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Abstract: While computer modeling and simulation are crucial for understanding 
scientometrics, their practical use in literature remains somewhat limited. In this study, 
we establish a joint coauthorship and citation network using preferential attachment. As 
papers get published, we update the coauthorship network based on each paper’s author 
list, representing the collaborative team behind it. This team is formed considering the 
number of collaborations each author has, and we introduce new authors at a fixed 
probability, expanding the coauthorship network. Simultaneously, as each paper cites a 
specific number of references, we add an equivalent number of citations to the citation 
network upon publication. The likelihood of a paper being cited depends on its existing 
citations, fitness value, and age. Then we calculate the journal impact factor and ℎ-
index, using them as examples of scientific impact indicators. After thorough validation, 
we conduct case studies to analyze the impact of different parameters on the journal 
impact factor and ℎ-index. The findings reveal that increasing the reference number 𝑁 
or reducing the paper's lifetime 𝜃 significantly boosts the journal impact factor and 
average ℎ-index. On the other hand, enlarging the team size 𝑚 without introducing 
new authors or decreasing the probability of newcomers 𝑝  notably increases the 
average ℎ -index. In conclusion, it is evident that various parameters influence 
scientific impact indicators, and their interpretation can be manipulated by authors. 
Thus, exploring the impact of these parameters and continually refining scientific 
impact indicators are essential. The modeling and simulation method serves as a 
powerful tool in this ongoing process, and the model can be easily extended to include 
other scientific impact indicators and scenarios. 
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1. Introduction and Literature Review 

Bibliometrics or scientometrics, the application of statistical or quantitative 
method to analyze scientific literature and discover ‘laws’ governing various quantities 
or indicators measuring research impact, is a well-established field. Over the past fifty 
years, extensive research has delved into the publication, citation, and clustering 
behaviors of scientific papers, revealing numerous quantitative ‘laws’. Despite this, the 
utilization of mathematical modeling and computer simulations in bibliometric research 
remains infrequent and isolated, despite their potential advantages over traditional 
approaches [1]. For example, by replicating the microscopic behavior and coordination 
of researchers, as well as the structure and evolution of literatures, these methods can 
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elucidate the underlying mechanisms behind certain macroscopic phenomena. 
Additionally, computer modeling and simulation offer a controlled setup and 
environment, circumventing biases and errors in real databases, allowing for a detailed 
assessment of the system’s various aspects [2]. Furthermore, modeling and simulations 
often serve predictive purposes, constructing ‘artificial societies’ and conducting 
‘thought experiments’ to explore extreme scenarios that are challenging to study in real 
life. The outcomes can inform decision-making and even policy design. In contrast to 
empirical data-oriented studies, these methods generate simulated data, facilitating a 
comparison with empirical results. Ref. [3] provides a comprehensive review of the 
mathematical models and simulation methods used in science, highlighting its cross-
disciplinary nature involving scientometrics, network sciences, system sciences, 
computational sociology, and complexity theory. According to Ref. [3], science can be 
defined as a social network of researchers generating and validating a knowledge 
network. Consequently, coauthorship and citation networks are the most relevant, and 
this review will delve into them in detail. 

In both citation and coauthorship networks, the Matthew effect, also known as 
preferential attachment or cumulative advantage, stands as the fundamental mechanism, 
signifying that success tends to breed more success [4]. This citation network mechanism 
found formal expression in a model first presented by de Solla Price in 1976. This model 
assumes a continuous publication of new papers, with the probability of citing a specific 
paper being proportionate to its existing number of citations [5]. Barabási later 
formalized these mechanisms, referring to them as ‘growth’ and ‘preferential 
attachment’, respectively [6]. However, Price’s model, while capable of replicating the 
fat-tailed distribution of citations, assumes uniform paper quality and an inability for 
new papers to surpass older ones in citations, which is unrealistic. Consequently, the 
concept of ‘fitness’ is introduced to quantify each paper’s inherent ability to accrue 
citations, leading to the development of fitness models, such as the Bianconi-Barabási 
model [7]. In the fitness model, papers published later with high fitness can outperform 
established citation leaders. Finally, as new ideas are integrated into the subsequent 
works, the novelty of each paper eventually diminished over time, a phenomenon 
known as the obsolescence or aging of scientific literature, studied since 1943 [8]. The 
aging term is often modeled with a negative exponential [9, 10] or log-normal shape [11]. 
Combining these four mechanisms (growth, preferential attachment, fitness, and aging) 
yields the minimal citation model that captures a paper’s time evolution in citations [12]. 
Medo and Cimini [2] introduced a normalization term to counterbalance the undue 
advantage of early papers during the initial period. Concerning citation distributions 
across disciplines and years, it has been discovered that all these distributions can be 
rescaled on a universal curve when considering a relative indicator 𝑐௙, enabling the 
comparison of papers and authors from different fields [13]. 

The coauthorship network is often regarded as a social network, a topic extensively 
explored in the realm of social sciences. However, the application of statistics, 
mathematical modeling, and simulations to large-scale coauthorship networks for 
uncovering universalities and mechanisms has seen recent progress and has garnered 
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less attention compared to citation networks [14]. In contrast to citation networks, where 
nodes represent papers and links are directed from new papers to existing ones, 
coauthorship networks feature authors as nodes and undirected links, allowing for the 
formation of new connections between existing nodes [15]. Newman [14, 16, 17] has studied 
the structures and statistical properties of coauthorship networks using empirical data 
from various bibliographic databases. However, Newman’s focus is primarily on static 
networks. Tomassini [18] delve into the formation and temporal evolution of 
coauthorship networks by analyzing time-resolved empirical data. Additionally, 
Barabási [15] has proposed a mathematical model capturing the network's time evolution 
and used its results to elucidate empirical measurements. In Barabási's model, the 
coauthorship network continually expands through the addition of new authors and the 
incorporation of new internal links, representing papers co-authored by authors already 
in the database [15]. While Barabási's preferential attachment-based model effectively 
replicates and explains coauthorship networks, the utilization of parameters like 
average internal links 𝑎  and incoming links 𝑏  in unit time makes the connections 
between papers and authors less transparent. To address this issue, the mechanism of 
paper team assembly deserves scrutiny, as the paper team is the foundational element 
of the coauthorship network. A paper team consists of authors collaborating on a paper, 
forming a complete graph within the coauthorship network. Research indicates that 
paper team size gradually increases across all disciplines [19]. Guimera et al. [20] have 
explored the team assembly mechanisms determining the structure of collaboration 
networks, proposing a model for the self-assembly of creative teams based on three 
parameters: team size 𝑚, the fraction of newcomers in new productions 𝑝 and the 
tendency of incumbents to repeat previous collaborations 𝑞 . Analyzing the team 
assembly mechanism could replace the parameters 𝑎 and 𝑏 in Barabási’s model with 
more explicit ones 𝑚, 𝑝 and 𝑞. 

Despite the potential insights gained from modeling the coevolution of citation 
and coauthorship networks, there has been a limited amount of research in this area [21]. 
One such model is the TARL (topics, aging, and recursive linking) model proposed by 
Börner [22] which posits that authors read and cite the references of randomly selected 
papers. Since highly cited papers are more likely to appear in the reference list, the 
TARL model successfully incorporates the Matthew effect into citations, leading to the 
reproduction of a fat-tailed distribution. However, a limitation of the TARL model is its 
assumption that each author produces a fixed number of papers per year, preventing it 
from accurately replicating the fat-tailed distribution of coauthors and the number of 
papers published per author. Another model, proposed by Xie et al. [21], employs a 
graphical model introducing new concepts like concentric circles, leaders, and 
influential zones. Xie’s model considers the Matthew effect by acknowledging that 
older leaders, with larger influential zones, easily attract collaborators and publish more 
papers, consequently receiving more citations. While Xie’s model successfully 
reproduces the fat-tailed distribution of citations and coauthors, it introduces an 
abundance of new concepts, assumptions, and parameters, making his graphical model 
less common in the literature. 
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Modeling and simulation methods are particularly well-suited for evaluating 
various scientific impact indicators, and there have already been studies in this area [2]. 
Among the scientific impact indicators, the journal impact factor [23] and the ℎ-index 
[24] stand out as the most well-known and widely used. Garfield [23] first proposed the 
journal impact factor in 1972, defining it essentially as the average citations per 
published item. Zhou et al. [25] developed a citation model to investigate the impact of 
various publication factors, such as the average review cycle, the average number of 
references, and the yearly distribution of references, on the journal impact factor. Their 
findings suggest that journals with shorter review cycles, higher reference numbers, and 
more recent reference distributions tend to have higher impact factors [25]. In a 
subsequent study, Zhou et al. [26] expanded their approach to include a submission 
model that simulated the journal targeting, peer review, and publication processes. This 
extended model allows for the analysis of temporal dynamics and the distribution of 
impact factors across multiple journals.  

The ℎ -index, introduced by Hirsch [24] in 2005, serves as a composite metric 
reflecting both an author’s productivity and impact, commonly utilized to gauge the 
accomplishments of a particular author. Guns and Rousseau [27] conducted an 
investigation through computer simulations of the publication and citation processes. 
Their findings indicate that, in most instances, the ℎ-index exhibits linear growth over 
time, with occasional occurrences of an S-shaped pattern [27]. Ionescu and Chopard [28] 
contributed two agent-based models addressing performance measurements for 
individual scientists and groups of scientists. In their multi-scientist model, author 
productivity is assumed to follow Lotka's law, and distributions of the ℎ -index are 
presented [28]. Medo and Cimini [2] conducted a comparative analysis of various 
scientific impact indicators, employing a citation model calibrated with empirical data. 
Assuming authors’ productivity adheres to Lotka’s law, they found that the ℎ-index 
indeed captures the combined ability and productivity of researchers, although it may 
not consistently provide a fair comparison between researchers at different career stages 
[2]. 

2. Model Formulation and Validation 

2.1 APS database 

The coevolution model of coauthorship and citations relies on and is validated 
against the American Physical Society (APS) dataset, extensively employed in 
bibliometric studies [2, 9, 11, 29], and publicly available through Ref. [30]. The APS dataset 
comprises two subsets: citing article pairs and article metadata. Citing article pairs 
consist of pairs of APS papers, with one paper citing another, making them suitable for 
constructing citation networks. On the other hand, article metadata includes 
fundamental details like doi, authors, and publication dates for all APS papers, 
facilitating the construction of coauthorship networks. In this study, we exclusively 
consider citation pairs in which both the citing and cited papers fall within the article 
metadata subset. This choice ensures a consistent and precise match between total 
reference and citation numbers at all times. 
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The APS datasets cover materials from 1893 to the end of 2021, providing a 
continuous span of 129 years of empirical data. For the subsequent simulation, we have 
chosen a time length of 𝑇 ൌ 13  years, with each simulated year corresponding to 
approximately 10 years of empirical data. Although the APS datasets consist of 19 
journals, this paper does not focus on comparing indicators across different journals. 
Instead, we treat the APS datasets as a unified virtual journal, where all references and 
citations occur within this virtual journal. Consequently, the simulation models only 
one journal with 12 issues per year. 

2.2 growth of papers and authors 

The APS datasets comprise approximately 0.7 million papers and 0.5 million 
authors at the end of 2021. Figure 1(a) illustrates the annual growth of accumulated 
papers and authors. Utilizing the exponential growth model 𝑃௧ ൌ 𝛼expሺ𝛽𝑡ሻ  on the 
cumulative paper number from Figure 1(a), the estimated annual growth rate 𝛽  is 
determined to be 6.36 %. In this model, the initial year’s 12 issues each contain 𝑁ଵ ൌ
10 papers, and with each subsequent year (𝑡 increasing), 𝑁௧ increases by 1 paper. 
Consequently, by the end of the 13th year, each issue contains 𝑁ଵଷ ൌ 22 papers. These 
issue arrangements correspond to an annual paper growth rate of 6.68 %, aligning 
closely with empirical results. Therefore, a total of 𝑃 ൌ 2496 papers will be modeled 
in the subsequent simulation.  

Examining Figure 1(a), it becomes evident that the cumulative author number also 
follows an exponential increase over time. By plotting the cumulative author number 
against the cumulative paper number and performing linear fitting 𝑦 ൌ 𝑘𝑥 for the data 
(Figure 1(b)), it is observed that, on average, with each new paper increment, 
approximately 𝑘 ൌ 0.679 new authors are added to the existing author list. Since each 
paper may involve multiple authors (e.g., 𝑚 authors), each author will be assessed 
independently whether he/she is a newcomer (with probability 𝑝 ) or an incumbent 
(with probability 1 െ 𝑝). As the number of newcomers within a single paper follows a 
binomial distribution, the expectation of newcomers for each paper is given by: 

𝑘 ൌ 𝑚𝑝 ሺ1ሻ 

where 𝑚  is the average team size (𝑚 ൌ 3.54  for APS datasets). Consequently, the 
probability of selecting newcomers can be calculated as 𝑝 ൌ 𝑘 𝑚⁄ ൌ 0.192. 
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Figure 1. Evolution of cumulative papers and authors: (a) yearly progression; (b) 
author accumulation in relation to paper accumulation. 

2.3 paper team assembly  

A paper team refers to a collective of researchers who coauthor a paper, and their 
names collectively appear in the authors’ field of a paper. Recent studies indicate that 
the average size of paper teams increases over time [19] and the distribution of paper 
team sizes exhibits a fat-tailed pattern [31]. This trend is similarly observed in the APS 
dataset, as indicated by the blue circles in Figure 2. As previously mentioned in Section 
2.1, one simulation year corresponds to roughly 10 actual years of APS metadata. 
Consequently, the data on paper team sizes in the APS datasets are divided into 13 
intervals based on their publication date. The team size distribution of the 𝑖-th interval 
(𝑖 ൌ 1,2, … ,13) is utilized to generate the distribution for the corresponding simulation 
year. The simulated results are represented by the red squares in Figure 2.  

Observing Figure 2(a) it is evident that at any time, the average paper team size in 
the simulated results closely aligns with the empirical data, displaying identical 
distributions. The black dots represent the annual fluctuations in average paper team 
sizes in the APS empirical data. However, in Figure 2(b), a subtle distinction is noted 
in the distribution of the simulated results compared to the empirical one, indicating a 
higher occurrence of papers with smaller team sizes in the simulation. This discrepancy 
arises from the fact that the paper growth rate for each interval is 𝛽ଵ଴ ൌ 10𝛽 ൌ 63.6 %, 
whereas the growth rate for each simulation year is only 6.68 %. Consequently, the 
distribution of empirical data is influenced more by the later intervals, resulting in 
higher proportions of papers with larger team sizes. 

 

Figure 2. Model simulations vs APS empirical data: (a) annual average team size 
increase; (b) distribution of paper team sizes. 

As mentioned in Section 2.2, the probability of selecting incumbents as authors is 
1 െ 𝑝. If an incumbent is to be selected, the preferential attachment mechanism will be 
employed to determine which incumbent will be chosen. As demonstrated in Ref. [15] 
that the probability 𝛱ሺ𝑘ሻ  of a newcomer collaborating with an incumbent with 
connectivity 𝑘  can be expressed as 𝛱ሺ𝑘ሻ ∝ 𝑘ఔ , where 𝜈 ൑ 1 . Meanwhile, the 
probability 𝛱ሺ𝑘ଵ,𝑘ଶሻ  of an incumbent with connectivity 𝑘ଵ  collaborating with 
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another incumbent with connectivity 𝑘ଶ  can be factorizes into the product 𝑘ଵ𝑘ଶ , 
expressed as 𝛱ሺ𝑘ଵ,𝑘ଶሻ ∝ 𝑘ଵ𝑘ଶ. Therefore, in this simulation, the probability 𝛱ሺ𝑘ሻ to 
select an incumbent with connectivity 𝑘 is set as: 

𝛱ሺ𝑘ሻ ൌ ሺ1 െ 𝑝ሻ 𝑘 ෍ 𝑘௜
௜∝஺೟

൘ ሺ2ሻ 

where 𝑝  represents the probability of selecting newcomers, 𝑘௜  signifies the 
connectivity of each incumbent, and 𝐴௧  denotes the list of incumbents at time 𝑡 . 
Given that incumbents often engage in repeated collaborations, characterized by the 
parameter 𝑞  in Ref. [20], the connectivity 𝑘௜  in this simulation refers to the 
accumulated number of collaborations rather than the number of collaborators an author 
has. For authors with no collaborations, an initial connectivity 𝑘଴ ൌ 1 is assigned to 
ensure each author has a finite initial probability of being selected for the first time. 
Utilizing an adjacency matrix to record collaboration numbers for each pair of authors, 
the coauthorship network can be established, as further discussed in Section 2.5. In the 
event a new author is selected with probability of 𝑝 , he/she will be added to the 
incumbent list 𝐴௧, and the adjacent matrix will be updated accordingly. 

2.4 author ability and paper quality  

Recent research suggests that each scientist may possess a hidden intrinsic 
parameter, denoted as 𝑄, which characterizes their ability to transform a random idea 
into works with varying impacts [29]. An author with a high 𝑄 -factor consistently 
experiences a successful career, regardless of the novelty of the projects or ideas they 
engage with [12]. The 𝑄-factor has been demonstrated to be relatively independent of 
author productivity [29]. Consequently, when a new author publishes their first paper, a 
random 𝑄-factor is assigned. In this simulation, a log-normal distribution with 𝜇 ൌ
0.93 and 𝜎 ൌ 0.46 is assumed for the 𝑄-factor, aligning with the data in Ref. [29], 
which is also based on the APS datasets. The distribution of authors' abilities (𝑄-factor) 
is depicted in Figure 3(a). As author ability is a continuous parameter, it is divided into 
40 bins, and the binned results are illustrated as red squares in Figure 3(a). 

Once a paper team 𝑎௜ is assembled, and the ability for each member 𝑄௝ (𝑗 ∈ 𝑎௜) 

determined, the quality of the paper can be computed as 𝜂௜ ൌ 𝛿 ൬max
௝∈௔೔

𝑄௝൰, where 𝛿 

represents a multiplicative noise term uniformly distributed in ሾ1 െ 𝛿∗, 1 ൅ 𝛿∗ሿ , 
introducing additional randomness to the paper creation process [2]. The distribution of 
the papers’ quality is visualized in Figure 3(b), where a log-normal fitting is applied to 
the results, represented by the blue line in Figure 3(b). 
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Figure 3. Distributions of author ability and paper quality: (a) author ability distribution; 
(b) paper quality distribution. 

2.5 coauthorship network  

Upon assembling a paper team, all its members essentially form a complete graph, 
prompting the update of the adjacent matrix of collaborations by incrementing each 
corresponding element by one. In this matrix 𝐴 , each element 𝐴௜,௝  represents the 
number of collaborations between author 𝑖  and author 𝑗 . Simultaneously, the 
coauthorship network, essentially the collaborators’ network, can be constructed by 
replacing the elements 𝐴௜,௝ of the collaborations’ network with 0 (for zero elements) 
or 1 (for non-zero elements). Additionally, the incumbents’ list 𝐴௧ in Section 2.3 not 
only records the name or ID of an incumbent but also tracks the authored paper number 
(or productivity) of each author. Papers are incrementally added at each time step, and 
both the incumbents’ list and coauthorship network evolve accordingly. 

Once all 𝑃 ൌ 2496  papers are incorporated, the final distributions of 
productivity and collaborators are depicted in Figure 4. The productivity distribution 
essentially mirrors Lotka's law, as evident in Figure 4(a), where the simulated results 
closely align with empirical data. The distribution of collaborators in the simulated 
results also exhibits a strong match with empirical data, illustrated in Figure 4(b), 
thereby validating the coauthorship network model. Both distributions clearly display 
fat tails, and further discussions about the network of collaborators can be explored in 
Refs. [14-18].  
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Figure 4. Model simulations vs. APS empirical data: (a) researcher productivity 
distribution; (b) collaborator number distribution. 

2.6 reference model 

As previously mentioned in Section 2.1, the total reference number precisely 
matches the total citation number at any given time in both the empirical dataset and 
the simulation. Consequently, since the average citation number gradually increases 
over time, the average reference number also experiences an upward trend, as depicted 
by the blue circles in Figure 5. Similar to the approach in Section 2.3, the reference 
number data for all papers are sorted based on their publication date and evenly divided 
into 13 intervals. The reference number distribution for the 𝑖-th interval is then utilized 
to generate the reference number distribution for the 𝑖 -th simulation year ( 𝑖 ൌ
1, 2, … , 13). The simulation results are represented by the red squares in Figure 5. As 
illustrated in Figure 5(a), the yearly average reference numbers in the simulated results 
closely align with empirical data, sharing identical distributions. However, Figure 5(b) 
indicates a subtle difference in the reference number distribution of all simulation data 
compared to the empirical one, with more papers exhibiting lower reference numbers. 
This discrepancy arises from the much higher paper growth rate for each interval (10 
years) than that of each simulation year, leading the distribution of the empirical data 
to be influenced more by later intervals and consequently having more papers with 
higher reference numbers. 

 

Figure 5. Model simulations vs. APS empirical data: (a) annual average reference 
numbers increase; (b) references number distribution.  

2.7 citation network 

Once the reference number for each paper is determined, the citation model can 
be established by determining which papers cite others. The citation network model 
utilized in this simulation is founded on the minimal citation model initially proposed 
by Wang et al. [11]. In this model, the probability that paper 𝑖 is cited at time 𝑡 after 
publication is determined by three independent factors: preferential attachment, fitness, 
and aging. The equation can be expressed as: 
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where 𝜂௜ represents the paper's fitness term, analogous to the paper's quality discussed 
earlier in Section 2.4, capturing the community's response to the work. 𝑐௜

௧  is the 
preferential attachment term, indicating that the paper’s probability of being cited is 
proportional to the total number of citations it has received previously. It's noteworthy 
that the preferential attachment term 𝑐௜

௧ doesn't precisely equal the number of citations 
𝑛ୡ୧୲ୣୱሺ𝑡ሻ. This is because we assign an initial attractiveness 𝑐଴ ൌ 1 to a new paper 
with zero citations, ensuring each new paper has a finite initial probability of being 
cited for the first time [12]. Finally, the long-term decay in a paper's citation can be well 
approximated by a negative exponential aging term, expressed as 𝑃௜ሺ𝑡ሻ ൌ
expሾെ ሺ𝑡 െ 𝜏௜ሻ 𝜃⁄ ሿ , where 𝜏௜  is the publication date of the paper 𝑖 , and 𝜃  is a 
parameter characterizing the lifetime of a paper [2]. In this paper, the value of 𝜃 is set 
to 48 months, consistent with the value employed by Refs. [2, 9], as their analyses are 
based on the same APS datasets. 

The conclusive distribution of the citation network is depicted in Figure 6(a). 
Notably, it exhibits a fat-tailed pattern and aligns remarkably well with empirical data, 
thereby validating the citation network model. 

 

Figure 6. Model simulations vs. APS empirical data: (a) citation number distribution; 
(b) temporal variation of the journal impact factor of the APS dataset 

2.8 journal impact factor 

The impact factor undergoes yearly fluctuations. When the counts of citations and 
papers are tallied from a given citation network, the yearly impact factor of a journal 
can be computed as follows: 

𝐼𝐹ሺ𝑘ሻ ൌ
𝑛ୡ୧୲ୣୱሺ𝑘,𝑘 െ 1ሻ ൅ 𝑛ୡ୧୲ୣୱሺ𝑘,𝑘 െ 2ሻ

𝑛୮ୟ୮ୣ୰ୱሺ𝑘 െ 1ሻ ൅ 𝑛୮ୟ୮ୣ୰ୱሺ𝑘 െ 2ሻ
ሺ4ሻ 

where 𝐼𝐹ሺ𝑘ሻ denotes the impact factor of the 𝑘th year; 𝑛୮ୟ୮ୣ୰ୱሺ𝑘 െ 1ሻ denotes the 

number of papers published in the ሺ𝑘 െ 1ሻ th year; 𝑛ୡ୧୲ୣୱሺ𝑘,𝑘 െ 1ሻ  denotes the 
number of those citations received during the 𝑘th year by the papers published in the 
ሺ𝑘 െ 1ሻth year. 

The fluctuation in journal impact factor is illustrated in Figure 6(b), where it can 
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be observed that the simulated variations in journal impact factor closely align with the 
empirical results of the APS dataset, thereby validating the citation network model.  

2.9 h-index 

The ℎ-index of an author is ℎ if ℎ of his papers have at least ℎ citations and 
each of the remaining papers have less than ℎ citations. To determine ℎ, an author's 
publications are sorted based on their citations, arranged from the most cited to the least 
cited. This results in a sorted paper list, denoted as Π ൌ ሼ𝛼ଵ,⋯ ,𝛼௜ ,⋯ ,𝛼௡ሽ  where 

𝑐ఈ೔ ൒ 𝑐ఈ೔శభ, 𝑖 ∈ ሾ1,𝑛 െ 1ሿ. The ℎ-index is then identified as the last position in which 

𝑐ఈ೔ is greater than or equal to the position 𝑖. 

ℎ ൌ max
௜
൜min
ఈ೔∈ஈ

ൣ𝑐ఈ೔ , 𝑖൧ൠ ሺ5ሻ 

The distributions and temporal variations of the ℎ-index in both simulated and 
empirical results are illustrated in Figure 7. In Figure 7(a), it is evident that the ℎ-index 
distributions for both simulated and empirical data exhibit fat-tailed characteristics and 
closely align with each other. These distributions, as depicted in Figure 7(a) , also 
concur with the findings of Ref. [28], thereby validating the ℎ-index outcomes from this 
simulation. Figure 7(b) presents the temporal dynamic growth of the top 3 researchers 
with the highest ℎ-index. Notably, the general growth patterns in both simulated and 
empirical results are predominantly linear, consistent with the predictions in Ref. [27], 
adding credibility to the simulation results. 

 

Figure 7. Model simulation versus APS empirical data: (a) ℎ-index distribution in the 
final year; (b) temporal variation of the ℎ-index for the top 3 researchers. 

3. Results and Analysis 

3.1 paper life time 𝜽 

The paper lifetime (𝜃  in Equation ሺ3ሻ ) is a parameter that characterizes the 
duration of a paper. For instance, if ∆𝑡 ൌ 𝑡 െ 𝜏௜ ൌ 𝜃, then 𝑃௜ሺ𝑡ሻ ൌ 36.8 % in all cases. 
A larger 𝜃 implies that older papers will receive more citations. It is known that 𝜃 
varies across different disciplines; for instance, mathematics tends to have a larger 𝜃 
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compared to biology. The effects of 𝜃  on the journal impact factor are depicted in 
Figure 8. It is evident that as 𝜃  increases, the journal impact factor decreases 
monotonically. This is because a larger 𝜃 results in more citations being attributed to 
older papers, particularly those published more than 2 years ago. Since the total number 
of citations remains constant, fewer citations are available for papers published within 
the last 2 years, which forms the numerator of Equation ሺ4ሻ. Consequently, the journal 
impact factor decreases accordingly, as illustrated in Figure 8. 

 
Figure 8. impact of paper life time 𝜃 on journal impact factor: (a) temporal variation 
of journal impact factor at different 𝜃; (b) the journal impact factor as functions of 𝜃 
at different year. 

The impact of paper life time 𝜃 on the distributions of ℎ-index is illustrated in 
Figure 9(a). It is evident that a smaller 𝜃  corresponds to larger proportions of 
researchers with low or moderate ℎ-index and smaller proportions of researchers with 
a large ℎ-index. This is attributed to the fact that a small 𝜃 results in more citations 
being allocated to recently published papers, typically authored by newcomers with 
lower ℎ-index. In contrast, a large 𝜃 leads to more citations directed at older papers, 
often authored by established incumbents, contributing to a stronger Matthew effect 
and resulting in a higher prevalence of researchers with large ℎ-index, as observed in 
Figure 9(a). Researchers with lower or moderate ℎ -index exhibit larger fractions, 
leading to a higher weighted average of distributions for smaller 𝜃 , as depicted in 
Figure 9(b). 
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Figure 9. impact of the paper life time 𝜃 on the ℎ-index: (a) distribution of ℎ-index 
at different 𝜃; (b) average ℎ-index as functions of 𝜃 at different year. 

3.2 references number 𝑵 

As the average number of references 𝑁 equals the average number of citations, 
an increase in 𝑁  leads to higher 𝑐௜

௧  in Equation ሺ3ሻ  and consequently higher 
average citations. Given that the journal impact factor is directly influenced by the 
annual citations received by papers published in the recent 2 years, a higher 𝑁 results 
in a higher journal impact factor, as depicted in Figure 10. 

 
Figure 10. impact of reference number 𝑁 on journal impact factor: (a) temporal 
variation of journal impact factor at different 𝑁; (b) the journal impact factor as 
functions of 𝑁 at different year. 

The ℎ -index is influenced by both an author's productivity and the citations 
received by each paper. While increasing the average reference number 𝑁  has no 
direct impact on an author’s productivity, it does contribute to increased citations for 
each published paper. Consequently, authors tend to have higher ℎ-index values, as 
illustrated in Figure 11(a). The relationship between the average ℎ-index of all authors 
and the reference number 𝑁 is depicted in Figure 11(b), where it is evident that the 
average ℎ-index exhibits a monotonic increase with the reference number 𝑁. 

 
Figure 11. impact of the reference number 𝑁 on the ℎ-index: (a) distribution of ℎ-
index at different 𝑁; (b) average ℎ-index as functions of 𝑁 at different year. 
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The impact of team size 𝑚 on the journal impact factor is minimal, as only the 
fitness term 𝜂௜  in Equation ሺ3ሻ  is slightly influenced by 𝑚 . Consequently, our 
analysis will primarily focus on how 𝑚 affects the distributions of the ℎ-index, as 
depicted in Figure 12. With an increase in the average team size 𝑚, while keeping the 
probability of newcomers 𝑝  constant, more authors/researchers are generated with 
each published paper. Despite a larger 𝑚 resulting in each researcher being selected 
more frequently as a coauthor, the likelihood of getting selected each time decreases 
due to the higher number of researchers. Consequently, the average number of authored 
papers and the average ℎ-index generally remain constant. Figure 12(a) indicates that 
with more researchers, the top researcher is more likely to achieve a higher ℎ-index. 
However, since the total number of citations remains constant, fewer citations are 
available for the average researcher. As a result, the distributions of small team sizes 
tend to be higher than those of large team sizes in low to medium ℎ-index region, as 
shown in Figure 12(a). As the average researcher occupies more fractions, the average 
ℎ-index decreases with team size, as demonstrated in Figure 12(b). 

 
Figure 12. impact of the average team size 𝑚 on the ℎ-index: (a) distribution of ℎ-
index at different 𝑚; (b) average ℎ-index as functions of 𝑚 at different year. 

3.4 probability of newcomers 𝒑 

Since the distributions of author’s ability 𝑄  are the same for newcomers and 
incumbents, the variation of 𝑝 has no impact on the paper’s quality 𝜂௜ and thus does 
not affect the journal impact factor. When the probability of selecting newcomers 𝑝 
increases while keeping the average team size 𝑚  constant, more newcomers are 
generated with each published paper and the probability of selecting incumbents as 
authors decreases. Therefore, as the probability of newcomers 𝑝  increases, the 
distributions of ℎ-index will gradually become dominated by fresh researchers with 
low ℎ-index, as shown in Figure 13(a). It can be noted that the distributions of small 
𝑝 tend to be higher than those of large 𝑝. The average ℎ-index will also decrease with 
the increasing 𝑝, as demonstrated in Figure 13(b). 
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Figure 13. impact of the probability of newcomers 𝑝 on the ℎ-index: (a) ℎ-index at 
different 𝑝; (b) average ℎ-index as functions of 𝑝 at different year. 

3.5 team size 𝒎 at fixed 𝒌 

In Section 3.3, we analyzed the impact of increasing team size 𝑚 while keeping 
the probability of selecting newcomers 𝑝 constant on the ℎ-index. In this section, we 
will examine the effect of increasing team size 𝑚 while maintaining the number of 
new authors generated per each new paper 𝑘 constant. Since larger 𝑚 implies more 
frequent selections for each author, to uphold a constant 𝑘, the probability of selecting 
newcomers each time 𝑝 should be reduced accordingly. According to Equation ሺ1ሻ, 
the probabilities of selecting newcomers are 𝑝 ൌ ሾ0.767, 0.384, 0.192, 0.096, 0.048ሿ 
respectively when the team size is 𝑚 ൌ ሾ1.1, 1.6, 2.6, 5.2, 10.1ሿ . This case study 
simulates the scenario where incumbents intentionally enlarge their team size without 
the additional influx of newcomers. The impact of increasing 𝑚  while keeping 𝑘 
constant on the distributions of ℎ-index is shown in Figure 14(a). It can be noted that 
the numbers of authors with medium to high ℎ-index increase significantly with the 
increasing team size 𝑚. This is because increasing the team size 𝑚 while keeping the 
new authors per paper 𝑘 constant can inflate the productivity of authors, especially 
those with more collaborations, and thus inflate their ℎ -index. Consequently, the 
average ℎ-index increases significantly with the increasing team size 𝑚, as shown in 
Figure 14(b). 

 
Figure 14. impact of the team size 𝑚 on the ℎ-index: (a) distribution of ℎ-index at 
different 𝑚; (b) average ℎ-index as functions of 𝑚 at different year. 
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4. Conclusions 

In this paper, mathematical model for the team assembly and citation process is 
established and the coevolution of coauthorship and citation network is simulated. 
Scientific impact indicators, such as the journal impact factor and ℎ -index, are 
calculated and validated against the empirical data from the APS datasets. Parametric 
studies are conducted to analyze the impact of different parameters, such as the paper 
lifetime 𝜃 , reference number 𝑁 , team size 𝑚  and the probability of selecting 
newcomers 𝑝, on the journal impact factor and ℎ-index. It can be concluded from this 
research that: 

1. By using a few simple and reasonable assumptions, the mathematical models can 
effectively replicate most empirical data characteristics, including temporal 
dynamics and distributions of ℎ -index, thus indicating that modelling and 
simulation methods are reliable tools for exploring how different parameters affect 
scientific impact indicators.  

2. Increasing the reference number 𝑁  or decreasing the paper lifetime 𝜃 
significantly boosted both the journal impact factor and average ℎ -index. 
Additionally, enlarging team size 𝑚 without adding new authors or reducing the 
probability of selecting newcomers, notably increases the average ℎ-index. This 
implies that scientific impact indicators may have inherent weaknesses or can be 
manipulated by authors, making them unreliable for assessing the true quality of a 
paper.  

3. The presented mathematical models can be easily extended to include other 
scientific impact indicators and scenarios. This versatility positions modeling and 
simulation methods as powerful tools for studying the impact of various 
parameters on scientific impact indicators, aiding in the development of improved 
indicators. Furthermore, these methods can serve as robust tools for validating 
underlying mechanisms or predicting different scenarios based on joint 
coauthorship and citation networks.  
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