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EXPANDING RICCI SOLITONS COMING OUT OF WEAKLY

PIC1 METRIC CONES

PAK-YEUNG CHAN, MAN-CHUN LEE, AND LUKE T. PEACHEY

Abstract. Motivated by recent work of Deruelle-Schulze-Simon [26], we
study complete weakly PIC1 Ricci flows with Euclidean volume growth
coming out of metric cones. We show that such a Ricci flow must be an
expanding gradient Ricci soliton, and as a consequence, any metric cone at
infinity of a complete weakly PIC1 Kähler manifold with Euclidean volume
growth is biholomorphic to complex Euclidean space in a canonical way.

1. Introduction

Metric cones arise naturally as tangent cones of Gromov-Hausdorff limits
of sequences of non-collapsing smooth manifolds with uniform Ricci curvature
lower bounds due to the celebrated work of Cheeger-Colding [12]. In this
paper, we are interested in studying Ricci flows coming out of metric cones in
the following sense:

Definition 1.1. Given a Ricci flow g(t) defined on M for t ∈ (0, T ), we say
that g(t) is coming out of a metric cone C(X) if

(M, dg(t), x0)
t↓0−→ (C(X), dc, o),

in the pointed Gromov-Hausdorff sense, where dc denotes the conical metric,
and o the vertex of the cone, for some x0 ∈M .

Since a metric cone is self-similar under dilation, it follows heuristically
that a Ricci flow coming out of a metric cone should itself be self-similar.
More precisely, given a complete Riemannian manifold (M, g) and a function
f ∈ C∞(M), the triple (M, g,∇f) is said to be an expanding gradient Ricci
soliton if

(1.1) 2∇g,2f − g − 2Ric(g) = 0.

An expanding gradient Ricci soliton generates an immortal self-similar solution
to the Ricci flow modulo scaling and re-parametrization: since the vector field
∇gf is complete [52], if {φt : M → M}t>0 denotes the flow of the time-
dependent vector field −t−1∇gf with φ1 = idM , then the family of self-similar
metrics g(t) := tφ∗

t g satisfy the Ricci flow equation.
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Expanding Ricci solitons are a generalisation of Einstein manifolds with
negative Einstein constant. Recently, Topping and the third named author
completely classified expanding Ricci solitons in dimension two [43]. Since
gradient expanding Ricci solitons are deemed to be the prototype for Ricci
flows coming out of conical singularities (see for instance [32, 35]), we restrict
our attention in this paper to those solitons with soliton vector field the gra-
dient of a smooth function as in (1.1).
The resolution of conical singularities by the Ricci flow is related to the

singularity analysis of the flow. To formulate a reasonable weak solution to the
Ricci flow in higher dimensions, it is of fundamental importance to investigate
the properties of Ricci flow through singularities. Indeed, it has been proposed
that asymptotically conical expanding solitons could be used to resolve the
conical singularities that appear in 4-dimensional Ricci flows [32, 1, 3].
In recent years, substantial progresses have been made to understand the

resolution of conical singularities. Schulze and Simon [44] proved that any
tangent cone at infinity of a complete manifold with maximal volume growth
and non-negative curvature operator can be smoothed out by an expanding
gradient Ricci soliton. The problem has also been extensively studied when
the link of the cone X is a smooth closed manifold. Bryant applied ODE
methods to construct expanding gradient Ricci solitons on Rn coming out of
rotationally symmetric cones (see also [27]). When the link X is a simply
connected smooth closed manifold with Rm(gX) ≥ 1, Deruelle [23] used a
PDE deformation method to construct expanding gradient Ricci solitons with
non-negative curvature operator coming out of C(X). Moreover, a uniqueness
result was proven within the class of expanding gradient Ricci solitons with
Rm > 0 asymptotic to C(X) (see also [45, 17, 18, 21, 22]). The existence result
has recently been generalized in dimension 4 by Bamler and Chen [3] using
a new degree theory method which only requires X to be a smooth quotient
of S3 with a metric of scalar curvature R(gX) ≥ 6. Angenent and Knopf [1]
constructed explicit examples of metric cones in dimensions five and higher
which can be smoothed out by an arbitrary finite number of geometrically
distinct expanding gradient Ricci solitons. Thus the unique behavior of the
Ricci flow through a singularity is not expected in higher dimensions.
In this paper we consider those metric cones which arise as a tangent cone at

infinity of a non-collapsed weakly PIC 1 manifold. That is, metric cones C(X)
such that (C(X), dc, o) is the pointed Gromov-Hausdorff limit of (M,R−2

i g, x0)
for some Ri → +∞, where (M, g) is a complete manifold with non-negative 1-
isotropic curvature and Euclidean volume growth. Isotropic curvature was first
introduced by Micallef and Moore [42] to prove the topological sphere theorem,
and is one of the most natural curvature quantities to consider along the Ricci
flow, its study along the flow dating back to Hamilton [30]. In the compact
case, substantial progress in understanding positive isotropic curvature has
been made by recently Brendle [4]. Some important applications of the Ricci
flow theory of isotropic curvature also include the differentiable sphere theorem



Expanding Ricci solitons coming out of weakly PIC1 metric cones 3

[7, 8]. We refer interested readers to [5, 48] for an overview on related topics.
Let us first recall the notion of PIC1 curvature.

Definition 1.2. An algebraic curvature tensor R ∈ Sym2(Λ2(Rn)) is weakly
PIC1, denoted by R ∈ CPIC1, if its C-linear extension R ∈ Sym2(Λ2(Cn))
satisfies R(ω, ω) ≥ 0 for all simple and isotropic ω ∈ Λ2(Cn).

Recall, a complex plane ω ∈ Λ2(Cn) is isotropic if I(ω, ω) = 0, where I de-
notes the C-linear extension of the curvature operator with constant sectional
curvature 1 (see [48] for more details). We say that a Riemannian manifold
(M, g) has non-negative 1-isotropic curvature if Rm(g) ∈ CPIC1 on M . In
dimension 3, non-negative Ricci curvature is equivalent to negative 1-isotropic
curvature. When dimension ≥ 4, Ric(g) ≥ 0 if Rm(g) ∈ CPIC1.
We now state the main result of our paper: any metric cone at infinity of

a non-collapsed wealky PIC1 manifold is resolved by an expanding gradient
Ricci soliton.

Theorem 1.3. Suppose (Mn, g0) is a complete non-compact manifold such
that Rm(g0) ∈ CPIC1 and AVR(g0) > 0. For any metric cone at infinity
(C(X), dc, o) of (M, g0), there exists a smooth manifold M∞, a metric d∞ on
M∞, a smooth Ricci flow g(t) on M∞ for t > 0, and a smooth function u on
M∞ × (0,+∞), such that

(a) Rm(g(t)) ∈ CPIC1;
(b) |Rm(g(t))| ≤ αt−1 for some α > 0;
(c) (M∞, d∞, x∞) is isometric to (C(X), dc, o) as pointed metric spaces;
(d) dg(t) → d∞ uniformly on M∞ as t ↓ 0;

(e) u(·, t) → 1
4
d2∞(x∞, ·) in Cβ

loc(M∞) as t ↓ 0, for some β ∈ (0, 1);

(f) 2tRic(g(t)) + g(t)− 2∇2,g(t)u ≡ 0, for all t > 0.

A more general result holds as long as the initial data of the Ricci flow is
a metric cone in the pointed Gromov-Hausdorff sense and satisfies the PIC1
condition along the flow. We refer readers to Theorem 6.1 for the detailed
statement.

Remark 1.4. It follows from conditions (b) and (f) that the Ricci flow g(t) is
self-similar. Indeed, let φt be the flow of −∇g(1)u(·, 1)/t with φ1 = idM . As
both g(t) and tφ∗

t [g(1)] are complete Ricci flows satisfying condition (b) and
agreeing at t = 1, by the forward and backward uniqueness of the Ricci flow
[15, 33], g(t) ≡ tφ∗

t [g(1)], for all t > 0.

In contrast with earlier work [45, 23, 21], we do not require C(X) to have
isolated singularities. In a similar spirit to [44] our result doesn’t make any
regularity assumption on the initial cone and hence works for rougher metric
cones. On the other hand, we generalize the curvature condition in the earlier
works [14, 6, 44] where the differential Harnack inequality along the Ricci flow
plays a crucial role. Indeed, the importance of relaxing the curvature condi-
tion from weakly PIC2 to weakly PIC1 is largely motivated by a conjecture
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of Hamilton-Lott which states that a complete, connected 3-dimensional Rie-
mannian manifold which is uniformly Ricci pinched is either compact or flat.
The conjecture was answered affirmatively in full generality by the work of
Lott [41], Deruelle-Schulze-Simon [25] and Lee-Topping [38]. To extend the
result to higher dimensions, one asks if a weakly PIC1 Ricci flow coming out of
a metric cone in the pointed Gromov-Hausdorff sense is close to an expanding
Ricci soliton. In [26], Deruelle-Schulze-Simon were able to show that under
a Reifenberg regularity assumption, the Ricci flow smoothing is asymptoti-
cally similar to an expanding Ricci soliton. Thus, they show that a complete
PIC1 pinched manifold with maximal volume growth is flat or compact (see
also the work of the second named author and Topping [39]). In this regard,
our result says that the Ricci flow smoothing is automatically a gradient ex-
panding Ricci soliton generalizing the work of [26] in the weakly PIC1 case.
Our method is indeed largely motivated by the key observation in [26] which
considered an obstruction tensor T = −tRic − 1

2
g +∇2u and an obstruction

function v = |∇u|2 − u + t2R + 2t trg T , where u solves
(

∂
∂t
−∆g(t)

)

u = −n
2

with initial data 1
4
d2c(·, o) locally. Here R denotes the scalar curvature. By

combining Ricci flow smoothing estimates and a sharp modification of d2c by
Cheeger-Jiang-Naber [13], they managed to control T and v locally away from
the tips. In this work, we are able to estimate up to the tips. This is based on a
heat kernel estimate of Bamler-Cabezas-Wilking [2] and a localized maximum
principle developed by the second named author and Tam [36]. With the soli-
ton structure on the metric cone at infinity, we give an alternative proof to the
main Theorem in [26] saying that any complete non-compact manifolds with
PIC1 pinched and Euclidean volume growth must be isometric to Euclidean
space, see Corollary 6.3.
Our second motivation comes from a longstanding open question of Yau

in complex geometry which asks if a complete non-compact Kähler manifold
(M, g) with positive bisectional curvature is biholomorphic to Cn. This can be
regarded as a non-compact version of the Frankel conjecture. It was discovered
by Chau-Tam [10] that the existence of an expanding Kähler-Ricci soliton
metric with Ric ≥ 0 is sufficient to conclude M is biholomorphic to Cn. This
important observation led them to confirm Yau’s uniformization conjecture
in the maximal volume growth case with bounded curvature by studying the
long-time behaviour of the Kähler-Ricci flow with non-negative bisectional
curvature [11]. We therefore consider the Kähler-Ricci flow smoothing of the
corresponding metric cone under the weakly PIC1 condition and prove the
following:

Corollary 1.5. Let (M, g) be a complete non-compact Kähler manifold with
dimC(M) = n, Euclidean volume growth and non-negative 1-isotropic curva-
ture. If (M∞, d∞, x∞) is a metric cone at infinity of M , then the metric cone
(M∞, d∞, x∞) is a pointed complete metric Kähler space which is biholomor-
phic to Cn.
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The notion of complete metric Kähler space ensures the compatibility be-
tween the holomorphic structure and the metric structure, see [40, Section
5]. Indeed, by the Kähler-Ricci flow smoothing, if (M∞, d∞, x∞) is a metric
cone arising as a limit of (M,R−2

i g, x0) for some Ri → +∞, then the complex
structure also converges modulus pulling back by diffeomorphism [37, 40] and
hence the complex structure on M∞ is the most natural one induced from M .
Part of our result in the Kähler case only requires weaker curvature conditions,
namely non-negative Ricci curvature and non-negative orthogonal bisectional
curvature. Recall, a Kähler manfiold (M, g) has non-negative orthogonal bi-
sectional curvature, denoted by OB(g) ≥ 0, if

R(X, X̄, Y, Ȳ ) ≥ 0, ∀X, Y ∈ T 1,0(M) such that g(X, Ȳ ) = 0.

We refer readers to Theorem 6.4 for the detailed statement.

The paper is organized as follows. In section 2 we present some preliminary
results on the existence of suitable Ricci flows, (conjugate) heat kernel esti-
mates, distance distortion estimates under the Ricci flow and the local max-
imum principle from [36]. In section 3, we establish a parabolic differential
inequality satisfied weakly by the eigenvalues of the soliton obstruction tensor
under non-negative 1-isotropic curvature condition, with section 4 dedicated
to its Kähler analogy. Using the regularization of conical distance functions
by Cheeger-Jiang-Naber [13], in section 5 we solve the global Cauchy problem
for the heat flow starting from the square of the conical distance function.
This gives rise to a global soliton obstruction tensor associated to the flow.
With these analytic preparation, we apply the local maximum principle to
show that this obstruction tensor vanishes everywhere and hence the flow is
an expanding gradient soliton.

Acknowledgement: The authors would like to thank Alix Deruelle, Felix
Schulze and Peter Topping for some insightful discussions. The first named
author is supported by EPSRC grant EP/T019824/1. The second named au-
thor was partially supported by Hong Kong RGC grant (Early Career Scheme)
of Hong Kong No. 24304222, No. 14300623, and a NSFC grant No. 12222122.

2. Preliminaries on Ricci flow smoothing

In this section, we will collect some known results for Ricci flows starting
from complete non-compact manifolds with possibly unbounded curvature, in
both the Riemannian and Kähler cases. We start with the following Ricci flow
existence result.

Theorem 2.1. If (Mn, g0) is a complete non-compact manifold such that

(A) Volg0 (Bg0(x, r)) ≥ vrn > 0, for all x ∈M and r > 0;
(B) either one of the following holds

(i) Rm(g0) ∈ CPIC1 or;
(ii) g0 is Kähler with OB(g0),Ric(g0) ≥ 0,
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then there exists α(n, v) > 0 and an immortal solution g(t) to the Ricci flow
on M × [0,+∞), such that for all t > 0, we have

(I) supM |Rm(g(t))| ≤ αt−1;
(II) Rm(g(t)) ∈ CPIC1 if assumption (B)(i) holds;
(III) g(t) is Kähler with OB(g(t)),Ric(g(t)) ≥ 0 if assumption (B)(ii) holds;
(IV) Volg(t)

(

Bg(t)(x, r)
)

≥ vrn > 0, for all x ∈M and r > 0;

Furthermore, there exists C0(n, v) > 0 such that the heat kernel K(x, t; y, s)
and the conjugate heat kernel 1 G(x, t; y, s) satisfy the inequality

K(x, t; y, s) ≤ G(x, t; y, s) ≤ C0

tn/2
exp

(

−
d2g(s)(x, y)

C0t

)

,

for all 0 ≤ 2s < t < +∞, and x, y ∈M .

Proof. In the Riemannian setting (B)(i), the short-time existence of a Ricci
flow satisfying (I) and (II) was proven by Simon-Topping [46] when n = 3, and
Lai [34] when n ≥ 4. In the Kähler setting (B)(ii), the short-time existence
of a Ricci flow with properties (I) and (III) was proven by the second named
author and Tam [37]. The long-time existence of such a Ricci flow then follows
from a scaling argument (see for example [31, Theorem 1.1 & Corollary 4.1]).
More precisely, since the assumptions are scaling invariant, by rescaling the
metric, running the Ricci flow, and then parabolically rescaling the flow back,
we find a sequence of Ricci flows which exist for an arbitrarily long time.
Using (I), the long-time existence follows after passing to a subsequence and
taking a limit. (IV) follows from the preservation of the asymptotic volume
ratio under Ric ≥ 0 and |Rm| ≤ αt−1 [51]. The Gaussian upper bound on
the conjugate heat kernel G follows from Bamler, Cabezas-Rivas, and Wilking
[2, Proposition 3.1] and a scaling argument (see also [36, 9]). It remains to
estimate the heat kernel K. Since the scalar curvature R ≥ 0 along the Ricci
flow, for all 0 < s < t < +∞

(

∂

∂t
−∆g(t)

)

G(x, t; y, s) = Rg(t)G(x, t; y, s)

≥ 0 =

(

∂

∂t
−∆g(t)

)

K(x, t; y, s).

(2.1)

Since g(t) has bounded curvature for t > 0 and

lim
t→s

G(x, t; y, s) = lim
t→s

K(x, t; y, s) = δy(x),

we deduce from the standard maximum principle thatG(x, t; y, s) ≥ K(x, t; y, s)
for all t > s > 0. The assertion when s = 0 follows by taking s ↓ 0. �

We also need the distance distortion estimate along Ricci flow originally due
to Simon-Topping [47, 46], see also [29].

1More precisely, K denotes the kernel with respect to the operator ∂t −∆g(t), while G

denotes the kernel corresponding to ∂t −∆g(t) −R.
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Proposition 2.2. Suppose (Mn, g(t)), t ∈ (0, T ] is a smooth complete Ricci
flow such that

(2.2) Ric(g(t)) ≥ 0, |Rm(g(t))| ≤ αt−1,

for some α > 0. Then the following three statements hold:

(i) there exists C0(n, α) > 0 such that for all 0 < s ≤ t ≤ T and x, y ∈M ,

dg(t)(x, y) ≤ dg(s)(x, y) ≤ dg(t)(x, y) + C0

√
t− s;

(ii) there is a well-defined metric d0 on M ×M as t ↓ 0,

d0(x, y) := lim
t→0

dg(t)(x, y);

(iii) there exists γ(n, α, T ) > 0 such that for all x, y ∈M × (0, T ],

dg(t)(x, y) ≥ γ (d0(x, y))
1+2nα .

In particular, the metric d0 generates the same topology as that of
(M, dg(t)) for all t ∈ (0, T ].

Next, we need a local maximum principle proven in [36, Theorem 1.1] which
plays key role in localizing the error.

Theorem 2.3. Let (Mn, g(t)), t ∈ [0, T ] be a smooth (not necessarily com-
plete) solution to the Ricci flow such that

Ric(g(t)) ≤ αt−1

for t ∈ (0, T ]. Suppose that ϕ(x, t) and L(x, t) are continuous functions on
M × [0, T ] such that

ϕ(x, t) ≤ αt−1, L(x, t) ≤ αt−1,

and
(

∂

∂t
−∆g(t)

)

ϕ
∣

∣

∣

(x0,t0)
≤ L(x0, t0)ϕ(x0, t0),

in the barrier sense, whenever ϕ(x0, t0) > 0. Suppose ϕ(·, 0) ≤ 0 on Bg(0)(p, 2) ⋐

M for some p ∈ M . Then for any ℓ > α + 1, there exists T̂ = T̂ (n, α, ℓ) > 0
such that

ϕ(p, t) ≤ tℓ, ∀t ∈ [0, T ∧ T̂ ].

3. Soliton obstruction tensor: Riemannian case

In this section we follow [26] and consider the following family of covariant
symmetric 2-tensors

(3.1) S(t) := −2tRic(g(t))− g(t) + 2∇2u, ∀t > 0,

where g(t) is a fixed underlying Ricci flow on M for t > 0, and u a fixed
smooth solution to the heat equation

(

∂
∂t
−∆g(t)

)

u = 0 on M × (0,∞). Since
we only study the rigidity at the level of the Hessian of u, we work on the heat
equation directly, which differs slightly from [26].
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Ultimately our goal is to show that, for a Ricci flow as in the setting of
Theorem 1.3, S ≡ 0 if the initial data of u is chosen suitably. As noted in
Remark 1.4, we may then conclude that our Ricci flow is an expanding gradient
Ricci soliton. In order to do this, instead of considering the tensor S or the
scalar quantity |S|2 directly, we consider the curvature type tensor S?g. This
is motivated by the work of Tsui-Wang [49] on area decreasing maps between
manifolds evolving under mean curvature flow. The following is a simple linear
algebra fact.

Lemma 3.1. If n ≥ 3, then S ? g ≡ 0 is equivalent to S ≡ 0.

Proof. Since S is symmetric, we might find an orthonormal frame {ei}ni=1 with
respect to g such that Sij = λiδij. Hence for i 6= j,

(3.2) (S ? g)ijji = Siigjj + Sjjgii = λi + λj = 0.

Since n ≥ 3,

(3.3) 2λ1 = (λ1 + λ2) + (λ2 + λ3) + (λ1 + λ3)− 2(λ2 + λ3) = 0.

Repeating the argument for each i, we see that S ≡ 0. �

For each (x, t) ∈M × (0,∞), define

(3.4)















ϕ−(x, t) = inf

{

κ ≥ 0 : S ? g + κ · 1
2
g ? g > 0

}

;

ϕ+(x, t) = inf

{

κ ≥ 0 : S ? g − κ · 1
2
g ? g < 0

}

,

where the positivity of the (4, 0)-tensor corresponds to lying within the cone
of positive curvature operators. Clearly, if ϕ− = ϕ+ = 0 then S ? g ≡ 0. The
following key observation is that under Rm(g(t)) ∈ CPIC1, both ϕ− and ϕ+

satisfy a better evolution inequality.

Lemma 3.2. Given the above setting, suppose Rm(g(t)) ∈ CPIC1 for all t > 0.
Then, if ϕ is equal to either ϕ− or ϕ+ as defined in (3.4),

(

∂

∂t
−∆g(t)

)

ϕ ≤ Rϕ

on M×(0,∞) whenever ϕ ≥ 0 in the barrier sense. Here R denotes the scalar
curvature of g(t).

Proof. We only consider ϕ = ϕ− since the discussion of ϕ+ is identical. Recall
from [19, Lemma 2.33 & Lemma 2.40] that the tensor S satisfies

(

∂

∂t
−∆g(t)

)

Sij = −2t (2RikljRkl − RikRkj − RjkRik)

+ 2 (2Rkijlukl −Rikukj −Rkjuik)

= 2RikljSkl − RikSkj − RkjSik.

(3.5)
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under an orthonormal frame. At a point (x0, t0), we may assume that ϕ ≥ 0
and S ? g+ϕ · 1

2
g? g ∈ ∂CRm, as otherwise ϕ ≡ 0 locally, and the conclusion

holds trivially. By compactness of the sphere bundle and the definition of
S ? g, we may find an orthonormal frame {ei}ni=1 such that it diagonalises S
at (x0, t0) so that S(ei, ej) = λiδij with λ1 ≤ λ2... ≤ λn, and thus

(S ? g) |(x0,t0)(e1, e2, e2, e1) = −ϕ(x0, t0).
By using the Uhlenbeck trick, we extend {ei}ni=1 smoothly to an orthonormal
frame {Ei}ni=1 around (x0, t0) so that {EA}nA=1 satisfies

(3.6) ∂tE
i
A = Ri

jE
j
A

for each A ∈ {1, ..., n}. Hence the function ℓ(x, t) = −(S ? g)(E1, E2, E2, E1)
satisfies ℓ ≤ ϕ and ℓ(x0, t0) = ϕ(x0, t0) = −S11 − S22. Combining (3.5) with
(3.6), we have

(

∂

∂t
−∆g(t)

)

ℓ(x, t)
∣

∣

∣

(x0,t0)
= −2

n
∑

i=3

(R1ii1 +R2ii2)Sii − 2R1221 (S11 + S22)

≤ −
n
∑

i=3

(R1ii1 +R2ii2) (S11 + S22)− 2R1221 (S11 + S22)

= ϕ · (R11 +R22)

≤ Rℓ.

(3.7)

Here we have used R ∈ CPIC1 in the first inequality and Ric, ϕ ≥ 0 in the
second inequality. This completes the proof. �

4. Soliton obstruction tensor: Kähler case

In the Kähler case, we follow the standard conventions from complex geom-
etry. We say that g(t) is a Kähler-Ricci flow if its induced Kähler form ω(t)
satisfies

(4.1)
∂

∂t
ω(t) = −Ric(ω(t)) =

√
−1∂∂̄ log ωn.

We also follow the complex conventions

Rg = trω Ric, and ∆gf = trω
√
−1∂∂̄f, ∀f ∈ C∞(M).

In the Kähler setting, we shall only consider the (1, 1) part of the obstruction
tensor, or equivalently, the induced (1, 1)-forms:

(4.2) α(t) := −tRic(ω(t))− ω(t) +
√
−1∂∂̄u ∈ Λ1,1(M),

where
(

∂
∂t
−∆g(t)

)

u = 0 and Ric(ω(t)) = −
√
−1∂∂̄ log ω(t)n is the Ricci form

of ω(t), for all t > 0. As in the Riemannian case, for each (x, t) ∈M × (0,∞)
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we consider similar (but simpler) eigenvalues:

(4.3)

{

ϕ−(x, t) = inf {κ ≥ 0 : α + κω > 0} ;

ϕ+(x, t) = inf {κ ≥ 0 : α− κω < 0}
The following lemma is a Kähler parallel to Lemma 3.2.

Lemma 4.1. Given the above setting, suppose our solution to the Kähler Ricci
flow satisfies OB(g(t)),Ric(g(t)) ≥ 0 for all t > 0. Then, if ϕ is equal to either
ϕ− or ϕ+ as defined in (4.3),

(

∂

∂t
−∆g(t)

)

ϕ ≤ Rϕ

on M × (0,∞) whenever ϕ ≥ 0 in the barrier sense.

Proof. We follow the exact same argument as Lemma 3.2. Without loss of
generality we consider ϕ = ϕ−. Suppose ϕ(x0, t0) > 0. We may assume that
the (1, 1)-form α + ϕω has non-trivial kernel at (x0, t0). Choosing a locally
parallel unitary frame {Ei}ni=1 in spacetime around the point (x0, t0), such that
at (x0, t0) it diagonalises α, and so that α(E1, E1) = −ϕ(x0, t0), we can define
the function ℓ(x, t) := −α(E1, E1) which is a lower barrier to ϕ at (x0, t0).
Using [19, Lemma 2.33] again, we have the desired differential inequality

(

∂

∂t
−∆g(t)

)

ℓ(x, t)
∣

∣

∣

(x0,t0)
= −R11ppαpp

≤ −
n
∑

p=1

R11ppα11

= R11̄ϕ ≤ Rℓ.

(4.4)

Here we used that α11̄ is the lowest eigenvalue of α at (x0, t0) in the first
inequality, and then that OB,Ric ≥ 0. �

5. Global solution to the heat equation from the square

distance function

In this section we consider those Ricci flows which start from a metric cone.
In contrast to [26], we will assume stronger curvature conditions on our flow.
Let (Mn, g(t)), t ∈ (0,∞) be a smooth complete solution to the Ricci flow such
that for some α, v0 > 0, the following conditions hold for all t > 0

(a) |Rm| ≤ αt−1;
(b) either

(i) Rm(g(t)) ∈ CPIC1 or,
(ii) g(t) is Kähler with OB(g(t)),Ric(g(t)) ≥ 0;

(c) AVR(g(t)) ≥ v0.
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By Theorem 2.1 we may assume the (conjugate) heat kernel estimates for g(t).
We also assume that g(t) comes out of a metric cone C(X) in the pointed
Gromov-Hausdorff sense:

(M, dg(t), x0)
pGH−−→
t↓0

(C(X), dc, o),

where o is the vertex of the cone. Following [26], we want to consider the
heat flow from the square of the distance function on C(X) and use it to
construct an obstruction tensor S (see (3.1)) which will ultimately measure the
discrepancy between g(t) and a suitable expanding Ricci soliton flow. Thanks
to Proposition 2.2 part (ii), we may identify (C(X), dc, o) with the pointed
metric space (M, d0, x0), where d0 is the pointwise limit of the metrics dg(t)
as t ↓ 0. In this way, we avoid the technicality of using dc as initial data.
Thoughout this section, we will assume this set-up.

Since the Ricci flow is not smooth up to t = 0, we construct our solution
to the heat equation more carefully. In particular, we use a regularization
result of Cheeger-Jiang-Naber [13] for the distance function at small times.
The following is a modified version of [26, Proposition 3.1].

Lemma 5.1. Under the above setting, there exist ti, εi ↓ 0, Ri := ε
− 1

n

i → +∞
and ui,0 ∈ C∞

(

Bg(ti)(x0, 2Ri)
)

such that

(i)

∆g(ti)ui,0 =
n

2
;

(ii)

sup
Bg(ti)

(x0,2Ri)

∣

∣

∣

∣

ui,0 −
1

4
d2g(ti)(x0, ·)

∣

∣

∣

∣

≤ εi ≤ 1

(iii)
ˆ

Bg(ti)
(x0,2Ri)

∣

∣

∣

∣

∇g(ti),2ui,0 −
1

2
g(ti)

∣

∣

∣

∣

2

g(ti)

dµg(ti) ≤ C(n, v0)εi

(iv)

|∇g(ti)ui,0|g(ti)(·) ≤ Cn(dg(ti)(x0, ·) + 1) on Bg(ti)(x0, Ri).

Proof. The result is achieved by applying [13, Theorem 6.3] to appropriately
rescaled metrics gR(t) := R−2g(t). Indeed, by our assumption of the pointed
Gromov-Hausdorff convergence to C(X), for any R > 0 and δ > 0,

(

BgR(t)(x0, δ
−1), dgR(t)

)

=
(

Bg(t)(x0, Rδ
−1), R−1dg(t)

)

is (0, δ2)-symmetric for sufficiently small t > 0. So, for any positive sequence
εi ↓ 0, one may argue by [13, Theorem 4.22 and Theorem 6.3] as in the proof
of [26, Proposition 3.1] to see that for all sufficiently small positive t, there
exists a smooth function h : BgR(t)(x0, 2) → R such that

(i)’ ∆gR(t)h = n
2
;
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(ii)’ supBgR(t)(x0,2)

∣

∣

∣
h− 1

4
d2gR(t)(x0, ·)

∣

∣

∣
≤ ε2i ;

(iii)’
´

BgR(t)(x0,2)

∣

∣

∣
∇gR(t),2h− gR(t)

2

∣

∣

∣

2

dµgR(t) ≤ C(n, v0)ε
2
i .

Setting u = R2h, we can view u as a function on Bg(t)(x0, 2R) = BgR(t)(x0, 2),
and using the volume comparison, rewrite the above estimates as

(i) ∆g(t)u = n
2
;

(ii) supBg(t)(x0,2R)

∣

∣

∣
u− 1

4
d2g(t)(x0, ·)

∣

∣

∣
≤ ε2iR

2;

(iii)
ˆ

Bg(t)(x0,2R)

∣

∣

∣

∣

∇g(t),2u− g(t)

2

∣

∣

∣

∣

2

dµg(t) ≤ C(n, v)ε2iVol
(

Bg(t)(x0, 2R)
)

≤ C ′(n, v0)ε
2
iR

n.

Since R > 0 is arbitrary, we set Ri := (1/εi)
1
n → +∞ and choose sufficiently

small ti such that the above estimates hold. The resulting ui,0 := u satisfies (i),
(ii) and (iii). Property (iv) follows by applying the interior gradient estimate
to (i) and using the non-negative Ricci curvature and (ii). �

Remark 5.2. Although in the previous lemma we are assuming strong non-
negativity of the curvature, the result still holds under the weaker assumption
that 0 ≤ Ric(g(t)) ≤ αt−1 for some α > 0.

We want to use the ui,0 obtained from Lemma 5.1 to construct a global
heat flow on M × (0,+∞) with weak initial data 1

4
d20(·, x0). In order to do so,

let ti ↓ 0 be the sequence of times obtained from Lemma 5.1, and let φ be a
smooth non-increasing function on [0,+∞) which vanishes outside [0, 2] and
is equal to 1 on [0, 1]. Then, we define a sequence of approximations vi to our
desired solution via the formula

(5.1) vi(x, t) :=

ˆ

M

K(x, t; y, ti) · φ
(

dg(ti)(x0, y)

Ri

)

ui,0(y) dµg(ti)(y),

where K(x, t; y, s) denotes the heat kernel of the Ricci flow on M × (0,+∞).
Equivalently, vi is the minimal solution to the heat equation

(

∂
∂t
−∆g(t)

)

vi = 0
on M × [ti,+∞) with initial data φ · ui,0 at t = ti.
In order to extract our desired limiting solution, we require uniform bounds

on the sequence vi locally in spacetime.

Proposition 5.3. There exists C0(n, α, v0) > 0 such that the following holds.
For any r > 1, there exists N(r) ∈ N such that

(5.2) |vi(x, t)| ≤ C0r
2, ∀i > N, ∀(x, t) ∈ Bd0(x0, r)× [r−2, r2].

In particular, after passing to a subsequence, vi → v∞ in C∞
loc (M × (0,+∞))

as i→ +∞ for some v∞ on M × (0,+∞) satisfying
(

∂
∂t
−∆g(t)

)

v∞ = 0.
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Proof. Since g(t) is smooth with |Rm(g(t))| ≤ αt−1 for t > 0, once we have
shown the L∞

loc estimate (5.2), the existence of a smooth subsequential limit
follows from standard parabolic theory. Moreover, by Lemma 5.1 and (5.1),
we see that vi ≥ −εi ↑ 0 on M × [ti,+∞), with εi, ti ↓ 0. Therefore, when
proving (5.2), it suffices to estimate the vi from above.
For any large r > 1, fix N ∈ N so that ti <

1
2
r−2 for any i > N . Then, for

any (x, t) ∈ Bd0(x0, r)× [r−2, r2], since the integral of the heat kernel over M
is bounded by 1,

vi(x, t) :=

ˆ

M

K(x, t; y, ti) · φ
(

dg(ti)(x0, y)

Ri

)

ui,0(y) dµg(ti)(y)

≤
ˆ

Bg(ti)(x0,2Ri)

K(x, t; y, ti) · ui,0(y) dµg(ti)(y)

≤
ˆ

M

K(x, t; y, ti) ·
1

4
d2g(ti)(x0, y) dµg(ti)(y) + εi.

To estimate the above integral, we first observe that by the triangle inequal-
ity and Proposition 2.2, for any x ∈ Bd0(x0, r) ⋐M and y ∈M ,

d2g(ti)(x0, y) ≤ 2d2g(ti)(x0, x) + 2d2g(ti)(x, y) ≤ 2r2 + 2d2g(ti)(x, y),

so that
ˆ

M

K(x, t; y, ti) ·
1

4
d2g(ti)(x0, y) dµg(ti)(y)

≤ 1

2

ˆ

M

K(x, t; y, ti) · d2g(ti)(x, y) dµg(ti)(y) + 2r2

≤
ˆ ∞

0

C ′
0

tn/2
exp

(

− τ 2

C0t

)

τn+1 dτ + 2r2

≤ C1(r
2 + t),

where we have used the heat kernel estimate from Theorem 2.1, the co-area
formula, and the volume comparison for g(ti). This completes the proof. �

Given the construction of v∞ from Proposition 5.3, in order to obtain more
reasonable convergence to 1

4
d20(·, x0) as t ↓ 0, we require higher order estimates

on our sequence vi. Such estimates will also enable the use of a localised
maximum principle in the proof of the main theorem 1.3.

Lemma 5.4. For any k ∈ N, there exist C(n, k, α) > 0 such that the following
holds. For all r > 1 there exists N(r, k) ∈ N such that
(5.3)

|∇k,givi|2(x, t) ≤
C(n, k, α)

(t− ti)k−1
r2, ∀i > N, ∀(x, t) ∈ Bg(ti)(x0, r)× (ti, ti + r2].

In particular

(5.4)

∣

∣

∣

∣

v∞(x, t)− 1

4
d0(x, x0)

2

∣

∣

∣

∣

≤ C(n, α)r
√
t, ∀t ∈ (0,∞),
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where v∞ is the solution constructed in Proposition 5.3, so that v∞(·, t) →
1
4
d0(·, x0)2 as t ↓ 0 in Cβ

loc(M) (with respect to local structure) for some β ∈
(0, 1).

Proof. Recall that, thanks to our choice of cutoff function, vi is a solution
to the heat equation with vi(·, ti) = ui,0(·) on Bg(ti)(x0, Ri). Fix r > 1 and
consider the parabolic rescalings

g̃i(t) = r−2g(ti + r2t), ṽi(·, t) = r−2vi(·, ti + r2t).

Note that ṽi is a solution to the heat equation
(

∂
∂t
−∆g̃i(t)

)

ṽi = 0 with initial
data ṽi(·, 0) = r−2ui,0(·) on Bg̃i(0)(x0, Rir

−1), and |Rm(g̃i(t))| ≤ αt−1 on M ×
(0, 1]. Moreover, it follows from Shi’s estimate that for all k ∈ N, there exists
C(n, k, α) > 0 such that for all (x, t) ∈M × (0, 1],

|∇g̃i(t),kRm(g̃i(t))|g̃i(t) ≤ C(n, k, α)t−(k/2+1).

Thanks to the local gradient estimates for ui,0 in Lemma 5.1, we have uni-
form gradient bounds for the ṽi on Bg̃i(0)(x0, 1)× [0, 1]. Using the upper bound
of the curvature and its derivatives, we may employ a standard argument for
Ricci flows which uses the Bernstein-Shi trick and a Perelman type cutoff
function to establish that

(5.5) |∇k,g̃iṽi|2 ≤
C(n, k, α)

tk−1
,

for all k ∈ N on Bg̃i(0)(x0,
1
2
) × (0, 1]. This is equivalent to (5.3) under our

rescaling. Furthermore, as

(5.6) |∂tvi| = |∆g(t)vi| ≤ C(n, α)r(t− ti)
−1/2, ∀t ∈ (ti, ti + r2],

by integrating in time we obtain (5.4).

It remains to show that vi → v∞ in Cβ
loc(M × [0,+∞)) for some β ∈ (0, 1).

Fix a smooth reference metric h = g(1). By the gradient estimate (5.3) with
k = 1, and the fact that g(t) ≤ g(ti) for t ≥ ti from Ric ≥ 0, we have

(5.7) |vi(x, t)− vi(y, t)| ≤ C(n, α)r · dg(ti)(x, y),
for all x, y ∈ Bg(ti)(x0, r) and t ∈ [ti, ti + r2]. It follows from Proposition 2.2
that there exists β > 0 such that for any r > 1, vi is uniformly β-Hölder
continuous with respect to the metric h on Bh(x0, r)× [ti, ti + r2] as i→ +∞.
The result follows. �

Remark 5.5. In fact, it follows from (5.6) and (5.7) that there exists β(n, α) > 0
so that

v∞ ∈ C∞
loc (M × (0,+∞)) ∩ Cβ,β/2

loc (M × [0,+∞)) ,

where the parabolic Hölder regularity is defined using local charts on M (or
equivalently via a smooth metric g(t0)) instead of using the rough distance
metric d0 on M , so that the regularity is with respect to the smooth structure
of M .
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6. Ricci flows out of metric cones

Now we are ready to prove Theorem 1.3. We begin with the Riemannian
case. More precisely, we show that if a Ricci flow coming out of a metric cone
has non-negative 1-isotropic curvature and Euclidean volume growth, then it
must be an expanding Ricci soliton.

Theorem 6.1. Suppose (Mn, g(t)) is a complete non-compact Ricci flow on
M × (0,+∞) such that for some v0, α > 0, the following properties hold for
all t > 0

(a) Rm(g(t)) ∈ CPIC1;
(b) |Rm(g(t))| ≤ αt−1;
(c) AVR(g(t)) ≥ v0 > 0.

Suppose further that (M, d0, x0) is isometric to a metric cone (C(X), dc, o),
where d0 is the well-defined metric on M given by the pointwise limit of dg(t)
as t ↓ 0 (see Proposition 2.2). Then there exists a smooth function u on
M × (0,+∞) such that

(i) 2tRic(g(t)) + g(t)− 2∇2u = 0 on M × (0,+∞);

(ii) u(·, t) → 1
4
d0(x0, ·)2 in Cβ

loc(M) for some β ∈ (0, 1) as t ↓ 0.

Remark 6.2. As in the proof of Theorem 2.1, if the Ricci flow in Theorem 6.1
is only known to exist for a short-time, then it can be extended to all t > 0
with the same properties.

Proof. Letting u := v∞ be the function obtained in Proposition 5.3, (ii) follows
immediately from Lemma 5.4. In order to prove (i), it is more convenient to
translate our sequence of approximations in time by ti, i.e. replace gi(t) by
g(ti + t) and vi(t) by vi(ti + t). We note that since ti ↓ 0, these translated
approximations still converge locally smoothly to v∞, and thus it suffices to
estimate the translated tensors

Si(t) := −2tRic(gi(t))− gi(t) + 2∇2,gi(t)vi(t).

We let ϕi ≥ 0 be the negative part of the lowest eigenvalue of Si ? gi
with respect to the cone of non-negative curvature operators as in (3.4). If
Gi(x, t; y, s) denotes the conjugate heat kernel for the Ricci flow gi(t), define
the comparison function

ψi(x, t) :=

ˆ

M

Gi(x, t; y, 0)φ

(

dgi(0)(x0, y)

Ri

)

ϕi(y, 0) dµgi(0)(y) ≥ 0,

where φ is a smooth non-increasing function on [0,+∞] which is identically 1
on [0, 1

2
] and vanishes outside of [0, 1]. Thus, ψi(·, 0) = ϕi(·, 0) onBgi(0)(x0, Ri/2),

but more importantly, Lemma 3.2 implies that Ψi := ϕi − ψi satisfies

(6.1)

(

∂

∂t
−∆gi(t)

)

Ψi ≤ Ri ·Ψi,
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whenever Ψi ≥ 0 in the barrier sense. For convenience, we now work on the
re-scaled picture. For each sufficiently large r > 1, we consider

g̃i(t) = r−2gi(r
2t), ṽi(·, t) = r−2vi(·, r2t), S̃i(t) = r−2Si(r

2t),

and the corresponding ϕ̃i = ϕi(·, r2t), ψ̃i = ψi(·, r2t) and Ψ̃i = Ψi(·, r2t). It
follows from Lemma 5.4 that

Ψ̃i ≤ ϕ̃i ≤ C(n, α)t−1/2 on Bg̃i(0)(x0, 1)× (0, 1],

and therefore, we may apply Theorem 2.3 to Ψ̃i to conclude that there exists
T̂ (n, α) ∈ (0, 1] such that Ψ̃i(x, t) ≤ t on Bg̃i(0)(x0, 1/2) × (0, T̂ ]. Rescaling
back, we have shown that

(6.2) Ψi(x, t) ≤ r−2t, ∀(x, t) ∈ Bgi(0)(x0, r/2)× (0, T̂ r2].

Next, we estimate ψi from above. Using Lemma 5.1 part (iii) and the fact
that

ϕi(·, 0) ≤ 2 · |Si(0)|gi(0) = 4 ·
∣

∣∇2,gi(0)vi − gi(0)/2
∣

∣

gi(0)
,

we see that

ψi(x, t) ≤
(

ˆ

Bgi(0)
(x0,Ri)

ϕ2
i dµgi(0)

)1/2(
ˆ

Bgi(0)
(x0,Ri)

G2
i (x, t; y, 0) dµgi(0)(y)

)1/2

≤ C(n, v0) · ε
1
2
i ·
(

ˆ

Bgi(0)
(x0,2Ri)

G2
i (x, t; y, 0) dµgi(0)(y)

)1/2

.

By the heat kernel estimate from Theorem 2.1, the co-area formula and volume
comparison, for all t > 0 we have

ˆ

Bgi(0)
(x0,2Ri)

G2
i (x, t; y, 0) dµgi(0)(y)

≤ C0(n, v0, α)

tn/2

ˆ

M

Gi(x, t; y, 0) dµgi(0)(y)

=
C ′

0

tn/2

ˆ ∞

0

rn−1

tn/2
exp

(

− r2

C0t

)

dr ≤ C1(n, v, α)

tn/2
,

and therefore

(6.3) ψi(x, t) ≤ C(n, v0, α) · ε
1
2
i · t−n/4.

We combine (6.2) and (6.3) to conclude that, for all (x, t) ∈ M × (0,+∞),
the inequality

ϕi(x, t) = Ψi(x, t) + ψi(x, t) ≤
C(n, α, v0)

tn/4
ε

1
2
i + r−2t

holds for sufficiently large i and r > 1. Since vi → v∞ and gi → g locally
uniformly smoothly onM×(0,+∞), by letting i→ +∞, followed by r → +∞,
we conclude that S? g ≥ 0 on M × (0,+∞). By repeating the argument with
the positive part of the largest eigenvalue of Si ?gi with respect to the cone of
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non-positive curvature operators, we deduce that S ? g ≡ 0 and hence S ≡ 0
on M × (0,+∞) by Lemma 3.1. This completes the proof. �

Theorem 1.3 now follows from Theorem 6.1 and Theorem 2.1.

Proof of Theorem 1.3. If (C(X), dc, o) is a metric cone at infinity of (M, g0),
there exists x0 ∈ M and Ri → +∞ such that (C(X), dc, o) is the pointed
Gromov-Hausdorff limit of (M,R−2

i g0, x0). By applying Theorem 2.1 to each
gi,0 = R−2

i g0, we obtain a sequence of immortal Ricci flows (M, gi(t), x0), t ∈
[0,+∞). The existence of (M∞, g(t), x∞) with properties (a)-(d) follows from
Hamilton’s compactness theorem [28] and Proposition 2.2. The existence of u
with properties (e)-(f) follows from Theorem 6.1. �

As an application, we give an alternative proof to [26, Theorem 1.3].

Corollary 6.3. Suppose (Mn, g0) is a complete non-compact manifold with
dimension n ≥ 3 and of Euclidean volume growth such that it is PIC1 pinched
in the following sense:

(6.4) Rm(g0)− ε0 · Rg0 ? g0 ∈ CPIC1,

for some small ε0 ∈ (0, 1
2n(n−1)

). Then (M, g0) is isometric to flat Euclidean
space.

Proof. By our choice of ε0, (6.4) implies that R ≥ 0 and Rm(g0) ∈ CPIC1.
By Gromov compactness and the celebrated work of Cheeger-Colding [12],
there exists Ri → +∞ and a metric cone C(X) such that (Mi, gi, xi) =
(M,R−2

i g0, x0) converges to C(X) in the pointed Gromov-Hausdorff sense as
i→ +∞. We will follow the proof of Theorem 1.3. For the sake of convenience,
we instead apply the existence theory in [39]. Since (6.4) is scaling invariant, it
follows from [39, Theorem 1.3] that there exists a sequence of immortal Ricci
flows gi(t) on M with gi(0) = R−2

i g0 that is PIC1 pinched with a slightly dif-
ferent ε0 which is uniform in i→ +∞ and t > 0. Moreover, it follows from the
proof of [51, Theorem 7] that AVR(gi(t)) = AVR(g0) for all i ∈ N and t ≥ 0.
We now follow the proof of Theorem 1.3 to obtain a smooth manifoldM∞ and
an immortal Ricci flow g∞(t), t ∈ (0,+∞) onM∞ which is coming out of C(X)
in the pointed Gromov-Hausdorff sense. Moreover AVR(g∞(t)) = AVR(g0) for
t > 0 using Colding’s volume continuity [20], see the proof of [44, Theorem
1.2]. It follows from Theorem 6.1 that (N, g,∇f) = (M∞, g∞(1),∇u(1)) is an
expanding gradient Ricci soliton which is also PIC1 pinched.
Since (N, g,∇f) is Ricci pinched, the scalar curvature decays exponentially

at spatial infinity (see for example the proof of [24, Proposition 1.8]). Thanks
to Rm(g) ∈ CPIC1, by [39, Lemma A.2] we can improve this to the full cur-
vature tensor decaying exponentially at spatial infinity, and thus (N, g) is
isometric to flat Euclidean space by [9, Theorem 1.3 & 1.4]. In particular,
AVR(N, g) = AVR(M, g0) = 1. The flatness of (M, g0) follows from volume
comparison. �
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In the Kähler case, it is also interesting to see how the complex structure
and metric structure are related. We have the following partial answer under
the curvature assumption OB,Ric ≥ 0. This condition is weaker than non-
negative 1-isotropic curvature and is much more natural in the context of
complex geometry.

Theorem 6.4. Suppose M is a non-compact complex manifold and g(t) is a
complete non-compact Kähler-Ricci flow on M × (0,+∞) such that for some
v0, α > 0, the following conditions hold for all t > 0

(a) Ric(g(t)),OB(g(t)) ≥ 0;
(b) |Rm(g(t))| ≤ αt−1;
(c) AVR(g(t)) ≥ v0 > 0.

Suppose further that (M, d0, x0) is isometric to a metric cone (C(X), dc, o),
where d0 is the well-defined metric on M given by the pointwise limit of dg(t)
as t ↓ 0 (see Proposition 2.2). Then there exists a smooth function u on
M × (0,+∞) such that

(i) tRic(ω(t)) + ω(t)−
√
−1∂∂̄u = 0 on M × (0,+∞);

(ii) u(·, t) → 1
2
d0(·, x0)2 in Cβ

loc(M) for some β ∈ (0, 1) as t ↓ 0;

(iii) ω(t)− 1
2

√
−1∂∂̄d0(·, x0)2 → 0 in the sense of currents as t ↓ 0.

In particular, ω∞ = 1
2

√
−1∂∂̄d0(·, o)2 defines a weak Kähler metric on M∞.

Furthermore, if condition (a) is strengthened to non-negative 1-isotropic cur-
vature, then Mn is biholomorphic to C

n and g(t) is an expanding Kähler-Ricci
soliton.

Proof. The existence of a function u with property (ii) follows from Proposi-
tion 5.3 and Lemma 5.4. The proof of (i) is identical to that of (i) in Theo-
rem 6.1 by using Lemma 4.1 instead of Lemma 3.2.
It remains to verify (iii). The existence of limt→0 ω(t) as a current has been

shown by Lott [40]. In order to identify it, we will use an idea from [40,
Proposition 6.1]. By (i) and (ii), it suffices to show that t · Ric(ω(t)) → 0 as
t ↓ 0 in the sense of currents.
We might compare Ric(ω(t)) as t ↓ 0 with Ric(ω(1)) in the following way:

(6.5) t · Ric(ω(t)) = t · Ric(ω(1)) + t
√
−1∂∂̄ log

det g(1)

det g
,

where ω(1) is of bounded curvature on M . Since 0 ≤ R(g(t)) ≤ αt−1 for some
α > 0, the Ricci flow equation implies

(6.6) 0 ≤ t log

(

det g(t)

det g(1)

)

≤ t log t−α → 0

as t ↓ 0. Thus ω∞ :=
√
−1∂∂̄ 1

2
d20(x0, ·) defines a weak Kähler metric on M .

Finally if the condition (a) is strengthened to non-negative 1-isotropic cur-
vature, it follows from Theorem 6.1 that g(t) is Kähler and an expanding Ricci
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soliton with Ric ≥ 0. Therefore, it is an expanding Kähler-Ricci soliton. The
biholomorphism follows from [10]. �

Corollary 1.5 follows from the Kähler case in Theorem 2.1, Cheeger-Colding
theory [12] and Theorem 6.4. In the compact case, it is already known by the
work [16, 50] that compact Kähler manifold with OB > 0 are biholomorphic
to CP

n. It will be interesting to see if M in Corollary 1.5 is biholomorphic to
Cn under only OB,Ric ≥ 0 and Euclidean volume growth.
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