M along tori that form the boundary of a fibered solid torus neighborhood of the singular fibers
and apply Proposition 5.11. The complement of these solid tori is fiber-rigid and nonsingular, so in
order to verify the hypotheses of Proposition 5.11, we need the following lemma.

Lemma 5.14. The pair ((S1 ×D2) \ D̊3, S2) is hereditarily finite.

Proof. The restriction mapping Diff(S1 × D2) → Diff(T 2) is a locally trivial fibration over the
components of Diff(T 2) in its image with fiber Diff∂(S

1×D2). The latter is contractible by [Hat76,
Iva76], hence Diff0(S

1 ×D2) ≃ Diff0(T
2) ≃ SO(2)× SO(2). Since the meridian is the unique simple

closed curve on T 2 which bounds in S1×D2, and π0 Diff(T 2) ∼= GL2(Z), the image of π0 Diff(S1×D2)

lies the in the subgroup GL
⟨e1⟩
2 (Z) which preserves the subgroup ⟨e1⟩:

GL
⟨e1⟩
2 (Z) =

{(
±1 ∗
0 ±1

)}
.

Conversely, the group Aff(T 2) ∼= GL2(Z)⋉(SO(2)×SO(2)) of affine diffeomorphisms acts on T 2, and

the subgroup GL
⟨e1⟩
2 (Z)⋉ (SO(2)×SO(2)) extends to S1×D2 as a group of affine diffeomorphisms,

when equipped with its standard Euclidean structure. Thus, the inclusion GL
⟨e1⟩
2 (Z) ⋉ SO(2)2 ↪→

Diff(S1 ×D2) is a homotopy equivalence.

We need to show that Fr(S1 × D2)//DiffΓ(S1 × D2) is homotopy finite for all Γ < GL
⟨e1⟩
2 (Z). By

the above diescussion, DiffΓ(S1 × D2) ≃ Γ ⋉ SO(2)2. The frame bundle satisfies Fr(S1 × D2) ≃
S1 ×D2 ×O(3) ≃ S1 ×O(3). The map p : Fr(S1 ×D2) → RP2 that records the line spanned by the

first frame vector at the point S1 × {0} is invariant under the action of GL
⟨e1⟩
2 (Z) ⋉ SO(2)2. The

fiber of p is equivalent to S1 ×O(2)× Z/2, so we have a homotopy fiber sequence

(S1 ×O(2)× Z/2)//(Γ⋉ SO(2)2) −→ Fr(S1 ×D2)//DiffΓ(S1 ×D2) −→ RP2.

The base is finite so we concentrate on the fiber. To compute the homotopy orbits we first take the
quotient by the identity component SO(2)2, which acts freely on the first two factors, and get

(S1 ×O(2)× Z/2)//SO(2)2 ≃ (S1 ×O(2)× Z/2)/SO(2)2 ≃ Z/2× Z/2.

The remaining action of the mapping class group GL
⟨e1⟩
2 (Z) is given by the projection θ : GL

⟨e1⟩
2 (Z) =

(Z/2)2 ⋉ Z → (Z/2)2. In particular, the subgroup Z acts trivially, and (Z/2)2 acts in the canonical

way. For any Γ < GL
⟨e1⟩
2 (Z) we have a fiber sequence

B(Γ ∩ ker(θ)) −→ (Z/2)2//Γ −→ (Z/2)2/θ(Γ).

The base is a finite set. The kernel ker(θ) is Z, so Γ∩ker(θ) is either infinite cyclic or 0 – either way
its classifying space is homotopy finite. Applying Lemma 2.15 completes the proof. □

5.3. The non-singular fiber-rigid case. SupposeM has a non-singular Seifert fibering φ : M → S
such that Difff (M ; [φ]) ↪→ Diff(M) is a homotopy equivalence, i.e. M is fiber rigid (Definition 4.9).

To simplify notation, we write Difff (M) = Difff (M ; [φ]). By [HKMR12, Corollary 3.1] we have a
principal fibration

(2) Diffv(M) −→ Difff (M) −→ Diff(S).

This is not necessarily a principal short exact sequence (Definition 2.7) because the map p : Difff (M) →
Diff(S) might not be surjective. However, its image always has finite index.

Lemma 5.15. The image of Difff (M) → Diff(S) has finite index.
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Proof. Since Difff (M) → Diff(S) is a fibration its image is a union of path components, so we need

to check that the image of π0 Difff (M) → π0 Diff(S) has finite index. When ∂M ̸= ∅ this follows

from the proof of [HM97, Lemma 2.2] as Hatcher–McCullough prove that π0 Difff
∂(M) → π0 Diff∂(S)

is surjective, and we know that the image of π0 Diff∂(S) → π0 Diff(S) has finite index. When ∂M
is empty we can introduce fixed boundary by fixing a disk in the base and its preimage in M . Then

Hatcher–McCullough’s lemma tells us that the image of π0 Difff
φ−1(D2)(M) → π0 DiffD2(S) has finite

index and since every orientation preserving mapping class on S can be isotoped to fix a disk, this
proves the claim. □

Lemma 5.16. Suppose that φ : M → S is a nonsingular Seifert-fibering over a connected surface
S, and let F ⊂ M be a non-empty union of boundary components. Then Diffv

F (M) ≃ Zn for some
n.

Proof. If S is a disk then F = ∂M = ∂(S1 ×D2) and Diffv
∂(S

1 ×D2) ≃ ∗ by Corollary 5.13(1). We
can now induct on the complexity of the surface. Let α be an arc in S connecting two points of φ(F )
such that either S \ α is connected and has lower complexity, or is disconnected and both pieces
have lower complexity. Let A = φ−1(α) be the annulus that is the preimage of α. By [HKMR12,
Corollary 3.8(ii)] there is a fiber sequence

Diffv
F∪A(M) −→ Diffv

F (M) −→ Diffv
F∩A(A)

The fibering of the annulus A → α is necessarily trivial, so the base of the fiber sequence can be
identified with Diffv

∂(S
1 × I), an element of which can be thought of as a smooth loop in the space

Diff(S1). Hence it is equivalent to the discrete group

Diffv
F∩A(A) ≃ ΩDiff(S1) ≃ Z.

The fiber of the fiber sequence is equivalent to Diffv
F∪2A(M |A) where we cut along A and fix the

new boundary created by A. By induction hypothesis this is equivalent to Zn for some n. Inspecting
the long exact sequence we see that the components of Diffv

F (M) are contractible and that there is
an exact sequence

1 → Zn → π0 Diffv
F (M) → Z,

so Diffv
F (M) is equivalent to either Zn or Zn+1. □

We can use the previous lemma to take care of the nonsingular Haken Seifert-fibered case.

Proposition 5.17. Suppose M admits a fiber-rigid Seifert fibering without singular fibers. Let
D3 ⊂M be an embedded disk. Then (M \D̊3, S2) is hereditarily finite and in particular BDiffD3(M)
is homotopy finite.

Proof. Let φ : M → S be the non-singular Seifert fibering such that Difff (M) ≃ Diff(M). We need
to show that for all Γ < π0 Diff(∂M) the space

BDiffΓ
D3(M) ≃ Fr(M)//DiffΓ(M) ≃ Fr(M)//Difff,Γ(M)

is homotopy finite. When acting by Difff (M) on the frame bundle, the fiber-direction of the tangent
space is always preserved. Therefore the map

Fr(M) −→ RP2

(p, α : R3 ∼= TpM) 7−→ α−1(ker dpφ) ⊂ R3

is invariant under the action of Difff (M). Let Fr′(M) ⊂ Fr(M) denote the fiber of this map,
i.e. those framings where the first vector lies in the tangent space of the fiber. By Lemma 2.8 we
have a homotopy fiber sequence

Fr′(M)//Difff,Γ(M) −→ Fr(M)//Difff,Γ(M) −→ RP2



44 RACHAEL BOYD, COREY BREGMAN, AND JAN STEINEBRUNNER

and we show that the total space is homotopy finite. Since the base is a finite CW complex, by
Lemma 2.15 it will suffice to consider the fiber. The map Fr′(M) → Fr(S) defined by forgetting
the first vector of the framing and then applying φ and dφ is a fibration, and its fiber Fr′′(S1) is
equivalent to the frame bundle of S1. This fiber sequence

(3) Fr′′(S1) −→ Fr′(M) −→ Fr(S)

is equivariant for the principal short exact sequence

(4) Diffv,Γ(M) −→ Difff,Γ(M) −→ Diff ′(S).

that we obtain by restricting Eq. (2) to account for Γ. Here Diff ′(S) ≤ Diff(S) is defined as the

image of Difff,Γ(M), and this is a finite index subgroup by Lemma 5.15.

Taking the quotient of (3) by (4), Lemma 2.8 yields a homotopy fiber sequence

Fr(S1)//Diffv,Γ(M) −→ Fr′(M)//Difff,Γ(M) −→ Fr(S)//Diff ′(S).

The base is equivalent to BDiff ′
D2(S), which is a finite cover of BDiffD2(S), which in turn is homo-

topy finite by Lemma 4.12, so it suffices to consider the fiber.

The action of Diffv(M) on Fr(S1) has either one or two orbits, depending on whether there is a
bundle-preserving diffeomorphism that reverses the orientation of the fiber. Either way the map

Diffv(M) −→ Diff(S1)
≃−−→ Fr(S1),

which first restricts the diffeomorphism to a fiber and then evaluates it and its derivative at a point,
is a fiber bundle by [HKMR12, Corollary 3.8.(ii)] (furthermore the second map is a trivial Serre
fibration). Hence the homotopy orbit-stabiliser lemma (Lemma 2.11) tells us

Fr(S1)//Diffv,Γ(M) ≃ Diff(S1)//Diffv,Γ(M) ≃ BDiffv,Γ
S1 (M)×

{
∗
∗ ⊔ ∗

where the case distinction depends on whether there exists fiberwise orientation-reversing diffeomor-
phism. For U ⊂M a vertical tubular neighbourhood of S1 we have

Diffv
S1(M) ≃ Diffv

U (M) ≃ Diffv
∂U (M \ Ů) ≃ Zn

where the last equivalence comes from Lemma 5.16. Hence the group Diffv,Γ
S1 (M) must be equivalent

to some subgroup of Zn, so it also is finite rank free abelian and its classifying space is homotopy
finite. □

5.4. The singular fiber-rigid case. Now we prove the general case with possibly singular fibers.
The method of proof will be to cut up the manifold along tubular neighbourhoods U of the singular
fibers using Proposition 5.11 in order to reduce to the non-singular case and the case of a fibered
solid torus, both of which we have already covered. For this we have to show that the tori T := ∂U
obtained as the neighbourhoods of the singular fibers are canonical in the sense of Definition 5.7,
i.e. that Diff(M,T ) ≃ Diff(M).

Lemma 5.18. Let M be a Haken Seifert-fibered 3-manifold with a fiber-rigid fibering φ : M → S.
Let U be a vertical tubular neighbourhood of the singular fibers, and let T := ∂U be its boundary.

Then M \ Ů → φ(M \ Ů) is fiber-rigid, Diff(M,U) = Diff(M,T ), and the inclusions

Diff(M,T ) ↪→ Diff(M) and Difff (M,T ) ↪→ Diff(M,T )

are both equivalences. It follows from the first equivalence that T is a canonical submanifold in the
sense of Definition 5.7.
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Proof. M cannot be a solid torus, because the solid torus only has flexible fiberings. Because M
is Haken we know either S is not a sphere or it is a sphere and there are at least three singular
fibers. Therefore S \ φ(U)◦ is neither an annulus, nor a disk. By Remark 4.11 the only flexible
Seifert-fibered manifolds with boundary are the solid torus and T 2 × I, which only fiber over the
disk and the annulus. Hence M \ Ů → S \φ(U)◦ is a non-singular fiber-rigid Haken Seifert-fibering.
Moreover, U is a disjoint union of solid tori and M \ Ů is connected and not a solid torus, so any
diffeomorphism preserving T must also preserve U , i.e. Diff(M,T ) ≃ Diff(M,T ).

Since the diffeomorphism group of the base orbifold already preserves the singularities, it is equivalent
to the subgroup Diff(S, φ(U)) < Diff(S) where we additionally preserve small disks around the

singularities. Pulling this equivalence back along the fibration Difff (M) → Diff(S) from Eq. (2) we

get that Difff (M,T ) ≃ Difff (M). This equivalence fits in a square of subgroup inclusions

Difff (M,T ) Difff (M)

Diff(M,T ) Diff(M)

≃

≃

and to show that the bottom map is an equivalence as claimed it will suffice to check our final claim:
that the left hand map is an equivalence. The left map in turn fits into a map of homotopy fiber
sequences:

Difff
∂(U) Difff (M,T ) Difff (M \ Ů)

Diff∂(U) Diff(M,T ) Diff(M \ Ů)

≃ ≃

The right vertical map is an equivalence because M \ Ů is fiber-rigid. The left vertical map is an

equivalence because Diff∂(S
1 × D2) is contractible by [Hat76, Iva76] and Difff

∂(U) is contractible
by Corollary 5.13.(2). From the long exact sequence of homotopy groups it follows that the middle
map is an isomorphism on πn for n ≥ 1 and an injection on π0. To see that it is also surjective
on π0 let ξ ∈ Diff(M,T ). Because M \ Ů is fiber-rigid we can isotope ξ|M\Ů to a fiber-preserving
diffeomorphism, and we may extend this isotopy to all of M while preserving T as a subset. Denote
the result of this isotopy by φ ∈ Diff(M,T ). Now φ|U is fiber-preserving on ∂U and hence, by

Corollary 5.13.(3), there is a ψ ∈ Difff (U) with φ|∂U = ψ|∂U . We have φ|U ◦ψ−1 ∈ Diff∂(U) ≃ ∗, so
there must be an isotopy from φ|U to ψ relative to ∂U . This shows that ξ is isotopic to an element

of Difff (M,T ). □

Proposition 5.19. Let M be a Haken Seifert-fibered 3-manifold that is fiber-rigid, and let D3 ⊂M
be an embedded disk. Then (M \ D̊3, S2) is hereditarily finite and in particular BDiffD3(M) is
homotopy finite.

Proof. IfM is non-singular apply Proposition 5.17. Otherwise, pick a vertical tubular neighbourhood
U of the singular fibers as in Lemma 5.18; then T := ∂U is a canonical submanifold by that
lemma. We apply Proposition 5.11. The second condition follows from Theorem 5.4. For the third
condition, Lemma 5.18 also shows that Diff(M,T ) ≃ Difff (M,T ) and so the image of Diff(M,T ) →
π0 Diff(T ) is finite because each of the tori bounds a fibered solid torus and π0 Difff (U) is finite by
Corollary 5.13(4).

Hence Proposition 5.11 reduces the claim to hereditary finiteness for (N \ D̊3, S2) where N is any
connected component ofM |T . Most of the components are solid tori and we checked in Lemma 5.14
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that ((S1 × D2) \ D̊3, S2) is hereditarily finite. The remaining connected component is the non-
singular piece M \ Ů . As observed in Lemma 5.18 M \ Ů is non-singular Seifert-fibered and still
fiber-rigid. As such (M \ (U ⊔D3)◦, S2) satisfies hereditary finiteness by Proposition 5.17. □

5.5. Proof of Theorem 4.1. We will now deduce the general theorem of the finiteness ofBDiffD3(M)
for M irreducible, by cutting M along its JSJ decomposition.

That the JSJ tori are canonical in sense of Definition 5.7 will follow from the following theorem of
Hatcher [Hat99] that can be found in a rewrite of his 1976 paper [Hat76].

Theorem 5.20 (Hatcher [Hat99, Theorem 1(a)]). Let T be an incompressible torus in M . Then
the component of the unparametrised embedding space containing T , SubT (T

2, M̊), is contractible
unless M is a T 2-bundle over S1 and T is a fiber, in which case SubT (T

2, M̊) ≃ S1.

Corollary 5.21. Suppose M is not a T 2-bundle over S1. Let T be a collection of tori in M giving
the JSJ decomposition. Then Diff(M,T ) ≃ Diff(M), i.e. T is a canonical submanifold of M .

Proof. For any union of components R ⊂ T we let Sub0(R, M̊) ⊂ Sub(R, M̊) denote the path-
component of the space of those unparametrised embeddings that contain the submanifold R ⊂ M̊ .
We will prove that Sub0(R, M̊) is contractible by induction on the number of connected components
of R ⊂ T . If there is only one torus, then this is Hatcher’s theorem 5.20. For the induction step,
we suppose that Sub0(R, M̊) is contractible. We will show that Sub0(R ⊔ A, M̊) is contractible for
some torus A ⊂ T \N . We can define a map

f : Sub0(R ⊔A, M̊) → Sub0(R, M̊)

by taking a submanifold V ⊂ M̊ to V \B ⊂ M̊ where B ⊂ V is the unique connected component that
is isotopic to A ⊂ M̊ . Because we are in the path component Sub0, we know that there always is such
a B, and because no two tori in T are isotopic, it is unique. Therefore, f is well-defined, continuous,
and Diff0(M)-equivariant. But Sub0(R, M̊) is Diff0(M)-locally retractile by Corollary 2.5, so f is a
fiber bundle by Lemma 2.2(1). We can identify the fiber f−1([R]) with the identity component of
unparametrised embeddings of A into (M \ R)◦. (Indeed, the long exact sequence of the fibration
implies that the fiber is connected, as the total space is connected and the base contractible by the
induction hypothesis.) Hence we have the fiber sequence

Sub0(A, (M \R)◦) −→ Sub0(R ⊔A, M̊) −→ Sub0(R, M̊).

By induction hypothesis both fiber and total space are contractible and we conclude that the total
space must also be contractible, completing the induction.

To obtain the conclusion about Diff(M,T ) we consider the fiber sequence

Diff(M,T ) −→ Diff(M) −→ Sub(T, M̊)

from the discussion after Corollary 2.5. The image of the fibration is exactly the Diff(M)-orbit of
the canonical unparametrised embedding T ⊂ M̊ . By the uniqueness of JSJ decompositions we
know that for any φ ∈ Diff(M) we have that φ(T ) is (unparametrised) isotopic to T , so the image
of the fibration is the path-component of the base point, i.e. Sub0(T, M̊), which we know to be
contractible. Hence the inclusion Diff(M,T ) → Diff(M) is an equivalence as claimed. □

We will use the fact that the JSJ tori are canonical to reduce the finiteness problem to pieces we
have already studied, by applying Proposition 5.11. However, we need to guarantee that hypothesis
(3) of the proposition holds. This is the purpose of the next lemma.

Lemma 5.22. Let M be an irreducible 3-manifold with non-trivial JSJ decomposition T ⊂ M̊ such
that no component of M |T is T 2 × I. Then the image of Diff(M,T ) → π0 Diff(T ) is finite.
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Proof. First, we restrict to the finite index subgroup of Diff(M,T ) consisting of those diffeomor-
phisms that fix the dual graph of T . It is enough to show that for this subgroup the lemma holds.
To do this, we claim that for each torus Ti ⊆ T there are a finite number of mapping classes on Ti
that can be extended to an element of Diff(M,T ). Let M ′

i and M
′′
i be the JSJ pieces on either side

of Ti (note that M ′
i may equal M ′′

i ). First, consider the case where at least one of M ′
i or M ′′

i is a
hyperbolic manifold N . Then, since the dual graph is fixed, the map in question factors through
Diff(N,Ti), but we know that π0 Diff(N) = π0 Isom(N) is finite, so the image is finite.

If neither of the sides of Ti is hyperbolic, then they must both be Seifert-fibered. Neither side is
D2×S1 nor T 2× I, hence they are both fiber-rigid by Remark 4.11. Let α′

i and α
′′
i ∈ H1(Ti) be the

images of the two fiber curves on Ti. Since M ′
i ∪Ti M

′′
i is not Seifert-fibered, α′

i and α
′′
i represent

linearly independent elements of π1(Ti). Any element of Diff(M,T ) that fixes the dual graph of T
thus maps both α′

i and α
′′
i to themselves or their inverses. As α′

i and α
′′
i are linearly independent,

there at most four elements of GL2(Z) ∼= π0(Diff(Ti)) that satisfy this condition. □

We can now complete the proof of Theorem 4.1, which we restate here.

Theorem 4.1. Let M be an irreducible 3-manifold with either empty or incompressible toroidal
boundary, and let D3 ⊂ M̊ be an embedded disk. Then BDiffD3(M) has the homotopy type of a
finite CW complex.

Proof. We refer the reader to the flow chart in Fig. 3. Let M be irreducible. If M has trivial
JSJ decomposition, then M is Seifert-fibered or hyperbolic. If M is non-Haken Seifert-fibered or
hyperbolic, then BDiffD3(M) is homotopy finite by Corollary 4.8. If M is Haken Seifert-fibered
then BDiffD3(M) is homotopy finite by Proposition 5.19 in the fiber-rigid case, and Propositions
4.15, 4.16, and 4.17 in the flexible case.

Now assume M has non-trivial JSJ decomposition. If M is a T 2-bundle over S1 then M must be
Anosov (all others are Seifert-fibered), in which case BDiffD3(M) is finite by Theorem 4.20. We
may therefore suppose that M has non-trivial JSJ decomposition and is not the total space of a
T 2-bundle over S1. Let T ⊂ M be the collection of JSJ tori, which is a canonical submanifold by
Corollary 5.21. To prove the theorem, we verify that Proposition 5.11 applies, which (by Lemma 5.22)
reduces to checking the hereditary finiteness of (N,F ) and (N \D̊3, S2) for any connected component
N ⊂ M |T and any non-empty union of boundary components F ⊂ ∂N . The former was shown by
Hatcher–McCullough [HM97]; see Theorem 5.4. For the latter, since each N is either hyperbolic or
Haken Seifert-fibered and fiber-rigid, hereditary finiteness of (N \ D̊3, S2) holds by Theorem 4.7 and
Lemma 5.5 in the hyperbolic case or Proposition 5.19 otherwise. □

6. Kontsevich’s finiteness conjecture and consequences

In this section we prove Kontsevich’s finiteness conjecture [Kir97, Problem 3.48] – this is the state-
ment of the following theorem. As a consequence in Section 6.3 we show that BDiff(M) is always
of finite type and in Section 6.4 we discuss the sharpness of our results.

Theorem 6.1. LetM be a compact, connected, orientable 3-manifold with non-empty boundary ∂M .
Then BDiff∂(M) is homotopy finite.

In fact, we will prove the following more general statement.

Theorem 6.2. LetM be a compact, connected, orientable 3-manifold, and let ∅ ≠ F ⊆ ∂M be a non-
empty union of connected components. Assume that ∂M \ F consists of spheres and incompressible
tori. Then BDiffF (M) is homotopy finite.
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Theorem 6.2:
BDiffF (M) homotopy finite

Theorem 3.20

|Sep∦•(M)|//DiffF (M)
homotopy finite

Lemma 3.10,
Lemma 2.11

BDiffF (M,Σ) homotopy finite
Corollary 6.8

Corollary 5.9

Sep∦(M)/DiffF (M) finite
Lemma 6.6

M̂ irreducible
Theorem 6.4

Lemma 6.3

M irreducible
Theorem 5.4

M = M̂ \ D3

F = ∂D3, M̂ irreducible
Theorem 4.1

Figure 5. Flowchart of the proof of Theorem 6.2. Note that the bottom central
leaf is the root vertex of the flow chart in Fig. 3 so gluing the two flow charts
together here gives a full flow chart for the main theorem.

As in the proof of Theorem 4.1, we have outlined the key steps of the proof as a directed tree in
Fig. 5 for the reader to follow. Each node is labeled by a statement or theorem. The basic outline

for the proof of Theorem 6.2 is as follows. By Theorem 3.20, ∥ Sep∦•(M)∥//DiffF (M) is a model
for BDiffF (M) and we show that only simplices below a certain dimension contribute. Combining

this with Lemma 3.10 we reduce to the claim that Sep∦(M)//DiffF (M) is homotopy finite. By the
homotopy orbit-stabiliser theorem (Lemma 2.11), this amounts to showing that there are finitely
many orbits (Lemma 6.6) and that the classifying space of each orbit stabiliser DiffF (M,Σ) is
homotopy finite (Corollary 6.8). We introduce the notion of a labeled dual graph GΣ to a separating
system Σ and use this to show that the set of orbits is finite. That the classifying space of the
stabiliser DiffF (M,Σ) is homotopy finite is further reduced (Corollary 5.9), by inductively cutting
along 2-spheres in Σ, to homotopy finiteness of BDiffF (M) where M̂ is irreducible (Theorem 6.4).
The latter in turn is reduced, by repeatedly filling spheres (Lemma 6.3), to our two base cases:
when M is itself irreducible (Hatcher–McCullough, Theorem 5.4), or when M̂ is obtained from M
by filling a single boundary sphere and F consists of only this sphere (Theorem 4.1).

6.1. The case of one irreducible factor. As recalled in the introduction, Hatcher and McCul-
lough prove Theorem 6.1 when M is irreducible, and in Theorem 4.1 we prove Theorem 6.1 when
M̂ is irreducible and M has one spherical boundary component. However, before we use the space
of separating systems to deduce the general case from this, we first have to consider the case where
M is allowed to have multiple spherical boundary components.

First we note that cutting out additional disks and fixing or not fixing their boundary preserves
homotopy finiteness of the classifying space.
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Lemma 6.3. Suppose that M is a connected 3-manifold and F ⊆ ∂M is a union of connected
components of its boundary. Let B ⊂ M̊ be a finite union of disjoint disks. Then we have equivalences

BDiffF⊔B(M) ≃ BDiffF⊔∂B(M \ B̊) and BDiffF (M,B) ≃ BDiffF (M \ B̊, ∂B).

Suppose moreover that BDiffF (M) is homotopy finite, then so are the above spaces.

Proof. The first equivalence holds because the space of collars is contractible, see Theorem 2.6. For
the second equivalence we use the fiber sequence

DiffM\B̊(M) −→ DiffF (M,B) −→ DiffF (M \ B̊, ∂B).

Any diffeomorphism of ∂B can be extended over the interior, so the fibration is surjective. The
group in the fiber is equivalent to Diff∂(B), which is a product of Diff∂(D

3)’s, hence contractible
by Hatcher’s proof of the Smale conjecture. This shows that the fibration is an equivalence, which
gives us the second equivalence.

To prove the homotopy finiteness, we note that DiffF (M) acts transitively on the space of orientation
preserving embeddings Emb+(B, M̊) and unparametrised embeddings Sub(B, M̊) with stabiliser
groups DiffF⊔B(M) and DiffF (M,B), respectively. Both actions are locally retractile, so we can
apply Lemma 2.10 to obtain homotopy fiber sequences:

Sub(B,M) −→BDiffF (M,B) −→ BDiffF (M)

Emb+(B,M) −→BDiffF⊔B(M) −→ BDiffF (M).

Since we assumed that the base spaces are homotopy finite in both cases, it will suffice to argue
that the fibers a homotopy finite. We pass to considering The space Emb(B,M) since Emb+(B,M)
is a union of path components. Then Emb(B,M) = Emb(⨿kD

3,M) is homotopy equivalent to

Conf frk (M), the space of ordered framed configurations of M . This space is homotopy finite, as can
be seen by inductively using the homotopy fiber sequence

Fr(M \ {p1, . . . , pk−1}) −→ Conf frk (M) −→ Conf frk−1(M \ {p})

and the fact that the frame bundle of a punctured version of M is still homotopy finite.

The space Sub(B,M) is obtained from Emb(B,M) by taking the quotient with respect to the Diff(B)
action. Because Diff(D3) ≃ SO(3), we get that Sub(B,M) is homotopy equivalent to the unordered
configuration space of k points in M . This is equivalent to the quotient of the free strata-preserving
action of Σk on the Fulton-MacPherson compactification Ck[M ] [Sin04, Theorem 4.10]. As such it
is itself a compact manifold with corners and hence homotopy finite. □

Theorem 6.4. Suppose thatM is such that the manifold M̂ obtained by filling all spherical boundary
components is irreducible. Let F ⊆ ∂M be a non-empty union of boundary components such that
∂M \ F contains only spheres and incompressible tori. Then BDiffF (M) is homotopy finite.

Proof. We can write M = M̂ \ B̊ for B a disjoint union of disks. Decompose B = B1 ⊔B2 such that
F ∩ ∂B = ∂B1 and write F0 = F ∩ ∂M̂ = F \ ∂B1.

There are two cases. If F0 ̸= ∅ we will reduce to Theorem 1.1 of Hatcher–McCullough [HM97], who

show that DiffF0(M̂) is homotopy finite. Applying Lemma 6.3 once, we see that BDiffF0⊔∂B1(M̂\B̊1)
is homotopy finite. Applying it again we get that

BDiffF0⊔∂B1
(M̂ \ B̊, ∂B2) = BDiffF (M,∂B2) = BDiffF (M)

is homotopy finite. Here the first equality holds because F0⊔∂B1 = F and M̂ \ B̊ =M . The second
equality holds because any diffeomorphism of M must fix ∂B as a subset (because these are the
spherical boundaries) and so if it fixes ∂B1 pointwise, it must automatically fix ∂B2 as a subset.
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If F0 = ∅, then ∂B1 = F ̸= ∅ must be non-empty. In this case we reduce to Theorem 4.1. Pick
some preferred component D ⊂ B1. Then Theorem 4.1 tells us that BDiffD(M̂) is homotopy finite.
Applying Lemma 6.3 twice gives firstly that BDiffB1

(M̂) is homotopy finite and then that

BDiffB1(M̂ \ B̊2, ∂B2) ≃ BDiff∂B1(M̂ \ B̊, ∂B2) = BDiff∂B1(M̂ \ B̊) = BDiffF (M)

is also homotopy finite. □

6.2. Deducing the general case using sphere systems. In the final step of the proof, we use

contractibility of ∥ Sep∦•(M)∥, and our results for irreducible manifolds, possibly with disks removed,
to prove Kontsevich’s finiteness conjecture. We require two more ingredients, relating to the action

of DiffF (M) on Sep∦(M). First, we show that this action has a finite number orbits, and second,

that the stabiliser of a separating system Σ ∈ Sep∦•(M) is homotopy finite.

Lemma 6.5. Let M be a 3-manifold with prime decomposition

M ∼= ((S1 × S2)#g#P1# . . .#Pn) \ (⨿mD̊
3)

where the Pi are irreducible, and assume that M is not prime. Then every Σ ∈ Sep∦(M) consists of
at most 2(n+m) + 3(g − 1) spheres and M |Σ has at most 2(n+m+ g − 1) connected components.

Proof. Since M is not prime, every Σ ∈ Sep∦(M) is non-empty. We can construct a dual graph
GΣ that has a vertex for each component of M |Σ and an edge for each sphere in Σ. Let v be
the number of vertices and e the number of edges in this graph. This dual graph must have first
Betti number g and therefore it has Euler characteristic v − e = 1 − g. Let us say that a vertex
is special if it corresponds to a component N ⊂ M |Σ that contains a prime factor or a boundary
sphere of M , and let v0 be the number of special vertices. Then we have v0 ≤ n +m, as there are
n prime factors and m boundary spheres in M . A vertex is non-special if the manifold obtained
from N ⊂M |Σ by filling in the boundary spheres coming from 2Σ is a 3-sphere. Every non-special
vertex is at least trivalent: if it was univalent the sphere in Σ that bounds it would not be essential,
and if it was bivalent the two spheres in Σ that bound it would be parallel. (The two spheres at
a bivalent vertex also cannot be the same sphere because M ̸∼= S1 × S2.) In summary we have at
least three half-edges per non-special vertex and at least one half-edge per special vertex (as M is
connected and Σ non-empty). This yields the inequality 2e ≥ 3(v − v0) + v0. Rewriting, we get
2e ≥ 3v − 2v0 ≥ 3v − 2(n +m). Using the Euler characterisitc equation v − e = 1 − g from before
we get that

v ≤ 2(n+m+ g − 1) and e ≤ 2(n+m) + 3(g − 1)

as claimed. □

Recall that in the proof of Theorem 3.21 we showed that for M ∼= P1#P2 any Σ ∈ Sep∦(M) consists
of a single sphere. This is an instance of the above lemma with n = 2 and g = m = 0.

Lemma 6.6. LetM be a 3-manifold with possibly empty boundary and F ⊆ ∂M a union of boundary

components. Then the set Sep∦(M)/DiffF (M) is finite.

Proof. First, note that Sep∦(M)/DiffF (M) is a discrete topological space and so any two isotopic

separating systems lie in the same orbit. This follows because Sep∦(M) is locally DiffF (M)-retractile
or equivalently, by isotopy extension.

We now essentially follow the proof of [HM90, Lemma 2.1]. Recall M decomposes as

M ∼=
(
P1# · · ·#Pn#(S1 × S2)#g

)
\ {⨿mD̊

3} ∼= P1# · · ·#Pn#(S1 × S2)#g#(D3)#m.
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We can hence construct M by attaching g 1-handles to S3, and taking the connected sum with the
Pi and with m copies of D3. Let B = ⨿n+m+2gD

3 ⊂ S3 be the collection of 3-disks along which we
performed these attachments.

Now suppose we have some Σ ∈ Sep∦(M). Then [HM90, Lemma 2.1] (based on work of Scharle-
mann [Bon83a, Appendix A]) tells us that there is a diffeomorphism φ ∈ DiffF (M) (in fact fixing a
neighbourhood of the boundary) such that φ(Σ) ⊂M lies entirely in S3 \ B̊. Therefore to show the

set Sep∦(M)/DiffF (M) is finite, it will suffice to show that up to isotopy there are finitely many
sphere systems (without parallel spheres) in S3 \ B̊. This is indeed the case because such isotopy
classes are uniquely determined by how they partition the finite set of boundary components. Indeed,
since S3 \ B̊ is simply connected, π2(S

3 \B) ∼= H2(S
3 \ B̊), so homotopy classes of embedded spheres

agree with homology classes, which in turn correspond to how they partition ∂B. By Laudenbach
[Lau73], homotopic spheres are isotopic. The claim for sphere systems is now straightforward. □

Remark 6.7. One can show more concretely that Sep∦(M)/DiffF (M) is in bijection with a certain
set of labelled dual graphs up to label-preserving graph isomorphism, but we will not need this here.

We now turn our attention towards the stabilisers of the action of DiffF (M) on Sep∦(M).

Corollary 6.8. Let M be a compact connected 3-manifold, ∅ ≠ F ⊆ ∂M a non-empty union
of boundary components such that ∂M \ F contains only spheres and incompressible tori, and let
Σ ∈ Sep(M) be a separating system. Then BDiffF (M,Σ) is homotopy finite.

Proof. We apply Corollary 5.9. To check assumption (‡), let N ⊆ M |Σ be a component and
∅ ≠ F0 ⊆ ∂N a non-empty union of boundary components that contains F ∩N . Then the spherical
closure N̂ is irreducible because Σ was a separating system. Since ∂N \ F0 ⊆ M \ F contains only
spheres and incompressible tori, the finiteness of BDiffF0

(N) follows from Theorem 6.4 and we are
done. □

We now have all the pieces required to prove our stronger version of Kontsevich’s conjecture. We
refer the reader to Fig. 5 for the overall structure and logical dependencies between ingredients in
the proof.

Proof of Theorem 6.2. Since ∂M ̸= ∅, M ̸= S1 × S2. We know by Theorem 3.20 that the fat geo-

metric realisation ∥ Sep∦•(M)∥ is contractible. Let Sep∦,⊂• (M) denote the semi-simplicial space where
n-simplices are strict inclusions of separating systems with no parallel spheres. The simplicial space

Sep∦•(M) is obtained from Sep∦,⊂• (M) by freely adding degeneracies, so by [ERW19, Lemma 2.6] we

have an equivalence ∥ Sep∦•(M)∥ ≃ ∥Sep∦,⊂• (M)∥. (Note that ∥ Sep∦,⊂• (M)∥ is in fact homeomor-

phic to the thin geometric realisation |Sep∦•(M)|.) The semi-simplicial space Sep∦,⊂• (M) has the
advantage that there is a bound on the dimension of the simplices that can appear: if M has m
spherical boundary components and M̂ is the connected sum of n irreducible prime factors and g

copies of (S1 ×S2), then Lemma 6.5 says that each separating system in Sep∦(M) contains at most
2(n+m) + 3(g − 1) spheres. Therefore any chain of more than 2(n+m) + 3(g − 1) inclusions must

include an identity, and so Sep
∦,⊂
i (M) = ∅ for i > 2(n+m) + 3(g − 1).

DiffF (M) acts on Sep∦,⊂• (M) levelwise by postcomposition – non-parallel spheres are taken to
non-parallel spheres under diffeomorphisms of M . We therefore get an action of DiffF (M) on

∥ Sep∦,⊂• (M)∥ and since ∥Sep∦,⊂• (M)∥ is contractible, the homotopy orbit space of this action is a
model for the classifying space:

BDiffF (M) ≃ ∥Sep∦,⊂• (M)∥//DiffF (M) ∼= ∥Sep∦,⊂• //DiffF (M)∥.



52 RACHAEL BOYD, COREY BREGMAN, AND JAN STEINEBRUNNER

Here we use that (−)//G commutes with fat geometric realisation by Lemma 2.12. Since there are
only simplices up to a certain dimension, it will suffice to prove that for all n the space

Sep∦,⊂n (M)//DiffF (M)

is homotopy finite. To reduce this to the case of n = 0 recall from Lemma 3.10 that the last vertex

map Sep∦,⊂n (M) → Sep∦(M) is a finite covering. Therefore the map from Sep∦,⊂n (M)//DiffF (M) to

Sep∦(M)//DiffF (M) is also a finite covering and it will suffice to show that the latter is homotopy
finite.

By the homotopical orbit stabiliser theorem (Lemma 2.11) there is a decomposition

Sep∦(M)//DiffF (M) ≃
∐
[x]

BDiffF (M,Σ)

where the coproduct runs over a set of representatives of Sep∦(M)/DiffF (M). Each of the terms

in the coproduct is homotopy finite by Corollary 6.8. Moreover, we showed Sep∦(M)/DiffF (M) is

finite in Lemma 6.6. This completes the proof as we have written Sep∦(M)//DiffF (M) as a finite
coproduct of homotopy finite spaces. □

6.3. Finite type. So far it has been very important that we always fix part of the boundary of
the 3-manifold, as otherwise we cannot expect BDiff(M) to be homotopy finite. For example, if
M is hyperbolic, then BDiff(M) is a K(G, 1) for the finite group G of isometries of M . But while
classifying spaces of non-trivial finite groups never have a CW model with finitely many cells, they
do always have a CW model that has finitely many cells in each dimension. Our goal in this section
is to show that the same is true for BDiff(M).

We say that a spaceX is of finite type, if there is a weak equivalence C ≃ X where C is a CW complex
with finitely many cells of each dimension. Finite type spaces are closed under more operations than
homotopy finite spaces. Crucially, we have the following stronger analogue of Lemma 2.15, which
for instance implies that if E → B is a finite covering and E is of finite type, then so is B.

Lemma 6.9 ([DDK81, Proposition 2.5]). Suppose we have a homotopy fiber sequence

F −→ E −→ B

where F is of finite type and E → B is surjective on path components. Then E is of finite type if
and only if B is of finite type.

The next result follows as a direct consequence of Theorem 6.2.

Corollary 6.10. LetM be a compact orientable 3-manifold such that ∂M is either empty or consists
of spheres and incompressible tori. Then BDiff(M) is of finite type.

Proof. The locally retractile action of Diff(M) on Emb(D3, M̊) ≃ Fr(M) yields via Lemma 2.10 the
homotopy fiber sequence

Fr(M)′ −→ BDiffD3(M) −→ BDiff(M)

where Fr(M)′ ⊂ Fr(M) is an orbit of the action. Since Fr(M)′ ⊂ Fr(M) is a union of components it
is homotopy finite. The total space BDiffD3(M) is homotopy finite by Theorem 6.2. It follows by
Lemma 6.9 that BDiff(M) is of finite type. □

In order to generalise this to arbitrary boundary we use a result of McCullough [McC91], who studied
the finiteness properties of mapping class groups of irreducible 3-manifolds.

Theorem 6.11. If M is irreducible and ∂M ̸= ∅, then BDiff(M) is of finite type.
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Proof. By work of Hatcher and Ivanov (see Corollary 4.6) we know that Diff0(M) ≃ (S1)×b for
b ∈ {0, 1, 2} and therefore BDiff0(M) ≃ K(Zb, 2) is of finite type. Applying Lemma 6.9 to the
homotopy fiber sequence

BDiff0(M) −→ BDiff(M) −→ B(π0 Diff(M))

we see that it suffices to check that B(π0 Diff(M)) is of finite type. By [McC91, Theorem 7.1] the
group π0Homeo(M) ∼= π0 Diff(M) is finitely presented and of type VFL. As pointed out in [McC91,
Theorem 1.1] this means that there is a finite index subgroup Γ ≤ π0 Diff(M) such that BΓ is
homotopy finite and therefore (e.g. by Lemma 6.9) B(π0 Diff(M)) is of finite type. □

We can now assemble this in the same way that we showed the homotopy finiteness of BDiffF (M)
in Theorem 6.2.

Theorem 6.12. Let M be a compact, orientable 3-manifold. Then BDiff(M) is of finite type.

Proof. If M is disconnected, then we consider the finite index subgroup of those diffeomorphisms
that do not permute components. This subgroup is a product of diffeomorphism groups of connected
manifolds, so it will suffice to consider the case that M is connected. Moreover, we may assume
M ̸∼= S1 × S2, as this case is covered by Corollary 6.10.

Since finite type spaces are also closed under homotopy pushouts and passing to finite covers, we
can proceed as in the proof of Theorem 6.2 to reduce to the claim that for every separating system

Σ ∈ Sep∦(M) the space BDiff(M,Σ) is of finite type. Here, instead of using Corollary 5.9 to cut
along spheres, we use the homotopy fiber sequence

Diff ′(Σ) −→ BDiffΣ(M) −→ BDiff(M,Σ)

where Diff ′(Σ) ⊂ Diff(Σ) is the subgroup of those diffeomorphism of Σ that extend to a diffeomor-
phism of M . The space Diff ′(Σ) is homotopy finite because Diff(S2) ≃ O(3) is, so by Lemma 6.9 it
will suffice to check that that BDiffΣ(M) is of finite type. This space is equivalent to

BDiffΣ(M) ≃ BDiff2Σ(M |Σ) ≃
∏

K⊆M |Σ

BDiffK∩2Σ(K).

By Lemma 6.3 BDiffK∩2Σ(K) ≃ BDiff(K̂), and by Theorem 6.11, BDiff(K̂) is of finite type for
each K ⊆M |Σ, so we are done. □

6.4. Strengthening of results and sharpness. The restrictions on F in Theorem 6.2 do not come
from the separating system machinery of Section 3 but rather from the base cases of the induction,
namely Theorem 5.4 and Theorem 4.1. Thus, any strengthening of Theorem 6.2 will arise from
analogous statements when M is irreducible, and the restrictions on F and ∂M are relaxed.

If M is irreducible and has higher genus incompressible boundary, M still has a JSJ decomposition
that is unique up to isotopy, but TJSJ may include incompressible annuli as well as tori, and some
of the components of M |TJSJ may be an I-bundle over a a compact surface. There is also an
analogous geometric decomposition of M into pieces with finite-volume Riemannian metric with
totally geodesic boundary modeled on one of the 8 Thurston geometries. Thus it seems likely that
a version of Theorem 4.1 will extend to this setting. If M is irreducible but has some compressible
boundary, Bonahon [Bon83b] proved the existence and uniqueness for a decomposition of M into
a submanifold with incompressible boundary and a so-called compression body. The latter can be
obtained from S × I by attaching 2-handles to one boundary component, then taking the spherical
closure. We believe that, if one knew hereditary finiteness for compression bodies, one could adapt
our tools to this setting to prove the following strengthening of Kontsevich’s conjecture.
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Conjecture 6.13. Let M be a compact, connected, orientable 3-manifold and let F ⊂ ∂M be a
non-empty union of boundary components. Then BDiffF (M) is homotopy finite.

In a sense, the above conjecture is the best possible, and (homotopy) finiteness of BDiff(M) can
definitely fail to hold if we do not fix some non-empty union of boundary components. Indeed, the
rational cohomology of BDiff(M) fails to be bounded for many irreducible M . We now show that
finiteness also fails in a closed, reducible example. In fact, in this example we will also see that the
rational cohomology of BDiff(M) need not be bounded. (In contrast, ifM is irreducible, Haken, and
not Seifert-fibered, then by Corollary 4.6 and [McC91], Diff(M) ≃ π0 Diff(M) has a finite virtual
cohomological dimension and hence BDiff(M) has bounded rational cohomology.)

Concretely, consider Ug := (S1 × S2)#g, and fix a point x0 ∈ Ug. We know that BDiff(Ug) has
unbounded cohomology for g = 0, 1 by work of Hatcher [Hat83, Hat81] and for g = 2 by the
computation in our upcoming work, discussed in Section 1.4. We expect this to be true for all
g ≥ 0. On the other hand, if we fix a disk in Ug, Theorem 6.1 shows that BDiffD3(Ug) is homotopy
finite. However, the following example shows that finiteness can fail even if we fix a subset of Ug

of codimension greater than one. We will construct a circle action on Ug that fixes x0 (and a circle
containing it) and use it to show that BDiff(Ug, x0) has unbounded rational cohomology for all g ≥ 0.
Since fixing a disk is equivalent to fixing a point and a frame, the next result may be interpreted as
saying we lose finiteness if we fix a point, or even a point and a tangent vector.

SO(2)

Figure 6. The construction of the SO(2)-action on Ug for g = 3.

Proposition 6.14. There is a curve S1 ⊂ Ug and maps

BSO(2) −→ BDiffS1(Ug) −→ BDiff∗(Ug) −→ BSO(3)

such that the composite is homotopic to the canonical inclusion. As a consequence, neither BDiffS1(Ug)
nor BDiff∗(Ug) is homotopy finite (even virtually), as there exists an α ∈ H4(−;Q) such that αn ̸= 0
for all n ≥ 1.

Proof. Let M = D3 \ (⨿gD̊
3) be obtained from the 3-disk by removing g smaller 3-disks on the

first coordinate axis. Then there is a smooth SO(2)-action on M by rotating around that axis as
indicated in Fig. 6. The double M ∪∂M M of M is diffeomorphic to Ug, which therefore also has
a smooth SO(2)-action, or equivalently a map SO(2) → Diff(Ug). The fixed points of this action
are g + 1 circles in Ug; we let S1 ⊂ Ug be one of them, and pick x0 ∈ S1. Then we have group
homomorphisms

SO(2) → DiffS1(Ug) → Diffx0
(Ug) → GL+

3

where the last map sends φ ∈ Diffx0
(Ug) to its derivative dx0

φ. The composite map is the standard

inclusion SO(2) → GL+
3 and since the latter is equivalent to SO(3), the first claim follows after

passing to classifying spaces. The second claim then follows since the map BSO(2) → BSO(3)
induces the ring homomorphism on cohomology Q[p1] −→ Q[c1] mapping the first Pontrjagin class
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p1 to the square c21 of the first Chern class. The required classes α are therefore the non-trivial image
of Q[p1] under the induced maps on cohomology. □
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