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Giant diffusion, where the diffusion coefficient of a Brownian particle in a periodic potential with
an external force is significantly enhanced by the external force, is a non-trivial non-equilibrium
phenomenon. We propose a simple stochastic model of giant diffusion, which is based on a biased
continuous-time random walk (CTRW). In this model, we introduce a flight time in the biased
CTRW. We derive the diffusion coefficients of this model by the renewal theory and find that there
is a maximum diffusion coefficient when the bias is changed. Giant diffusion is universally observed
in the sense that there is a peak of the diffusion coefficient for any tilted periodic potentials and
the degree of the diffusivity is greatly enhanced especially for low-temperature regimes. The biased
CTRW models with flight times are applied to diffusion under three tilted periodic potentials.
Furthermore, the temperature dependence of the maximum diffusion coefficient and the external
force that attains the maximum are presented for diffusion under a tilted sawtooth potential.

I. INTRODUCTION

A tiny particle immersed in an aqueous solution ex-
hibits a random zigzag motion by collisions with sur-
rounding water molecules [1, 2]. This motion is called
Brownian motion. There are two ways to describe the ir-
regular motions. One is a stochastic dynamic equation of
motion, i.e., the Langevin equation [3], which describes
the trajectory of a Brownian particle. The other is a
partial differential equation describing the time evolu-
tion of the density, i.e., the diffusion equation [4]. These
two equations are equivalent in the sense that the two
equations can be derived from each other [5]. The dif-
fusivity of a Brownian particle can be characterized by
the mean square displacement (MSD). For normal dif-
fusion, the MSD is proportional to time t [2]. The dif-
fusion coefficient D, which is a degree of diffusivity, is
defined by the slope of the MSD in the long-time limit,
i.e., D ∼ 〈x(t)2〉/(2t) for t → ∞, where x(t) is the posi-
tion of a one-dimensional Brownian motion at time t with
x(0) = 0 and 〈·〉 represents the ensemble average. Dif-
fusion coefficient DE is determined by the temperature
T and the viscous friction coefficient η of the aqueous
solution:

DE =
kBT

η
, (1)

which is known as the Einstein’s relation [6], where kB is
Boltzmann’s constant and η is viscous friction coefficient.
The continuous-time random walk (CTRW) is a fun-

damental stochastic model of diffusion as well as anoma-
lous diffusion, where the MSD does not grow linearly
with time t, i.e., 〈x(t)2〉 ∝ tα with α 6= 1 [7, 8]. The
CTRW is a random walk with continuous random waiting
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times between jumps, where the waiting times are inde-
pendent and identically distributed (IID) random vari-
ables. When the probability of a one-dimensional ran-
dom walker stepping in the right direction is not equal
to 1/2, i.e., asymmetric random walk, it is called a bi-
ased CTRW. The CTRW has a deep connection with a
random walk on a random energy landscape, i.e., the
trap model [9, 10]. In fact, the trap model with a peri-
odic energy landscape corresponds to the CTRWs where
the waiting-time distribution is identical. Such a diffu-
sion is experimentally constructed and the theory of the
CTRW can be applied to the diffusion in a periodic po-
tential [11]. When the energy depth at a site is randomly
distributed according to an exponential distribution, the
waiting-time distribution follows a power-law distribu-
tion [9]. In the CTRW and the quenched trap model,
anomalous diffusion, ergodicity breaking, and non-self
averaging of transport coefficients are observed when the
mean waiting time diverges. [8, 9, 12–17].
Several experimental systems are described by Brow-

nian motions in tilted periodic potentials. For example,
a rotational motion of F1 −ATPase, which is a molec-
ular motor synthesizing ATP exhibits a thermal motion
under a periodic potential and a constant torque can be
added experimentally [18]. Therefore, the motor’s rota-
tional position can be described by the Brownian motion
in a tilted periodic potential. Other examples include
the diffusion of ions in simple pendulums [5], supercon-
ductors [19], and Josephson tunneling Junction [20]. Ig-
noring the inertia term in the Langevin equation, i.e., the
overdamped Langevin equation, yields the dynamic equa-
tion of the Brownian motion. The overdamped Langevin
equation under a tilted periodic potential is described by

η
dx

dt
= −

dV (x)

dx
+ F +

√
2ηkBTξ(t), (2)

where V (x) is the periodic potential with period L, i.e.,
V (x + L) = V (x), F is a constant external force, and

http://arxiv.org/abs/2404.12761v1


2

ξ(t) is a white Gaussian noise with delta correlation
〈ξ(t)ξ(t′)〉 = δ(t − t′). Similar systems such as diffusion
of active Brownian particles in a tilted periodic potential
as well as diffusion under a soft matter potential are also
investigated recently [21, 22].
Brownian motion in a tilted periodic potential exhibits

a giant increment of the diffusion coefficient by external
force F compared to that without external force, which
is called giant diffusion (GD) [23]. For Brownian mo-
tion in tilted periodic potentials, the diffusion coefficient
is calculated by the first passage time (FPT) statistics
[23]. In particular, the diffusion coefficient is analytically
obtained by the following formula [23]:

D =
DEL

2
∫ L

0 I2+(x)I−(x)dx(∫ L

0 I+(x)dx
)3 , (3)

where,

I±(x) =

∫ L

0

eβ(±V (x)∓V (x∓y)−Fy)dy . (4)

However, the diffusion coefficient is represented by an
integration and is not expressed as a function of external
force F . Therefore, it is difficult to see the universality
of the GD in general.
This paper aims to provide a new model of diffusion

under a tilted periodic potential based on biased CTRWs
to investigate a universality of GD. From previous studies
[11], it is shown that the Brownian motion in the peri-
odic potential can be mapped to a CTRW. Therefore, we
expect that the Brownian motion in the tilted periodic
potential can be mapped to a biased CTRW. However,
the ordinary biased CTRWs cannot exhibit GD. We pro-
pose a variation of the biased CTRW model as a model
to explain GD. To construct a model of the GD, we in-
troduce a flight time in the biased CTRW, which is the
time for a Brownian particle to move from a top to one
of its two adjacent bottoms of the potential.
This paper is organized as follows. In Section II, we

describe a biased CTRW with flight times, which is a
model of the GD. In Section III, we derive the diffusion
coefficient in a biased CTRW with flight and show the
universality of the GD in tilted periodic potential. The
theoretical results are applied to diffusion in a sawtooth
periodic potential. Section IV is devoted to the conclu-
sion.

II. MODEL

A biased CTRW is a CTRW with an asymmetric jump
probability, which is a model of diffusion with a constant
external force. The convection-diffusion equation can be
derived by the continuous limit in the biased CTRW [24].
When the second moment of the waiting time diverges,
the MSD increases as tα with α > 1 in a biased CTRW,
which is called a field-induced superdiffusion [25–28]. In
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FIG. 1. Transition probabilities p, q, r, l, and the bottom and
the top of a tilted periodic potential U(x), where x1, x3, x5

are stable points of the potential and x2 and x4 are unstable
points. Probabilities p and q are the probabilities of stepping
from the bottom to the right and the left top, respectively.
Probabilities r and l are the probabilities of stepping from the
top to the right and the left bottom, respectively.

what follows, we denote the probabilities that a particle
jumps to the right and the left sites by P+ and P−,
respectively, where P+ + P− = 1. In the biased CTRW,
the probabilities are not equal, i.e., P+ 6= P−. When
there is a bias in the system, the probabilities depend on
the external force F .

We construct a stochastic model of a coarse-grained
Brownian motion in a tilted periodic potential U(x) =
V (x)−Fx, where we assume the periodic potential V (x)
is symmetric. In what follows, we assume F > 0 without
loss of generality because V (x) is symmetric. In other
words, P+ > P−. Figure 1 demonstrates a tilted peri-
odic potential U(x). In the biased CTRWs, the jump is
assumed to occur instantaneously. This assumption is a
good approximation if the waiting time is much longer
than the time for a Brownian particle to move form the
top to the bottom of the potential. However, this as-
sumption is not valid in general. Therefore, we intro-
duce flight time θ. Flight time is defined as the time for
a Brownian particle to travel from a top to one of the
neighboring bottoms of the potential (see Fig. 2). We
define the waiting time τ as the time for a Brownian par-
ticle to move from a bottom to one of the tops of the
potential. Both τ and θ are random variables. We also
define a net waiting time, denoted by T , as the time for
a Brownian particle to move from a bottom to the next
left or right bottom. We note that net waiting time T is
a sum of τ +θ, i.e., T =

∑n

i=1(τi+θi), where τi is the ith
waiting time, θi is the ith flight time, and n is a random
variable related to the number of trials to reach one of
the next bottoms.
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FIG. 2. Schematic figure of a biased CTRW with flight times.
The thin line is a trajectory of a Brownian motion under a
tilted periodic potential. The solid line is a trajectory of a
biased CTRW with flight times, where the net waiting time
is a sum of waiting times and flight times.

III. RESULT

A. Transition probabilities

Here, we analytically estimate the transition probabil-
ities of a Brownian particle in a tilted periodic potential
(see Fig. 1). Transition probabilities p and q are the
probabilities of stepping from the bottom to the right
and the left top, respectively. Transition probabilities r
and s are the probabilities of stepping from the top to
the right and the left bottom, respectively. The transi-
tion probabilities p, q, r, l are obtained analytically for a
general potential [29]. Using stable and unstable points
of U(x), we have the transition probabilities p and q:

p =

∫ x3

x2
eβU(y)dy

∫ x4

x2
eβU(y)dy

, q =

∫ x4

x3
eβU(y)dy

∫ x4

x2
eβU(y)dy

, (5)

where β is the inverse temperature, i.e., β = 1/(kBT ),
x2 and x4 are unstable points, x3 is a stable point of
potential U(x). Moreover, the transition probabilities r
and l are also given by

r =

∫ x4

x3
eβU(y)dy

∫ x5

x3
eβU(y)dy

, l =

∫ x5

x4
eβU(y)dy

∫ x5

x3
eβU(y)dy

, (6)

where x5 is a stable point. Because U(x) is a periodic
tilted potential, probabilities r and l are also described
by

r =

∫ x2

x1
eβU(y)dy

∫ x3

x1
eβU(y)dy

, l =

∫ x3

x2
eβU(y)dy

∫ x3

x1
eβU(y)dy

, (7)

where x1 is a stable point. From Eqs. (5) and (6), equal-
ities p+ q = 1 and r + l = 1 are satisfied.

B. Diffusion coefficient

In CTRWs, a stepping from the bottom to either the
left or the right bottom occurs immediately as quickly as
an assigned waiting time is over. However, in a Brown-
ian motion in a tilted periodic potential, a step from a
bottom to either the left or the right bottom may not
be completed even if the particle reaches the left or the
right top. It is important to note that in Brownian mo-
tion, the particle can return to the original bottom after
it reaches the left or right top. Therefore, the prob-
ability density function (PDF) of net waiting time T is
not equal to that of waiting time τ . Let φ(t), χ(t), and
ω(t) be the PDFs of the time for a Brownian particle to
move from the original bottom and return to the original
bottom after reaching the left or the right top, the time
for a Brownian particle to move from the original bottom
to the right or the left bottom, and τ + θ, respectively.
We note that the PDF of waiting time τ− for a Brow-
nian particle to move from a bottom to the left top of
the potential before reaching the right top is the same as
that τ+ for a Brownian particle to move from a bottom
to the right top of the potential before reaching the left
top. This equivalence is because both waiting times are
defined by τ ≡ min(τ+, τ−). By a simple calculation,
the Laplace transforms of φ(t) and χ(t) with respect to
t become

φ̃(s) = (pl+ qr) ω̃(s), (8)

χ̃(s) = (pr + ql) ω̃(s). (9)

We denote the Laplace transform of function f(t) with

respect to t by f̃(s). Net waiting time T is the time re-
quired for a Brownian particle to move from a bottom
to one of the next neighboring bottoms. When a Brow-
nian particle jumps to the next neighboring well after it
moves a top and returns to the original well n− 1 times,
net waiting time T is a n-times sum of τ + θ. Therefore,
the PDF of net waiting time T , ψ(t), is given by

ψ̃(s) = χ̃(s)

∞∑

n=1

φ̃n−1(s) =
χ̃(s)

1− φ̃(s)
, (10)

where we used the fact that the distribution of the sum
of random variables can be expressed by the product
of the corresponding Laplace transformations. Further-
more, using a formula between the moments of a random
variable and the Laplace transform of the PDF, i.e.,

E[T r] = (−1)r
drψ̃(s)

dsr

∣∣∣∣∣
s=0

, (11)



4

where E[·] represents the expectation value, we have the
mean µ and the variance σ2 of the net waiting time:

µ =
E[τ ] + E[θ]

pr + ql
, (12)

σ2 =
V [τ ] + V [θ]

pr + ql
+

pl + qr

(pr + ql)2
(E[τ ] + E[θ])2, (13)

where V [τ ] and V [θ] are the variances of τ and θ, re-
spectively. Moreover, probability P+ of moving from a
bottom to the next right bottom is given by

P+ = pr

∞∑

n=1

(pl + qr)n−1 =
pr

pr + ql
. (14)

The probability P+ can be also derived from the detailed
balance equation. The detailed balance equation yields

γ(z → z′)

γ(z′ → z)
= eβ(U(z′)−U(z)), (15)

where γ(z → z′) is the rate (probability per unit time)
of transition from point z to z′. It follows that the ratio
of rates γ(x0 → x0 + L) and γ(x0 + L→ x0) becomes

γ(x0 → x0 + L)

γ(x0 + L→ x0)
= eβFL . (16)

The rates γ(x0 → x0 + L) and γ(x0 + L → x0) can
be represented by the mean net waiting time 〈T 〉 and
probabilities P+ and P−:

γ(x0 → x0 + L) =
P+

〈T 〉
,

γ(x0 + L→ x0) =
P−

〈T 〉
. (17)

Therefore, we have P− = P+e−βFL. Substituting this
relation into P++P− = 1, the external force dependence
of P+ is given by

P+ =
exp(βFL/2)

exp(βFL/2) + exp(−βFL/2)
. (18)

We calculate the diffusion coefficient of a biased CTRW
with flight times, where the lattice constant is L. We de-
note the number of jumps of a random walker from a bot-
tom to the next neighboring bottom until time t by Nt.
Net waiting times T are IID random variables. There-
fore, Nt is described by a renewal process [30]. By the
renewal theory, the mean 〈Nt〉 and the variance 〈∆N2

t 〉
of Nt are given by

〈Nt〉 =
1

µ
t+O(1), (19)

〈∆N2
t 〉 =

σ2

µ3
t+O(1), (20)

in the long-time limit. The results are valid when µ and
σ2 are finite. The variance of the displacement in a biased
CTRW with flight times is given by

〈∆x2t 〉 = 4P+P−L2〈Nt〉+ (P+ − P−)2L2〈∆N2
t 〉. (21)

We define the diffusion coefficient D as

D := lim
t→∞

〈∆x2t 〉

2t
. (22)

Substituting Eqs. (19), (20), (21) into Eq. (22) yields

D =
L2

2

(
4P+(1− P+)

µ
+

(2P+ − 1)2σ2

µ3

)
. (23)

We note that transition probabilities P±, µ, and σ
2 are

functions of external force F in diffusion in a tilted po-
tential.

C. Universality of giant diffusion

We investigate how the GD can be observed in the bi-
ased CTRW with flight times. In particular, we obtain
the dependence of the diffusion coefficient (23) on exter-
nal force F and show that GD can be observed in general
symmetric periodic potentials, especially for small tem-
peratures. Let ∆E be the barrier energy of the tilted
periodic potential U(x), that is, the difference between
the minimum and the right maximum of the potential.
We denote barrier energy ∆E when F = 0 by ∆E0.
First, we show that the diffusion coefficient is increased

when the external force F is small, i.e., FL/2 ≪ ∆E0.
We also assume that the Arrhenius law is valid. In par-
ticular, we assume that the temperature is much smaller
than the energy barrier, i.e. β∆E ≫ 1 [31]. The Arrhe-
nius law states that the exit times τ from a well with bar-
rier energy ∆E follow an exponential distribution where
the mean exit time is proportional to exp(β∆E). With
the aid of the exponential distribution, the variance of τ
is equal to the square of the mean, i.e., V [τ ] = E[τ ]2. For
β∆E ≫ 1, E[τ ] is much larger than E[θ]. It follows that
the variance of net waiting time is approximately equal
to the square of the mean net waiting time, i.e., σ2 ∼= µ2.
Using Eq. (23) and σ2 ∼= µ2, we have the diffusion coef-
ficient Dsmall for small external force:

Dsmall ≃
L2

2µ
. (24)

This relation can also be obtained directly from Eq. (23)
by using P+ ∼ 1/2 for F → 0. Therefore, the dependence
of Dsmall on external force F is determined by 1/µ. The
mean of the net waiting time µ depends on external force
F , and the derivative is negative, i.e., dµ/dF < 0, be-
cause µ is proportional to exp(β∆E) and ∆E decreases
as the external force is increased, i.e., d∆E/dF < 0.
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FIG. 3. Coarse graining of a tilted periodic potential. The
slope of the red straight line is −a−, and the slope of the blue
straight line is −a+. Point d is in between 0 and L.

Therefore, the derivative of Dsmall with respect to F is
positive:

dDsmall

dF
= −

L2

2µ2

dµ

dF
> 0. (25)

Thus, the diffusion coefficient D increases as F increases
when the external force is small.

Next, we show that the diffusion coefficient is decreased
when the external force is large, i.e., FL/2 ≫ ∆E0. Be-
cause the contribution of the external force to the Brow-
nian dynamics is much larger than that of the periodic
potential, it can be regarded as Brownian motion under
a constant external force. However, if we simply consider
the Brownian motion under a constant external force, we
obtain Einstein’s relation, i.e., D = DE . Therefore, we
consider a coarse-grained model of the tilted periodic po-
tential by approximating the tilted potential as a piece-
wise linear potential (see Fig.3). Point d in Fig. 3 is an
arbitrary coordinate and satisfies 0 < d < L. The slopes
of the piece-wise linear potential are given by

a− := −
V (x0 + d)− V (x0)− Fd

d
for 0 < x̃ < d , (26)

a+ := −
V (x0)− V (x0 + d)− F (L− d)

L− d
for d < x̃ < L ,

(27)

where x̃ = x−x0−kL and k is integer. In diffusion under
a constant external force F0, i.e., F = F0 and V (x) = 0
in Eq. (2), mean µ0 and variance σ2

0 of the time for a
Brownian particle to move a distance y is given by [32]

µ0 =
ηy

F0
, σ2

0 =
2DEη

3y

F 3
0

. (28)

When the external force is large, there is no well in the
tilted periodic potential. Moreover, P+

∼= 1 for large
F . In the coarse-grained piece-wise linear potential, the
mean and variance of the net waiting time T become

µ = η

(
d

a−
+
L− d

a+

)
, (29)

σ2 = 2DEη
3

(
d

(a−)3
+
L− d

(a+)3

)
. (30)

It follows that the diffusion coefficient Dlarge for large F
is given by

Dlarge ≃
L2

2

σ2

µ3
=
L2

βη

(a+)3d+ (a−)3(L− d)

(a+d+ (L− d)a−)3
. (31)

The derivative of Dlarge with respect to F becomes neg-
ative:

dDlarge

dF
=

3(a− − a+)
2
(a− + a+)d(d− L)

(da+ + (L− d)a−)4
4

βη
< 0,

(32)

where we used the fact that da±/dF = 1. When the
external force is large, D decreases as F increases and
converges to DE as F → ∞. Therefore, we find that D
increases with small F and decreases with large F . In
other words, it is shown that there is at least one max-
imum at intermediate F in the diffusion coefficient for
general tilted periodic potentials. This peak is univer-
sal in the sense that it is observed for any tilted peri-
odic potentials. Moreover, the diffusion coefficient at the
peak is significantly enhanced especially for low temper-
ature regimes. Therefore, giant diffusion is universally
observed, especially for low-temperature regimes.

D. Giant diffusion in three tilted periodic

potentials

We show giant diffusion for three symmetric periodic
potentials as concrete examples. We note that ∆E0 is
the barrier energy when there is no external force, and L
is the period. The first example is a sine potential (see
Fig. 4a) :

V (x) = −
∆E0

2
cos

(
2π

L
x

)
. (33)

The second example is a sawtooth potential (see Fig. 4b):

V (x) =
2∆E0

L
|x− kL| for |x− kL| < L/2 (34)

where k is integer. The sawtooth potential is a piecewise
linear approximation of the sine potential. In numerical
simulations, the force at x = kL is set to be 0. The third
example is an isosceles-trapezoid potential (see Fig. 4c):



6

V (x) =






0 for |x− kL| < L/4− ε/2,

∆E0

ε
(|x− kL| − L/4) + ∆E0/2 for |x− (k ± 1/4)L| < ε/2,

∆E0 for |x− kL| > L/4 + ε/2,

(35)

where we assume L > ε/2. The isosceles trapezoid po-
tential has straight lines with finite slopes ±∆E0/ε in in-
tervals with length ε (see Fig. 4c). In the limit ε→ 0, it
becomes a rectangular (square) potential. The isosceles-
trapezoid potential is a generalization of the sawtooth
potential. In particular, when ε = L/2, it becomes a
sawtooth potential.
We apply our theory of the diffusion coefficient for a

biased CTRW with flight times to the three periodic po-
tentials by numerical simulations and compare the results
with the result of Reimman et al., i.e., Eq. (3). Figure 5
shows the diffusion coefficients as a function of external
force F for the three periodic potentials. Giant diffusion
is observed for the three periodic potentials. Our results
of a biased CTRW with flight times are in good agree-
ment with those of Reimman’s result. In numerical sim-
ulations of the Langevin equation (2), the simulation was
performed by discretizing Eq. (2) using Euler’s method.
In addition, white Gaussian noise ξ(t) was generated us-
ing the Box-Muller method. To estimate µ and σ2 in
Eq.(23), we calculate the first passage time that a trajec-
tory reaches the absorption boundary x0 ± L, where x0
is the starting point of the trajectory. For the sine po-
tential, x0 is defined by subcritical force Fs = π∆E0/L:

x0 =






L

2π
arcsin

(
F

Fs

)
for 0 < F < Fs

L

4
for Fs < F

. (36)

For sawtooth and isosceles-trapezoid potentials, x0 is
x0 = 0.

E. Asymptotic behaviors of the diffusion coefficient

Here, we show the asymptotic behaviors of the diffu-
sion coefficient in a tilted sawtooth potential for a large-
and small-external force and large- and low-temperature
limits. For the large-F limit, we obtain the Einstein’s
relation, i.e., D = DE. This is valid for any periodic
potentials.
In a tilted sawtooth potential, expanding Eq. (23) near

F = 0 yields

D =
eβV V 2β

(1− eβV )η
+O(F 2). (37)

(a)

x

x0 x0 + L/2 x0 + L

∆E0

(b)

x

x0 x0 + L/2 x0 + L

∆E0

(c)

x

x0 x0 + L/2 x0 + L

∆E0

ε

FIG. 4. Three symmetric periodic potentials, where the dif-
ference between the minimum and maximum of the potential
is set to be ∆E0. (a) Sine potential. (b) Sawtooth potential.
(c) Isosceles-trapezoid potential.

For small-F limit, the diffusion coefficient behaves as
D − D0 ∝ F 2, where D0 is the diffusion coefficient for
F = 0. Because periodic potential V (x) is symmetric,
the order of the sub-leading term is O(F 2) in general.
Furthermore, expanding Eq. (37) around β = 0 gives

D =
1

βη
+O(β) +O(F 2). (38)

Therefore, the diffusion coefficient converges to DE , i.e.,
the Einstein relation holds, in the high-temperature limit
even when the external force is small. This means that
the situation is almost the same as that of free diffu-
sion because large thermal noises overcome the poten-
tial. Furthermore, for a low-temperature limit β → ∞ in
Eq. (37), the diffusion coefficient becomes

D ≃
V 2βe−βV

η
→ 0. (39)

This means that diffusion rarely occurs at a low-
temperature limit.
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FIG. 5. External force dependence of the diffusion coefficient
for the three periodic potentials. We use β = 5, η = 1, L =
2π,∆E0 = 2 for all the potentials, and ε = π/5 in the isosceles
trapezoidal potential. The solid line represents the results
of Reimman et al., i.e., Eq. (3), by numerical integration.
The symbols represent the results of a biased CTRW with
flight times, i.e., Eq. (23), where parameters µ and σ2 are
estimated from simulation of the Langevin equation (2) and
P+ is calculated from (18).

Figure 6 shows critical force Fc and the maximal diffu-
sion coefficient Dc in a tilted periodic sawtooth potential,
where the critical force is defined by the force at which
the diffusion coefficient is maximized. In numerical sim-
ulations, we use a biased CTRW with flight times, where
parameters µ and σ2 are calculated using Eqs. (12), (13),
(18), (A3), (A4), (A7), (A8), (A11), and (A12) in Ap-
pendix A. We have confirmed that these analytical values
are consistent with those in numerical simulations. Crit-
ical force Fc converges to a constant value as β increases.
The value of Dc/D0 significantly increases as β increases.

IV. CONCLUSION

We construct a coarse-grained stochastic model of a
Brownian motion in a tilted symmetric periodic potential
by a biased CTRW with flight times. We derive the dif-
fusion coefficient of the biased CTRW model with flight
times by the renewal theory. Compared to the Reimann’s
result, i.e., Eq. (3), our expression of the diffusion coef-
ficient is much more simple. Thus, we obtain an ex-
plicit dependence of the diffusion coefficient on the ex-
ternal force for small and large forces. As a result, we
show the universality of giant diffusion in tilted sym-
metric periodic potentials in the sense that there is at
least one peak in the diffusion coefficient and the peak
value is significantly larger than that without external
force. We apply our theory to three periodic tilted po-
tentials. We can derive the diffusion coefficients as a
function of F if we evaluate µ and σ2. Our theory can

1

1 10 100
10

0

10
10

10
20

10
30

10
40

10
50

F
c

D
c/
D

0

β

Fc

Fc fitting
Dc/D0

FIG. 6. Critical force Fc and the maximum value diffusion
coefficient divided by D0, i.e., Dc/D0, as a function of inverse
temperature β in a biased CTRW with flight times, where
parameters µ, σ2 and P+ in Eq. (23) are obtained by Eqs. (12),
(13), (18), (A3), (A4), (A7), (A8), (A11), and (A12) in the
sawtooth potential with L = 2π and ∆E0 = 2. Circles and
squares are the results on numerical simulations for Fc and
Dc/D0, respectively. The solid curve is a fitting of critical
force Fc by Fc = A/β + B with A = 0.817697 and B =
0.657699.

also be applied to non-symmetric periodic potentials. It
is not straightforward to show the universality of the gi-
ant diffusion because the diffusion coefficient for small
external force F may decreases as F increases. However,
we think that giant diffusion will be universally observed
in tilted non-symmetric periodic potentials. Moreover,
even in higher dimensional systems, giant diffusion can
be observed when diffusion directed to the applied force
is independent of other directions. By numerical simula-
tions, we confirm the validity of our theory and the giant
diffusion for three tilted periodic potentials.
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Appendix A: External force dependence of physical

quantities in sawtooth potential

Here, we provide external force dependence of some
statistical quantities in a tilted periodic sawtooth poten-
tial. In what follows, we use the following notation:

b± := 2V0 ± FL . (A1)
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Therefore, the tilted sawtooth potential Usaw(x) can be
represented as

Usaw(x) =

{
− b+

L
x+ 2∆E0k for (k − 1)L/2 ≤ x < kL

+ b−

L
x− 2∆E0k for kL ≤ x < (k + 1)L/2

,

(A2)

where k is integer. According to the formulas (5), (6), we
obtain the external force dependence of the probabilities
p, r, P+:

p =
1
b+

(eβ
b+

2 − 1)

1
b+

(eβ
b+

2 − 1) + 1
b−

(eβ
b−

2 − 1)
, (A3)

r =
1
b−

(eβ
b−

2 − 1)

1
b−

(eβ
b−

2 − 1) + 1
b+

(1− e−β b+

2 )eβ
b−

2

, (A4)

P+ =
exp(βFL/2)

exp(βFL/2) + exp(−βFL/2)
. (A5)

These results agree with numerical results (see Fig. 7).
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0.7

0.8

0.9

1

0 0.5 1 1.5 2

p,
r,
P

+

F

p(F )
r(F )

P+(F )
p simulation
r simulation

P+ simulation

FIG. 7. External Force dependence of probabilities p, r, P+.
Symbols are the results of numerical simulations, where we
set β = 2. The red solid, the green dashed, and the blue
dotted lines represent p(F ), r(F ), and P+, respectively.

The nth moment of FPT, which is the time for a Brownian particle to move from the initial position x = x0 to the
absorbing boundary x = A or x = B (where A ≤ x ≤ B), is given by the following formula [29]:

Tn(x) = βηn

(
(
∫ x

A
eβU(y)dy)

∫ B

x
eβU(y)dy

∫ y

A
e−βU(z)Tn−1(z)dz

∫ B

A
eβU(y)dy

−
(
∫ B

x
eβU(y)dy)

∫ x

A
eβU(y)dy

∫ y

A
e−βU(z)Tn−1(z)dz

∫ B

A
eβU(y)dy

)
.

(A6)
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Therefore, the 1st moment of τ is represented by

E[τ ] =
L2η

β

b+b−

b−
(
eβ

b+

2 − 1
)
+ b+

(
eβ

b−

2 − 1
)

×

{
1

(b+)2b−

(
eβ

b−

2 − 1
)(

eβ
b+

2 − 1− β
b+

2

)
+

1

b+(b−)2

(
eβ

b+

2 − 1
)(

eβ
b−

2 − 1− β
b−

2

)}
, (A7)

and the 2nd moment of τ is given by

E[τ2] = 2(pIp − qIm), (A8)

where

Ip =
L4η2

β4

b+b−

b−
(
e

βb+

2 − 1
)
+ b+

(
e

βb−

2 − 1
)

×

{
1

(b−)5

[(
e

βb−

2 − 1 +
βb−

2

)(
e

βb−

2 − 1−
βb−

2

)
+
βb−

2

(
e

βb−

2 − 1

)
+

(βb−)2

8

(
1− 3e

βb−

2

)]

+
1

(b−)4b+

(
e

βb+

2 − 1

)[(
e

βb−

2 + 1−
βb−

2

)(
e

βb−

2 − 1−
βb−

2

)
−

(
1− e

βb−

2

)
−
βb−

2
e

βb−

2 −
(βb−)2

8

]

+
1

(b−)3(b+)2

(
e

βb+

2 − 1−
βb+

2

)(
2eβb

−

− 2eβ
b−

2 −
3

2
βb−e

βb−

2 +
βb−

2

)

+
1

(b−)2(b+)3

(
e

βb+

2 − e−
βb+

2 − βb+
)(

e
βb−

2 − 1

)2

+
1

b−(b+)4

(
e

βb+

2 − e−
βb+

2 − 2−
(βb+)2

4

)(
e

βb−

2 − 1

)}
(A9)

and

Im =
L4η

β3

b+b−

b−
(
e

βb+

2 − 1
)
+ b+

(
e

βb−

2 − 1
)

×

{
1

(b+)5

[(
2− e

βb+

2 − e−
βb+

2

)
+
βb+

2

(
1− e

βb+

2

)
+

(βb+)2

8
(3 + e

βb+

2 )

]

+
1

(b+)4b−

(
e

βb−

2 − 1

)[(
1 + e−

βb+

2 − 2e
βb+

2

)
+ βb+

(
1 +

1

2
e

βb+

2

)
−

(βb+)2

8

]

+
1

(b+)3(b−)2

(
e

βb−

2 − 1−
βb−

2

)[
2

(
1− e

βb+

2

)
+
βb+

2

(
1 + e

βb+

2

)]}
. (A10)

In the same way of the calculation of τ , the 1st moment of θ is given by

E[θ] =
L2η

β

b+b−

b+
(
eβ

b−

2 − 1
)
+ b−e2βV0

(
e−β b+

2 − e−βb+
)

×

{
1

b+(b−)2
e2βV0

(
e−β b+

2 − e−βb+
)(

e−β b−

2 − 1− β
b−

2

)
+

1

(b+)2b−

(
eβ

b−

2 − 1
)(

e−β b+

2 − 1 + β
b+

2

)}
, (A11)

and the 2nd moment of θ is given by

E[θ2] = 2(rJp − sJm), (A12)
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where,

Jp =
L4η2

β2

b+b−

b+
(
eβ

b−

2 − 1
)
+ b−e2βV0

(
e−β b+

2 − e−βb+
)

×

{
e2βV0

(b+)5

[
−

(
e

3βb+

2 − 2e−βb+ +
βb+

2

)
+
βb+

2

(
e−βb+ − e

−βb+

2

)
+

(βb+)2

8

(
3e−βb+ − e−

βb+

2

)]

+
1

(b+)4b−

(
e

βb−

2 − 1

)[(
e−βb+ + e−

βb+

2 − 2

)
+

3βb+

2
e−

βb+

2 +
(βb+)2

8

]

+
e2βV0

(b+)3(b−)2

(
e−

βb−

2 − 1 +
βb−

2

)[
2
(
e−βb+ − e−β 3b+

2

)
+
βb+

2

(
e−

βb+

2 − 3e−βb+
)]

+
e4βV0

(b+)2(b−)3

(
1− e−βb− − βb−e−β b−

2

)(
e−

βb+

2 − e−βb+
)2

+
1

b+(b−)4

(
e

βb−

2 + e−
βb−

2 − 2−
(βb−)2

4

)(
e−

βb+

2 − e−βb+
)}

, (A13)

Jm =
L4η2

β2

b+b−

b+
(
eβ

b−

2 − 1
)
+ b−e2βV0

(
e−β b+

2 − e−βb+
)

×

{
1

(b−)5

[(
eβb

−

− 2eβ
b−

2 + 1
)
+
βb−

2

(
e

βb−

2 − 1

)
+

(βb−)2

8
(1 + 3e

βb−

2 )

]

+
e2βV0

(b−)4b+

(
e−

βb+

2 − e−βb+
)[(

e
βb−

2 − 2e−
βb−

2 + 1

)
−
βb−

2

(
2 + e−

βb−

2

)
−

(βb−)2

8

]

+
1

(b−)3(b+)2

(
e−

βb+

2 − 1 +
βb+

2

)[
2− 2e

βb−

2 +
βb−

2

(
1 + e

βb−

2

)]}
. (A14)

Appendix B: Generalized Montroll-Weiss formula for asymmetric waiting time time distributions

We consider a one-dimensional CTRW, in which the random walker takes steps with length distributions φ+(ξ) and
φ−(ξ) to the right or to the left. After each step, two random waiting times τ+ and τ− are independently drawn from
two waiting time distributions ψ+(τ) and ψ−(τ), respectively. Then, the next step is taken to the right if τ+ ≤ τ− and

to the left otherwise. We want to compute the distribution of the random walker’s position x =
∑N+

j=1 ξj,+−
∑N−

j=1 ξj,−
at time t, where N+ and N− are the number of steps taken to the right and left, respectively, and ξj,+ and ξj,− are
the corresponding step lengths. This can generally be written as

P (x, t)dx =

∞∑

N+=0

∞∑

N−=0

Pr

(
x ≤

N+∑

j=1

ξj,+ −

N−∑

j=1

ξj,− ≤ x+ dx

)

︸ ︷︷ ︸
Prob. of steps summing to x

Pr(N+, N−, t)

︸ ︷︷ ︸
Prob. of observing N+/N− steps to the right/left up to time t

.

(B1)

Upon a spatial Fourier transform, the first term can be written as a product using the convolution theorem,

P̂ (k, t) =

∞∑

N+=0

∞∑

N−=0

φ̂+(k)
N+ φ̂∗−(k)

N−P (N+, N−, t), (B2)

where we denote the Fourier transform of a function by

f̂(k) =

∫ ∞

−∞

dx eikxf(x) (B3)

and f∗(k) denotes complex conjugation. The joint probability of observing N+ and N−, steps to the right and left,
can also be written as,

P (N+, N−, t) = P−(N−|N)P±(N, t), (B4)
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i.e., the probability of taking N = N+ +N− steps in total times the probability that N− out of those are to the left.
The latter probability can be computed from the waiting time distributions as follows. Let us consider the probability
of τ− being smaller than τ+ for any one pair of waiting times,

p< ≡ Pr(τ− < τ+) =

∫ ∞

0

dτ ψ−(τ)

∫ ∞

τ

dτ ′ ψ+(τ
′). (B5)

Then, since the steps are independent, the probability of N− out of N steps satisfying this condition is just the
binomial distribution,

P−(N−|N) =

(
N
N−

)
p
N−

< (1− p<)
N−N− , (B6)

for N− ≤ N and 0 otherwise. This results in

P̂ (k, t) =

∞∑

N=0

N∑

N−=0

φ̂+(k)
N−N− φ̂∗−(k)

N−

(
N
N−

)
p
N−

< (1− p<)
N−N−P±(N, t). (B7)

The sum over N− can now be evaluated,

P̂ (k, t) =

∞∑

N=0

φ̂+(k)
N

(
1 + p<

(
φ̂∗−(k)

φ̂+(k)
− 1

))N

P±(N, t). (B8)

In order to compute P±(N, t), we note that the total waiting time can be written as

τtot =
N∑

j=1

min
(
τj,+, τj,−

)
, (B9)

since at each step, the smaller of the two waiting times is chosen. Introducing the random variable τ = min(τ+, τ−),
we can write its cumulative distribution function as

F (τ) = Pr
(
min(τ+, τ−) ≥ τ

)
= Pr

(
τ+ ≥ τ, τ− ≥ τ

)
= Pr(τ+ ≥ τ)Pr(τ− ≥ τ), (B10)

since the waiting times for right and left steps are assumed to be independent. Taking the derivative with respect to
τ , we obtain for the waiting time distribution of steps in an arbitrary direction,

ψ(τ) = −∂τF (τ) = ψ+(τ)

∫ ∞

τ

dτ ′ ψ−(τ
′) + ψ−(τ)

∫ ∞

τ

dτ ′ ψ+(τ
′). (B11)

Intuitively, this relation means that for the overall waiting time to be τ , either we have τ+ = τ and τ− > τ or vice
versa (note that the border case τ+ = τ− is a zero-set and can be neglected, since the waiting times are distributed
continuously). To obtain P±(N, t) from ψ, we note that it can be written as

P±(N, t) =

∫ t

0

dt′ ψN (t′)P̄ (t− t′) =

∫ t

0

dt′ ψN (t′)

∫ ∞

t−t′
dt′′ ψ(t′′), (B12)

where ψN (t′) is the PDF of the N -th step occurring at t′ and P̄ (t− t′) is the probability of no steps occurring in an
interval of length t− t′, i.e., the N + 1-th waiting time being larger than t− t′. As for the total displacement, ψN (t)
is given in terms of the sum over N waiting times,

ψN (t)dt = Pr

(
t ≤

N∑

j=1

τj ≤ t+ dt

)
, (B13)

and its Laplace transform, by virtue of the convolution theorem, is given by

ψ̃∗
N (s) = ψ̃(s)N . (B14)

Thus, we obtain for the Laplace transform of P±(N, t):

P̃±(N, s) = ψ̃(s)N
1− ψ̃(s)

s
. (B15)
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Taking the Laplace transform of Eq. (B8), we then get

ˆ̃P (k, s) =

∞∑

N=0

φ̂+(k)
N

(
1 + p<

(
φ̂∗−(k)

φ̂+(k)
− 1

))N

ψ̃(s)N
1− ψ̃∗(s)

s
. (B16)

Evaluating the sum over N using the geometric series formula, we obtain

ˆ̃P (k, s) =
1− ψ̃∗(s)

s
(
1− ψ̃(s)

(
φ̂+(k) + p<

(
φ̂∗−(k)− φ̂+(k)

))) (B17)

with p< =

∫ ∞

0

dτ ψ−(τ)

∫ ∞

τ

dτ ′ ψ+(τ
′),

where ψ̃(s) is given by the convolution integral

ψ̃(s) = ψ̃+(s) + ψ̃−(s)−
s

2πi

∫ δ+i∞

δ−i∞

dσ
1

σ(s− σ)
ψ̃+(σ)ψ̃−(s− σ). (B18)

Equation (B17) is a generalization of the Montroll-Weiss formula to asymmetric waiting time and jump distributions.
It expresses the Fourier-Laplace transform of the probability distribution in terms of the step size and waiting time
distributions. We note that, similar to the original Montroll-Weiss formula, the symmetric waiting time distribution
ψ(τ) determines the dynamics, the waiting time distributions for the right/left steps enter only via the asymmetry
parameter p<. We remark that for the special case ψ̄ = ψ+ = ψ−, this ψ̄ does not correspond to the waiting time
distribution ψ in the original Montroll-Weiss formula, since we take the minimum of the two times.
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