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Abstract 

Using a rate-equation model we numerically evaluate the carrier concentration and photon 

number in an integrated two-section semiconductor laser, and analyse its dynamics in three-

dimensional phase space. The simulation comprises compact model descriptions extracted from 

a commercially-available generic InP technology platform, allowing us to model an applied 

reverse-bias voltage to the saturable absorber. We use the model to study the influence of the 

injected gain current, reverse-bias voltage, and cavity mirror reflectivity on the excitable 

operation state, which is the operation mode desired for the laser to act as an all-optical 

integrated neuron. We show in phase-space that our model is capable of demonstrating four 

different operation modes, i.e. cw, self-pulsating and an on-set and excitable mode under 

optical pulse injection. In addition, we show that lowering the reflectivity of one of the cavity 

mirrors greatly enhances the control parameter space for excitable operation, enabling more 

relaxed operation parameter control and lower power consumption of an integrated two-section 

laser neuron. 
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1. Introduction 

Electronic processors in form of CPUs and GPUs are 

widely used today to implement powerful machine learning 

systems based on artificial neural networks (ANN). Since 

these processors are based on the Von-Neumann computer 

architecture, data are processed sequentially. Inspired by the 

human brain, an ANN in contrast consists of a large amount 

of parallel artificial neurons and a large number of weighted 

interconnections representing biological synapses. The 

vector-matrix multiplication performed in ANNs is a parallel 

computational process, which limits the efficiency of ANNs 

implemented on traditional electronic processors. In addition, 

the computational power needed for novel ANNs currently 

outgrows the computational power delivered by traditional 

hardware [1], [2]. Thus, novel hardware designed specifically 

to implement ANNs on a chip has been the subject of research 

for a while.  

A specific type of ANN that mimics the dynamics observed 

in biological neurons is the spiking neural network (SNN). In 

the human brain, neurons are connected using dendrites and 

axons. An axon conveys the action potential generated by a 

neuron to consecutive neurons, which is essentially an all-or-

nothing spiking signal. With the condition that a spike is 

sufficiently strong, consecutive neurons are triggered to 

generate a response spike [3]–[5], which is referred to as 

‘excitability’. In addition to single spike excitation, biological 
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neurons exhibit other dynamical features, such as periodic 

spiking and bursting. A detailed analysis of the dynamics of 

biological neurons can be found in [6].  

The rich dynamics observed in biological neurons has been 

exploited in SNNs to tackle various machine learning tasks 

[7], [8]. Due to the potential lower energy consumption, large 

bandwidth, low crosstalk and extremely fast spiking rates, 

integrated photonics is a promising candidate to explore the 

implementation of artificial neural networks [9]. The spiking 

mechanism can be implemented in photonics using two-

section lasers. For example, by adding a Thulium-doped fibre 

saturable absorber in an Erbium-doped fibre laser, an excitable 

laser was demonstrated [10]. Similarly, integrated lasers such 

as vertical-cavity surface emitting lasers (VCSELs) [4], [11] 

and districted feedback (DFB) [12] lasers have shown great 

potential as optical neurons.  

The dynamics of two-section lasers under optical pulse [13] 

or noise [14] injection as well as subject to perturbations in 

gain pump power [15] have been studied extensively before. 

Excitable lasers with delayed optical feedback have been 

another topic of interest [16]–[18]. These studies focus on 

identifying stability regions, period orbits in phase space and 

triggering. However, these extensive mathematical studies are 

based on the dimensionless Yamada model [19] and thus do 

not allow to directly study the influence of design and control 

parameters such as injection current, absorber voltage, and 

mirror reflectivities on the operation of a concrete laser design 

that can be realised in a photonic integration process. 

Secondly, the Yamada model is too simple with regard to 

certain aspects of gain and absorption. For example, device 

and technology specific parameters such as reverse-voltage 

operation and a voltage dependent carrier lifetime in the 

absorber are not considered in the Yamada model but are 

present in real laser devices. 

Previously, we have studied the laser operation regimes of 

a two-section laser under optical pulse injection. Based on 

laser design parameter changes [20] and different absorber 

carrier lifetimes [21], the laser operation regimes have been 

identified. Another study discusses the excitability of two-

section lasers using a lumped-cavity description [22]. Due to 

the rich carrier dynamics, two-section lasers exhibit different 

operation modes such as a self-pulsating, cw, on-set and 

excitable mode. So far, these studies are based on time-trace 

simulations without dynamical analysis in phase space, the 

rich dynamics exhibited by these lasers is still to be explored.  

In this work, we are using the material and platform-

specific rate-equation model reported in [22] and combine 

time-trace analysis with phase space investigation in order to 

study the effect of design and control parameters on laser 

excitability. This model has been matched to the gain building 

block performance on the commercial InP platform [23] using 

compact models for a voltage dependent absorber carrier 

lifetime and transparency carrier density. The model has 

proven to yield qualitative results that agree  with 

experimental observations, such as a hysteresis and bistable 

operation [22]. This allows us to study the behaviour of gain 

and absorber carrier densities and photon number 

concentrations of realistic devices that could be taped-out to 

fabrication. Specifically, we will show how laser control 

parameters, i.e.. the forward gain current and a reverse-bias 

absorber voltage change the dynamical state of the laser. In 

addition, we will study how the mirror reflectivity influences 

the excitable state. 

The rate-equation model and underlying compact models 

will be explained first. The model will then be used to present 

the evolution of gain and absorber carrier densities and photon 

concentrations in phase portraits. Subsequently, we will show 

how for four different combinations of gain current and 

reverse-bias voltage the laser shows qualitatively very 

different dynamical states. Furthermore, we will use the model 

to determine for which mirror reflectivity values, the excitable 

control parameter space is largest. 

2. Laser structure 

The modelled laser structure is a two-section laser 

comprising a saturable absorber (SA), semiconductor optical 

amplifier (SOA), and passive elements formed by mirrors 𝑅1 

and 𝑅2 as depicted in Figure 1 (bottom). Such a modular 

approach is compatible with the commercially available multi-

project wafer (MPW) InP platform discussed in [24]. The 

optical cavity is formed by combining various building blocks 

such as a broadband multimode interference reflector [25] 

(MIR) and a distributed Bragg reflector [26] (DBR). As 

indicated in Figure 1, an external perturbation in the form of 

an optical trigger pulse can be injected into the cavity from the 

MIR side of the laser, while the photon number in the cavity 

can be related to the optical output on the DBR side. The active 

regions of both SOA and SA consist of four multi-quantum 

wells (MQW) to provide optical absorption and gain by 

applying either a reverse-bias voltage or forward current, 

respectively. The different building blocks are connected 

using ridge waveguides with the cross-section shown in 

Figure 1 (top) with a total length indicated by the passive 

element in Figure 1 (bottom). Electrical contacts are deposited 

on the top and bottom of the layer stack for electrical probing. 

 The spectral absorption [27] and gain parametrisation [28], 

[29] of the SA and SOA building blocks were studied before, 

and experimental data are used in this work to obtain 

functional relations for the rate-equation model.  
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Figure 1: Top: Ridge waveguide cross-section in the generic 
platform [24]. Bottom: Two-section laser comprising two mirrors, a 

saturable absorber (SA), semiconductor optical amplifier (SOA), 
passive elements, and in- and output. 

3. Method 

Spiking Laser Model 

The model under investigation is a lumped-cavity 

description [22], [30] comprising three coupled differential 

equations to describe the gain and absorber carrier densities 

𝑁G and 𝑁Q and the total photon number 𝑆 in the cavity.  The 

mathematical descriptions of the gain and absorber region are 

based on parametrisations of the gain, carrier lifetime and 

other parameters of the InP platform using compact models. 

 

𝑑𝑆
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𝑁G
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 (3) 

 

For a listing of the parameter names and values, we refer the 

reader to Table 1. Equation (1) describes the rate at which 

photons are generated. The terms in the right-hand side 

correspond, in the order of appearance, to the SOA gain 𝑔net 

(stimulated emission), the absorption in the SA 𝛼sat, the cavity 

loss expressed as the photon lifetime 𝜏ph, the spontaneous 

emission 𝑆sp in the cavity and the injection of external photons 

in the cavity through 𝜅𝑠(𝑡). Equation (2) describes the 

absorber carrier density rate of change, in which the first term 

gives the photon-induced change in the absorber volume 𝑉𝑆𝐴 

and the last gives the carrier-density loss expressed in the 

absorber carrier lifetime 𝜏Q. Equation (3) models the gain 

carrier density, where the first term accounts for injected 

carriers through current 𝐼 into gain volume 𝑉SOA. The second 

term describes reduction of the carrier density due to optical 

gain, and the last term models the gain carrier recombination 

rate of the gain through lifetime 𝜏G.  

    In (1), the net gain 𝑔net is based on a logarithmic expression 

in the gain carrier density 𝑁G [31] with respect to the gain 

transparency carrier density 𝑁G0, and takes into account the 

material gain and passive loss per unit length.  

𝑔net = Γ [𝑎ng𝑁G0 log
𝑁G

𝑁G0
] − [𝑐1 (

𝑁G

𝑁G0
)

2

+ 𝑐2

𝑁G

𝑁G0
+ 𝑐3] (4) 

Here, Γ is the optical confinement factor, and 𝑎ng the gain 

cross-section for stimulated emission, both of which 

contribute to the material gain. The passive loss was 

previously measured on the generic platform for current 

densities ranging between 1.0 to 10.0 kA/cm2 and modelled 

using a quadratic function with fitting parameters 𝑐𝑖 (i=1,2,3) 

of the carrier density ratio 𝑁𝐺/𝑁𝐺0 [32]. 

The absorption includes a saturation effect as shown in 

Equation (5), where 𝛼sat is proportional to the differential 

absorption 𝑎nq and the absorber carrier density 𝑁Q with 

respect to the absorber transparency carrier density 𝑁Q0. The 

saturation of the absorption is accounted for by the saturation 

photon number 𝑆sat, which corresponds to a saturation energy 

of 1 pJ, assumed to be valid for quantum well-based absorbers 

[33].   

𝛼sat =
Γ[𝑎nq(𝑁Q − 𝑁Q0)]

1 +
𝑆

𝑆sat

 (5) 

The photon lifetime 𝜏ph is mainly determined by the mirror 

losses and is defined by [34]: 

𝜏ph =
1

𝑣g𝛼mirror

 (6) 

where mirror losses 𝛼mirror are influenced by the structural 

parameters of the laser, namely the mirror reflectivities 𝑅1 and 

𝑅2 and the total cavity length [35]: 

𝛼mirror =
ln (

1
𝑅1𝑅2

)

𝐿SA + 𝐿𝑆𝑂𝐴 + 𝐿pass

 (7) 

The spontaneous emission rate 𝑆sp depends on the gain 

carrier density 𝑁G, as well as the bimolecular recombination 

rate 𝐵, and the spontaneous emission factor 𝛽, which relates 

the number of spontaneously generated photons coupled into 

the lasing mode [4]: 

𝑆sp = 𝑉gain𝛽𝐵𝑁𝐺
2 (8) 
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The photon number 𝑆 in the cavity translates to the optical 

power via [4]:  

𝑃opt =
𝑆ℎ𝑐0𝜂c

𝜏ph𝜆
 (9) 

in which ℎ𝑐0/𝜆 is the single-photon energy, and 𝜂c an 

outcoupling efficiency which depends on the mirror 

reflectivity. Vice versa, an estimation of the number of 

photons in an external pulse injected into the cavity can be 

calculated from Equation (9): 

𝑆inj =
𝑃opt𝜏ph𝜆

ℎ𝑐0𝜂c

 (10) 

Compact models 

In the rate-equation formula that describes the absorber 

(Equations (2)), the voltage dependency is modelled using a 

voltage-dependent absorber carrier lifetime 𝜏Q and saturation 

factor 𝛼sat via a voltage dependent absorber transparency 

carrier density 𝑁Q0. The model that estimates the absorber 

carrier lifetime 𝜏Q is based on previously measured carrier 

sweep-out times in an electro-absorption modulator (EAM) on 

the same technology platform [36]. The carrier lifetime 

follows an exponential function depending on the applied 

reverse-bias voltage: 

𝜏Q = 𝑎 ⋅ 𝑒𝑏⋅𝑉rb (11) 

 
Figure 2: Extracted absorber carrier lifetime as a function of the 
applied reverse-bias voltage for a = 1.086·10-10 s, and b = -1.626 V-1.  

Since the absorber transparency carrier density is voltage 

dependent [37], data obtained previously from small-signal 

absorption measurements 𝑄0 for different reverse-bias 

voltages of a saturable absorber are used [33] to create a 

compact model for the transparency-versus-voltage 

relationship. Analytically, the small-signal absorption can be 

expressed as [38]:  

𝑄0 = Γ𝑎nq (𝑁Q0 −
𝐼A𝜏Q

𝑒𝑉
) (12) 

where 𝐼𝐴 is an applied direct injection current. Thus, any 

variation in 𝑁Q0 changes the small-signal absorption. Without 

additional current injection, i.e., 𝐼𝐴=0 mA, the small-signal 

absorption is reduced to (see also [33], [39]): 

𝑄0 = Γ𝑎nq𝑁Q0 (13) 

Measurements of the optical transmission through a 90 μm 

saturable absorber under different reverse biases were used to 

determine the relation between 𝑄0 and 𝑉rb. Equation (13) was 

then used to match 𝑁Q0 to the different reverse biases, 

assuming the absorber transparency carrier density at Vrb=0V 

and 𝜆=1560 nm is 0.05·1024 m-3. This value was obtained 

before in pulse-transmission measurements and matching 

carrier density simulations of a saturable absorber on a similar 

InP-based technology platform [33]. In Equation (13), 𝑎nq and 

𝑁Q0 are matched to the small-signal measurements, which 

yields the linear relationship between absorber transparency 

carrier density and reverse-bias voltage at 1550 nm depicted 

in Figure 3.  

 

 
Figure 3: Reverse-bias voltage 𝑉𝑟𝑏 as a function of transparency 
carrier concentration 𝑁𝑄0 at 1550 nm. Black squares: estimated 

values of 𝑁𝑄0 at 1550 nm. Solid line: linear fit. 

Solving the rate-equation model numerically 

The rate-equation model Eq.(1)-(3), logarithmic and linear 

gain and absorber models Eq.(4)-(5), and underlying compact 

models Eq.(6)-(11) were solved numerically using the 

Adams–Bashforth integration method implemented in Python 

to find solutions for 𝑆, 𝑁Q and 𝑁G. Unless stated otherwise, for 

all simulations the values mentioned in Table 1 are used. 

Table 1: Simulation parameters. Var. indicates the actual 
parameter value is based on other control or design parameters. 

Photon lifetime τph 31.3 ps 

Gain carrier lifetime [28] τG 300 ps 

Absorber carrier lifetime τQ var. ps 

Group velocity vg 8.2·107 m·s-1 

Spontaneous emission rate Ssp var. s-1 

Gain cross-section ang 1.75·10-19 m2 

Differential absorption anq 4.00·10-19 m2 

Gain transparency carrier 

density 

NG0 5.00·1023 
m-3 
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Absorber transparency carrier 

density [33] 

NQ0 var. 
m-3 

Confinement factor Γ 0.053 [-] 

Gain medium volume VSOA 1·10-16 m3 

Absorber medium volume VSA 1·10-17 m3 

Bias current I var. A 

Optical injection rate κS(t) var. s-1 

Coupling efficiency ηc 0.6 [-] 

Lasing wavelength λ 1550 nm 

Absorber reverse-bias voltage Vrb var. V 

Spontaneous emission factor β 1·10-4 [-] 

Bimolecular recombination rate B 1·10-16 m3s-1 

DBR mirror reflectivity R1 0.866 [-] 

MIR mirror reflectivity R2 0.632 [-] 

Absorber section length LSA 50 μm 

Gain section length LSOA 500 μm 

Passive section length Lpass 1000 μm 

4. Results  

Since the model at hand defines a three-dimensional system 

of equations, the numerical solutions can be visualized as a 

trajectory in phase space. Depending on the initial conditions 

at t=0, laser parameters and external optical perturbation 

condition, the solution can evolve, but need not, to a stable  

limit cycle, representing a steady state of the system. In 3D, 

there is also a possibility that no limit cycle exists, i.e., the 

cycle period is infinite in time. A chaotic attractor is an 

example of the latter.  

First, a laser with the parameters given in Table 1, a gain 

current of 40.5 mA and reverse-bias voltage of 0.6 V is 

simulated for a time period from 0 to 3 ns. An optical pulse 

with a Gaussian profile, time duration of 50 ps, and peak 

power of 5 mW is injected at t=1 ns. Figure 4 shows the 

evolution (solid black line) as a trajectory in 3D phase space. 

The three light-grey lines are the projections onto the (𝑁G, 𝑆), 

(𝑁Q, 𝑆), and (𝑁G, 𝑁Q) 2D phase planes. The black dot and 

square denote the initial condition (simulation starting value), 

and simulation end point, respectively. The moment at which 

the optical pulse is injected is highlighted with a black 

triangle. From the simulation starting point, the solution 

slowly drifts towards a higher value for 𝑆 and 𝑁Q, and a lower 

value in 𝑁G. A large excursion of 𝑆 follows, before the 

solution moves towards the steady state with a very small 

value for 𝑆. When the external optical pulse is injected, a rapid 

increase in 𝑆 and decrease in 𝑁G follows. The result is a second 

but slightly larger excursion in phase space. The difference 

between the two excursions originates from the different 

triggering mechanisms. The first excursion is the result of the 

initial conditions, whereas the second excursions is the result 

of a larger number of photons injected into the simulated 

cavity. 

 

Figure 4: Numerical solutions of an excitable laser under optical 
injection in three dimensional phase space (top, solid black line). 
The grey lines are projections of the 3D solution onto 2D phase 

planes. ● simulation start point,  ■ simulation end point, ▲ pulse 
injection. Bottom: corresponding time trace. 

Tuning laser control parameters 

In the previous examples, the laser was biased in a specific 

operation point to show its dynamics and excitable behaviour. 

However, depending on the combination of different gain 

currents, reverse biasing voltages and optical pulse injection, 

the laser can show different operation modes. Figure 5-8(a)-

(d) show four different operation regimes and corresponding 

two dimensional phase space plots when laser control 

parameters (gain current and reverse-bias voltage) are 

changed.  

First, in Figure 5, the laser is operated at a gain current of 

87.1 mA and reverse-bias voltage of 1.800 V and no optical 

pulse is injected. From the simulated time trace (Figure 5(d)) 

clearly the laser shows a sustained pulsed output with a fixed 

repetition rate. In (𝑆, 𝑁G) and (𝑁G, 𝑁Q) phase space, this is 

visible as an asymptotic stable limit cycle: for every generated 

pulse, the same closed loop is followed. From a dynamical 

perspective, this behaviour represents a periodically spiking 

neuron or neuron in burst mode [6]. 

Close to the self-pulsating operation point exists a 

dynamically very different state. When the reverse-bias 

voltage is changed by only 3 mV while the gain current 

remains the same, the laser suddenly loses the capability to 
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sustain a pulsed output, instead it shows damped oscillations 

before reaching a stable optical cw output (Figure 6(d)). These 

relaxation oscillations are fast, since their frequency is 

determined by the fast photon lifetime and the resonant energy 

exchange between the optical field and population inversion 

[18], [22]. In phase space, the limit cycle has disappeared and 

is replaced by a spiral into a stable fixed point (Figure 7(a)-

(c)).  

Next, the gain current is lowered to 55.0 mA, the reverse-

bias voltage is changed to 1.000 V, and an optical trigger pulse 

is injected at t=1.1 ns. From Figure 7(d) it is clear that the 

trigger caused the system to start lasing in cw mode. At the 

moment the pulse is injected, the output is raised to a steady 

state. Apparently, the system is bistable, i.e., on or off. 

Qualitatively, the dynamical behaviour is similar to that 

presented in Figure 6, albeit with a different relaxation 

oscillation frequency, consistent with the smaller photon 

number.  

Lastly, the gain is kept at 55.0 mA, but the reverse-bias 

voltage is set at 1.500 V. Figure 8(d) shows  the laser is now 

excitable, since the optical pulse now triggers the laser to 

generate a single pulse. The observed dynamics of this 

excitable laser neuron is analogous to excitability observed in 

biological neurons [6], [40].

  

  

Figure 5-8: Transients in four operation regimes of the simulated laser. Fig. 5: from off to self-pulsating, Figs. 6 and 7: from off to cw, Fig. 
7: trigger-induced switch on, Fig. 8: excitability. In Fig.5 and 6, the gain current is fixed at 87.1 mA, while in Fig. 5, the reverse-bias voltage 

is 1.800 V, and in Fig. 6 1.797 V. In Fig. 7-8, the current is lowered to 55.0 mA, while the voltage is 1.000 V and 1.500 V, respectively. In 
these cases, an optical pulse with width of 50 ps, and a  peak power of 5 mW is injected at t=1.1 ns. 

 

 

 

 

 

 

5(a) 5(b) 

5(c) 5(d) 

6(a) 6(b) 

6(c) 6(d) 
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Tuning laser design parameters 

The four cases described previously validate that our model 

is capable of generating different laser operation states. 

Another key aspect to investigate is the influence of laser 

design parameters on the dynamical states of the laser neuron. 

One design parameter of interest is the reflectivity of one of 

the cavity mirrors, which can be chosen when designing a two-

section laser for tape-out. The reflectivity of the DBR mirror 

in Figure 1 can be altered by changing its length [26]. The 

reflectivity of the MIR mirror is fixed by design. In order to 

investigate the effect of different reflectivities on the laser 

operation states, we first use the model to calculate trajectories 

at a fixed gain current and four different reverse-bias voltages. 

In Figure 9(a), and (c), the simulation results of two different 

laser designs are depicted in 3D phase space. The trajectory 

starting and end points are indicated by the black circle and 

square, respectively. The corresponding time traces are 

depicted in Figure 9(b) and (d). In both simulations, the gain 

current was set to 50 mA, while the reverse-bias voltage was 

swept from 0 to 3 V in increments of 1 V. An external optical 

trigger pulse with a pulse width of 50 ps and peak power of 5 

mW is applied at t=1.0 ns, indicated by the dash-dotted lines 

in Figure 10(b), and (d).  

In the first case, Figure 9(a)-(b), the structure of the laser is 

the same as in the previous simulations, which means that the 

DBR-mirror reflectivity is set to be 0.866. At a reverse-bias 

voltage of 3 and 2 V (black lines), the laser response is below 

the excitable threshold. In Figure 9(a), this is clear from the 

small loops and the low value for 𝑆. At these reverse-bias 

voltages, the absorption is high. When the reverse-bias voltage 

is lowered to 1 and 0 V, absorption decreases and large 

excursions in phase space and pulses in the time traces due to 

the injected pulse are observed, indicating the laser is excited. 

This is indicated by the red lines in Figure 9(a), and (b). In 

Figure 9(c), and (d), the reflectivity of the DBR mirror was 

lowered to 0.400. Effectively, this changes the loss in the 

cavity, which influences the photon lifetime, as indicated by 

Equation (6) and (7). Consequently, the dynamical states 

change for the same applied reverse-bias voltage as in the 

previous case. By inspecting Figure 9(c)-(d), it is observed 

that at a reverse-bias voltage of 3 V, the laser trajectory shows 

the same small excursions (black line). However, at a reverse-

bias voltage of 2 and 1 V a large excursion is observed (red). 

Thus, the laser is excitable at these voltages. Moreover, for the 

case where the reverse-bias voltage is 0 V (blue), the laser 

does not follow a closed trajectory, but moves to a stable fixed 

point, resulting in the cw operation mode. In this case, the 

cavity losses are lower due to a higher value for the 

reflectivity, therefore the laser operates in cw.  In the previous 

example, the laser was excitable for these parameter settings. 

            

 

          

 

  

9(a) 9(c) 

9(b) 9(d) 

Figure 9: Simulation results of two different laser designs. Top figures (a), (c) show the trajectories in 3D phase space for reverse bias 

voltages of 0, 1, 3, and 4V. Bottom figures (b), and (d): simulated time traces showing the injected pulse at t=1.0 ns (dash-dotted 

line) and laser response (solid line) Left case: mirror reflectivity 0.866, right case: mirror reflectivity 0.400.  



The two cases discussed in Figure 9 indicate qualitatively 

that the laser control and design parameters influence the 

dynamical state the laser operates in. Depending on the mirror 

reflectivity, the laser may or may not be excitable under 

optical-pulse injection. Next, we perform a control and 

parameter sweep in order to get qualitative results on the 

excitable regime. More precisely, we investigate the 

dependency of the gain current, reverse-bias voltage and the 

mirror reflectivity on the excitable operation regime.  

First, In Figure 10(a)-(d), the simulation results of four 

different laser designs with DBR reflectivity values of 0.3, 0.5, 

0.7, and 0.9 are shown, which could be achieved by changing 

the DBR length to 0.15, 0.20, 0.30 and 0.35 mm [26]. In these 

simulations, the gain current was swept from 30 to 90 mA, and 

for every value for the gain current, the reverse-bias voltage 

was swept from -1 to 4 V. An external optical trigger pulse 

with a pulse width of 50 ps and peak power of 5 mW is applied 

at t=4.0 ns.  For every simulation point, the average optical 

output power is calculated over a simulation window of 25 ns. 

Based on the calculated optical output, the operation mode of 

the laser was determined. The parameter space for excitable 

operation is depicted in Figure 10(a)-(d). 

By comparing the four individual maps, it is clear when the 

laser is biased at a fixed gain current, the largest excitability 

parameter space is obtained if the mirror reflectivity is low. 

Gradually increasing the reflectivity from R=0.3 to R=0.9 

(Figure 10(a) to (d)) results in a reduction of the parameter 

space for excitable operation.  For example, for a reflectivity 

of R=0.3 excitable operation at a gain current of 50.0 mA was 

observed between a reverse-bias voltage of -0.175  and 1.17 V 

(ΔVrb=1.34 V), whereas changing the mirror reflectivity to 

R=0.9 results in excitable operation between  1.00 and 1.83 V 

(ΔVrb=0.830 V). This is highlighted with the red vertical line 

in Figure 10(a) and (d). Similar results are observed when 

considering a the gain current. At a fixed reverse-bias voltage 

of 1.00 V, excitability is observed between 48.0 and 73.6 mA 

(ΔI=25.6 mA) for the case where R=0.3, whereas increasing 

the reflectivity to R=0.9 results in excitable operation between 

38.0 and 53.3 mA (ΔI=15.3 mA), as indicated by the 

horizontal red line. Decreasing the reverse-bias voltage to  

0.140 V reduces the excitable operation space to ΔI=13.7 mA 

and ΔI=4.02 for R=0.3 and R=0.9, respectively. 

To further quantify this observation, two simulations at 

reverse-bias voltages of 0.140 V and 1.00 V for mirror 

reflectivities swept from near 0 to 1 and gain currents between 

20.0 and 90.0 mA were performed. In Figure 10(e) and (f), the 

parameter space for excitable operation for different values of 

the reflectivity and gain currents are depicted. By comparing 

the area of excitable operation in these two maps, it is clear 

that the largest parameter space for excitable operation exists 

for relatively low reflectivity values (i.e. R < 0.5). At higher 

reflectivity values, the excitability parameter space decreases, 

which is consistent with the observation in Figure 10 (a)-(d). 

Also, when the reflectivity approaches zero, excitability 

vanishes, due to the cavity losses. In addition to the area of 

excitability, the average optical output power of the excited 

pulse is mapped onto a colour scale. In both cases, it is clear 

that at the left and right boundary of excitability, the optical 

output power is lowest and highest, respectively.  Figure 10(e) 

and (f) are especially of interest when the total laser energy 

consumption  is considered.  By operating the laser at the 

lowest possible gain current, while ensuring a relatively large  

window of excitable operation is achieved, static power 

consumption is minimal. 

   

   

10(a) 
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Figure 10 (a)-(d): Simulation results of four different laser designs. The reflectivity of the DBR mirror is swept from 0.3 (a) to 0.9 (d). 

Reflectivity of the MIR is fixed at 0.6. Other simulation parameters remain as described in Table 1. Figure 10 (e)-(f): area of excitable 

operation for Vrb=0.14V (e) and 1.0V (f). The colour bars indicate the total optical output power of the excited pulse. 



5. Conclusion 

In this work, we used a rate-equation model and compact 

models based on the generic InP technology platform to 

numerically calculate the evolution of gain and absorber 

carrier densities and photon concentration. This allowed us to 

study the dynamics of an integrated two-section laser under 

optical pulse injection. Using these models, the operation 

mode and evolution of the dynamics for two control 

parameters, i.e. the gain current and reverse-bias voltage, can 

be determined.  

From the phase-portrait analysis, a classification of the 

laser operation modes is presented. First, at a gain injection 

current and reverse-bias voltage of 87.1 mA and 1.8 V, 

respectively, the model shows a self-spiking mode where the 

solution follows a limit cycle in (𝑆, 𝑁G, 𝑁Q) phase space with 

sustained oscillations in the calculated time-trace. The limit 

cycle is replaced by a stable spiral when the reverse-bias 

voltage is changed by only 3 mV, indicating the laser pulses 

are replaced by fast relaxation oscillations before cw mode is 

reached. When the gain injection current is lowered to  

55.0 mA and an optical trigger pulse is injected, the on-set 

mode and excitable mode are predicted.  

Besides the control-parameter dependent dynamical state, 

we further demonstrated that depending on the value for the 

cavity-mirror reflectivity, the laser shows different trajectories 

in three dimensional phase space. The main reason for this are 

the mirror-reflectivity dependent cavity losses and photon 

lifetime, indicating that, in order to operate the laser as an 

excitable integrated laser neuron, the value for the reflectivity 

should be carefully chosen. We presented simulation results 

where the mirror reflectivity was swept from near 0 to 1 for 

two different reverse-bias voltages of 0.140 V and 1.00 V. In 

addition, the optical output of the excited pulse was recorded. 

The results demonstrate that the largest parameter space for 

excitable operation is obtained for relatively low reflectivity 

values. Moreover, output-pulse energies are lower at smaller 

gain currents. This observation is of great importance when 

considering low energy consumption, i.e. a low gain current 

operation.  

Data availability statement 

All data that support the findings of this study are included 

within the article (and any supplementary files). All data are 

available in the manuscript or the supplementary materials. 

Acknowledgements 

The authors would like to acknowledge Dr. Erwin Bente 

for providing the fit model for the passive losses and data on 

the transparency carrier density,  Dr. Martijn Heck for 

providing data for compact models, and Dr. Robert Otupiri for 

the discussions on the phase space results. 

Author Contributions 

Lukas Puts: performed all simulations, revised model, 

implemented model in Python, interpretated results and 

drafted manuscript, prof.dr. Daan Lenstra: supported in phase-

space analysis, revised model, interpretated results and revised 

manuscript., prof.dr. Kevin Williams: revised manuscript, and 

dr. Weiming Yao: developed model, implementated model in 

Python, supported interpretation and analysis of results, 

revised manuscript. 

Conflict of Interest 

The authors declare no conflict of interest. 

ORCID iDs 

Lukas Puts https://orcid.org/0000-0001-5416-3006 

Daan Lenstra https://orcid.org/0000-0002-4000-8897 

Kevin Williams https://orcid.org/0000-0001-9698-9260 

Weiming Yao https://orcid.org/0000-0002-4558-317X 

References 

[1] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, 

and P. Villalobos, “Compute Trends Across Three Eras of Machine 

Learning,” in 2022 International Joint Conference on Neural 

Networks (IJCNN), Jul. 2022, pp. 1–8. doi: 

10.1109/IJCNN55064.2022.9891914. 

[2] P. R. Prucnal, A. N. Tait, M. A. Nahmias, T. F. De Lima, 

H.-T. Peng, and B. J. Shastri, “Multiwavelength Neuromorphic 

Photonics,” in 2019 Conference on Lasers and Electro-Optics 

(CLEO), May 2019, pp. 1–2. doi: 

10.1364/CLEO_AT.2019.JM3M.3. 

[3] W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. 

Van der Sande, “Solitary and coupled semiconductor ring lasers as 

optical spiking neurons,” Phys. Rev. E, vol. 84, no. 3, p. 036209, 

Sep. 2011, doi: 10.1103/PhysRevE.84.036209. 

[4] M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. 

Prucnal, “A Leaky Integrate-and-Fire Laser Neuron for Ultrafast 

Cognitive Computing,” IEEE J. Select. Topics Quantum Electron., 

vol. 19, no. 5, pp. 1–12, Sep. 2013, doi: 

10.1109/JSTQE.2013.2257700. 

[5] J. Robertson, E. Wade, Y. Kopp, J. Bueno, and A. 

Hurtado, “Toward Neuromorphic Photonic Networks of Ultrafast 

Spiking Laser Neurons,” IEEE J. Select. Topics Quantum Electron., 

vol. 26, no. 1, pp. 1–15, Jan. 2020, doi: 

10.1109/JSTQE.2019.2931215. 

[6] E. M. Izhikevich, “Neural Excitability, Spiking and 

Bursting,” Int. J. Bifurcation Chaos, vol. 10, no. 06, pp. 1171–1266, 

Jun. 2000, doi: 10.1142/S0218127400000840. 

[7] A. S. Kucik and G. Meoni, “Investigating Spiking Neural 

Networks for Energy-Efficient On-Board AI Applications. A Case 

Study in Land Cover and Land Use Classification,” p. 11. 

[8] J. Robertson, Y. Zhang, M. Hejda, J. Bueno, S. Xiang, 

and A. Hurtado, “Image edge detection with a photonic spiking 

VCSEL-neuron,” Opt. Express, vol. 28, no. 25, p. 37526, Dec. 

2020, doi: 10.1364/OE.408747. 



Journal XX (XXXX) XXXXXX Puts et al  

 10  
 

[9] P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. 

Nahmias, and A. N. Tait, “Recent progress in semiconductor 

excitable lasers for photonic spike processing,” Adv. Opt. Photon., 

vol. 8, no. 2, p. 228, Jun. 2016, doi: 10.1364/AOP.8.000228. 

[10] R. Otupiri, B. Garbin, N. G. R. Broderick, and B. 

Krauskopf, “Excitability in an all-fiber laser with a saturable 

absorber section,” J. Opt. Soc. Am. B, vol. 38, no. 5, p. 1695, May 

2021, doi: 10.1364/JOSAB.420204. 

[11] A. Skalli et al., “Photonic neuromorphic computing using 

vertical cavity semiconductor lasers,” Opt. Mater. Express, OME, 

vol. 12, no. 6, pp. 2395–2414, Jun. 2022, doi: 

10.1364/OME.450926. 

[12] Y. Shi et al., “Photonic integrated spiking neuron chip 

based on a self-pulsating DFB laser with a saturable absorber,” 

Photon. Res., vol. 11, no. 8, p. 1382, Aug. 2023, doi: 

10.1364/PRJ.485941. 

[13] B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and 

M. Wolfrum, “Excitability and self-pulsations near homoclinic 

bifurcations in semiconductor laser systems,” Optics 

Communications, vol. 215, no. 4–6, pp. 367–379, Jan. 2003, doi: 

10.1016/S0030-4018(02)02239-3. 

[14] J. L. A. Dubbeldam, B. Krauskopf, and D. Lenstra, 

“Excitability and coherence resonance in lasers with saturable 

absorber,” Phys. Rev. E, vol. 60, no. 6, pp. 6580–6588, Dec. 1999, 

doi: 10.1103/PhysRevE.60.6580. 

[15] R. Otupiri, B. Krauskopf, and N. G. R. Broderick, “The 

Yamada model for a self-pulsing laser: bifurcation structure for 

non-identical decay times of gain and absorber,” Int. J. Bifurcation 

Chaos, vol. 30, no. 14, p. 2030039, Nov. 2020, doi: 

10.1142/S0218127420300396. 

[16] S. Terrien, B. Krauskopf, and N. G. R. Broderick, 

“Bifurcation Analysis of the Yamada Model for a Pulsing 

Semiconductor Laser with Saturable Absorber and Delayed Optical 

Feedback,” SIAM J. Appl. Dyn. Syst., vol. 16, no. 2, pp. 771–801, 

Jan. 2017, doi: 10.1137/16M1099236. 

[17] S. Terrien et al., “Merging and disconnecting resonance 

tongues in a pulsing excitable microlaser with delayed optical 

feedback,” Chaos: An Interdisciplinary Journal of Nonlinear 

Science, vol. 33, p. 023142, Feb. 2023, doi: 10.1063/5.0124693. 

[18] H. Erzgräber, B. Krauskopf, and D. Lenstra, “Bifurcation 

Analysis of a Semiconductor Laser with Filtered Optical 

Feedback,” SIAM J. Appl. Dyn. Syst., vol. 6, no. 1, pp. 1–28, Jan. 

2007, doi: 10.1137/060656656. 

[19] L. Puts, W. Yao, and D. Lenstra, “Modeling a Spiking 

Optical Neuron using Normalized Yamada Rate Equations,” in 25th 

Annual Symposium of the IEEE Photonics Benelux, Mons, Belgium, 

Nov. 2021, p. 4. 

[20] L. Puts, D. Lenstra, K. A. Williams, and W. Yao, 

“Optimizing the design of two-section integrated lasers for a larger 

excitability regime: 2023 Conference on Lasers and Electro-Optics, 

CLEO 2023,” 2023 Conference on Lasers and Electro-Optics, 

CLEO 2023, pp. 1–2, Sep. 2023. 

[21] L. Puts, D. Lenstra, K. Williams, and W. Yao, “Influence 

of Absorber Carrier Lifetimes on the Excitability Regime of an 

Integrated Two-Section InP Laser Neuron,” in 2023 Conference on 

Lasers and Electro-Optics Europe & European Quantum 

Electronics Conference (CLEO/Europe-EQEC), Jun. 2023, pp. 1–1. 

doi: 10.1109/CLEO/Europe-EQEC57999.2023.10232474. 

[22] D. Lenstra, W. Yao, and L. Puts, “Nonlinear 

semiconductor laser dynamics, Advances in  by Righini & Sirleto, 

Eds,” in Nonlinear Photonics, Elsevier. 

[23] M. Smit et al., “An introduction to InP-based generic 

integration technology,” Semicond. Sci. Technol., vol. 29, no. 8, p. 

083001, Jun. 2014, doi: 10.1088/0268-1242/29/8/083001. 

[24] L. M. Augustin et al., “InP-based generic foundry 

platform for photonic integrated circuits,” IEEE Journal of Selected 

Topics in Quantum Electronics, vol. 24, no. 1, pp. 1–10, Jan. 2018, 

doi: 10.1109/JSTQE.2017.2720967. 

[25] E. E. Kleijn, “Passive components in indium phosphide 

generic integration technologies,” 2014, doi: 10.6100/IR775372. 

[26] D. Zhao, “High-precision Distributed Bragg Reflectors in 

a Generic Photonic Integration Platform,” Technische Universiteit 

Eindhoven, 2018. 

[27] D. Pustakhod, K. Williams, and X. Leijtens, “Method for 

Polarization-Resolved Measurement of Electroabsorption,” IEEE 

Photonics J., vol. 10, no. 2, pp. 1–11, Apr. 2018, doi: 

10.1109/JPHOT.2018.2795250. 

[28] V. Moskalenko, A. Pellacani, J. Javaloyes, M. Smit, and 

E. Bente, “Design of monolithically integrated InGaAsP/InP 

passively-modelocked linear quantum well lasers in an active-

passive integration scheme,” 2012. 

[29] D. Pustakhod, K. Williams, and X. Leijtens, “Fast and 

Robust Method for Measuring Semiconductor Optical Amplifier 

Gain,” IEEE J. Select. Topics Quantum Electron., vol. 24, no. 1, pp. 

1–9, Jan. 2018, doi: 10.1109/JSTQE.2017.2737581. 

[30] M. Yamada, “Theoretical analysis of self-sustained 

pulsation phenomena in narrow-stripe semiconductor lasers,” 

Quantum Electronics, IEEE Journal of, vol. 29, pp. 1330–1336, 

Jun. 1993, doi: 10.1109/3.236146. 

[31] T. A. DeTemple and C. M. Herzinger, “On the 

semiconductor laser logarithmic gain-current density relation,” 

IEEE J. Quantum Electron., vol. 29, no. 5, pp. 1246–1252, May 

1993, doi: 10.1109/3.236138. 

[32] Private communication with Dr. Erwin Bente and Dr. 

Valentina Moskalenko, and internal report on SOA 

parametrisation, published in internal group webpage. December 

17, 2018. Parametrisation also available in FreeTWM laser 

simulation software.  

[33] M. J. R. Heck, “Ultrafast integrated semiconductor laser 

technology at 1.55 µm,” Technische Universiteit Eindhoven, 2008. 

[34] L. A. Coldren, S. W. Corzine, and M. Mashanovitch, 

Diode lasers and photonic integrated circuits, 2nd ed. in Wiley 

series in microwave and optical engineering, no. 218. Hoboken, 

N.J: Wiley, 2012. 

[35] S. Kasap and R. K. (Ravindra K. Sinha, Optoelectronics 

and photonics: principles and practices, Second edition., 1 online 

resource (544 pages) : illustrations vols. in Always learning. 

Harlow, Essex: Pearson Education, 2013. 

[36] M. Trajkovic, “High speed electro-absorption modulators 

in indium phosphide generic integration technologies,” Technische 

Universiteit Eindhoven, 2019. 

[37] U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl, and 

R. Kaiser, “40 GHz Mode-Locked Semiconductor Lasers: Theory, 

Simulations and Experiment,” Opt Quant Electron, vol. 38, no. 4–6, 

pp. 495–512, Mar. 2006, doi: 10.1007/s11082-006-0045-2. 

[38] R. G. M. P. Koumans and R. Van Roijen, “Theory for 

passive mode-locking in semiconductor laser structures including 



Journal XX (XXXX) XXXXXX Puts et al  

 11  
 

the effects of self-phase modulation, dispersion, and pulse 

collisions,” IEEE Journal of Quantum Electronics, vol. 32, no. 3, 

pp. 478–492, Mar. 1996, doi: 10.1109/3.485400. 

[39] U. Keller, Ultrafast Lasers: A Comprehensive 

Introduction to Fundamental Principles with Practical 

Applications. in Graduate Texts in Physics. Cham: Springer 

International Publishing, 2021. doi: 10.1007/978-3-030-82532-4. 

[40] E. M. Izhikevich, Dynamical systems in neuroscience: the 

geometry of excitability and bursting. in Computational 

neuroscience. Cambridge, Mass: MIT Press, 2007. 

 


