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Abstract—It is generally believed that downlink cell-free net-
works perform best under centralized implementations where
the local channel state information (CSI) acquired by the access-
points (AP) is forwarded to one or more central processing units
(CPU) for the computation of the joint precoders based on global
CSI. However, mostly due to limited fronthaul capabilities, this
procedure incurs some delay that may lead to partially outdated
precoding decisions and hence performance degradation. In
some scenarios, this may even lead to worse performance than
distributed implementations where the precoders are locally
computed by the APs based on partial yet timely local CSI.
To address this issue, this study considers the problem of robust
precoding design merging the benefits of timely local CSI and
delayed global CSI. As main result, we provide a novel distributed
precoding design based on the recently proposed team minimum
mean-square error method. As a byproduct, we also obtain novel
insights related to the AP-CPU functional split problem. Our
main conclusion, corroborated by simulations, is that the oppor-
tunity of performing some local precoding computations at the
APs should not be neglected, even in centralized implementations.

I. INTRODUCTION

Cell-free massive MIMO is one of the most promising can-
didate technologies for enhancing the performance of future
generation wireless networks [1]. Most of the related current
research effort focuses on the development of practical meth-
ods and architectures for turning the known theoretical gains of
coordinated multi-point concepts into commercially attractive
solutions [2]–[8]. Of particular relevance is the debate on the
type of joint precoding and combining implementation, and
on its impact on the functional split problem in cloud radio
access network (C-RAN) architectures [9].

More specifically, taken aside promising yet exotic schemes
based, e.g., on sequential processing over serial fronthauls
[10], [11] or iterative bidirectional over-the-air processing
[12], this debate is essentially centered around the comparison
between fully distributed and centralized implementations.
In fully distributed implementations, the access points (AP)
locally compute their precoders and combiners based on
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local channel state information (CSI) only [2]. In contrast,
in centralized implementations, these functions are moved to
one or more central processing units (CPU) endowed with
global CSI [1]. Hence, due to their ability to form joint
precoders and combiners based on a broader view of the chan-
nel state, centralized implementations are often considered
superior, especially in terms of spectral efficiency. However,
the theoretical superiority of centralized implementations is
typically shown under ideal assumptions such as those related
to fronthaul capabilities, which can be challenged in many
practical deployments.

Against this background, this paper studies centralized
downlink cell-free networks with fronthaul delays, which is a
key impairment in real-world settings. In particular, we focus
on scenarios where, due to fronthaul limitations and mobility,
the delay incurred by the CPUs in collecting global CSI,
computing the precoders, and forwarding the result is non-
negligible with respect to channel aging [13]–[15]. Intuitively,
in these scenarios, centralized implementations experience
performance degradation and may be even outperformed by
fully distributed implementations with precoders formed using
partial yet more timely local CSI. To adress this issue, we
formulate a distributed precoding design problem that aims
to jointly exploit timely local CSI and delayed global CSI.
To the best of our knowledge, this is the first time that a
similar problem is addressed in the literature. Then, we derive
an optimal solution based on a novel application of the recent
team theoretical framework [11]. In addition, we discuss the
structure of the optimal solution and related practical imple-
mentation aspects in C-RAN architectures. Interestingly, our
theoretical and numerical results show that carefully designed
implementations that delegate the computation of at least a
portion of the precoders to the APs may significantly outper-
form both centralized and fully distributed implementations,
even under pedestrian mobility and relatively small delays.

Notation: We denote by R++ the set of positive reals.
The Euclidean and Frobenius norms are denoted by ∥ · ∥
and ∥ · ∥F, respectively. Let (Ω,Σ,P) be a probability space.
We denote by HK the set of random vectors, i.e., K-tuples
of Σ-measurable functions Ω → C, satisfying (∀x ∈ HK)
E[∥x∥2] < ∞. Given a random variable X ∈ H, we denote by
E[X] and V(X) its expected value and variance, respectively.
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II. PROBLEM STATEMENT

A. Basic definitions and assumptions

We consider the downlink of a cell-free wireless network
[1] composed of L APs indexed by L := {1, . . . , L}, each of
them equipped with N antennas, and K single-antenna user
equipments (UEs) indexed by K := {1, . . . ,K}. By assuming
a standard flat-fading channel model for each time-frequency
resource element, we denote an arbitrary realization of the
(NL×K)-dimensional global channel matrix by

H :=
[
h1 . . . hK

]
=

H1

...
HL

 =

h1,1 . . . h1,K

...
. . .

...
hL,1 . . . hL,K

 ,

where hl,k ∈ HN is a random vector modeling the fading
state between AP l ∈ L and UE k ∈ K. As customary in
the channel aging literature [13], [14], we assume that the
random channel realizations H evolve over time according
to a stationary and ergodic discrete-time random process
{H[t]}t∈Z, without any further specific assumption on the
time correlation. In addition, we assume that the portions
{hl,k[t]}t∈Z of {H[t]}t∈Z corresponding to different AP-UE
pairs are mutually independent random processes.

Similarly, by focusing on simple multi-user cooperative
transmission techniques based on linear precoding and on
treating interference as noise [1], we denote an arbitrary
realization of the (NL × K)-dimensional joint precoding
matrix by

T =
[
t1 . . . tK

]
=

T1

...
TL

 =

t1,1 . . . t1,K
...

. . .
...

tL,1 . . . tL,K

 ,

where tl,k ∈ HN is a linear precoding vector applied by
AP l ∈ L to the coded and modulated data stream for
UE k ∈ K. The joint precoding matrix T evolves over
time according to a random process {T[t]}t∈Z, where T[t]
is adapted to the random channel realization H[t] based on
the available channel state information (CSI) at time t ∈ Z. In
particular, we focus on the case where the submatrices Tl[t]
of T[t] corresponding to the precoding matrices applied by
each AP l ∈ L may depend on different CSI. This aspect is
treated in more details next.

B. Delayed CSI sharing

Canonical cell-free network models based on time-division
duplex operations assume each AP l ∈ L to acquire local mea-
surements of the downlink local channel Hl = [hl,1 . . . hl,K ]
by means of uplink pilot signals. In centralized implemen-
tations [1], these local measurements are then typically for-
warded by the APs to one or more central processors for
the computation of the joint precoding matrix based on mea-
surements of the global channel H. However, this process
inevitably incurs some delay and may lead to outdated precod-
ing decisions in many practical scenarios, making distributed
implementations based on timely local measurements [2] a
competitive alternative. This observation is also corroborated
by our simulations in Section IV for relatively small delays.

In this work, we study the impact of delayed CSI sharing on
performance and robust precoding design by considering the
following simplified model. We assume that each AP l ∈ L
can form its precoding matrix based on perfect instantaneous
knowledge of the local channel Hl[t], and perfect d-step
delayed knowledge of the global channel H[t]. More precisely,
we assume that the precoders Tl[t] of AP l ∈ L at time t ∈ Z
are constrained to be functions of the CSI

Sl[t] := (Hl[t], Z[t]), Z[t] := H[t− d], d ∈ N. (1)
As we will see, the key feature of the above model is that it
allows us to design robust precoders that combine the benefits
of (delayed) centralized interference management with the
opportunity of performing timely local refinements.

Remark 1. To avoid technical digressions, cumbersome nota-
tion, and to better focus on the essence of the problem, in this
study we do not consider aspects such as channel estimation
errors, user-centric network clustering, and the opportunity
of storing and exploiting CSI history such as H[t − i] for
i > d. However, these aspects can be easily incorporated in
our model and results following the approach in [16], and will
be covered in details in an extended version of this study.

Remark 2. Our model and main derivations do not explicitly
consider centralized precoding computation, and assume a
distributed system where all precoders are locally computed
by the APs after a preliminary CSI sharing step. However,
we remark that all computations involving H[t− d] only can
also be implemented on a central processor. Hence, our model
implicitly covers both the aforementioned centralized and
fully distributed implementations, which correspond to extreme
functions that discard either Hl[t] or H[t − d], respectively.
More interestingly, our model also covers intermediate cases
where the computation of the precoders is split among a
central processor operating on the basis of global delayed
CSI, and the APs operating on the basis of timely local CSI.
Additional details are given in Section III-C.

C. Team MMSE precoding

Following the approach in [11], which introduced a novel
non-heuristic method for optimal distributed precoding design
when the APs are endowed with different CSI, we consider
the following parametric Team MMSE precoding problem:

minimize
T∈T

E
[
∥P 1

2H
H
T− IK∥2F

]
+

L∑
l=1

σlE
[
∥Tl∥2F

]
, (2)

where T ⊆ HK×LN is a given information constraint [11],
[16] induced by the CSI structure (1), P = diag(p) with
p = (p1, . . . , pK) ∈ RK

++, and σ = (σ1, . . . , σL) ∈ RL
++

are given parameters.1 Note that, to improve readability of
the paper, we omit the dependency on the time index t since
{H[t], S1[t], . . . , SL[t]}t∈Z is a stationary random process.
However, we remark that the impact of the delay d is still
fully captured in (3) by means of the constraint set T .

1Note that the Team MMSE precoding problem is equivalently formulated
in [11], [16] as K separate problems for each of the K precoding vectors
(tk)

K
k=1, coupled by the problem parameters (p,σ). The difference between

[11] and [16] is that [11] focuses on the case σ = 1.



Informally, the role of the constraint set T is to enforce the
precoders of each AP l ∈ L to be functions of Sl = (Hl, Z)
only, where Sl denotes a realization of (1) at some arbitrary
time t ∈ Z. As proposed in [11], [16], we formally define the
constraint set T as follows: we let

(∀k ∈ K) tk ∈ Tk := HN
1 × . . .×HN

L ,

where HN
l ⊆ HN denotes the set of N -tuples of Σl-

measurable functions Ω → C satisfying (∀x ∈ HN
l )

E[∥x∥2] < ∞, and where Σl ⊆ Σ is the sub-σ-algebra induced
by the CSI Sl = (Hl, Z) available at AP l ∈ L. In the team
theoretical literature, Σl is also called the information subfield
of AP l. Then, we let T := T1×. . .×TK . The interested reader
is referred to [17] for an introduction to the measure theoretical
notions used in the above definitions. However, we stress that
these notions are by no means required for understanding the
key results of this study.

Remark 3. Problem (2) can be motivated under multiple
points of view. For instance, the solution to Problem (2)
can be interpreted as the best distributed approximation of
regularized channel inversion (recovered for d = 0), where the
parameters (p,σ) can be tuned to balance UE priorities and
APs power consumption. Furthermore, solving (2) corresponds
to minimizing the individual MSE between the transmit and
receive data-bearing symbols after linear processing over
a dual uplink channel with UE uplink powers p and AP
noise powers σ. Finally, an information theoretical motivation
is obtained by evaluating performance using the so-called
hardening inner bound [1] on the ergodic capacity region.
Specifically, by leveraging the known uplink-downlink duality
principle for fading channels under a sum power constraint
(see, e.g., [1]), [11] proves that, by choosing σ = 1 and p
such that

∑K
k=1 pl = P , the solution to (2) is Pareto optimal,

in the sense that it produces rate tuples on the boundary of
the considered inner bound under a sum power constraint
P (and unitary noise powers). Conversely, [11] shows that
all boundary points under a sum power constraint P can
be achieved by solutions to (2) for σ = 1 and for some
p such that

∑K
k=1 pl = P . Furthermore, [16] proves that

all boundary points under per-AP power constraints can be
achieved by solutions to (2) for some (p,σ).

The parameters (p,σ) of Problem (2) can be tuned to
maximize some network utility function under some power
and/or quality of service constraints as in, e.g, [16], [18], or
set heuristically as for the many variants of the MMSE or regu-
larized zero forcing precoding schemes [1]. Additional details
on the tuning of these parameters are left for the extended
version of this study, since they mostly relate to resource
allocation and power control aspects that are not specific to
the delayed CSI sharing model (1). The rest of this study
is devoted to solving the Team MMSE precoding problem
(2) under the considered delayed CSI sharing model (1), for
arbitrary problem parameters (p,σ). Only our simulations in
Section IV will focus on a specific example of (p,σ).

III. PROBLEM SOLUTION

A. Optimal solution

Problem (2) is a functional (i.e., infinite dimensional) op-
timization problem belonging to the class of team decision
problems [17], which are notoriously difficult, even when
convex as in our case. The main difficulty lies in the infor-
mation constraint T , which prevents the direct application of
standard methods and numerical routines for finite dimensional
convex problems. However, [11] showed that Problem (2) can
be mapped to a minor variation of the subclass of quadratic
team problems [17], and, as a consequence, that the following
necessary and sufficient optimality conditions hold.

Proposition 1. For given p ∈ RK
++ and σ ∈ RL

++, Prob-
lem (2) admits a unique solution, which is also the unique
T ∈ T satisfying

(∀l ∈ L) Tl = Fl

IK −
∑

j∈L\{l}

P
1
2E

[
H

H
jTj

∣∣∣Sl

] , (3)

where Fl :=
(
HlPH

H
l + σlIN

)−1
HlP

1
2 ∈ HN×K .

Proof. The proof follows readily by replacing σ = 1 with
an arbitrary σ ∈ RL

++ from the proof of [11, Lemma 2].
Informally, (3) is obtained by minimizing the objective in (2)
with respect to Tl, and by fixing Tj for j ̸= l. This gives
a set of necessary optimality conditions, related to the game
theoretical notion of Nash equilibrium. The key step of the
proof shows that these conditions are also sufficient.

Proposition 1 and its extensions covering channel estimation
errors and user-centric network clustering are used in [11],
[16] to derive optimal distributed precoders under local CSI
models of the type (∀l ∈ L) Sl = Hl for fully distributed
implementations, or under sequential CSI sharing models of
the type (∀l ∈ L) Sl = (H1, . . . ,Hl) for partially distributed
implementations exploiting the properties of serial fronthauls.
In the following, we use Proposition 1 to derive the main result
of this study, i.e., the solution to Problem (2) under the delayed
CSI sharing model (∀l ∈ L) Sl = (Hl, Z) in (1).

Proposition 2. For given p ∈ RK
++ and σ ∈ RL

++, the unique
solution to Problem (2) is given by

(∀l ∈ L) Tl = FlCl, (4)
where Fl :=

(
HlPH

H
l + σlIN

)−1
HlP

1
2 ∈ HN×K , and

Cl ∈ HK×K is given by the unique solution to the linear
system of equations

(∀l ∈ L) Cl +
∑

j∈L\{l}

E[P
1
2H

H
j Fj |Z]Cj = IK . (5)

Proof. (Sketch) The proof follows by verifying that (4) satis-
fies (3) via simple algebraic manipulations.

B. Interpretation and computation of the optimal solution

Proposition 2 states the optimality of the two-stage precod-
ing structure in (4), where each stage depends on a distinct
portion of the CSI Sl = (Hl, Z). Specifically, the optimal
precoder Tl at AP l ∈ L is composed by a first N ×K local
MMSE precoding stage Fl [1], function of the timely local



AP 1

H1[t]

AP 2

H2[t]

CPU

H1[t− d]

H2[t− d]

u[t] u[t]

(a)

AP 1

H1[t]

AP 2

H2[t]

CPUH1[t− d] H2[t− d]

C1[t] C2[t]

u[t] u[t]

(b)

AP 1

H1[t]

AP 2

H2[t]

CPUH1[t− d] H2[t− d]

C1u[t] C2u[t]

(c)

Fig. 1. Pictorial representation of possible implementations of the proposed team MMSE solution (4) in C-RAN architectures: (a) distributed precoding with
CSI sharing; (b) locally refined centralized precoding (compress-before-precoding); (c) locally refined centralized precoding (compress-after-precoding).

CSI Hl, and a second K×K precoding stage Cl, function of
the delayed global CSI Z. To better understand the dependency
of Cl on Z, we observe that the linear system of equations (5)
defining Cl has random coefficients E[P

1
2HH

l Fl|Z] which are
functions of Z. In particular, each realization of the L precod-
ing stages (Cl)

L
l=1 can be obtained by solving (5) disjointly for

each realization of Z. More precisely, a realization (Cl)
L
l=1 of

(Cl)
L
l=1 for a given realization z of Z is given by the solution

to the finite dimensional linear system of equations
(∀l ∈ L) Cl +

∑
j∈L\{l}

E[P
1
2H

H
j Fj |Z = z]Cj = IK ,

which can be computed using standard techniques, provided
that the coefficients E[P

1
2HH

l Fl|Z = z] are known.
By reintroducing the time index t, we notice that these

coefficients take the form E[P
1
2Hl[t]

HFl[t]|Z[t]] =

E[P
1
2Hl[t]

H
(
Hl[t]PHl[t]

H + σlIN
)−1

Hl[t]P
1
2 |Hl[t− d]],

i.e., they are functions of Hl[t− d] defined by the conditional
distribution of Hl[t] given Hl[t − d], which we recall is
independent of t due to stationarity. Importantly, these coeffi-
cients can be computed in parallel for each AP. Furthermore,
we notice that they can be interpreted as the optimal d-
step MMSE predictors of the K × K effective channels
P

1
2Hl[t]

HFl[t] after local MMSE precoding. Unfortunately,
closed-form expressions for the coefficients E[P

1
2HH

l Fl|Z]
may not be available in many practical cases. However, we
remark that many approximate numerical methods taken from
the vast literature on estimation/prediction theory could be
potentially applied. Of particular practical interest are data
driven techniques that do not require explicit knowledge of the
conditional distribution of Hl[t] given Hl[t−d]. For simplicity,
in this work, we evaluate numerically each expectation using
an empirical average over a sample set generated according
to the conditional distribution of Hl[t] given Hl[t − d], as-
sumed known. In addition, in Section III-D, we discuss some
suboptimal approximations. We leave the evaluation of more
advanced techniques as a promising future line of research.

C. C-RAN functional split aspects
In this section we discuss the implementation of the optimal

two-stage precoding structure identified in (4) by focusing
on the functional split problem in C-RAN architectures [9].
First, we recall that the considered solution in (4) is derived
under the delayed CSI sharing model (1), by assuming that the

precoders are computed locally at each AP after a preliminary
CSI sharing step. This model can be directly mapped to the
functional split depicted in Fig. 1a, where (from a physical
layer perspective) the CPU only forms and forwards the K-
dimensional vector of coded and modulated data streams
u[t]. This is the closest implementation to the original fully
distributed cell-free massive MIMO concept proposed in [2].

However, as anticipated in Remark 2, (4) can also be
implemented by splitting the computation of the two stages
between the APs and the CPU, as depicted in Fig. 1b and
Fig. 1c. These implementations are closer to the centralized
cell-free massive MIMO concept described, e.g., in [1]. In
both these functional splits, the CPU forms the precoding
stages Cl[t] based on delayed global CSI, and the APs form
their local MMSE stages Fl[t] based on timely local CSI. The
difference between these two functional splits is that in Fig. 1b
both precoding stages are applied to the data streams by the
APs, while in Fig. 1c the CPU computes and forwards the
K-dimensional intermediate signals Cl[t]u[t] for each AP.2

Choosing the best functional split is a notoriously challeng-
ing problem encompassing many different system aspects. For
instance, Fig. 1b and Fig. 1c can be respectively interpreted
as novel distributed versions of the compress-before-precoding
and compress-after-precoding functional splits compared in
[9] in terms of fronthaul rate requirements. Interestingly, the
results of this study may be used as a novel approach to extend
the current literature on C-RAN functional splits covering
fronthaul and processing delay requirements.

We conclude this section by pointing out that, in the current
form, none of the implementations in Fig. 1 is scalable with
respect to the number of UEs K. This is mostly due to
the fact that the information to be shared and processed is
proportional to K, as in [2]. However, we remark that this
issue can be significantly mitigated by omitting the sharing and
processing of information that does not contribute significantly
to performance, for instance because of large path loss between
a certain UE-AP pair. A popular way of implementing this
idea is via the user-centric network clustering paradigm [1].
The extension of our results to this paradigm can be done as
in [16], and it is left for the extended version of this study.

2In both cases, the delay d should be rather interpreted as the round-trip
delay incurred by the two-way information sharing procedure.



D. Suboptimal solutions

1) Local precoding: By discarding the potentially useful in-
formationH[t−d] in (1), i.e., by letting (∀l ∈ L) Sl[t] = Hl[t],
the solution to Problem (2) is given by a variant of (4) with
(∀l ∈ L) Cl = Cl, where (Cl)

L
l=1 are fixed (deterministic)

precoding stages given by the solution to
(∀l ∈ L) Cl +

∑
j∈L\{l}

E[P
1
2H

H
j Fj ]Cj = IK . (6)

This corresponds to the local team MMSE solution derived
in [11], [16], which we recall is an enhanced version of the
known local MMSE scheme and its variants [1].

2) Centralized (delay-tolerant) precoding: On the other
extreme, by discarding (Hl[t])

L
l=1 in (1), i.e., by letting

(∀l ∈ L) Sl[t] = H[t−d], the solution to Problem (2) becomes

T[t] =
(
Ĥ[t]P Ĥ[t]H +Ψ+Σ

)−1

Ĥ[t]P
1
2 , (7)

where Ĥ[t] := E[H[t]|H[t−d]], Ψ := E[(Ĥ[t]−H[t])P (Ĥ[t]−
H[t])H], and Σ := blkdiag(σ1IN , . . . , σLIN ). This essentially
corresponds to the known centralized MMSE scheme in [1]
or to the delay-tolerant zero-forcing scheme based on channel
prediction in [15], carefully optimized and adapted to our setup
to ensure a fair comparison against (4).

3) Naı̈ve distributed precoding: A simple baseline dis-
tributed precoding scheme that takes into account the full
information in (1) is given by letting each AP l ∈ L locally
compute a version of the centralized solution (7) based on
its local estimate of the global channel state, obtained by
replacing the submatrix Ĥl[t] := E[Hl[t]|Hl[t − d]] of Ĥ[t]
withHl[t]. This baseline approach was termed naı̈ve precoding
in the early works on distributed precoding [19], since it
essentially corresponds to letting each AP believe that its
information on H[t] is the same information at all APs.

4) Structure-aware distributed precoding: As an alternative
to the above baseline distributed precoding scheme that takes
into account the structure of the optimal solution, we propose
a variant of (4) based on approximating the coefficients of the
linear system in (5) as E[P

1
2Hl[t]

HFl[t]|Hl[t− d]] ≈
P

1
2 Ĥl[t]

H
(
Ĥl[t]P Ĥl[t]

H +Ψl + σlIN

)−1

Ĥl[t]P
1
2 ,

where Ψl := E[(Ĥl[t] − Hl[t])P (Ĥl[t] − Hl[t])
H]. This

is similar to the centralized approach described above, but
confined to the computation of the precoding stages (Cl[t])

L
l=1.

IV. NUMERICAL SIMULATIONS AND CONCLUSIONS

We consider a network composed by K = 50 UEs are
uniformly distributed within a squared service area of size
0.5 × 0.5 km2, and L = 16 regularly spaced APs with
N = 4 antennas each. By neglecting for simplicity spa-
tial correlation, we let hl,k be independently distributed as
hl,k ∼ CN (0, γl,kIN ), where γl,k > 0 denotes the channel
gain between AP l and UE k. We follow the same 3GPP-like
path-loss model adopted in [1] for a 2 GHz carrier frequency:
γl,k = −36.7 log10 (Dl,k/1 m)− 30.5 + Zl,k − σ2 [dB],

where Dl,k is the distance between AP l and UE k including
a difference in height of 10 m, and Zl,k ∼ N (0, ρ2) [dB]
are shadow fading terms with deviation ρ = 4. The shadow

fading is correlated as E[Zl,kZj,i] = ρ22−
δk,i
9 [m] for all l = j and

zero otherwise, where δk,i is the distance between UE k and
UE i. The noise power is σ2 = −174+10 log10(B/1 Hz)+F
[dBm], where B = 20 MHz is the bandwidth, and F = 7 dB
is the noise figure.

The time evolution of the channel is modeled as in [13]
and many related studies by assuming that each {hl,k[t]}t∈Z
is a zero-mean stationary ergodic complex Gaussian process,
where the joint distribution of (hl,k[t],hl,k[t−d]) is fully char-
acterized by the autocovariance matrix E[hl,k[t]hl,k[t−d]H] =
rl,kγl,kIN for a given autocorrelation coefficient rl,k ∈ [0, 1].
The autocorrelation coefficient can be used to model the joint
impact of the CSI sharing delay d and UE mobility, for
example by using Clarke’s model rl,k = J0(2πνl,kTd) as in
[13], where νl,k denotes the Doppler spread for the (l, k)th
AP-UE pair, and T is the symbol time. We focus on two
representative scenarios obtained by letting (∀l ∈ L)(∀k ∈
K) rl,k = r ∈ {0.99, 0.9}, which, according to Clarke’s
model, can be mapped to pedestrian mobility (νl,k ≈ 10 Hz)
for all UEs and delay Td ∈ {1 ms, 10 ms}.

A. Figure-of-merit

We evaluate performance in terms of downlink ergodic
achievable rates estimated by the hardening inner bound [1]
for a given (network-wide) sum power P = 5 W. To facilitate
the connection with the solution to Problem (2), we lever-
age the known uplink-downlink duality principle for fading
channels (see, e.g., [1]) and compute the downlink rate of
each UE k ∈ K for a given precoding scheme T and for
some downlink power allocation policy using the equivalent
expressions

Rk(T,p) := log2(1 + SINRk(tk,p)),

SINRk(tk,p) :=
pk|E[hH

k tk]|2

pkV(hH
k tk) +

∑
j ̸=k

pjE[|hH
j tk|2] + E[∥tk∥2]

,

corresponding to the achievable rates over a virtual uplink
channel for some virtual uplink powers p ∈ RK

+ satisfying∑K
k=1 pk = P . We recall that the uplink-downlink duality

principle guarantees the existance of a downlink power al-
location such that the same rates are also achievable in the
downlink using T. It can be shown that the above uplink rates
are maximized by the solution to Problem (2) with problem
parameters p equal to the uplink powers and σ = 1 [11],
[18]. As an example, we choose a fractional power allocation
policy with exponent −1 [6], i.e., we let (∀k ∈ K) pk ∝
(
∑L

l=1 γl,k)
−1, which approximates a max-min fair policy.

B. Results

Figure 2 shows the cumulative density function of the
ergodic rates achieved by different precoding schemes, approx-
imated using 100 independent user drops and 100 independent
realizations of (H[t],H[t−d]) per user drop. In particular, we
compare the performance of the optimal Team MMSE solution
(3) against the suboptimal solutions described in Section III-D.
We remark that the schemes termed centralized and local
correspond, respectively, to the best known schemes for the
centralized and (fully) distributed cell-free massive MIMO
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Fig. 2. Cumulative density function of downlink ergodic rates achieved by the optimal team MMSE solution (4) and the suboptimal designs in Sect. III-D,
assuming pedestrian mobility and a CSI sharing delay of (a) 10 ms (r = 0.9) and (b) 1 ms (r = 0.99).

implementations described in [1]. The Team MMSE solution is
computed via the numerical method described in Section III-B.

A first important observation is that, even for pedestrian
mobility, a CSI sharing delay of 10 ms (r = 0.9, Figure 2a) can
significantly degrade the performance of centralized precoding
to the point where it becomes noticeably worse than the
performance of local precoding. Moreover, a second important
observation is that that the proposed Team MMSE precoding
scheme largely outperforms both centralized and local precod-
ing in all the considered scenarios. Perhaps surprisingly, the
gains are significant even for a relatively small CSI sharing
delay of 1 ms (r = 0.99, Figure 2b), a scenario where
centralized precoding is still quite effective and outperforms
local precoding. This suggests that the APs’ local interference
management capabilities based on timely local CSI should not
be neglected in most practical scenarios. Indeed, our results
suggests that significant rate gains can be achieved by a
careful distributed precoding design, such as the proposed
Team MMSE scheme, that is able to merge the benefits of
local and centralized interference management.

Finally, Figure 2b shows that, for small CSI sharing delays,
the aforementioned rate gains can be achieved by simple
approximations of the Team MMSE scheme. In particular,
in the considered scenario, we observe that the proposed
structure-aware distributed precoding scheme is able to exploit
the benefits of local and centralized interference management,
at a significantly lower computational cost than the Team
MMSE scheme. However, Figure 2a shows that this may not
be the case for higher CSI sharing delays, since the Team
MMSE solution shows non-negligible performance gains.
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