
STABILITY FOR A CLASS OF THREE-TORI WITH SMALL NEGATIVE

SCALAR CURVATURE

EDWARD BRYDEN AND LIZHI CHEN

Abstract. We define a flexible class of Riemmanian metrics on the three-torus. Then, using Stern’s
inequality relating scalar curvature to harmonic one-forms, we show that any sequence of metrics

in this family has a subsequence which converges to some flat metric on the torus in the sense of

Dong-Song.

1. Introduction

General relationships between geometric quantities are as beautiful as they are useful, and they
are very useful. There are many famous examples of such relationships, all of which have far reach-
ing implications. Especially relevant for the current work are the volume growth and isoperimetric
inequalities implied by lower Ricci curvature bounds, the systolic inequality of Gromov giving a lower
bound on the volume of a Riemannian manifold in terms of its systole, and the relationship between
the negative part of the scalar curvature and the integral norm of the Hessian of harmonic maps into
S1 given by Stern in [Ste19].

It is natural to wonder what the extreme geometries are with respect to these relationships, and
in what sense, if at all, they are unique. This is the question of rigidity. For example, we have the
classical fact that any metric on the torus with non-negative scalar curvature must be flat, see for
example [GL80] and [SY79]. In fact, for three-tori this follows from Stern’s inequality in [Ste19],
mentioned above.

Once the hard work of establishing such a rigidity result has been done, it is natural to wonder what
can be said about those metrics which are nearly extremal, which is the question of stability. In the
context of this paper, the question is whether metrics on the three-torus whose scalar curvature has
small negative part must be close to a flat metric in some sense. This is a subtle question; for a more
in depth discussion of the ideas and difficulties involved one can read Sormani’s survey article [Sor23].

So far there seem to be at least three geometric phenomena that complicate the study of tori with
almost non-negative scalar curvature. The first two, other worlds and splines, have been expected to
occur since the work of Gromov-Lawson [GL80] and Schoen-Yau [SY79]. Rigorous examples showing
the existence and ubiquity of such objects have recently been constructed by Sweeney [Jr23]. The third,
drawstrings, was first observed in dimensions greater than 3 by Lee-Naber-Neumayer, see [LNN23].
Later, Lee-Topping showed that drawstrings can be used to produce counter intuitive convergence
results, see [LT22].

Roughly speaking, the spaces and notions of convergence proposed to study stability problems
involving scalar curvature lower bounds correspond to which of these three phenomena should be
considered ”small perturbations”, and which are to be eliminated, or controlled, by hypothesis. Take
for example the amazing result of Dong-Song on the stability of the Positive Mass Theorem [DS23].
One way to interpret this result is to say that for metrics with nonnegative scalar curvature and small
mass, such wild geometric phenomena as bubbles, splines, and drawstrings must be hidden behind a
surface with small area. In this way, they are small perturbations of the geometry.

At the opposite end of the spectrum, we may make an hypothesis which severely controls bubbles,
splines, and drawstrings. For example, one may restrict attention to metrics satisfying a uniform
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2 E. BRYDEN AND L. CHEN

lower bound on their Ricci curvature. Results of this flavor are the stability of the Positive Mass
Theorem proven by Kazaras-Khuri-Lee in [KKL21], and the stability for tori proven by Honda-Ketterer-
Mondello-Perales-Rigoni in [HKM+23]. Results in a similar vein were obtained in [ABK22] through
controlling the geometry by assuming isoperimetric and integral Ricci curvature bounds.

Another approach has been to assume some geometric condition which eliminates the existence of
one, or perhaps two, of the wild geometries. This approach has seen some success using the Intrinsic
Flat distance on integral currents, which contain Riemannian manifolds as a subset. See for example
the work of Allen, Kazaras, and the first named author in [ABK23] and the work of Hirsch and
Zhang in [HZ23]. The specific hypotheses assumed in these results control bubbles, and eliminate
drawstrings, but allow splines to exist. Concerning the stability of tori, there is the work of Allen-
Vazquez Hernandez-Parise-Payne-Wang [AHVP+19].

In a different direction, Lee-Naber-Neumayer [LNN23] give conditions under which splines and
bubbles are eliminated, but drawstrings are allowed to persist. They are then able to establish a scalar
curvature stability result using the dp distance, also defined in [LNN23]. In [MY24] Mazurowski and
Yao use the dp distance to study the stability of the Yamabe invariant on S3.

In the present work we will study a family of metrics which allow splines, and a tamer version of
drawstrings to persist, but which eliminates bubbles. For this family of metrics we will prove that
metrics with small negative scalar curvature are close to a flat metric in the Dong-Song sense [Don22],
see Definition 2.2.

Theorem 1.1. Fix V,R,Λ, η,M > 0 and let F(V,R,Λ, η,M) be the family of Riemannian metrics on
T3 such that

(1) |T3|g ≤ V ;
(2) ∥R−

g ∥L2(g) ≤ R;
(3) IN1(g) ≥ Λ;
(4) min

{
stabsys1(g), stabsys2(g)

}
≥ σ;

(5) κ(g, η) ≤ M , see Definition 4.4.

Let gi be a sequence of metrics in F such that

(1) lim
i→∞

∥R−
gi∥L2(gi) = 0.

Then, there is a subsequence, also denoted gi, and a flat metric gF∞ on T3 such that gi converges to
gF∞ in the sense of Dong-Song. That is, for any ε > 0 there exists an N ∈ N such that for all i ≥ N

there is an open sub manifold Ω̃i with smooth boundary such that

(2) |Ω̃c
i |gi + |∂Ω̃i|gi ≤ ε,

and

(3) dGH

((
Ω̃i, d̂

gi

Ω̃i

)
,
(
T3, dgF∞

))
≤ ε.

As a consequence of the above, we obtain the following two theorems.

Theorem 1.2. Let σ,K, V > 0, and define R(σ,K,D) to be the collection of Riemannian metrics g
on T3 such that

(1) min{stsys1(g), stsys2(g)} ≥ σ;
(2) Ricg ≥ −K;
(3) diamg(T3) ≤ D.

Then, for any sequence of metrics {gi}∞i=1 ⊂ R(σ,K,D) such that

(4) lim
i→∞

∥R−
gi∥L2(gi) = 0,

limi→∞ ∥R−
gi∥L2(gi) = 0, there exists a subsequence {gij}∞j=1 and a flat metric gF∞ on T3 such that

gij → gF∞ in the sense of Dong-Song.

Theorem 1.3. Let g0 be a fixed Riemannian metric on T3, and let Λ, V > 0. We denote by V(g0,Λ, V )
the collection of Riemannian metrics g on T3 satisfying the following properties:
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(1) g ≥ g0;
(2) IN1(g) ≥ Λ;
(3) |T3|g ≤ V .

Then, for any sequence of metrics {gi}∞i=1 ⊂ V(σ,Λ, V ) such that

(5) lim
i→∞

∥R−
gi∥L2(gi) = 0,

there exists a subsequence {gij}∞j=1 and a flat metric gF∞ on T3 such that gij → gF∞ in the sense of
Dong-Song.

The theorem above has the following corollary for Volume Above Distance Below (VADB) conver-
gence, a notion of convergence which implies volume preserving intrinsic flat convergence, see [APS21].

Corollary 1.4. Let g0 be a fixed Riemannian metric on T3, let Λ, R, V > 0, and let V = V(g0,Λ, R, V )
denote the collection of Riemannian metrics g on T3 which satify the following properties:

(1) g ≥ g0;
(2) IN1(g) ≥ Λ;
(3) ∥R−∥L2(g) ≤ R;

(4) |T3|g ≤ V .

Suppose that gi is a sequence of metrics in V such that

(6) |T3|gi → |T3|g0 ,

and

(7) lim
i→∞

∥R−
gi∥L2(gi) = 0.

Then, the metric g0 must be flat.

2. Background

2.1. Convergence in the sense of Dong-Song. In [DS23] Dong-Song established the stability of
the Positive Mass Theorem with respect to a novel notion of convergence. Here we will offer a slight
modification of this notion. Let us begin by recalling the intrinsic length metric associated with a
subset of a Riemannian manifold.

Definition 2.1. Let (M, g) be a Riemannian manifold, and let Ω ⊂ M be a subset of M . Furthermore,
let Lg(γ) denote the length of γ as measured by g. For any two points x, y in Ω let us define

(8) d̂gΩ(x, y) = inf
{
Lg(γ) : γ connects x and y

}
We can now use the above definition to define convergence in the sense of Dong-Song.

Definition 2.2. Let (M, g) and (N,h) be two closed Riemannian manifolds. We say that (M, g) is
ε-close to (N,h) in the Dong-Song sense if there exists a connected open domain ΩM ⊂ M with smooth
boundary such that

(9) |Ωc|+ |∂Ω| ≤ ε

and

(10) dGH

(
(N,h),

(
ΩM , d̂gΩM

))
≤ ε.

Remark 2.3. Note the asymmetry in the above definition. If the results of [LT22] hold for three tori,
then the results of this paper indicate that the above is not in general symmetric. However, notions
of nearness like the above do seem to be useful for stability problems, see [Don22] and [Don24].

The following lemma is crucial for establishing the type of convergence given in Definition 2.2.
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Lemma 2.4. Let (T3, h) be a flat Riemannian metric on the three Torus. For every ε > 0 there exists
a δ > 0 such that if Ω ⊂ T3 has smooth boundary and

(11) |Ω| ≥ |T3| − δ;

(12) |∂Ω| ≤ δ,

then there exists a connected subset Ω′ ⊂ Ω with smooth boundary such that

|Ω′| ≥ |T3| − ε;(13)

|∂Ω′| ≤ ε;(14)

dGH

(
(Ω′, d̂hΩ′), (Ω′, dh)

)
≤ ε.(15)

2.2. Harmonic maps and Stern’s inequality. Let (M, g) be an arbitrary closed and oriented
Riemannian manifold. We begin by recalling the Hodge star map ⋆ : Ωp(M) → Ωn−p(M).

Definition 2.5. Let (M, g) be a closed and oriented Riemannian manifold, and let a ∈ Ωp(M). Then,
we may uniquely define an element ⋆α ∈ Ωn−p(M) as follows. Set ⋆α to be the unique differential
form such that

(16)

∫
M

g(a, b)dVg =

∫
M

⋆α ∧ b

for all b ∈ Ωp(M).

Recall that for each cohomology class in Hk(M ;R) there is an unique harmonic representative.
In particular, for any cohomology class the harmonic representative has minimal L2 norm among
the representatives of the class, see [Pet06] for a quick introduction to harmonic forms and Hodge
decomposition. In the case that α ∈ H1(M ;Z), then there is an harmonic map u : (M, g) → S such
that du is the harmonic representative of α.

The existence and uniqueness of harmonic representatives of cohomology classes provides Hp(M ;R)
with an inner product structure, as is defined below.

Definition 2.6. Let (M, g) be a closed oriented Riemannian manifold, and let α and β be two
cohomology classes in Hp(M ;R). Furthermore, let a and b be the corresponding unique harmonic
representatives. Then, we define g(α, β) to be

(17) g(α, β) =

∫
M

g(a, b)dVg.

Notation 2.7. Following Hebda [Heb23], for α ∈ Hp(M ;R) we let |α|∗2 denote
√
g(α, α).

Specializing to three dimensions, Stern [Ste19] connected scalar curvature to harmonic forms with
the following powerful inequality.

Theorem 2.8 (Stern’s inequality). Let (M3, g) be a closed and oriented 3-manifold, let u : (M, g) → S
be a nontrivial harmonic map, and let Rg denote the scalar curvature of g. For the level sets Σθ =
u−1{θ} we let χ(Σθ) denote the Euler characteristic of Σθ. Then, we have that

(18) 2π

∫
S
χ (Σθ) dθ ≥ 1

2

∫
S

∫
Σθ

(|du|−2|∇du|2 +Rg)dAgdθ.

By inspection, we see that if we could control χ(Σθ), then we would have a very strong relationship
between R−

g and the Hessian of non-trivial maps into S. The following lemma is crucial in this regard.

Lemma 2.9 ([Ste19]). Let (M, g) be a closed oriented Riemannian manifold, and let u : (M, g) → S
be a nontrivial harmonic map. Then, for almost every θ ∈ S we have that Σθ = u is smooth, and each
component is a non-trivial element of Hn−1(M).
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Proof. That Σθ is smooth for almost every θ ∈ S is a standard consequence of Sard’s Lemma. In
particular, we may also assume that |∇u|Σθ

> 0 for almost every θ ∈ S. Therefore, we will focus on
the second statement. Let θ0 ∈ S be such that Σ = Σθ0 is smooth and is the disjoint union of its
connected components: Σ =

⊔
Σi. Let Σi0 be an arbitrary component of Σ, and suppose that it is a

trivial element in Hn−1(M). Since u is harmonic, we have that ⋆du is also harmonic, and in particular
is a closed element of Hn−1(M ;R). Therefore, since Σi0 is trivial, we have that

(19)

∫
Σi0

⋆du = 0.

However, from the definition of ⋆du we see that

(20)

∫
Σi0

⋆du =

∫
Σi0

|∇u|dAg.

Since |∇u|Σ > 0, this leads us to a contradiction, and so it follows that Σi0 could not have been a
trivial element of Hn−1(M). □

With this lemma and Stern’s inequality in hand, we immediately get the following important corol-
lary.

Corollary 2.10. Let (M3, g) be a closed oriented three dimensional Riemannian manifold, let u :
(M, g) → S be a nontrivial harmonic map, and let R−

g be the negative part of the scalar curvature.
Finally, suppose that H2(M) has no non-separating 2-spheres. Then, we have that

(21) ∥R−
g ∥L2(g)∥du∥L2(g) ≥

∫
M

|∇du|2

du
dVg.

Proof. It follow from our hypotheses, Lemma 2.9, and the classification of surfaces that for almost
every θ ∈ S we have

(22) χ(Σθ) ≤ 0.

Therefore, we may rearrange Stern’s inequality to obtain

(23) −
∫
S

∫
Σθ

RgdAgdθ ≥
∫
S

∫
Σθ

|∇du|2

|du|2
dAgdθ.

The result now follows from an application of the coarea formula on both sides, the definition of R−
g

and an application of Hölder’s inequality on the left hand side. □

At this stage it is convenient to introduce the following notation.

Notation 2.11. For S1 let dθ2 denote the metric for which S1 has length 1. Then, we let h =
(dθ1)2 + · · ·+ (dθn)2 be the product metric on Tn.

Recall that to each element of H1(T3;Z) we may associate a map to S, and so we see that every
element of H1(T3;Z)R ⊂ H1(T3;R) corresponds to an harmonic map from (M, g) to S, which is unique
up to translation. Therefore, to any three elements αi ∈ H1(M ;R) we may find three harmonic maps
ui such that [dui] = αi, and from these three maps we get an harmonic map U : (T3, g) → (T3, h)
defined by

(24) U(x) =
(
u1(x), u2(x), u3(x)

)
for x ∈ T 3. From this expression we see that

(25) dU =
(
du1, du2, du3

)
.

This immediately leads us to the following proposition, which we will often make use of without further
comment.
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Proposition 2.12. Let U : (T3, g) → (T3, h), let x ∈ M , and let ν ∈ TxT3. Then, we have that

(26) dU(ν) = dui(ν)
∂

∂θi
= g(∇ui, ν)

∂

∂θi

and

(27) ∇dU =
(
∇du1,∇du2,∇du3

)
.

Due to the above proposition, we see that the Hessian of U will be controlled in terms of Stern’s
inequality in the form of Corollary 2.10, which is the heart of this paper.

2.3. Lattices and Successive Minima. As may be suspected from the above section, it is important
to analyze how H1(Tn;Z) sits inside of H1(Tn;R) as a lattice. Let us now fix some notation and
terminology which will be helpful in this pursuit.

Notation 2.13. Let (M, g) be a closed and oriented Riemannian manifold. We denote by Hp(M ;Z)R
the lattice in Hp(M ;R) generated by Hp(M ;Z). If Hp(M ;Z) is free, then Hp(M ;Z) ≃ Hp(M ;Z)R.
Let us give Hp(M ;R) the inner product structure mentioned in Definition 2.6. Then, we define

det
(
Hp(M ;Z)R

)
to be the determinant of the lattice Hp(M ;Z)R ⊂ Hp(M ;R) with respect to the

inner product on Hp(M ;R).

To begin analyzing Hp(Tn;Z)R as a lattice of Hp(Tn;R), one may use Poincare Duality and the
free-ness of Hp(Tn;Z) to show that tori have the following property.

Lemma 2.14 (Berger [Ber72]). For any p and any α ∈ Hp(Tn;R) we have that if (α∪ β)[Tn] is in Z
for all β in Hn−p(Tn;Z), then α is in Hp(Tn;Z).

Definition 2.15. Let M be any smooth closed manifold, and fix p ∈ N. We say that M satisfies the
dual lattice condition in degree p if the conclusion of the above lemma holds for p-forms.

We now come to an important result relating the determinants of different cohomology groups to
each other.

Lemma 2.16 (Berger [Ber72]). Let (M, g) be a closed oriented n-dimensional Riemannian manifold
which satisfies the dual lattice condition in degree p. Then, we have that

(28) 1 = det
(
Hp(M ;Z)R

)
det
(
Hn−p(M ;Z)R

)
.

In order to make good use of Lemma 2.16, we need a few results from the Geometry of Numbers
and Systolic Geometry. Let us begin by reviewing the Geometry of Numbers. In what follows, most
definitions and results have generalizations which are not needed for this paper, but can be found in
the relevant sections of [Cas12].

Definition 2.17. Let L be a lattice in Rn, and let F0(x) denote the Euclidean norm. Then, we define

(29) F0(L) = inf{F0(a) : a ∈ L}.

We can go a step further to define the following quantity associated with F0.

Definition 2.18. For F0 as above, we define δ0 as follows:

(30) δ0 = sup

{
F0(L)

det(L)
: L is a lattice in Rn

}
We have the following result bounding δ0.

Lemma 2.19 ([Cas12]). Let |B(0, 1)| be the volume of the unit ball in Rn. Then, we have the following
upper bound on δ0:

(31) δ0 ≤ 2n

|B(0, 1)|
.
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Proof. From [Cas12, Theorem 1 Chapter 3], we know that if |B(0, r)| is greater than det(L), then
there exists two points in B(0, r), say x1 and x2, such that x1 − x2 ∈ B(0, r) ∩ L, and so we see that

F0(L) ≤ 2r. Therefore, if we choose rL =
√
n det(L)

|B(0,1)| , then we get that F0(L) ≤ 2rL for all lattices L.

This gives the desired bound. □

For any given lattice L ⊂ Rn the quantity F0(L) has the following useful generalization.

Definition 2.20. Let L ⊂ Rn be a lattice, and let F0 denote the Euclidean norm. We denote by λk

the following quantity:

(32) λk = inf
{
λ : ∃ linearly independent {νi}ki=1 ⊂ L such that F0(νi) ≤ λ∀i

}
.

We refer to λk as the kth successive minima of L with respect to F0. Observe that λ1 = F0(L).

The importance of successive minima for this paper is contained in the following lemma.

Lemma 2.21. Let L be a lattice in Rn, and let λ1, . . . , λn be the successive minima of L with respect
to F0. Then, there is a basis of L, say {bi}ni=1 such that

|b1| = λ1(33)

|bj | ≤
1

2
jλj (2 ≤ j ≤ n).(34)

Proof. One may apply [Cas12, Chapter 8 Lemma 1] to find n linearly independent elements of the
lattice a1, . . . , an such that |aj | = λj for all j = 1, . . . , n. Then, we may apply [Cas12, Chapter 5
Lemma 1] to find a basis b1, . . . , bn such that |b1| = λ1 and for each j ≥ 2 we have

(35) |bj | ≤ max

{
|aj |,

1

2

j∑
i=1

|ai|

}
.

□

Remark 2.22. In fact, more can be said since we are working with the Euclidean norm. See [Rem38]
and [vdW56].

The above shows that we may always find a basis for a lattice whose norms are bounded by the
successive minima of the lattice. The following result is the key to estimating these successive minima.

Theorem 2.23 (Chapter 8 Theorem 1 [Cas12]). Let L be a lattice in Rn, and let λ1, . . . , λn be its
successive minima with respect to F0, the Euclidean norm. Then, we have that

(36) det(L) ≤ λ1 · · ·λn ≤ δ0 · det(L).

Combining this theorem with Lemma 2.19 gives us the following useful corollary.

Corollary 2.24. Let L ⊂ Rn be a lattice, and let λ1, · · · , λn be its successive minima with respect to
the Euclidean norm. Then, we have that

(37) λ1 · · ·λn ≤ 2n

|B(0, 1)|
det(L).

2.4. Stable Systoles. We now turn to a quick review of some concepts in Systolic Geometry.

Definition 2.25 (Stable Norm of a Real Homology Class). The volume of a real k-dimensional Lips-
chitz cycle c =

∑
i riσi is given by

Volk(c) =
∑
i

|ri|Volk(△k, σ∗
i g).

The stable norm ∥α∥ of a real homology class α ∈ Hk(M ;R) is defined as the infimum of the volumes
of all real Lipschitz cycles representing α.

Definition 2.26 (Stable Systoles). The stable k-systole, denoted stabsysk(M, g), is defined to be
the minimum of the stable norm on the nonzero classes of the integral lattice Hk(M ;Z)R in Hk(M ;R).
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Notation 2.27. Let α ∈ Hn−p(M ;R), we shall denote by PD(α) its Poincaré dual in Hp(M ;R).

The following proposition is [Heb86, Corollary 3], see [Heb23, Proposition 3.2] for its statement
using the stable norm.

Proposition 2.28. Let PD(α) ∈ Hp(M ;R) be the Poincaré dual of the cohomology class α ∈ Hn−p(M ;R),
and let ∥PD(α)∥ be the stable norm of PD(α). Then

∥PD(α)∥ ≤ |M |1/2g C(n, p)|α|∗2,

where C(n, p) is a constant depending only on n and p, and |α|∗2 is the L2 norm of α, see Definition
2.6 and Notation 2.7.

The above proposition has a simple, but important corollary:

Corollary 2.29. Let (M, g) be a closed Riemannian manifold. Then we have that

(38) stabsysp(M, g) ≤ |M |
1
2
g min

{
|α|∗2 : α ̸= 0;α ∈ Hn−p(M ;Z)R

}
= |M |

1
2
g F0

(
Hn−p(M ;Z)R

)
.

Proof. According to Proposition 2.28, for α ∈ Hp(M ;Z)R, 1 ⩽ p ≤ n− 1,

∥PD(α)∥ ≤ |M |1/2g C(n, p)|α|∗2,

Since the Poincaré dual map is an isomorphism, we have that PD(α) ̸= 0 in Hp(M ;Z)R. Therefore,
by the definition of the stable p-systole, we have that

(39) stabsysp(M, g) ≤ ∥PD(α)∥.

This gives the result. □

2.5. Isoperimetric constants. On a smooth Riemannian manifold, functions are bounded in terms
of their gradients. The character and quality of this bound can be determined by the character and
quality of isoperimetric bounds. Here we recall the definition of the Cheeger and Sobolev constants,
and the fact that they are closely related.

Definition 2.30. Let (M, g) be a given n-dimensional Riemannian manifold, and let α ∈ [1, n
n−1 ]. We

denote by INα(M, g) the following quantity:

(40) INα(M, g) = inf

{
|∂Ω|

min{|Ω|, |Ωc|}
: Ω ⊂ M

}
.

When α = 1, we call IN1(M, g) the Cheeger constant of (M, g).

Next, we have the Sobolev constant of a Riemannian manifold.

Definition 2.31. Let (M, g) be a given n-dimensional Riemannian manifold, and let α ∈ [1, n
n−1 ].

Let us denote by SNα(M, g) the following quantity:

(41) SNα(M, g) = inf

{ ∫
M

|∇f |dVg

infk∈R ∥f − k∥Lα(g)
: f ∈ W 1,1(M, g)

}
.

It is standard, see [Li12, Theorem 9.6], that the Cheeger constant and SN1 are equivalent:

Proposition 2.32. Let (M, g) be a given n-dimensional Riemannian manifold, then we have that

(42) IN1(M, g) = SN1(M, g).
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3. Stable systole bounds and L2 estimates

In this section we will show that lower bounds on stabsys1(M, g) and stabsysn−1(M, g) guarantee
the existence of a good basis for H1(Tn;Z)R. The following lemma and its proof are modeled on
[Heb86, Proposition 6].

Lemma 3.1. Let g be a Riemannian metric on Tn such that

(43) stabsys1(g) ≥ σ > 0

and let λ1, . . . , λn be the successive minima of the lattice H1(Tn;Z)R in H1(Tn;R) with respect to the
inner product on H1(Tn;R) induced by g, see Definition 2.6. Then, we have that

(44) λ1 · · ·λn ≤ 22n|B(0, 1)|2σ−n|Tn|
n
2
g .

In particular,

(45) λ1 ≤ 4|B(0, 1)| 2
nσ−1|Tn|

1
2
g .

Proof. From Corollary 2.24 we see that

(46)
|B(0, 1)|

2n
λ1 · · ·λn ≤ det

(
H1(Tn;Z)R

)
.

Letting µ1, . . . , µn be the successive minima of Hn−1(Tn;Z)R, we get the following as well:

(47)
|B(0, 1)|

2n
µ1 · · ·µn ≤ det

(
Hn−1(Tn;Z)R

)
.

Since Tn satisfies the dual lattice condition in all degrees, it follows from Lemma 2.16 that

(48) 2−2n|B(0, 1)|2λ1 · · ·λn · µ1 · · ·µn ≤ 1.

Since µ1 ≤ µj for all j ≥ 1, it follows that

(49) λ1 · · ·λn ≤ 22n|B(0, 1)|2µ−n
1 .

In fact, since λ1 ≤ λj for all j ≥ 1 as well, we have

(50) λn
1 ≤ 22n|B(0, 1)|2µ−n

1 .

Therefore, a lower bound on µ1 will give us our desired upper bound on λ1. From Corollary 2.29, we
have that

(51) stabsys1(Tn, g) ≤ |Tn|
1
2
g min

{
|α|∗2 : α ̸= 0;α ∈ Hn−1(Tn;Z)R

}
= |Tn|

1
2
g µ1.

This gives the desired lower bound on µ1, and so the result follows. □

We now know that λ1 = inf
{
|b|∗2 : b ̸= 0; b ∈ H1(Tn;Z)R

}
is bounded above in terms of |Tn|g and

σ−1. However, in order to construct a useful harmonic map, it seems reasonable to suppose that we
need to use n one-forms, which together form a basis for H1(Tn;Z)R. It turns out that a lower bound
on min{stabsys1(g), stabsysn−1(g)} is sufficient to ensure the existence of such a basis.

Lemma 3.2. Let g be a Riemannian metric on Tn such that

(52) min{stabsys1(g), stabsysn−1(g)} ≥ σ > 0.

Then, there exists a basis α1, . . . , αn of H1(Tn;Z)R with harmonic representatives aj such that

(53) ∥aj∥L2(g) ≤ j ×
(n−j+1)

√
22n|B(0, 1)|σ−(n+j−1)|Tn|

1
2 (n+j−1)
g .

Proof. We wish to apply Lemma 2.21, however first we must bound each successive minima. Equation
(45) gives the desired upper bound on λ1. Therefore we must focus our attention on the higher
successive minima. Using that λj ≤ λi for i ≤ j, we may apply Lemma 3.1 to obtain

(54) λn−j+1
j ≤ λj · · ·λn ≤ λ

−(j−1)
1 22n|B(0, 1)|2σ−n|Tn|

n
2
g .
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From Corollary 2.29, we have that

(55) stabsysn−1(Tn, g) ≤ |Tn|
1
2
g min

{
|α|∗2 : α ̸= 0;H1(Tn;Z)R

}
= |Tn|

1
2
g λ1.

Thus, using Equation (55), we see that

(56) λn−j+1
j ≤ 22n|B(0, 1)|2σ−(n+j−1)|Tn|

1
2 (n+j−1)
g .

Taking (n− j + 1)th roots and then applying Lemma 2.21 gives the desired result. □

Using the above results and notation, we can now establish the existence of an harmonic map
U : (Tn, g) → (Tn, h) with several desirable properties.

Corollary 3.3. Let g be a Riemannian metric on Tn such that

(57) min{stabsys1(g), stabsysn−1(g)} ≥ σ > 0.

Then, there exists a surjective harmonic function U : (Tn, g) → (Tn, h) such that deg(U) = 1 and

(58) ∥dU∥L2(g) ≤
n∑

j=1

j ×
(n−j+1)

√
4n|B(0, 1)|2σ−(n+j−1)|Tn|

1
2 (n+j−1)
g .

Proof. Let αi be a basis for the lattice H1(Tn;Z)R with harmonic representatives ai as in Lemma 2.21,
and let ui : (Tn, g) → S be the harmonic map such that dui = ai. Then, if we let U =

(
u1, . . . , un

)
,

the estimate on ∥dU∥L2(g) follows from Proposition 2.12.

Next, since the αi form a basis of H1(Tn;Z)R, it follows that their wedge product
∧n

i=1 α
i forms a

basis of Hn(Tn;Z)R. Let θi be the ith coordinate function for Tn, then we also have that
∧n

i=1 dθ
i is

a basis for Hn(Tn;Z)R. As such, we may calculate the degree of U as follows:

(59) deg(U) =
∫
Tn

U∗
n∧

i=1

dθi =

∫
Tn

n∧
i=1

ai = ±1.

We may take U = (−u1, u2, . . . , un) as necessary to ensure that deg(U) = 1. The surjectivity of
U follows from the general fact that degree one maps between Riemannian manifolds are surjective
[Eps66]. □

For the sake of completeness, let us give a simple proof of the fact that degree one maps between
tori are surjective.

Proposition 3.4. Let f : Tn → Tn be a degree one map. Then, it must be that f is surjective.

Proof. Since the result is purely topological, we may assume that Tn has the product metric
∑n

i=1

(
dθi
)2
.

Let a be an arbitrary point in Tn. Using the flat metric, we can see that we may give Tn the structure
of a CW-complex with one n-cell which contains a in its interior.

With the above reduction in place, let α ∈ Hn(Tn;Z) be a fundamental class with respect to which
f : Tn → Tn is a degree one map:

(60) f∗α = α.

Suppose that f is not surjective, and so there is a point a ∈ Tn such that a is not in the image of Tn

under f . Since f(Tn) is compact, it follows that there is an ε > 0 such that

(61) d
(
a, f
(
Tn
))

≥ ε.

As stated above, we may give Tn the structure of a CW complex with one n cell, which contains a in
its interior. Then, by shrinking ε as necessary, we may assume that B(a, ε) ⊂ intDn, where Dn is the
n-cell. We also have that f(Tn) ⊂ B(a, ε)c. As such, we see that there is a homotopy of the map, say
ft, such that f0 = f and f0(Tn) is contained in the n− 1 skeleton of Tn.
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Let Xn−1 denote the n−1 skeleton of Tn and let ι : Xn−1 → Tn denote the inclusion map; we have
that Hn(X

n−1;Z) = 0. In particular, we see that (f1)∗α = 0, in Xn−1. Using the inclusion map, we
have that f1 : Tn → Tn has the following decomposition, which is almost tautological:

(62) Tn f1−→ Xn−1 ι−→ Tn

This shows that (f1)∗α = 0 ∈ Hn(Tn;Z). However, since f1 is homotopic to f0 = f , this shows that
α = f∗α = 0. This is a contradiction, since α was assumed to be a fundamental class. □

4. From L2 to L3 bounds

From the previous section we know that given a Riemannian metric g on Tn, we may find an
harmonic map U : (Tn, g) → (Tn, h) whose L2 energy is controlled in terms of the volume of |Tn|g and
min{stabsys1(g), stabsysn−1(g)}. In this section we will ultimately focus on the case that n = 3, and
study the relationship between the universal cover R3 with its pullback metric π∗g and (T3, g). The
goal is to use this relationship along with Stern’s inequality, in particular Corollary 2.10, to improve
the L2 bounds of the previous section to L3 bounds.

Of fundamental importance to this discussion is the notion of fundamental domain, which we recall
now.

Definition 4.1. Let π : Rn → Tn be the covering map. Suppose that V ⊂ Rn is a closed subset such
that π

(
V
)
= Tn and π|intV is injective. If in addition V is path connected, and ∂V has measure zero,

then we call V a fundamental domain of Tn. Given a fundamental domain V, for ν ∈ Zn we let Vν

denote the image of V under the deck transformation associated to ν ∈ Zn = π1(Tn).

The following proposition lists some of the basic properties of fundamental domains.

Proposition 4.2. Let g be a Riemannian metric on Tn, let U : Tn → Tn be a map, and let uk denote
the components of U. Then, there exists lifts ûk, and so a lift Û, such that the following diagram
commutes:

Rn R

Tn S1
π

ûk

π

uk

Furthermore, for any integrable function f : Tn → R and fundamental domain V we have that

(63)

∫
V
f ◦ πdVπ∗g =

∫
Tn

fdVg.

Proof. Note that Tn = Rn/Zn and S1 = R/Z. For the moment, let us denote elements of Tn by [x],
where x ∈ Rn: we have that [x] = Znx. We denote elements in S1 similarly. We can define a lift ûk

as follows. First, denote by uk
∗ : Zn → Z the homomorphism between fundamental groups induced by

uk. Next, fix 0 in Rn, and consider the points [0] in Tn and uk
(
[0]
)
. Pick any point y0 ∈ R such that

uk
(
[0]
)
= Zy0. Abusing notation, we may use uk

∗ to define ûk(α) for any α ∈ Zn as ûk(α) = uk
∗(x)+y0.

Every element x ∈ Rn can be written as x = x̃ + α, where x̃ is in the same fundamental domain as
0, and α ∈ Zn. Then, we may set ûk(x) = uk

∗(α) + y0 ûk(α(x)) = uk
∗(α)u

k(x) for α ∈ Zn, where
uk
∗ : Zn → Z is the homomorphism between fundamental groups induced by uk. The second part

follows from the fact that ∂V has measure zero, that π|intV is injective, and from the fact that the
image of measure zero sets under π have measure zero, since π is a smooth map. □

Working with fundamental domains allows us to treat maps U : T3 → T3 as maps Û : R3 → R3.
The next lemma is an example of this, and will play a vital role in strengthening our L2 bounds to L3

bounds.
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Lemma 4.3. Let g be a Riemannian metric on T3 such that stabsys2(g) ≥ σ > 0, let u : (T3, g) → S1
be a nontrivial harmonic map, let û denote its lift, and let V be any fundamental domain in R3. Then,
we have that

(64) max
V

û−min
V

û ≤ σ−1|T3|
1
2
g ∥du∥L2(g).

Proof. Here χV will denote the indicator function for the set V. From the coarea formula, we have
that

(65)

∫
V
|dû|dVπ∗g =

∫ maxV û

minV û

∫
û−1{t}

χVdAπ∗gdt.

For every t, let θ(t) = t mod 1, then it follows from the commutativity of the Diagram 4.2 and the
fact that π

(
V
)
= T3 that for all t we have

(66)

∫
û−1{t}

χVdAπ∗g ≥
∫
u−1{θ(t)}

dAg.

In particular, observe that for almost every t we have that t is a regular value for û and θ(t) is a regular
value for u. From Lemma 2.9 it follows that for almost every t the surface u−1{θ(t)} is a nontrivial
element of H2(T3). Therefore, by hypothesis we have that

(67) |u−1{θ(t)}|g ≥ σ.

Furthermore, since π : V → T3 is surjective, it follows from the above inequality that for almost every
t we have

(68) |û−1{t} ∩ V|π∗g ≥ |u−1{θ(t)}|g ≥ σ.

It now follows from the coarea formula that

(69)

∫
V
|dû|dVp∗g ≥ σ

(
max
V

û−min
V

û
)
.

We observe that |dû| = |d(u ◦ π)| = |du| ◦ π, and so from Proposition 4.2 we have that

(70)

∫
T3

|du|dVg ≥ σ
(
max
V

û−min
V

û
)
.

After applying Hölder’s inequality to the left hand side, we get the desired result. □

We will actually need to understand supVη
û− infVη

û, where η > 0 and Vη denotes the η neighbor-
hood of V with respect to the distance function induced by the metric π∗g. In order to obtain such
information, we are led to consider the following quantity.

Definition 4.4. Let g be a Riemannian metric on T3, let π : R3 → T3 be the covering map, and let
η > 0. We define the constant κ(g, η) to be the smallest integer such that there exists a fundamental
domain V such that

(71) sup
x∈T3

|π−1{x} ∩ Vη| ≤ κ(g, η).

Let us refer to κ(g, η) as the η-covering constant of g, and refer to V as a test domain for κ(g, η). See
Figure 1 below.

Before we can estimate
(
supVη

û− infVη û
)
more precisely, we need to understand how the different

copies of V cover Vη. This is the content of the following lemma.

Lemma 4.5. Let g be a Riemannian metric on T3 and let V be a test domain for κ(g, η), see Definition
4.4 above. Then there are κ(g, η) copies of V, say Vνi , generated by π1(T3) such that the following
statements are true.

(72) Vη ⊂
⋃

m
i=1Vνi .

(73) Vη ∩ Vνi ̸= ∅∀i.
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V

Vη

Figure 1. A fundamental domain V with neighborhood Vη. In the case loosely
depicted here, we have κ(g, η) ≤ 9.

V

Vη

x0

x9

Figure 2. An example of a curve whose existence is established in Lemma 4.5.

Finally, for any x0 and x1 in Vη there exists a curve c in
⋃

Vi and times {tj}l1 with l ≤ κ(g, η)
satisfying the following properties:

(1) c(0) = x0;
(2) c(tj) ∈ Vνij ∩ Vνij−1

(3) once c leaves a domain Vνi , it does not re-enter it.

See Figure 2

Proof. By definition, the fundamental domain V is path connected, and so we have that Vη is as well.
Let c0 : [0, 1] → R3 be a curve in Vη connecting x0 to x1. We will describe a process for modifying
this curve to fit the criteria laid out above. Let i0 be the smallest index such that Vi0 = Vνi0 contains
x0 = c0(0). We define t0 as follows:

(74) t0 = sup
{
t : c0(t) ∈ Vi0

}
Since c0 is continuous and Vi0 is closed, it follows that

(75) c0(t0) ∈ Vi0 .

Since Vi0 is path connected, we may replace c0|[0,t0] with a curve which lies entirely in Vi0 . Let c1 be

the curve which results from this substitution, and let t̃1 be as follows

(76) t̃1 = inf
{
t : c1(t) ∈ Vi; i ̸= i0

}
Since there are only finitely many Vi, we find a smallest i1 such that c1(t̃1) ∈ Vi1 . By continuity, and

the fact that all Vν are closed, we also have that c1(t̃1) ∈ Vi0 , and actually t̃1 is equal to t0. Continuing
as before, we let t1 be defined as follows:

(77) t1 = sup
{
t : c1(t) ∈ Vi1

}
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Since Vi1 is path connected, we may replace c1|[t0,t1] by a path contained entirely in Vi1 . Let c2 be

the resulting curve, and continue in this manner. Since there are only finitely many Vi, this process
will terminate. The resulting curve has the desired properties. □

We are now in a position to obtain a bound on supVηû− inf Vηû.

Lemma 4.6. Let g be a Riemannian metric on T3 such that stabsys2(g) ≥ σ, let V be a test domain
for κ(g, η), and let u : (T3, g) → S1 be a nontrivial harmonic map. Then, we have that

(78) sup
Vη

û− inf
Vη

û ≤ κ(g, η)σ−1|T3| 12 ∥du∥L2(g).

Proof. By definition, the subset Vη is contained in κ(g, η) copies Vνi of V. Let x1 and x0 be any two

points in Vη, and connect them by a curve c ⊂
⋃ κ(g,η)

i=1 such as in Lemma 4.5. Let {tij}lj=1 be the

times such that c(tij ) ∈ Vνij ∩ Vνij−1 , and let xj = c(tij ). Then, we may calculate as follows:

(79) û(x1)− û(x0) ≤ û(x1)− û(xl) +

l∑
j=1

û(xj)− û(xj−1).

From Lemma 4.3 each element in the sum on the right hand side is bounded above by σ−1|T3|
1
2
g ∥du∥L2(g).

Therefore, we see that

(80) û(x1)− û(x0) ≤ κ(g, η)σ−1|T3|
1
2
g ∥du∥L2(g)

□

The above sup bound is the key to the integration by parts argument in the proof of the following
lemma, as it allows us to avoid a Hölder like inequality, and so obtain control over higher Lp norms of
non-trivial harmonic maps.

Lemma 4.7. Let g be a Riemannian metric on T3, and suppose that

(81) min{stabsys1(g), stabsys2(g)} ≥ σ.

Given any nontrivial harmonic map, say u : (T3, g) → S1 we have that

∥du∥L3(g) ≤1 +
((

1 + κ(g, η)σ−1|T3| 12 ∥du∥L2(g)

)
η−1κ(g, η)∥du∥2L2(g)

) 2
3

(82)

+
((

1 + κ(g, η)σ−1|T3| 12 ∥du∥L2(g)

)
κ(g, η)∥du∥

3
2

L3(g)∥R
−
g ∥

1
2

L2(g)

) 2
3

.(83)

Proof. Let V be a test domain for κ(g, η), let Vη be the η neighborhood of V, let ũ be a lift of u. From
Lemma 4.6 we know that

(84) sup
Vη

ũ− inf
Vη

ũ ≤ κ(g, η)σ−1|T3| 12 ∥du∥L2(g).

Let N =
⌈
infVη ũ

⌉
, and let û = ũ−N . Then, û covers u, dû = dũ, and

(85) ∥u∥L∞(Vη) ≤ κ(g, η)σ−1|T3| 12 ∥du∥L2(g) + 1.

Finally, let f : R3 → R be a cutoff function such that

(1) χV ≤ f ≤ 1;
(2) Lip(f) ≤ η−1;
(3) supp(f) ⊂ Vη.

With these elements we can calculate as follows:∫
T3

|du|3dVg ≤
∫
Vη

g
(
f |dû|dû, dû

)
dVπ∗g(86)

= −
∫
Vη

û
(
g
(
df, |dû|dû

)
+ fg

(
d|dû|, dû

))
dVπ∗g,(87)
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where in the second line we integrated by parts and used the fact that û is an harmonic function.
Taking the absolute value of both sides, and then using the Cauchy-Schwarz and Kato inequalities, we
obtain

(88) ∥du∥3L3(g) ≤ ∥û∥L∞(Vη)

(
η−1∥dû∥2L2(Vη)

+

∫
Vη

|dû||∇dû|dVπ∗g

)
.

The right most term of the above can be estimated as follows∫
Vη

|dû||∇dû|dVπ∗g =

∫
Vη

|dû| 32 |∇dû|
|dû| 12

dVπ∗g(89)

≤ ∥dû∥
3
2

L3(Vη)

(∫
Vη

|∇dû|2

|dû|
dVπ∗g

) 1
2

.(90)

Since Vη ⊂
⋃ κ(g,η)

i=1 Vi, it follows from Proposition 4.2 that

(91) ∥dû∥2L2(π∗g,Vη)
≤ κ(g, η)∥du∥2L2(g),

(92) ∥dû∥3L3(π∗g,Vη)
≤ κ(g, η)∥du∥3L3(g),

and

(93)

∫
Vη

|∇dû|2

|dû|
dVπ∗g ≤ κ(g, η)

∫
T3

|∇du|2

|du|
dVg.

Therefore, we may apply Stern’s inequality to the right hand side of Equation (93), see Corollary 2.10,
and Hölder’s inequality to obtain

(94)

∫
Vη

|dû||∇dû|dVπ∗g ≤ κ(g, η)∥du∥
3
2

L3(g)∥du∥
1
2

L2(g)∥R
−
g ∥

1
2

L2(g).

Putting everything together gives us that

∥du∥3L3(g) ≤∥û∥L∞(Vη)η
−1κ(g, η)∥du∥2L2(g)(95)

+ ∥û∥L∞(Vη)κ(g, η)∥du∥
3
2

L3(g)∥du∥
1
2

L2(g)∥R
−
g ∥

1
2

L2(g).(96)

If ∥du∥L3(g) ≥ 1, then we may divide both sides by ∥du∥
3
2

L3(g), otherwise we already have a good bound.

Therefore, we see that

∥du∥
3
2

L3(g) ≤1 + ∥û∥L∞(Vη)η
−1κ(g, η)∥du∥2L2(g)(97)

+ ∥û∥L∞(Vη)κ(g, η)∥du∥
1
2

L2(g)∥R
−
g ∥

1
2

L2(g).(98)

Including the bound on ∥û∥L∞(Vη) from Equation (85), and then taking the 2
3 root gives the result. □

5. Approximation by constant matrices

The importance of obtaining L3 estimates on non-trivial harmonic functions is twofold. The sec-
ond reason is in some sense the heart of Lemma 6.6 below. In this section, we will explore the
first reason for their importance. Consider two nontrivial harmonic functions from (T3, g) to S1, say
uj and uk. Then, we can control ∥∇g

(
duj , duk

)
∥L1(g) in terms of max{∥duj∥L3(g), ∥duk∥L3(g)} and

max

{∥∥∥ |∇duj |2
|duj |

∥∥∥
L1(g)

,
∥∥∥ |∇duk|2

|duk|

∥∥∥
L1(g)

}
. This will be carried out for smooth maps in general, and will

be applied to harmonic maps in particular in Section 6. We begin with the following lemma.
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Lemma 5.1. Let g be a Riemannian metric on T3 such that IN1(g) ≥ Λ, let U : (T3, g) → (T3, h) be
a smooth map, and let uk denote the components of U. Then, we have that

(99)
∥∥∇g

(
duj , duk

)∥∥
L1(g)

≤ 2 sup
jk

∥duj∥
1
2

L3(g)∥du
k∥L3(g)

(∫
T3

|∇duj |2

|duj |
dVg

) 1
2

.

Furthermore, letting gjk denote g
(
duj , duk

)
, there exists a constant symmetric and non-negative matrix

a = ajk such that

(100) ∥gjk − ajk∥L1(g) ≤ 2Λ−1 sup
jk

∥duj∥
1
2

L3(g)∥du
k∥L3(g)

(∫
T3

|∇duj |2

|duj |
dVg

) 1
2

.

Finally, we have that

sup
jk

|ajk| ≤2|T3|−1
g Λ−1 sup

jk
∥duj∥

1
2

L3(g)∥du
k∥L3(g)

(∫
T3

|∇duj |2

|duj |
dVg

) 1
2

+ |T3|−1
g sup

jk
∥duj∥L2(g)∥duk∥L2(g).

(101)

Proof. Once we establish (99), we have that (100) follows from the definition of IN1(g). Furthermore
(101) also follows by writing |ajk| = 1

|T3|g

∫
T3 |ajk|dVg, then adding and subtracting gjk, applying the

triangle inequality, and then using (100).
Therefore, we need only establish (99). Using the Cauchy-Schwarz inequality and rearranging terms,

we estimate as follows ∫
T3

|∇g
(
duj , duk

)
|dVg ≤

∫
T3

|duk||duj | 12 |∇duj |
|duj | 12

dVg

+

∫
T3

|duj ||duk| 12 |∇duk|
|duk| 12

dVg.

(102)

Both integrals may be estimated using Hölder’s inequality for three terms with exponents 3, 6, and 2,
respectively. This gives (99), and so the other results as well. □

The above result can be used to show that on a subset of T3 the sup norm of |gjk−ajk| is controlled.

Corollary 5.2. Let g be a metric on T3 such that IN1(g) ≥ Λ, let U : T3 → T3 be a smooth map, let
uj be the components of U, let gjk denote g

(
duj , duk

)
, and let ajk be as in Lemma 5.1. Finally, let us

denote by E1(g, τ) the following set

(103) E1(g, τ) =

x :
∑
jk

|gjk − ajk| < τ

 .

Set τ to be as follows

(104) τ =

(
36

|T3|gΛ
sup
jk

∥duj∥
1
2

L3(g)∥du
k∥L3(g)

(∫
T3

|∇duj |2

|duj |
dVg

) 1
2

) 1
2

.

We have that if τ < 1, then

(105) |E1(g, τ)|g ≥ 1

2
|T3|g.

Proof. The proof is shorter than the statement. After summing (100) over the indices j, k we can
apply Chebyshev’s inequality to the result to obtain

|E1(g, τ)c|g ≤ 1

τ

18

|T3|gΛ
sup
jk

∥duj∥
1
2

L3(g)∥du
k∥L3(g)

(∫
T3

|∇duj |2

|duj |
dVg

) 1
2

(106)

=
τ

2
|T3|g.(107)
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Thus, if τ < 1
2 , we get the result. □

Once we have a good subset to begin with, we can use it to show that there exists an open connected
submanifold with smooth boundary on which |gjk − ajk| is controlled.

Lemma 5.3. Let g be a metric on T3 be such that IN1(g) ≥ Λ, let U : T3 → T3 be a smooth map, let
uj be the components of U, let gjk denote g

(
duj , duk

)
, and let ajk be as in Lemma 5.1. Next, let us

denote by E2(g, τ) the following set

(108) E2(g, τ) =

x :
∑
jk

|gjk − ajk|2 < τ2


Finally let τ be given by

(109) τ =

(
36

|T3|gΛ
sup
jk

∥duj∥
1
2

L3(g)∥du
k∥L3(g)

(∫
T3

|∇duj |2

|duj |
dVg

) 1
2

) 1
2

.

If τ ≤ 1
8 , then there exists an open connected submanifold Ω(g, τ) with smooth boundary and the

following properties:

(1) Ω(g, τ) ⊂ {x : supjk |gjk − ajk| ≤ 2τ};
(2) |Ω(g, τ)| ≥ 1

2 |T
3|g;

(3) |∂Ω| ≤ 2|T3|gΛτ ;
(4) |Ω(g, τ)c| ≤ 2|T3|gτ .

Proof. From the coarea formula, we have that

(110)

∫ 4τ2

τ2

|∂E2(g,
√
s)|ds ≤ 2

∫
E2(g,2τ)

∑
jk

|gjk − ajk||∇gjk|dVg.

Since we are working inside of E2(g, 2τ), it follows that for all j, k we have that |gjk − ajk| ≤ 2τ .
Therefore, the righthand side of the above is bounded by

(111) 36τ sup
jk

∫
T3

|∇gjk|dVg.

Therefore, we may apply (99) to see that

(112)

∫ 4τ2

τ2

|∂E2(g,
√
s)|ds ≤ 2τ |T3|gΛτ2 = 2|T3|Λτ3.

Using Chebyshev’s inequality on the above equation shows us that

(113)
∣∣{s : |∂E2(g,

√
s)| ≤ 2|T3|gΛτ

}
∩ [τ2, 4τ2]

∣∣ ≥ 2τ2.

Since
∑

jk |gjk − ajk|2 is smooth, we may apply Sard’s Lemma to conclude that almost every value is

regular. In particular, if the image of this function contains all of [τ2, 4τ2], then we may find a regular
value t0 ∈ [τ2, 4τ2] such that

(114) |∂E2(g,
√
t0)| ≤ 2|T3|gΛτ.

So, suppose that the image of
∑

jk |gjk−ajk| does not contain [τ2, 4τ2]. Since the function is continuous,

and so has connected image, there is an ε > 0 such that the image lies either in [0, 4τ2−ε] or in [4τ2,∞).

We now observe that
∑

jk |gjk − ajk|2 ≤
(∑

jk |gjk − ajk|
)2

, and so

(115) E1(g, τ) ⊂ E2(g, τ)

Since τ ≤ 1
8 by assumption, we know from Corollary 5.2 that |E1(g, τ)| ≥ 1

2 |T
3|g, and so we must have

that |E2(g, τ)| ≥ 1
2 |T

3|g. In this case, we must have that the image of
∑

jk |gjk − ajk|2 must lie in

[0, 4τ2 − ε]. Then, we see that E2(g, 2τ) = T3, and the result is clear.
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So, let us continue by supposing that the image of
∑

jk |gjk − ajk|2 does indeed contain [τ2, 4τ2],

and use Sard’s Lemma to find a t0 in [τ2, 4τ2] such that ∂E2(g,
√
t0 is smooth and satisfies

(116) |∂E2(g,
√
t0)| ≤ 2|T3|gΛτ.

E2(g,
√
t0) can be decomposed into a union of disjoint connected components, say Gi. Since

(117) ∇
∑
jk

|gjk − ajk|2

is nonzero and outward pointing everywhere on ∂E2(g,
√
t0), it follows that

(118) ∂E2(g,
√
t0) =

⊔
i

∂Gi.

From this, we immediately see that if there exists an i0 such that |Gi0 | ≥ 1
2 |T

3|g, then we may take
Ω(g, τ) to be Gi0 .

So, suppose that no such index exists. Then, we have that

(119)
1

2
|T3|g ≤ |E(g,

√
t0)| =

∑
i

|Gi| ≤ Λ−1
∑
i

|∂Gi| = Λ−1|∂E2(g,
√
t0)|.

However, by the work done above, we know that the last term on the right has the bound

(120) Λ−1|∂E2(g,
√
t0)| ≤ 2|T3|τ.

Since we assumed that τ ≤ 1
8 , this last inequality gives us a contradiction. Therefore, there does

indeed exist some i0 such that |Gi0 | ≥ 1
2 |T

3|g, and we let Ω(g, τ) = Gi0 . □

6. Convergence

In this section we will combine the estimates for smooth functions coming from control on IN1(g)
with the estimates on harmonic maps coming from the L2 bounds obtained in terms of stable systoles,
and L3 bounds which result from control on the covering constant of g, see Definition 4.4. This com-
bined control will lead to convergence in the sense of Dong-Song for certain sequences of Riemannian
metrics whose negative part of their scalar curvature tends to zero.

We begin by defining the family of metrics on T3 for which the convergence result will hold.

Definition 6.1. Let V,R,Λ, σ, η,M > 0, and define F = F(V,R,Λ, σ, η,M) to be the family of
Riemannian metrics on T3 such that for all g ∈ F we have that

(1) |T3|g ≤ V ;
(2) ∥R−

g ∥L2(g) ≤ R;
(3) IN1(g) ≥ Λ;
(4) min

{
stabsys1(g), stabsys2(g)

}
≥ σ;

(5) κ(g, η) ≤ M .

The results of the previous section imply strong controls on metrics in F . In order to make this
clear, we will summarize the results obtained so far as they apply to F .

Notation 6.2. In order to avoid ever expanding equations and terms, we shall denote by B any
constant which depends only on V,R,Λ, σ, η and M . It may be that from line to line B will change,
increasing to be as large as necessary. This will only happen a finite number of times.

Let us begin with a volume lower bound and the existence of well controlled harmonic maps for the
metrics in F .

Proposition 6.3. There exists a constant B > 0 depending only on V,R,Λ, σ, η and M such that for
any g ∈ F we have

(121) |T3|g ≥ B−1 > 0.
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Furthermore, if Ug : (T3, g) → (T3, h) is the harmonic map produced in Corollary 3.3 with components
uj, then for all j we have that

∥duj∥L2(g) ≤ B;(122) ∫
T3

|∇duj |2

|duj |
dVg ≤ B∥R−∥L2(g);(123)

∥duj∥L3(g) ≤ B.(124)

Proof. Since stabsys1(g) ≤ sys1(g), the first result follows from Gromov’s systolic inequality. The next
inequality follows from applying Corollary 3.3 to metrics in F . Then, we have from Stern’s inequality
in the form of Corollary 2.10 that

(125)

∫
T3

|∇duj |2

|duj |
dVg ≤

∫
T3

|duj |R−
g dVg ≤ ∥duj∥L2(g)∥R−

g ∥L2(g).

The final bound on the L3 norms of the coordinate functions follows from substituting the above into
Lemma 4.7. □

Next, we see that for any g ∈ F there is a constant matrix which approximates g in an integral
sense, and the quality of the approximation depends on ∥R−

g ∥L2(g).

Proposition 6.4. Fix V,R,Λ, σ, η, and M greater than zero, and for every g ∈ F let U = Ug be the
degree 1 harmonic map Ug : (T3, g) → (T3, h) given in Corollary 3.3, let uj denote its components, and
let gjk = g

(
duj , duk

)
. Then there exists a constant B depending only on V,R,Λ, σ, η and M such that

for every g ∈ F there exists a symmetric and non-negative matrix ajk with the following properties:

(126)

∫
T3

|gjk − ajk|dVg ≤ B∥R−
g ∥

1
2

L2(g)

and

(127) sup
jk

|ajk| ≤ B.

Proof. This result will follow from Lemma 5.1 if we can control supj ∥duj∥L3(g) and supj
∫
T3

|duj |2
|duj | dVg

uniformly in terms of ∥R−
g ∥L2(g) and some constant B. Luckily, this is the content of Proposition

6.3. □

In fact, as we show in the following proposition, for any metric g ∈ F whose negative part of the
scalar curvature is small enough we can find a large connected open sub-manifold with smooth and
small boundary on which gjk is uniformly well approximated by a constant matrix. Before diving in,
let us recall an elementary estimate on determinants, which will be a useful tool in the proof of Lemma
6.6 below.

Proposition 6.5. Let a and b be any two n × n matrices. Then, there exists a constant C = C(n),
depending only on n, such that

(128) |det(a)− det(b)| ≤ C(∥a∥+ ∥b∥)n−1∥a− b∥.

Proof. Let c(t) = (1− t)a+ tb, and use the cofactor expansion to calculate

(129)
d

dt
det
(
c(t)
)
=

n∑
j=1

(
(a− b)ijCof

(
c(t)
)
ij
+ c(t)ij

d

dt
Cof

(
c(t)
)
ij

)
.

Therefore, we may use an inductive argument to see that

(130)

∣∣∣∣ ddtdet(c(t))
∣∣∣∣ ≤ C(n)(∥a∥+ ∥b∥)n−1∥a− b∥.

□

We are now in the position to prove the following Lemma.



20 E. BRYDEN AND L. CHEN

Lemma 6.6. Fix V,R,Λ, σ, η, and M greater than zero, and for every g ∈ F let U = Ug be the degree
1 harmonic map U : (T3, g) → (T3, h) given in Corollary 3.3, let uj denote its components, and let
gjk = g

(
duj , duk

)
. For every g ∈ F let ajk be the constant symmetric non-negative matrix given in

Proposition 6.4. Then, there is a B such that for any g ∈ F with

(131) ∥R−
g ∥L2(g) ≤

1

B

there is a connected open submanifold Ω(g) with smooth boundary, and which satisfies the following
properties:

Ω(g) ⊂
{
x : sup

jk
|gjk − ajk| ≤ B∥R−

g ∥
1
4

L2(g)

}
;(132)

|Ω(g)c| ≤ B∥R−
g |

1
4

L2(g);(133)

|∂Ω| ≤ B∥R−
g ∥

1
4

L2(g);(134)

∥dU∥3L3(g;Ω(g)c) ≤ B∥R−
g ∥

1
12

L2(g);(135)

1 +B∥R−
g ∥

1
12

L2(g) ≥
∫
Ω(g)

det(dU)dVg ≥ 1−B∥R−
g ∥

1
12

L2(g);(136) ∫
Ω(g)

|det(dU)|dVg =

∫
Ω(g)

det(dU)dVg;(137)

|U (Ω(g)c) |h ≤ B∥R−
g ∥

1
12

L2(g);(138)

det
(
gjk
)∣∣

Ω(g)
≥ 1

|Ω(g)|2
(
1−B∥R−

g ∥
1
12

)2
−B∥R−

g ∥
1
4

L2(g);(139)

det
(
ajk
)
≥ 1

|Ω(g)|2
(
1−B∥R−

g ∥
1
12

)2
−B∥R−

g ∥
1
4

L2(g).(140)

Proof. We begin by proving the first three results. In order to do this, we will apply Lemma 5.3 to
metrics in F . Let us recall that this lemma was stated in terms of a parameter τ given as follows:

(141) τ =

(
36

|T3|gΛ
sup
jk

∥duj∥
1
2

L3(g)∥du
k∥L3(g)

(∫
T3

|∇duj |2

|duj |
dVg

) 1
2

) 1
2

.

We know from Proposition 6.3 that for τ as above, we have that τ ≤ B∥R−
g ∥

1
4

L2(g). Thus, the require-

ment that τ ≤ 1
8 for Lemma 5.3 follows from assuming that ∥R−

g ∥L2(g) ≤ 1
B , where B is chosen to be

sufficiently large. The first three results now follow from Lemma 5.3 and the expression of τ in terms

of B∥R−
g ∥

1
4

L2(g).

We will begin by establishing an estimate for ∥duj∥L3(g;Ω(g)c). This will involve another integration
by parts argument, very similar to the one in the proof of Lemma 4.7. Let V be a test domain for
κ(g, η) as in Definition 4.4. Using the L2 bound in Proposition 6.3 together with Lemma 4.6, for any
j we find a lift of uj , say ũj , such that

(142) sup
Vη

ũj − inf
Vη

ũj ≤ B.

Let ûj = ũj −
⌈
infVη

ũj
⌉
. Then, ûj is a lift of uj such that

(143) ∥ûj∥L∞(Vη) ≤ B.

Finally, let f : R3 → R be a cutoff function such that

(1) χV ≤ f ≤ 1;
(2) Lip(f) ≤ η−1;
(3) supp(f) ⊂ Vη.
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Then, letting n⃗ denote the outwards unit normal to ∂π−1Ω(g)c, we may use integration by parts to
calculate as follows: ∫

Ω(g)c
|duj |3dVg ≤

∫
π−1(Ω(g)c)

π∗g
(
f |dûj |dûj , dûj

)
dVπ∗g(144)

=

∫
∂π−1Ω(g)c

ûjf |dûj |dûj(n⃗)dAπ∗g(145)

−
∫
π−1Ω(g)c

ûjπ∗g
(
df, |dûj |dûj

)
dVπ∗(g)(146)

−
∫
π−1Ω(g)c

ûjfπ∗g
(
d|dûj |, dûj

)
dVπ∗g.(147)

We now observe that from the properties of the covering map and Ω(g), we have that

(148) ∂π−1Ω(g)c = π−1∂Ω(g),

where we are looking at the full preimage. Therefore, taking the absolute value of these terms gives
us that

∥duj∥3
L3
(
g;Ω(g)c

) ≤∥ûj∥L∞(Vη)

∫
Vη∩π−1∂Ω(g)c

|dûj |2dAπ∗g(149)

+ η−1∥ûj∥L∞(Vη)

∫
Vη∩π−1Ω(g)c

|dûj |2dVπ∗g(150)

+ ∥ûj∥L∞(Vη)

∫
Vη∩π−1Ω(g)c

|dûj ||∇dûj |dVπ∗(g).(151)

It now follows from the definition of κ(g, η) and the fact that ûj covers uj that we have the following
inequalities: ∫

Vη∩π−1∂Ω(g)

|dûj |2dAπ∗g ≤ κ(g, η)

∫
∂Ω(g)

|duj |2dAg;(152) ∫
Vη∩π−1Ω(g)c

|dûj |2dVπ∗g ≤ κ(g, η)

∫
Ω(g)c

|duj |2dVg;(153) ∫
Vη∩π−1Ω(g)c

|dûj ||∇dûj |dVπ∗g ≤ κ(g, η)

∫
T3

|duj ||∇duj |dVg.(154)

We now recall that κ(g, η) ≤ M for all g ∈ F by assumption.
Since |gjj − ajj | is small, see the first property of Ω(g) in Lemma 6.6, and ajj is bounded, see the

second conclusion of Proposition 6.4, we have that |duj | ≤ B on ∂Ω(g)c. As the area of ∂Ω(g) is

bounded in terms of ∥R−
g ∥

1
4

L2(g), from the second property of Ω(g) in Lemma 6.6, we have that

(155)

∫
∂Ω(g)

|duj |2dAg ≤ |∂Ω(g)|B ≤ B∥R−
g ∥

1
4

L2(g).

Next, we may apply Hölder’s inequality to obtain

(156)

∫
Ω(g)c

|duj |2dVg ≤ |Ω(g)c| 13 ∥duj∥2L3(g).

So, from the third property of Ω(g) appearing in Lemma 6.6 and Proposition 6.3, we see that we have
the bound

(157)

∫
Ω(g)c

|duj |2dVg ≤ B∥R−
g ∥

1
12 .
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Finally, rewriting |duj ||∇duj | as |duj | 32 | |∇duj |
|duj |

1
2
| and using Proposition 6.3 we have

(158)

∫
T3

|duj ||∇duj |dVg ≤ B∥R−
g ∥

1
2

L2(g).

Thus, putting everything together results in the following inequality:

∥duj∥3
L3
(
g;Ω(g)c

) ≤ κ(g, η)B
(
∥R−

g ∥
1
12

L2(g) + 2∥R−
g ∥

1
2

L2(g)

)
(159)

≤ B∥R−
g ∥

1
12

L2(g),(160)

where we got the last inequality by absorbing the bound κ(g, η) ≤ M and the fact that ∥R−∥
5
12

L2(g) is

less than R
5
12 into the constant B. This gives us (135).

We will now use (135) to estimate
∫
Ω(g)

|det
(
dU
)
|dVg. To do this, recall that because U is a degree

1 map, we have that

(161)

∫
T3

det
(
dU
)
dVg = 1.

So, we see that

(162)

∫
Ω(g)

det
(
dU
)
dVg = 1−

∫
Ω(g)c

det(dU)dVg.

Furthermore, we have the estimate |det
(
dU
)
| ≤ |dU|3, so

(163)

∫
Ω(g)c

|det
(
dU
)
|dVg ≤ ∥dU∥3L3(g;Ω(g)c) ≤ B∥R−

g ∥
1
12

L2(g).

Combined with the above, we get

(164) 1 +B∥R−
g ∥

1
12

L2(g) ≥
∫
Ω(g)

det(dU)dVg ≥ 1−B∥R−
g ∥

1
12

L2(g),

which is (136).
Next, we can use (163) and the area formula to see that

(165)

∫
U(Ω(g)c)

|U−1{y}|dVh =

∫
Ω(g)c

|det
(
dU
)
|dVg ≤ B∥R−

g ∥
1
12

L2(g).

Thus, it follows that

(166) |U
(
Ω(g)c

)
|h ≤

∫
U
(
Ω(g)c

) |U−1{y}|dVh ≤ B∥R−
g ∥

1
12

L2(g).

This gives us (138).
Since det(gjk) = det(dU)2, we have that

(167)

∫
Ω(g)

det(gjk)dVg ≥ 1

|Ω(g)|

(∫
Ω(g)

|det(dU)|dVg

)2

.

As
∫
Ω(g)

|det(dU)|dVg ≥
∫
Ω(g)

det(dU)dVg, it follows that

(168)

∫
Ω(g)

det(gjk)dVg ≥ 1

|Ω(g)|

(
1−B∥R−

g ∥
1
12

L2(g)

)2
.

From the mean value inequality, we know that there exists a point x0 ∈ Ω(g) such that

(169) det
(
gjk(x0)

)
≥ 1

|Ω(g)|2
(
1−B∥R−

g ∥
1
12

L2(g)

)2
.
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In order to turn this into a lower bound for all x ∈ Ω(g), we recall the first property of Ω(g), namely

that |gjk − ajk| ≤ B∥R−
g ∥

1
4

L2(g) for all x ∈ Ω(g). We may combine this with Proposition 6.5 to see that

|det
(
gjk(x0)

)
− det

(
ajk
)
| ≤ C(n)

(
∥gjk∥+ ∥ajk∥

)n−1 ∥gjk − ajk∥(170)

≤ B∥R−
g ∥

1
4

L2(g).(171)

One may use the triangle inequality to see that

(172) det
(
ajk
)
≥ 1

|Ω(g)|2
(
1−B∥R−

g ∥
1
12

L2(g)

)2
−B∥R−

g ∥
1
4

L2(g),

and

(173) det
(
gjk(x)

)
≥ 1

|Ω(g)|2
(
1−B∥R−

g ∥
1
12

L2(g)

)2
− 2B∥R−

g ∥
1
4

L2(g).

Thus, we have (140) and (139), respectively.
Now, recall that Ω(g) is connected, and so if det(dU) changes signs on Ω(g), then there must be a

point x0 ∈ Ω(g) such that

(174) 0 = det
(
dU(x0)

)2
= det

(
gjk(x0)

)
.

Since |Ω(g)|2 ≤ |T3|g ≤ V , there is a B depending only on V,R,Λ, σ, η and M such that if

(175) ∥R−
g ∥L2(g) ≤

1

B
,

then

(176) det
(
gjk(x)

)
≥ 1

|Ω(g)|2
(
1−B∥R−

g ∥
1
12

L2(g)

)2
− 2B∥R−

g ∥
1
4

L2(g) ≥
1

2

for all x ∈ Ω(g). In particular, the point x0 ∈ Ω(g) cannot exist in this case. Therefore, we see that
|det(dU(x))| > 0 for all x ∈ Ω(g). As a consequence, we have that

(177)

∫
Ω(g)

|det(dU)|dVg = ±
∫
Ω(g)

det(dU)dVg.

It now follows from (136) that, once again, there is a B depending only on V,R,Λ, σ,η and M such
that if

(178) ∥R−
g ∥L2(g) ≤

1

B
,

then

(179)

∫
Ω(g)

|det(dU)|dVg =

∫
Ω(g)

det(dU)dVg.

Thus, we have established (137). This finishes the proof of the result. □

Now that we have established that the set Ω(g) has quite a few good properties with respect to
the metrics g ∈ F and harmonic maps U : (T3, g) → (T3, h), we can begin to show that sequences of
metrics whose negative part of their scalar curvatures tend to zero have sub-sequences converging to
flat metrics.

Lemma 6.7. Fix V,R,Λ, η,M > 0, and for every g ∈ F(V,R,Λ, σ, η,M) let U = Ug be the harmonic
map U : (T3, g) → (T3, h) given in Corollary 3.3, let uj be the components of U, and let gjk denote
g
(
duj , duk

)
. Finally, for each g in F , let a be the associated symmetric nonnegative matrix as in

Proposition 6.4, and let Ω(g) be the set described in Lemma 6.6. Then, there exists a B depending
only on V,R,Λ, η,M > 0 such that for any g ∈ F with

(180) ∥R−
g ∥L2(g) ≤

1

B
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we have that there is an open neighborhood W (g) containing Ω(g) such that U restricted to W (g) is
injective. In particular, we have that

(181) U
(
∂Ω(g)

)
= ∂U

(
Ω(g)

)
.

Proof. From the fact that det
(
gjk
)
= det (dU) and (139), we know that U is a local diffeomorphism

around points of Ω(g) for all g with ∥R−
g ∥L2(g) small enough, by continuity this is actually true of a

small connected neighborhood W (g) of Ω(g), and in fact true of the compact closure W (g) of W (g).
We will begin by showing that y 7→ |U−1{y}∩W (g)| is continuous on U

(
W (g)

)
, and so locally constant.

Fix y0 ∈ U
(
W (g)

)
. Since W (g) is compact and U is local diffeomorphism about every point in W (g),

it must be that U−1{y0} ∩ W (g) is finite. As such, there is an open set Vy0
about y0 and open sets

Gi for i = 1, . . . , ny0
such that U is a diffeomorphism from Gi to Vy0

, and the Gi are pairwise disjoint

and cover U−1{y0} ∩W (g). This shows that for any y ∈ Vy0
we have that n(y) ≥ n(y0).

We will now argue by contradiction that n is actually continuous at y0. Suppose this were not the
case, then we would be able to find a sequence of yi converging to y0 such that n(yi) > n(y0) for all i.

In particular, this implies that for each i there exists an xi in U−1{yi}∩W (g) which is not in
⋃ n(y0)

i=1 Gi.

Since W (g) is compact, a subsequence of the xi, say xij , converges to some element x0. The continuity

of U implies that U(x0) = y0. However, this implies that x0 ∈
⋃n(y0)

i=1 Gi. Since xij → x0, for all j big

enough we must have that xij ∈
⋃n(y0)

i=1 Gi. This is a contradiction to how we chose the sequence xi in

the first place, and so we see that y 7→ n(y) is in fact continuous on W (g). Therefore, since W (g), and
so W (g), is connected, we see that y 7→ n(y) is in fact constant on W (g), and so constant on W (g).

Let n = n(y0) be the value of n on W (g). From the area formula we have that

(182) n|U
(
Ω(g)

)
|h =

∫
U
(
Ω(g)

) n(y)dVh(y) =

∫
Ω(g)

|det(dU)|dVg.

Recalling (137) and (136), we get that

(183) n|U
(
Ω(g)

)
|h ≤ 1 +B∥R−

g ∥
1
12

L2(g).

Furthermore, from (138), we have that

(184) |U
(
Ω(g)

)
|h ≥ 1−B∥R−

g ∥
1
12

L2(g),

since the fact that deg(U) = 1 implies that it is surjective, and so U
(
Ω(g)

)c ⊂ U
(
Ω(g)c

)
. Thus,

rearranging terms show us that

(185) n ≤
1 +B∥R−

g ∥
1
12

L2(g)

1−B∥R−
g ∥

1
12

L2(g)

.

Therefore, there is a constant B depending only on V,R,Λ, η,M > 0 such that if ∥R−
g ∥L2(g) ≤ 1

B , then
n = 1, and U|W (g) is injective.

Since U is a local diffeomorphism around every point of W (g), it follows from the fact that U is
injective when resticted to W (g) that U

(
W (g)

)
is an open subset of T3 and U|W (g) is a diffeomorphism.

Since Ω(g) ⊂ W (g), we see that U
(
Ω(g)

)
= cl

(
U
(
Ω(g)

))
. As such, we have that ∂U

(
Ω(g)

)
⊂ U

(
W (g)

)
.

The result now follows from the fact that U|W (g) is a diffeomorphism. □

Consider a sequence of metrics gi ∈ F such that ∥R−
gi∥L2(gi) converges to zero, and let ai be the

corresponding sequence of matrices which approximate gi as in Proposition 6.4. As may have been
guessed, the constant matrices ai will be used to show that a subsequence of the metrics gi converge
to a flat metric in the sense of Dong-Song. The following Corollary gives this idea a clearer form.

Corollary 6.8. Fix V,R,Λ, σ, η,M > 0. For every g ∈ F let U = Ug : (T3, g) → (T3, h) be the
harmonic map given in Corollary 3.3, let uj denote its components, let gjk = g

(
duj , duk

)
, let a be

the symmetric and non-negative matrix approximating gjk as in Proposition 6.4, and let Ω(g) be as in
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Lemma 6.6. Then, there is a B > 0 depending only on V,R,Λ, σ, η,M such that for all g ∈ F with
∥R−

g ∥L2(g) ≤ 1
B we may find a flat metric gF on T3 such that

(186) ∥g − U∗gF ∥g;Ω(g) ≤ B∥R−
g ∥

1
4

L2(g).

Proof. From (140) of Lemma 6.6, we know that there is a constant B depending only on V,R,Λ, σ, η,M
such that if ∥R−

g ∥L2(g) ≤ 1
B , then the approximating symmetric matrix has the upper bound ∥a∥ ≤ B

and lower bound

(187) det(a) ≥ 1

|Ω(g)|2
(
1−B∥R−

g ∥
1
12

L2(g)

)2
−B∥R−

g ∥
1
4

L2(g).

Therefore, from (133) and the lower volume bound in Proposition 6.3, there is a B depending only on
V,R,Λ, σ, η and M such that if ∥R−

g ∥L2(g) ≤ 1
B , then we have that

(188) det(a) ≥ 1

B
.

As such, we see that for some B not depending on g ∈ F , the approximating matrix a for g is invertible
with a uniform bound on its inverse:

(189) max{∥a∥, ∥a−1∥} ≤ B.

Letting θj denote the standard coordinates on T3, we may use the fact that a is invertible to define
the following flat metric on T3:

(190) gF =
(
a−1

)
st
dθsdθt.

We see that

(191) U∗gF =
(
a−1

)
st
dusdut.

At this point, we want to estimate ∥g − U∗gF ∥g;Ω(g). To do this, observe that from the bound on

max{∥a, ∥, ∥a−1∥} and from (132) in Lemma 6.6, we have that

(192) max

{
∥gjk∥

L∞
(
Ω(g)

), ∥ (gjk)−1 ∥
L∞
(
Ω(g)

)} ≤ B.

Thus, for any x ∈ Ω(g) and any two-form β over the point x, we have that

(193) |β|2g ≤ B
∑
jk

β
(
∇uj ,∇uk

)
.

In particular, we see that for any x ∈ Ω(g), we have that

|g − U∗gF |2g ≤ B
∑
jk

(
g(x)− U∗gF

)(
∇uj ,∇uk

)
(194)

≤ B
∑
jk

(
gjk − (a−1)stg

sjgtk
)

(195)

Adding and subtracting asj gives

(196)
∑
jk

(
gjk −

(
δjt + (a−1)st

(
gsj − asj

))
gtk
)
= −

∑
jk

gtk(a)−1
st

(
gsj − asj

)
.

Taking the absolute value of the right hand side, and using the bounds on ∥a−1∥ and ∥gjk∥
L∞
(
Ω(g)

),
along with the estimate in (132), we see that

(197) ∥g − U∗gF ∥g;Ω(g) ≤ B∥R−
g ∥

1
4

L2(g).

□
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The above shows that there is a large set with a small boundary on which metrics in F with small
negative part of their scalar curvature are close to some flat metric in the C0 sense. This is precisely
the setting of Dong-Song’s convergence and approximation result [DS23], which we recall here with
minor modifications to suite the present situation a little better.

Lemma 6.9. Let (M, g) be any smooth closed three dimensional Riemannian manifold. For any ε > 0
there exists a δ > 0 such that if Ω is any connected open submanifold of M with smooth boundary such
that

(198) |Ωc|+ |∂Ω| ≤ δ,

then we may find another open connected submanifold Ω̃ with smooth boundary which satisfies the
following properties:

(199) Ω̃ ⊂ Ω;

(200) |Ω̃c|+ |∂Ω̃| ≤ ε;

for every z ∈ M we have that

(201) d(z, Ω̃) ≤ ε;

and for every x, y ∈ Ω̃ there exists a curve γ ⊂ Ω̃ connecting them such that

(202) L(γ) ≤ dg(x, y) + ε.

The last two conditions imply the following:

(203) dGH

((
Ω̃, d̂g

Ω̃

)
, (M,dg)

)
≤ 2ε.

With all of the results up to now in hand, we can finally establish the main stability result of this
paper.

Theorem 6.10. Fix V,R,Λ, η,M > 0 and let F(V,R,Λ, η,M) be the family of Riemannian metrics
on T3 given in Definition 6.1. Let gi be a sequence of metrics in F such that

(204) lim
i→∞

∥R−
gi∥L2(gi) = 0.

Then, there is a subsequence, also denoted gi, and a flat metric gF∞ on T3 such that gi converges to
gF∞ in the sense of Dong-Song. That is, for any ε > 0 there exists an N ∈ N such that for all i ≥ N

there is an open submanifold Ω̃i with smooth boundary such that

(205) |Ω̃c
i |gi + |∂Ω̃i|gi ≤ ε,

and

(206) dGH

((
Ω̃i, d̂

gi

Ω̃i

)
,
(
T3, dgF∞

))
≤ ε.

Proof. Consider any sequence of metrics gi ∈ F such that

(207) lim
i→∞

∥R−
gi∥L2(gi) = 0.

Let Ui denote the harmonic maps Ui : (T3, gi) → (T3, h) and let ai denote the non-negative symmetric
matrices which approximate gi as in Proposition 6.4. Since the terms ∥R−

gi∥L2(g) are tending towards

zero, we may always assume without loss of generality that ∥R−
gi∥L2(g) is small enough so that Lemma

6.6, Lemma 6.7, and Corollary 6.8 apply to gi, Ui, ai, gFi
, and Ωi = Ω(gi).

Then, we see that on Ωi = Ω(gi) we have that

(208) ∥gi − U∗
i gFi

∥gi,Ωi
≤ ∥R−

gi∥
1
4

L2(g).

Furthermore, we have for all i that max{∥ai∥, ∥a−1
i ∥} ≤ B. As such, we see that there is a subsequence

ai(m) and a symmetric positive definite matrix a∞ such that

(209) lim
m→∞

ai(m) = a∞.
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Letting gF∞ be defined by

(210) gF∞ =
(
a−1
∞
)
st
dθsdθt,

we see that gFi converges to gF∞ in the C0 sense. Now, we will estimate

(211) ∥U∗
i(m)(gFi(m)

− gF∞)∥gi(m),Ωi(m)
.

From the bound on max{∥ai∥, ∥a−1
i ∥} and (132), we see that

(212) max
{
∥gjki(m)∥L∞(Ωi(m)), ∥(g

jk
i(m))

−1∥L∞(Ωi(m))

}
≤ B

So, we have that for all x ∈ Ωi that

∥U∗
i(m)(gFi(m)

− gF∞)∥2gi(m)
≤ B

∑
jk

U∗
i(m)(gFi

− gF∞)
(
∇uj

i(m),∇uk
i(m)

)
(213)

≤ B
∑
jk

((
a−1
i(m)

)
st
−
(
a−1
∞
)
st

)
gsji(m)g

tk
i(m).(214)

So, combined with the bounds on max{∥ai∥, ∥a−1
i ∥} and (212), the above shows that

(215) lim
m→∞

∥U∗
i(m)(gFi(m)

− gF∞)∥gi(m),Ωi(m)
= 0.

Therefore, using the triangle inequality, we see that

(216) lim
m→∞

∥gi(m) − U∗
i(m)gF∞∥gi(m),Ωi(m)

= 0.

Now, we recall that because limi→∞ ∥R−
g ∥L2(g) = 0, we have that Lemma 6.7 applies to gi for all i

large enough. In particular, we may assume without loss of generality that Ui(m)

∣∣
Ωi(m)

is injective for

all m. Thus, it follows from (216) that

(217) lim
m→∞

max

{
Lip

d̂
gi(m)
Ωi(m)

(
Ui(m)

)
,Lip

d̂
gF∞
Ui(m)(Ωi(m))

(
U−1

i(m)

)}
= 1

From the fact that gF∞ and h are two fixed Riemannian metrics on T3, they are uniformly com-
parable in the sense that there is a constant C such that for any p ∈ T3 and any ν ∈ TpT3 we have
that

(218)
1

C
≤ gF∞(ν, ν)

h(ν, ν)
≤ C

In particular, for any subset W ⊂ T3 we have that

(219)
1

C3
≤

|W |gF∞

|W |h
≤ C3.

Since each Ui(m) has degree 1, and is therefore necessarily surjective by Proposition 3.4, we have that

Ui(m)

(
Ωi(m)

)c ⊂ Ui(m)(Ω
c
i(m)). Therefore, equation (133) of Lemma 6.6 shows that

(220) |Ui(m)

(
Ωi(m)

)
|gF∞

≤ B∥R−
g ∥

1
4

L2(gi(m))
.

Similarly, for any 2 dimensional smooth submanifold Σ ⊂ T3 we have that

(221)
1

C2
≤

|Σ|gF∞

|Σ|h
≤ C2,

and so Lemma 6.7, along with the bounds on
∣∣∣duj

i(m)

∣∣∣
gi(m)

for points in Ωi(m), implies that

(222) |∂U
(
Ωi(m)

)
|gF∞

= |U
(
∂Ωi(m)

)
|gF∞

≤ B|∂Ωi(m)|gi(m)
≤ B∥R−

gi(m)
∥

1
4

L2(gi(m)
.
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Therefore, we may apply Lemma 6.9 to conclude that for all m large enough we may find open
submanifolds Ω′

i(m) ⊂ Ui(m)

(
Ωi(m)

)
with smooth boundary so that

lim
m→∞

|Ω
′c
i(m)|gF∞

= 0(223)

lim
m→∞

|∂Ω′
i(m)|gF∞

= 0(224)

lim
m→∞

dGH

((
Ω′

i(m), d̂
gF∞
Ω′

i(m)

)
,
(
T3, dgF∞

))
= 0.(225)

By the above work, we may also conclude that for all m large enough, we may set Ω̃i(m) = U−1
i(m)Ω

′
i(m)

and obtain

lim
m→∞

|Ω̃c
i(m)|gi(m)

= 0(226)

lim
m→∞

|∂Ω̃i(m)|gi(m)
= 0(227)

lim
m→∞

dGH

((
Ω̃i(m), d̂

gi(m)

Ω̃i(m)

)
,
(
Ω′

i(m), d̂
gF∞
Ω′

i(m)

))
= 0.(228)

where the map Ui(m) gives the estimate on the above estimate on the Gromov-Hausdorff distance.
Therefore, the result now follows from the triangle inequality and Equation (217).

□

The convergence results stated in the introduction will now follow if we can show that the two
mentioned families of metrics both lie in F(V,R, λ, σ, η,M) for some values of V,R, λ, σ, η, and M .

Theorem 6.11. Let σ,K, V,D > 0, and define R = R(σ,K,D) to be the collection of Riemannian
metrics g on T3 such that

(1) min{stsys1(g), stsys2(g)} ≥ σ;
(2) Ricg ≥ −K;
(3) diamg(T3) ≤ D.

Then, for any sequence of metrics {gi}∞i=1 ⊂ R(σ,K, V ) such that

(229) lim
i→∞

∥R−
gi∥L2(gi) = 0,

there exists a subsequence {gij}∞j=1 and a flat metric gF∞ on T3 such that gij → gF∞ in the sense of
Dong-Song.

Proof. Once we show thatR(σ,K, V ) ⊂ F(V0, R0,Λ0, σ0, η0,M0) for some values V0, R0,Λ0, σ0, η0,M0,
then we are done. Using volume comparison and the diameter bound, we may find an appropriate V0.
Furthermore, we may take σ0 = σ, by definition. It is then standard theory for smooth manifolds with
Ricci curvature lower bounds that IN1(g) ≥ Λ0, where Λ0 depends only on K and diamg(T3), see for
example [Ber03, Theorem 114], [Gal88, Theorem 3], [PS98, Page 294]. Furthermore, see [DWZ18] for
more related results.

Next, we have that Rg ≥ −nK, so we may take R0 = nKV
1
2
0 . It remains to show that we can find

η0 > 0 and M0 such that for all g ∈ R we have that

(230) κ(g, η0) ≤ M.

Fix a ∈ T3 and â0 ∈ π−1{a}, and let Dir(â0) be the fundamental domain about â0 given in Lemma
7.11. We claim that diam(Dir(â0)) ≤ 2diamg(T3). To see this, let ŷ be an arbitrary element of Dir(â0).
By its construction we see that for any ν ∈ Z3 we must have d(â0, ŷ) ≤ d(âν , ŷ). Let γ be any length
minimizing geodesic connecting a to y = π(ŷ), and let γ̃ be the geodesic lifting γ starting at ŷ. Then,
we see that there is an aν0

such that

(231) d(âν0
, ŷ) = d(a, y) ≤ diamg(T3).

But, then we must have that

(232) d(â0, ŷ) ≤ d(âν0 , ŷ) ≤ diamg(T3).
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This gives the claim. As such, for all g ∈ R, we have that

(233) diam(Dir(â0) ≤ 2D.

Once again, let ŷ be an arbitrary element of Dir(â0), let η0 = σ
100 , and let

(234) Jŷ = {ν ∈ Z3 : B
(
ŷ,

σ

100

)
∩Dir(âν) ̸= ∅}.

For all ν ∈ Jŷ, let

(235) ẑν ∈ B
(
ŷ,

σ

100

)
∩Dir(âν).

Then, we have that

d(ŷ, âν) ≤ d(ẑν , âν) +
σ

100
≤ d(ẑν , â0) +

σ

100
(236)

≤ d(ŷ, â0) +
σ

50
.(237)

In particular, for all ν ∈ Jŷ we have that

(238) d(âν , â0) ≤ 2D +
σ

25
.

Furthermore, as stabsys1(g) ≤ sys1(g), for all µ, ν ∈ J we must have that

(239) d(âµ, âν) ≥ σ,

and so B(âµ,
σ
4 ) ∩ B(âν ,

σ
4 ) = ∅. Finally, from the diameter upper bound, and volume lower bound

given by the systolic inequality and the lower bound on σ, we see that there are constants p0 and P0

not depending on g ∈ R such that any ball of radius σ
4 has volume at least p0. Thus, we see that

(240) |Jŷ|p0 ≤ |B (â0, 2D + σ) |π∗g ≤ P0.

Rearranging terms shows that

(241) |Jŷ| ≤
P0

p0
.

Now, by the doubling property and the volume upper bound, we may find a cover of Dir(â0) by at most
G balls of radius σ

100 , where G does not depend on g ∈ R. Any such cover will also cover Dir(â0) σ
200

.
In particular, we see that

(242) κ(g,
σ

200
) ≤ GP0

p0
.

We can now apply Theorem 6.10 to R to obtain the result. □

The result also follows for families of Riemannian metrics which have a uniform lower bound in
terms of some background metric on T3, as in the following theorem.

Theorem 6.12. Let g0 be a fixed Riemannian metric on T3, and let Λ, R, V > 0. We denote by
V(g0,Λ, V ) the collection of Riemannian metrics g on T3 satisfying the following properties:

(1) g ≥ g0;
(2) IN1(g) ≥ Λ;
(3) ∥R−

g ∥L2(g) ≤ R;

(4) |T3|g ≤ V .

Then, for any sequence of metrics {gi}∞i=1 ⊂ R(σ,K, V ) such that

(243) lim
i→∞

∥R−
gi∥L2(gi) = 0,

there exists a subsequence {gij}∞j=1 and a flat metric gF∞ on T3 such that gij → gF∞ in the sense of
Dong-Song.
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Proof. We need to show that there are V0, R0,Λ0, σ0, η0, and M0 such that V ⊂ F . We may immedi-
ately take V0 = V,R0 = R, and Λ0 = Λ. Since g ≥ g0, we have that

(244) min
{
stabsys1(g), stabsys2(g)

}
≥ min

{
stabsys1(g0), stabsys2(g0)

}
.

Therefore, we may set σ0 = min
{
stabsys1(g0), stabsys2(g0)

}
.

Let η0 > 0 be arbitrary, then there is a M0 such that κ(g0, η0) ≤ M0. Let V be a test domain for
κ(g0, η0). Since

(245) {x : dg(x,V) < η0} ⊂ {x : dg0(x,V) < η0},
it follows that κ(g, η0) ≤ κ(g0, η). Therefore, we may take M0 for our final piece of the puzzle, and
apply Theorem 6.10 to get the result. □

If in addition to a metric lower bound the sequence has volumes converging to the volume of the
metric lower bound, then we actually have that g0 is flat.

Corollary 6.13. Let g0 be a fixed Riemannian metric on T3, let Λ, R, V > 0, and let V = V(g0,Λ, R, V )
denote the collection of Riemannian metrics g on T3 which satify the following properties:

(1) g ≥ g0;
(2) IN1(g) ≥ Λ;
(3) ∥R−

g ∥L2(g) ≤ R;

(4) |T3|g ≤ V .

Suppose that gi is a sequence of metrics in V such that

(246) |T3|gi → |T3|g0 ,
and

(247) lim
i→∞

∥R−
gi∥L2(gi) = 0.

Then, the metric g0 must be flat.

Proof. By Theorem 6.12, we know that a subsequence of {gi}∞i=1, also denoted {gi}∞i=1, converges to a

flat metric gF in the Dong-Song sense. Let Ui and Ω̃i be as in Theorem 6.12:

(248) lim
m→∞

(
|Ω̃c

i |gi + |∂Ω̃i|gi
)
= 0,

Ui|Ω̃i
is injective, and it induces

(249) lim
m→∞

dGH

((
Ω̃i(m), d̂

gi

Ω̃i

)
, (T3, dgF )

)
= 0.

We will now observe several consequences of the inequality gi ≥ g0:

d̂gi
Ω̃i

≥ d̂g0
Ω̃i
;(250)

|Ω̃c
i |gi ≥ |Ω̃c

i |g0 .(251)

From (250) above we have the following sequence of inequalities:

(252) dg0 |Ω̃i×Ω̃i
≤ d̂g0

Ω̃i
≤ d̂gi

Ω̃i
.

Furthermore, from (251) we have that

(253) lim
i→∞

|Ω̃c
i |g0 = 0.

Since g0 is a smooth Riemannian manifold, balls have a lower bound on their volume growth. Combined
with the above limit, this shows that the inclusion map gives

(254) lim
i→∞

dGH

((
Ω̃i, d

gi
)
, (T3, dg0)

)
= 0.

Next for each i, the identity map

(255) Id : (Ω̃i, d̂
gi

Ω̃i
) → (Ω̃i, d

g0)
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is a Lipschitz one map. Since

(256) lim
m→∞

dGH

((
Ω̃i(m), d̂

gi

Ω̃i

)
, (T3, dgF )

)
= 0.

and

(257) lim
i→∞

|Ω̃c
i |g0 = 0,

it follows from the Arzela-Ascoli theorem that there is a Lipschitz one map

(258) F : (T3, h) → (T3, g0).

However, from the definition of gF , we have that |T3|gF = limi→∞|T3|gi . Furthermore, it was an
hypothesis that limi→∞|T3|gi = |T3|g0 . Therefore, we must have that the map F is an isometry, and
so g0 is flat.

□

7. Appendix

7.1. Dong-Song Curve Approximation. The goal of this section is to prove the following approx-
imation lemma. The proof presented here is a minor modification of the proof found in [DS23].

Lemma 7.1. Let (M3, g) be any smooth closed three dimensional Riemannian manifold. For any
ε > 0 there exists a δ > 0 such that if Ω is a connected open sub-manifold of M with smooth boundary

such that |Ω|c + |∂Ω| ≤ ε, then we may find Ω̃ ⊂ Ω, another open sub-manifold with smooth boundary,

such that
∣∣∣Ω̃c
∣∣∣+ ∣∣∣∂Ω̃∣∣∣ ≤ ε, and for every x, y ∈ Ω̃ there exists a curve γ ⊂ Ω̃ connecting them such that

(259) L
(
γ
)
≤ d(x, y) + ε.

Lemma 7.2. Let η,Λ > 0 be fixed, let (M, g) be a compact smooth n−dimensional Riemannian
manifold, and suppose that IN1(M, g) ≥ Λ. Then, there exists a δ > 0 depending only on η and Λ such
that if E is a smooth n−dimensional submanifold of M such that |E| ≥ η and |∂E| ≤ δ, then E has a
connected component, say Ω, such that

(260) |Ωc| ≤ 1

Λ
|∂Ω| ≤ 1

Λ
|∂E| .

Proof. Let Ei be the connected components of E. Since E is a smooth n dimensional sub manifold, it
follows that

(261) ∂E =
⊔
i

∂Ei.

Suppose that there is an i0 such that |Ei0 | ≥ 1
2 |M |. Then, taking Ω = Ei0 , we have from the definition

of IN1(M, g) that

(262) |Ωc| ≤ 1

Λ
|∂Ω| .

Suppose on the contrary that there is no such i0: for all i we have that |Ei| < 1
2 |M |. Then, it follows

from the definition of IN1(M, g) that

(263) η ≤
∑
i

|Ei| ≤
1

Λ

∑
i

|∂Ei| =
|∂E|
Λ

.

Choosing |∂E| < ηΛ gives a contradiction, and hence we obtain the result. □

Lemma 7.3. Let (M, g) be a smooth, compact, closed, two-dimensional Riemannian manifold. Let
A be a two-dimensional sub manifold of M with smooth boundary. Furthermore, suppose that every
component of ∂A bounds a two-dimensional submanifold of M , and that A is connected. Then, for
any x, y in A there is a curve γ lying entirely in A connecting x to y such that

(264) L(γ) ≤ d(x, y) + |∂A| .
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Proof. By our hypotheses, we have that M \ A is the disjoint and finite union of connected open two
dimensional submanifolds Bi, with smooth boundaries ∂Bi. We claim that the boundaries ∂Bi must
be connected, and so correspond to the connected components of ∂A. For any i, suppose that Σ1

and Σ2 are two connected components of ∂Bi. Such connected components can only bound connected
regions. Therefore, without loss of generality, we may find disjoint connected regions Ω1 and Ω2 with
boundaries Σ1 and Σ2 such that Ω1∩Bi = Ω2∩B2 = ∅ and such that Ω1∩A ̸= ∅ as well as Ω2∩A ̸= ∅.
Let x ∈ Ω1 ∩ A and y ∈ Ω2 ∩ A. Then, any curve connecting x to y must pass through Bi, which
contradicts the assumption that A is connected.

Let γ0 be a unit speed length minimizing geodesic connecting x to y. We will modify γ0 so that it
lies entirely in A. First, we let s1 be the first time that γ0 lies in B1 and we let t1 be the last time that
γ0 lies in B1. Since ∂Bi is connected for all i, we may connect γ0(s1) ∈ ∂B1 to γ0(t1) ∈ ∂B1 by a curve
c1 lying in ∂B1 which has length less than |∂B1|, though is not necessarily unit speed. We define γ1 to
be equal to γ0 on [0, L(γ0)] \ [s1, t1] and equal to c1 on [s1, t1]. We produce γi+1 inductively as follows.
Let si+1 be the first time that γi lies in Bi+1, and let ti+1 be the last time γi lies in Bi+1. Since ∂Bi

is connected for all i, we may connect γi(si+1) ∈ ∂Bi+1 to γi(ti+1) ∈ ∂Bi+1 by a curve ci+1 lying in
∂Bi+1 which has length less than |∂Bi+1|. Then we let γi+1 be γi on the interval [0, L(γ0)]\ [si+1, ti+1],
and equal to ci+1 on [si+1, ti+1]. Since there are only finitely many regions Bi to consider, this process
terminates at some γP . We then have that

(265) L (γP ) ≤ L(γ0) +

P∑
i=1

|∂Bi| ≤ d(x, y) + |∂A| .

□

Lemma 7.4. Let (M3, g) be a smooth, compact, closed, three-dimensional Riemannian manifold. For
any L > 1 let rL be such that balls with radius less than or equal to rL are geodesically convex, and
the exponential map is L bi-Lipschitz. Let r be such that 24r ≤ rL. Then, there is a constant δ(r),
depending only on r, such that if |Ωc|+ |∂Ω| ≤ δ(r), then the following is true. In every ball B(a, 20r)
we may find a connected subset Da ⊂ Ω ∩B(a, 20r) with the following properties.

(1) For all p, q ∈ Da there is a curve γ(p, q) = γ connecting them, which lies entirely in Da.
Furthermore, we have that

L(γ) ≤ 96r + 8rLπ + 2r−1 |B(a, 20r) ∩ ∂Ω| .

(2) We have that

(266) |B(a, 20r) \Da| ≤ 2(243L5)

(
2L5

IN1(S2)
+ L4

)
|B(a, 20r) ∩ ∂Ω| .

Proof. Let B(a, 20r) be an arbitrary ball of radius 20r, and let ν ∈ TaM be an arbitrary unit vector. Set
x = expa(−4rν) and y = expa(4rν). For the moment, we will focus our attention to a neighborhood of
x. Let f : ∂Ω → R be given by f(z) = d(z, x), and observe that f is smooth on

(
B(x, 24r)\B(x, r)

)
∩∂Ω.

From the coarea formula, we have that

(267)

∫ 2r

r

∣∣f−1{t}
∣∣ dt = ∫

f−1[r,2r]

|∇f | dAg ≤ |B(x, 2r) ∩ ∂Ω| .

Therefore, using Sard’s Lemma and a mean-value inequality, we may find σx ∈ [r, 2r] such that
∂B(x, σx) ∩ ∂Ω = f−1{σx} is a smooth submanifold of ∂Ω and

(268) |∂B(x, σx) ∩ ∂Ω| ≤ 1

r
|B(x, 2r) ∩ ∂Ω| ≤ 1

r
|B(a, 20r) ∩ ∂Ω| .

We will define two sets on ∂B(x, σx), estimate their volumes, and then study their interaction. To
begin, let Gx = Ω ∩ ∂B(x, σx), which has smooth boundary given by

(269) ∂Gx = ∂
(
Ω ∩ ∂B(x, σx)

)
= ∂Ω ∩ ∂B(x, σx).
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From (268), we see that |∂Gx| ≤ 1
r |B(a, 20r) ∩ ∂Ω|. Since expx is L bi-Lipschitz, it follows that

(270) IN1

(
∂B(x, σx)

)
≥

IN1

(
∂B(0, σx)

)
L5

≥ 1

σxL5
IN1(S2) ≥

1

2rL5
IN1(S2).

We eventually want to apply Lemma 7.2 to Gx. In order to do this, it suffices to show that there is
an η > 0 such that for all |Ωc|+ |∂Ω| small enough, we have |Gx| ≥ η.

We may find such an η by estimating the number of radial geodesics which intersect ∂Ω. Let
us define projσx

: B(x, 24r) \ B(x, σx) → ∂B(x, σx) to be the map projecting radial geodesics onto
∂B(x, σx). Using expx to compare with the Euclidean case, we see that this map has a Lipschitz

constant of at most L2. Now, consider Hx = projσx

((
B(x, 24r) \ B(x, r) ∩ B(a, 20r) ∩ ∂Ω

))
. We see

that |Hx| ≤ L4 |B(a, 20r) ∩ ∂Ω|. For ω ∈ ∂B(x, σx) we shall abuse notation slightly by identifying ω
with the radial geodesic emanating from x, say γω, such that γω(σx) = ω. We will then write ω(t) to
denote γω(t).

With this convention in mind, we observe that for any t ∈ [σx, 16r] and ω ∈ Gc
x ∩Hc

x we have that
ω(t) lies in Ωc. Therefore, using that expx is L bi-Lipschitz, we have the following string of estimates:

|Ωc| ≥
∣∣{ω(t) : ω ∈ Gc

x ∩Hc
x; t ∈ [σx, 16r]

}∣∣ ≥ (16r − σx)

L5
|Gc

x ∩Hc
x|(271)

≥ 14r

L5
(|Gc

x| − |Hx|)(272)

≥ 14r

L5

(
|Gc

x| − L4 |B(a, 20r) ∩ ∂Ω|
)
.(273)

Rearranging terms and estimating shows us that

(274) |Ωc|+ 14r

L
|∂Ω| ≥ 14r

L5
|Gc

x| .

Since |∂B(x, σx)| ≥ L−2 |∂B(0, σx)| ≥ r2

L2 |S2|, we see that

(275) |Gx| ≥
r2

L2
|S2| −

(
L5

14r
|Ωc|+ L4 |∂Ω|

)
Letting η = r2

2L2 |S2|, we see that for all |Ωc|+ |∂Ω| small enough, depending only on r and L, we have

that |Gx| ≥ η. Therefore, we may apply Lemma 7.2 to Gx to find a connected subset G̃x with smooth
boundary such that

(276)
∣∣∣∂G̃x

∣∣∣ ≤ |∂Gx| ≤
1

r
|B(a, 20r) ∩ ∂Ω|

and

(277) |Gc
x| ≤

∣∣∣∂G̃x

∣∣∣
IN1

(
∂B(x, σx)

) ≤ 2L5

IN1(S2)
|B(a, 20r ∩ ∂Ω| .

Finally, we observe that since S2 is simply connected, and G̃x is connected, we may apply Lemma 7.3

to A = clG̃x to obtain the following: for any ω, ζ ∈ clG̃x, there exists a curve γ ⊂ clG̃x connecting
them such that

L(γ) ≤ d(ω, ζ) +
∣∣∣∂G̃x

∣∣∣ ≤ Lσxπ +
1

r
|B(a, 20, r) ∩ ∂Ω|(278)

≤ 2rLπ +
1

r
|B(a, 20r) ∩ ∂Ω| .(279)

Let us denote by Dx the set given below:

(280) Dx =
({

ω(t) : ω ∈ G̃x ∩Hc
x; t ∈ [σx, 24r]

}
∩B(a, 20r)

)
∪ clG̃x.

From looking at the definitions, we may see that any two points in Dx may be connected together by
a curve in Dx which has length no greater than 48r + 4rLπ + r−1 |B(a, 20r) ∩ ∂Ω|.



34 E. BRYDEN AND L. CHEN

Let us use the exact same construction in a neighborhood of y to construct the set Dy. Ultimately,
we wish to set Da = Dx ∪Dy, and conclude that for any two points in Da, there is a curve lying in
Da which connects them, and which has length no greater than

(281) 96r + 8rLπ + 2r−1 |B(a, 20r) ∩ ∂Ω| .

In order to do this, it suffices to show that Dx ∩Dy ̸= ∅. To do this, we will show that |Dx ∩Dy| > 0.
Let us observe that

(282) B(a, r) ⊂ {ω(t) : ω ∈ ∂B(x, σx); t ∈ [σx, 5r]}

and

(283) B(a, r) ⊂ {ν(t) : ν ∈ ∂B(y, σy); t ∈ [σy, 5r]}

Therefore, we see that

|Dx ∩Dy| ≥ |B(a, r)|(284)

− 125L5
(∣∣∣(G̃x ∩Hc

x

)c∣∣∣+ ∣∣∣(G̃y ∩Hc
y

)c∣∣∣)(285)

So, we see that

(286) |Dx ∩Dy| ≥
|B(0, r)|

L3
− 250L5

(
2L5

IN1(S2)
+ L4

)
|B(a, 20r) ∩ ∂Ω| .

Therefore, for all |Ωc| + |∂Ω| small enough, we see that Dx ∩Dy ̸= ∅, and so Da = Dx ∪Dy has the
desired path connected property given in (281).

Now, we need to estimate |B(a, 20r) ∩ Ω \Da|. To do this, observe that B(a, 20r) is contained in

(287) {ω(t) : ω ∈ ∂B(x, σx); t ∈ [σx, 24r]} ∪ {ν(t) : ω ∈ ∂B(y, σx); t ∈ [σy, 24r]}.

Therefore, we see that

|B(a, 20r) \Da| ≤
∣∣∣{ω(t) : ω ∈ (G̃x ∩Hc

x)
c; t ∈ [σx, 24r]}

∣∣∣(288)

+
∣∣∣{ν(t) : ν ∈ (G̃y ∩Hc

y)
c; t ∈ [σy, 24r]}

∣∣∣(289)

Using the estimates above, we see that

(290) |B(a, 20r) \Da| ≤ 2(243L5)

(
2L5

IN1(S2)
+ L4

)
|B(a, 20r) ∩ ∂Ω| .

□

Lemma 7.5 ([DS23]). Let (M3, g) be a smooth closed three dimensional Riemannian manifold. For
every ε > 0 there exists a δ such that if Ω ⊂ M3 has smooth boundary, and we have that

(291) |Ω| ≥ |M | − δ

(292) |∂Ω| ≤ δ,

then there exists a connected subset Ω′ ⊂ Ω with smooth boundary such that

(293) |Ω′| ≥
∣∣M3

∣∣− ε

(294) |∂Ω′| ≤ ε

and

(295) dGH

((
Ω′, d̂hΩ′

)
,
(
Ω′, dh

))
≤ ε.
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Proof. Fix L = (1 + 1
2ε), and fix r > 0 to be chosen later. We will however assume that 24r ≤ rL,

where rL is the constant appearing in Lemma 7.4. We may additionally assume that |Ωc| + |∂Ω| is
small enough so that Lemma 7.4 applies to balls of radius 20r. Since M is compact, we may cover M
in finitely many balls of the form B(ai, r);

(296) 1 ≤
P∑
i=1

χB(ai,r) ≤ P.

For each i let Di ⊂ Ω ∩ B(ai, 20r) be the set given in Lemma 7.4. Let D =
⋃P

i=1 Di, and consider
x, y ∈ D such that d(x, y) ≤ r. Since x, y ∈ D, there exists i(x) and i(y) such that x ∈ Di(x) and

y ∈ Di(y). Furthermore, since {B(ai, r)} coversM , there existsm(x) andm(y) such that x ∈ B
(
am(x)

)
and y ∈ B

(
am(y), r

)
. Finally there are zx ∈ B

(
ai(x), 20r

)
and zy ∈ B

(
ai(y), r

)
such that d(x, zx) =

d(y, zy) = r, B (zx, r) ⊂ B
(
am(x), 20r

)
∩B

(
ai(x), 20r

)
, and B (zy, r) ⊂ B

(
am(y), 20r

)
∩B

(
ai(y), 20r

)
.

Since d(x, y) ≤ r, we also have that B(x, r) ⊂ B
(
am(x), 20r

)
∩B

(
am(y), 20r

)
. As before, we can show

that for |Ωc|+ |∂Ω| small enough, we have that

min
{∣∣Di(x) ∩Dm(x)

∣∣ , ∣∣Di(y) ∩Dm(y)

∣∣ , ∣∣Dm(x) ∩Dm(y)

∣∣} > 0,(297)

and in particular the intersections are not empty. As such, we see from Lemma 7.4 that there is a path
γ ⊂ D connecting x to y such that

(298) L(γ) ≤ 3r
(
96 + 8Lπ + 2r−2 |∂Ω|

)
.

Lemma 7.4 also gives us the following volume estimate:

|M \D| ≤ |Ωc|+ 2(243L5)

P∑
i=1

(
2L5

IN1(S2)
+ L4

)
|B(ai, 20r) ∩ ∂Ω|(299)

≤ |Ωc|+ 2P (243L5)

(
2L5

IN1(S2)
+ L4

)
|∂Ω| .(300)

At this point, D satisfies the requirement of local connectivity, but it does not necessarily have
a smooth boundary, nor need this boundary be small. Therefore, we must modify D. Following
Dong-Song [DS23], let f : Ω → R be given by

(301) f(x) = d̂Ω(z,D).

Although the Lipschitz constant of f depends on Ω and can be rather large, since Ω is a domain with
smooth boundary, the local Lipschitz constant of f is always bounded above by 2, independently of Ω.
As such, for any η > 0, we may find a smooth map ϕ : Ω → R such that |∇ϕ| ≤ 2 and ∥f−ϕ∥L∞ < r

64 .
Using the coarea formula, we have that

(302)

∫ r
16

r
32

∣∣ϕ−1{t} ∩ Ω
∣∣ dt = ∫

Ω∩ϕ−1[
r
32 ,

r
16 ]

|∇ϕ| dVg ≤ 2 |Ω \D| .

Therefore, using Sard’s lemma and a mean-value inequality, we may find a t0 ∈ [ r
32 ,

r
16 ] such that

ϕ−1{t0} ⊂ Ω is a submanifold of M , possibly with corners. Furthermore, we have that

(303)
∣∣ϕ−1{t0}

∣∣ ≤ 32

r
|Ω \D| .

Observe that ϕ−1{t0} bounds the region ϕ−1[0, t0]. Let us smooth out ϕ−1{t0} in such a way that the
result ∂Ω′ bounds a region Ω′ ⊂ ϕ−1[0, t0] ⊂ Ω and

(304) |∂Ω′| ≤ 2
∣∣ϕ−1{t0}

∣∣ ≤ 64

r
|Ω \D| .

Next, observe that D ⊂ Ω′, since ∥f − ϕ∥L∞ < r
64 . Therefore, we have that

(305)
∣∣Ω′c∣∣ ≤ |Dc| .
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Ω′ is very nearly the set we desire, however there is one more crucial property that it may not
satisfy: we want to find a set such that if x, y are elements of the set, and d(x, y) ≤ r

2 , then there is a
path from x to y in Ω′ which isn’t too long. Of course, this is true if x and y are in D, but for more
general x and y, there is more work to be done. Since Ω and Ω′ are domains with smooth boundary,

the topology generated by d(·, ·), the topology generated by d̂Ω(·, ·), and the topology generated by

d̂Ω′(·, ·) all agree. In particular, we have that Ω′ is compact, and furthermore cl
(
Ω′ \D

)
is compact.

Therefore, we may find a finite collection of points zi in cl
(
Ω′ \D

)
which form an r

8 net with respect

to d̂Ω′ . In particular, by the definition of Ω′, for each i we may find a curve ci lying in Ω connecting
zi to some ẑi ∈ D which has length less than or equal to r

8 . Consider a small cylindrical neighborhood
Ci of ci. We may choose the area of its boundary to be arbitrarily small, and for every point to be
within r

8 of the center curve, by choosing an arbitrarily small radius. Furthermore, we may perturb
its boundary so that it intersects ∂Ω and ∂Ω′ transversely. We may smooth out

(306) Ω′
⋃
i

(
Ci ∩ Ω

)
to produce a region Ω̃ with the following properties. First, we may assume that

∣∣∣∂Ω̃∣∣∣ ≤ 2 |∂Ω′|. Next,

we have that
∣∣∣Ω̃c
∣∣∣ ≤ |(Ω′)c|. Finally, suppose that x and y are in Ω̃ such that d(x, y) ≤ r. Let us

begin by assuming that x, y ∈ cl
(
Ω̃ \D

)
. Then there are zx and zy in the r

8 net such that d̂Ω′(x, zx)

and d̂Ω′(y, zy) are less than r
8 . Furthermore, by construction of Ω′, there are ẑx and ẑy in D such that

d̂Ω̃(zx, ẑx) and d̂Ω̃(zy, ẑy) are less than r
8 . Thus, we see that

d(ẑx, ẑy) ≤ dΩ̃(ẑx, zx) + dΩ̃(zx, x) + d(x, y) + dΩ̃′(y, zy) + dΩ̃(zy, ẑy)(307)

≤ r.(308)

Let us recall that L denotes the bi-Lipschitz constant of exp for balls with radius less than or equal
to rL, which are also geodesically convex by assumption. Since d(ẑx, ẑy) ≤ r, it follows from the
construction of D, see Lemma 7.4, that we may find a curve γ in D connecting ẑx and ẑy which has
length bounded as follows:

(309) L(γ) ≤ r
(
96 + 8Lπ + 2r−2 |B(a, 20r) ∩ ∂Ω|

)
.

The other cases are similar, but use fewer applications of the triangle inequality.
To save space in the calculations below, we set K = K(|∂Ω| , L, r), where

(310) K(|∂Ω| , L, r) = 96 + 8Lπ + 2r−2 |B(a, 20r) ∩ ∂Ω| ,

Let x, y be any two points in Ω̃, and let γ be a length minimizing geodesic connecting them. We may

split γ into at most
⌈
16 diam(M,g)

rL

⌉
segments of length li, where

1
16rL ≤ li ≤ 1

4rL. Let us consider

any two successive sections of γ, say γ(x0, y0) and γi0+1(x1, y1), with endpoints xj , yj for j = 0, 1,

respectively. Let c0 be the midpoint of γ(x0, y0), and consider γ̃0 = exp−1
c0

(
γ(x0, y0)

)
⊂ Tc0M . Let C̃r

be the corresponding cylinder about γ̃0 of radius r
8L ; it is foliated by curves, as seen below:

(311) C̃r =

{
γ̃ω : γ̃ω(t) = t+ ω;ω ⊥ d

dt
γ̃1(t); |ω| ≤ r

8L

}
.

Consider exp−1
c0 (∂Ω̃), and let H = {ω : γ̃ω ∩ exp−1

c0 (∂Ω̃) ̸= ∅}. By projecting the curve γ̃ω onto ω, we
observe that

|H| ≤
∣∣∣exp−1

c0 (∂Ω̃)
∣∣∣(312)

≤ L2
∣∣∣∂Ω̃∣∣∣(313)

≤ 2L2 |∂Ω′|(314)

≤ 128

r
|Ω \D| .(315)
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Now observe that for ω ∈ Hc we have either that expc0(γ̃ω) ⊂ Ω̃ or expc0(γ̃ω) ⊂ Ω̃c. Suppose that

for all ω ∈ Hc that expc0(γ̃ω) ⊂ Ω̃c. Then, it follows that

(316)
∣∣∣Ω̃c
∣∣∣ ≥ rL

16L5

(
π
( r

8L

)2
− |H|

)
.

Rearranging terms shows us that

(317)
∣∣∣Ω̃c
∣∣∣+ rL |H|

15L5
≥ π

( r

8L

)2
.

This gives a contradiction for |Ωc| + |∂Ω| small enough depending only on r and L. Therefore, thre

is at least one ω ∈ Hc such that expc0(γ̃ω) ⊂ Ω̃. Let ω0 denote such an element, and let γω0
(x̃0, ỹ0)

denote expc0(γ̃ω), which has endpoints x̃0 and ỹ0 We may similarly find γ1(x̃1, ỹ1) with end points x̃1

and ỹ1. Then, we have that

(318) L
(
γωj

(x̃j , ỹj)
)
≤ Ld(xj , yj),

for j = 0, 1. Furthermore, we see that

(319) d
(
ỹ0, x̃1

)
≤ r

4
.

As such, there is a curve connecting them, which lies entirely in Ω̃ and which has length less than or
equal to Kr. Let us modify γ along the section γ0 and γ1 by replacing γj with γ̃ωj , and connecting
their endpoints by the curve above. Doing this for all of the segments yields a curve γ̃ which lies

entirely in Ω̃ and has length bounded above as follows:

(320) L
(
γ̃
)
≤
(⌈

16 diam(M,g)
rL

⌉
+ 2
)
Kr + Ld(x, y),

where the +2 comes from the fact that we may have to peturb the endpoints x, y of γ in a similar way
as above. Therefore, for r chosen small enough, and |Ωc|+ |∂Ω| small enough depending only on r and
L, the above has the following estimate:

(321) L
(
γ̃
)
≤ (1 + ε)d(x, y).

□

7.2. Fundamental Domains. In this section we give a construction of fundamental domains, which
can be found in [Cha06, Section IV.3].

Definition 7.6 ([Cha06]). Let (M, g) be a closed Riemannian manifold, and let p be any point in M ,
and denote by Sp the collection of unit vectors in TpM , and let SM denote the unit tangent bundle.
Finally, let π : TM :→ M be the projection map. Let us define a map c : SM → (0,∞) as follows

(322) c(ξ) = sup
{
t : d

(
p, expπ(ξ)(tξ)

)
= t
}

We have the following important result

Theorem 7.7 ([Cha06]). Let (M, g) be a complete Riemannian manifold without boundary. Then,
the map c : SM → (0,∞] is continuous.

Proof. Fix ξ in SM and let ξk be a sequence approaching ξ. For notational convenience, let p = π(ξ),
pk = π(ξk), and dk = c(ξk.

We will first show that lim supk→∞ c(ξk) ≤ c(ξ). Pick a subsequence dk(i) such that limi→∞ dk(i) =
lim supk→∞ dk. If lim supk→∞ dk = ∞, then, for any T > 0 one has that dk(i) > T for all i sufficiently
large. Since ξk → ξ, it follows that exppk(i)

(Tξk(i)η) converges to expp(Tξ). Since distance is a

continuous function, we see that

(323) d(p, expp(Tξ)) = lim
i→∞

d(pk(i), T ξk(i)) = T.

Therefore, by the definition of c we see that c(ξ) ≥ T . As T can be chosen to be arbitrarily large, we
see that c(ξ) = ∞
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Next, suppose that lim supk→∞ dk = δ < ∞. Then, for any ε we may find an N so that for all
i ≥ N we have that δ − ε < dk(i). It follows that

(324) d
(
p, expp

(
(δ − ε)ξ

))
= lim

i→∞
d
(
pk(i), exppk(i)

(
(δ − ε) ξk(i)

))
= δ − ε.

So, we see that c(ξ) ≥ δ − ε, where ε was arbitrary.
Continuity will now follow if we can show that lim infk→∞ dk ≥ c(ξ). By way of contradiction,

suppose that lim infk→∞ dk + 2ε < c(ξ). Let Up denote the open star-shaped region about p = π(ξ)
on which expp is a diffeomorphism, let T = lim infk→∞ dk, and let ξk(i) be a subsequence such that

limi→∞ dk(i) = T . Since ξk(i) → ξ, we have that limk→∞ exppk(i)

(
(T +ε)ξk(i)

)
= expp

(
(T +ε)ξ

)
. Since

expp(Tξ) ∈ Up, it follows that for all i large enough, we have that exppk(i)

(
(T +ε)ξk(i)

)
∈ Up. However,

we also have for all i sufficiently large that c(ξk(i)) = dk(i) < T + ε. This is a contradiction, and so we
see that lim infk→∞ dk ≥ c(ξ). This establishes the continuity of c on SM . □

Remark 7.8. Here we avoided the second half of proof presented in [Cha06], since by the results in
[Mar93] conjugate loci are in general ill behaved.

Definition 7.9. Given a complete Riemannian manifold (M, g) and a point p in M , we will let Dp

denote the following set:

(325) Dp = {c(ξ)ξ : ξ ∈ SpM},

the graph of the continuous function c : Sp → (0,∞]. Furthermore, let

(326) Gp = {tξ : t < c(ξ); ξ ∈ Sp}.

Proposition 7.10. Let (M, g) be a closed Riemannian manifold, and let p in M . Then, Dp has
measure zero.

Proof. Observe that Sp and M are compact. As such, it follows that c(Sp) is contained in a compact
interval bounded away from zero. Since Dp is the graph of c over Sp, it follows from using polar
coordinates and the Fubini-Tonelli theorem that

(327)

∫
TpM

χDp =

∫
Sp

∫ b

a

nωnr
n−1χDp(r, θ)drdθ = 0.

□

Lemma 7.11. Let (M, g) be a closed Riemannian manifold, and let (M̃, π∗g) be its universal cover.

For any given p ∈ M and p̃ ∈ M̃ , let Dir(p̃) denote the following set

(328) Dir(p̃) = expp̃ ◦(dπp̃)
−1Gp.

Then, we have that Dir(p̃) is a fundamental domain.

Proof. We claim that Dir(p̃) is a fundamental domain. To begin, suppose that x, y ∈ intDir(p̃) are
such that π(x) = π(y). This would mean that there are at least two length minimizing geodesics
from p to π(x) = π(y), but this contradicts the definition of Gp. Observe that this implies that

Dir(p̃) = expp̃ ◦(dπp̃)
−1Gp, and as a consequence we also have that ∂Dir(p̃) ⊂ expp̃ ◦(dπp̃)

−1Dp.

Therefore, since Dp has measure zero and expp̃ ◦(dπp̃)
−1 is a smooth map, it follows that ∂Dir(p̃) has

measure zero. Finally, since Gp is path connected, it follows that Dir(p̃) is as well. □
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