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A generalized approach derived from Bloch’s equation of motion of nuclear magnetic moments
is presented to model the frequency, magnetic field, spin density, and temperature dependencies
in the electromagnetic permeability tensor for materials with magnetic resonances. The resulting
tensor model predicts characteristic polarization signatures which can be observed, for example, in
fully polarization-resolved Mueller matrix element spectra measured across magnetic resonances as
a function of frequency, magnetic field, magnetic moment density, and temperature. When aug-
mented with thermodynamic considerations and suitable Hamiltonian description of the magnetic
eigenvalue spectrum, important parameters such as zero-frequency magnetization, spectral ampli-
tude distribution, relaxation time constants, and geometrical orientation parameters of the magnetic
moment density can be obtained from comparing the generalized model approach to experimental
data. We demonstrate our approach by comparing model calculations with full Mueller matrix ele-
ment spectra measured at oblique angle of incidence in the terahertz spectral range, across electron
spin resonance quintuplet transitions observed in wurtzite-structure GaN doped with iron. Mea-
surements were performed by ellipsometry, using a superconducting cryostat magnet at magnetic
fields of ±7.23 T and at temperatures of 20 K and 30 K. We detail the occurrence of linear and
circular birefringence and dichroism associated with each of the zero-field split spin transitions in the
S = 5/2 defect system. We derive the spectral dependence of the magnetic susceptibility function
and obtain the temperature and magnetic field dependence of the spin Hamiltonian. Our model cor-
rectly predicts the complexity of the polarization signatures observed in the 15 independent elements
of the normalized Mueller matrix for both positive and negative magnetic fields, and also permits
detailing the orientation of the magnetic moments at the Fe defect sites. Our model will be useful
for future analysis of frequency and magnetic field-dependent magnetic resonance measurements.

I. INTRODUCTION

Magnetic Resonance Spectroscopy stands as a corner-
stone in the realm of molecular and materials research.
Originating from the seminal observations by Zeeman
on the impact of magnetic fields on spectral lines, Mag-
netic Resonance Spectroscopy has evolved into a com-
prehensive suite of techniques, including Nuclear Mag-
netic Resonance (NMR), Electron Paramagnetic Res-
onance (EPR), and Ferromagnetic Resonance (FMR).
These methodologies have provided unparalleled insights
into molecular structures, and dynamics, significantly ad-
vancing our understanding across chemistry, materials
science, medicine, and semiconductor physics. EPR is
widely used to study quantum transitions of molecular
magnetic moments.1 Conventional EPR instruments de-
tect magnetic resonance at a few fixed frequencies, typ-
ically at a few tens of GHz.2 The Zeeman splitting en-
ergy, ∆E, of a free electron at 10 GHz, for example,
corresponds to a magnetic field of B = ∆E

gµB
= 357 mT,

and vacuum wavelength of λ ≈ 3 cm, where µB = eh̄
2me

is the Bohr magneton, e is the unit electric charge, h̄
is the reduced Planck constant, and me is the free elec-
tron mass. Pioneered by Felix Bloch in his seminal 1946
paper,3 electromagnetic absorbance loss measurements of
magnetic transitions are typically performed in resonator
cavities at fixed frequencies under near-field conditions
and slowly scanning external magnetic field permitting
for relatively small sample size and highly sensitive detec-
tion. Historically, thus conventional EPR practice is po-
sitioning the sample within a resonant microwave cavity.
While effective for certain applications, this setup inher-
ently imposes a restriction on the system, confining it to a
finite set of discrete frequencies. This limitation has tra-
ditionally hindered the ability to fully explore frequency-
dependent magnetic suscetibility characteristics.4 Tuning
frequency or modifying polarization in such resonator ge-
ometries is difficult, however, investigating magnetic res-
onances at larger magnetic fields is generally desirable
since energy and magnetic field resolutions improve. At
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100 GHz, λ ≈ 3 mm and a field of B = 3.57 T are
needed for the single free electron Zeeman splitting to
match. Such fields can be conveniently achieved with
superconducting magnets. Studies of magnetic proper-
ties at higher magnetic fields are of interest for large and
complex magnetic systems,5,6 for systems with large spin
quantum numbers and strong spin-spin coupling,7,8 and
for more comprehensive investigations of defect proper-
ties in wide-bandgap semiconductors, e.g., in SiC9–11 and
GaN, and in ultrawide-band-gap semiconductors, e.g.,
AlN12,13, or gallium oxide.14–21

In recent years, several groups have developed new
methods of performing EPR at higher fields with the pos-
sibility of tuning the frequency used.22–26 Transitioning
the resonance conditions into the THz range, far-field
optical techniques such as spectroscopic ellipsometry be-
come available. In addition to frequency variation with
few-kHz resolution capability, frequency multiplication of
highly polarized solid-state synthesizer sources have be-
come available recently as well. Implementing suitable
polarization modulation, THz spectroscopic ellipsometry
was developed lately, permitting measurement of Mueller
matrix spectra.27,28 Thereby, the anisotropic THz opti-
cal properties of samples with complex layer structures
and low-symmetry crystal structures can be assessed and
quantified. THz ellipsometry was also demonstrated on
samples immersed in strong magnetic fields within super-
conducting split-coil Helmholtz-type magnets for mea-
surement of the optical Hall effect.27–29 Such measure-
ments can be performed in reflection and transmission ge-
ometries and have demonstrated sensitivity to free charge
carrier properties such as effective mass, mobility, den-
sity, and charge (electron, hole). Employing the advan-
tages of free space propagation such as freely tunable fre-
quency, free choice of propagation direction, and, most
importantly, variation of all possible polarization con-
ditions, THz EPR ellipsometry permits investigations
of magnetic transitions, including their energy-field di-
agrams as well as their polarization properties.30,31 THz
EPR thereby dispenses with the need for resonance cavi-
ties and permits the study of semiconductor heterostruc-
tures and thin films. Frequency-field maps allow in-
vestigators to quickly identify the origins of observed
transitions because different mechanisms, such as hyper-
fine structure splitting, Zeeman splitting, or zero-field
splitting (ZFS), reveal different frequency-field diagrams.
Also, level populations change with field and, therefore,
with frequency and reveal dynamics in the complex-
valued spin susceptibility, which can be measured using
ellipsometry.1,32

The previously developed THz Optical Hall effect in-
strumentation is readily available for THz EPR ellip-
sometry measurements. Field and frequency dependent
linearly and circularly polarized Mueller matrix element
spectra were measured of the magnetic spin transitions
associated with cubic and hexagonal lattice site nitrogen
defects in 4H-SiC.30 In our recent work, we have reported
field-scanning THz-EPR ellipsometry measurements at

selected frequencies of transitions associated with iron
defects in β-Ga2O3.

33 The high-spin S = 5/2 state of
Fe3+ causes five transitions which were all detected si-
multaneously, in contrast to conventional low-field EPR.
Analysis of the ellipsometry data, based on direct line-
shape matching to the Mueller-matrix elements, resulted
in the full set of fourth-order monoclinic zero-field split-
ting parameters for the octahedrally and tetrahedrally
coordinated defects. A subsequent Hamiltonian analy-
sis revealed that simplified second-order orthorhombic
approximations are insufficient to model the high spin
system at high magnetic fields owing to the monoclinic
symmetry of the host crystal.33

Ellipsometry is a method for accurately characterizing
the linear optical properties of materials, particularly of
thin films.34 Data analysis requires model calculations
which consider plane wave propagation throughout the
sample including Fabry-Perot interference, and requires
appropriate assumptions about the complex-valued di-
electric (ε) and magnetic (µ) material functions within
Maxwell’s equations, D = ε0εE, and B=µ0µH, where
D and E, and B and H are dielectric displacement and
electric field phasors, and magnetic induction and mag-
netic field phasors, respectively. Both response functions
are second-rank tensors and are complex-valued. The
structure of the tensors reveals the underlying physical
polarization processes that lead to the optical response
of a given system. It is commonly accepted for opti-
cal frequencies that µ is unity and isotropic, indepen-
dent of frequency and wave vector. However, at THz fre-
quencies across magnetic transitions, the magnetic sus-
ceptibility can differ significantly from unity. This was
demonstrated in our previous work reporting the field-
and frequency-scanning THz-EPR ellipsometry measure-
ment of the Nitrogen defect in SiC.30 In order to perform
model analysis to obtain accurate quantitative physical
parameters in ellipsometry, a suitable model must be se-
lected. For dielectric processes, such models are referred
to as model dielectric function (MDF) approaches which
are then used to identify, for example, band-to-band tran-
sition energies, or phonon modes and their eigendielec-
tric polarization directions.34–36 These MDF models are
derived and founded on physical models and fundamen-
tal principles of classical and quantum mechanics includ-
ing energy, charge, and momentum conservation. How-
ever, ad-hoc model functions are often used, which lack
rigorous physical derivations. For analysis of our previous
THz-EPR ellipsometry data,30 such an ad-hoc model was
implemented. This model sufficed to reproduce the main
features of the ellipsometry spectra. However, other char-
acteristic measured properties did not correspond well
with the ad-hoc model. Previous model descriptions that
correctly render the complex-valued frequency and exter-
nal magnetic field dependencies for the tensor appearance
of the magnetic susceptibility for spin or general magnetic
transitions are not known from ellipsometry investiga-
tions. Hence, such model descriptions must be searched
for and tested. In this paper, we present a derivation
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of a magnetic permeability tensor that describes the full
magneto-optic response of a material and sufficiently ex-
plains THz EPR ellipsometry data for spin transitions.
We derived this model from the Bloch equations3 of the
magnetic induction under the influence of an external
static and high-frequency magnetic field. We believe this
model will also become useful for analysis of the fre-
quency and field dependent responses of general magnetic
transitions and excitations.

The Bloch equations3 describe the time evolution
of a macroscopic ensemble of magnetic moments by
phenomenologically introducing relaxation times. The
’Bloch susceptibility’ is the form of the magnetic suscep-
tibility derived from the Bloch equations. As the sig-
nal strength is proportional to the magnetization, the
imaginary part of the Bloch susceptibility is often used
to describe absorption spectra within the fields of EPR
and nuclear magnetic resonance (NMR).37–42 By decon-
voluting the lineshape, the relaxation times of the stud-
ied magnetic moments can be obtained. These relax-
ation times are intricately linked to the local interactions
of paramagnetic centers with their surrounding environ-
ment, and yield information regarding the studied sys-
tem’s electronic structure and molecular motions.43 The
absorption spectra obtained by conventional EPR are in
arbitrary units. Analysis of information related to ab-
solute amplitude requires great care. This can be done
by using a reference sample with a known spin volume
concentration or by studying polarization effects rather
than intensity as performed in this study. Once obtained,
the amplitude of an EPR signature can be related to the
longitudinal relaxation time and the spin volume concen-
tration.

Our work here aims to rigorously evaluate the effi-
cacy of employing the Bloch equation formalism for in-
terpreting magnetic resonance data, specifically obtained
through Mueller matrix ellipsometry.34,44–46 The original
Bloch equations, while proficient in providing a funda-
mental and intuitive framework for understanding the
rate processes inherent in magnetic resonance phenom-
ena, frequently fall short in precisely replicating experi-
mental outcomes. This discrepancy arises primarily due
to the oversimplified nature of the phenomenological re-
laxation times, which inadequately capture the complex
dynamics of magnetic moments, particularly in scenar-
ios where there is significant interaction and interconver-
sion among them. Here, we demonstrate the validity of
the Bloch model by robust agreement between measured
and best-match model calculated Mueller matrix spec-
tra for defect-induced electron spin resonance transitions
in Fe-doped GaN as an example. The zero-field split-
ting parameters of the S = 5/2 high-spin defect Fe3+

in GaN have been investigated previously with fixed fre-
quency low-field EPR.47 The frequency-dependent mea-
surements at fixed magnetic fields revealed in this work
demonstrate the new capabilities of THz EPR ellipsome-
try to directly infer spin parameters from individual spec-
tra. In addition, the spin Hamiltonian parameters can be

determined from analysis of the eigenvalue spectrum at
fixed magnetic fields.

In Sec. II A, we present the derivation of the frequency-
dependent complex-valued Bloch susceptibility tensor,
which is then expanded to high spin systems in Sec. II C.
Based on the results in Sec. IIA we demonstrate the
structure of the anisotropic magnetic response function
tensor and the resulting anisotropic properties. We
thereby introduce the Bloch eigenmagnetic polarizabil-
ity functions and eigenvectors in Sec. IID. These func-
tions establish the base of the Model Magnetic Function
(MMF) approach used in Sec. III C for analysis of THz-
EPR ellipsometry measurements performed on Fe-doped
GaN. In Sect. III B we present our THz-EPR ellipsometry
method used here. Data reduction and parameter deter-
mination are discussed in Sec. IIID. Section IV details
the results of the analysis for low-density Fe-doped GaN.
Lineshape analysis results, including amplitude, broad-
ening, and frequency parameters of the two equivalent
GaN lattice sites’ zero-field-split spin transition quintu-
plets, are shown, discussed, and compared with available
literature data from low-field, fixed-frequency EPR. We
then demonstrate the quantitative determination of the
spin density using the results of the MMF analysis in
combination with a Brillouin magnetization summation
approach. The experiment on the spin S = 5/2 system
in GaN is selected for the purpose of demonstration. The
Hamiltonian description of the zero-field split system is
well known and, thereby, is suitable for the purpose here.
For this reason, the spin measurements are performed in
a specific orientation of the crystal such that Fe3+ in two
equivalent sites produce identical spin eigenvalues, and
thereby simplify the analysis for improved transparency
of our MMF approach implemented here.

II. THEORY

A. Bloch susceptibility

To predict the frequency dependence of the complex-
valued permeability tensor for a set of magnetic reso-
nances, a model based on the Bloch equations is derived.
The set of Bloch equations describes how a magnetiza-
tion vector M = (Mx,My,Mz) responds to an external
perturbation when subjected to a static or slow-changing
magnetic induction field B0. The magnetic moment as-
sociated with the magnetization vector is thought of a
continuum density, and may be interpreted as caused
by a homogeneous distribution of infinitely small mag-
netic objects with volume (spin) density ne. Without
loss of generality, with B0 oriented along direction z, the
Bloch equations including the phenomenological relax-
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ation times are represented as follows48,49

∂Mx

∂t
= −ω0My −

Mx

T2
,

∂My

∂t
= ω0Mx −

My

T2
,

∂Mz

∂t
= −Mz −M0

T1
,

(1)

where ω0 = γeB0 is the classical Larmor frequency, γe
is the gyromagnetic ratio, M0 is the dc magnetization
along the z-axis and is assumed to be linearly propor-
tional to B0, T1 is the longitudinal relaxation time, and
T2 is the transverse relaxation time. To assess the re-
sponse of vector M to an oscillating magnetic induction
field, i.e., a time-harmonic external perturbation due to
an electromagnetic plane wave traversing a magnetized
medium, it is advantageous to employ a rotating frame
of reference with an identical angular frequency ω as
that of the oscillating field. Moreover, assuming that
the oscillating field is comprised of left-circularly polar-
ized (LCP) light whose oscillating amplitude H1 = 1

µ0
B1

(CGS units are used throughout this derivation, resulting
in H1 = B1) then remains fixed along the x-axis within
the rotating frame, where µ0 is the vacuum permeability
and H1 (B1) is the auxiliary magnetic (induction) field,
the Bloch equations transform into

∂M̃x

∂t
= −(ω0 − ω)M̃y −

M̃x

T2
,

∂M̃y

∂t
= (ω0 − ω)M̃x −

M̃y

T2
− γeB1Mz,

∂Mz

∂t
= −Mz −M0

T1
+ γeB1M̃y,

(2)

where “∼” annotates components of M in the rotating
frame around the z-axis. Solving (2) for a steady-state
expression while assuming very large longitudinal relax-
ation time T1 yields48

M̃x = χ0T2ω0
(ω0 − ω)T2

1 + T 2
2 (ω0 − ω)2

B1,

M̃y = χ0T2ω0
1

1 + T 2
2 (ω0 − ω)2

B1,

Mz =M0,

(3)

where we have assumed that B1 << B0, which is typ-
ically the case, and we introduce the dc susceptibility
χ0 = M0/B0. We can thus express frequency-dependent
susceptibility functions χ′ and χ′′ in the rotating frame
of reference

χ′(ω) =
M̃x

B1
= χ0T2ω0

(ω0 − ω)T2
1 + T 2

2 (ω0 − ω)2
,

χ′′(ω) =
M̃y

B1
= χ0T2ω0

1

1 + T 2
2 (ω0 − ω)2

.

(4)

We consider the magnetization response to a left-handed
circularly polarized (LCP, +) electromagnetic plane wave
and seek the complex-valued frequency-domain Bloch
susceptibility χB,+ ≡ χ1 + iχ2 in the static reference
frame. The amplitude of the oscillating induction com-
ponent of the electromagnetic field in the x-direction can
be expressed as Bx = B1e

−iωt when the plane wave is
propagating along the positive direction of the z -axis.
Consequently,

Mx = ℜ(χB,+B1e
−iωt) =

B1(χ1 cos(ωt) + χ2 sin(ωt)),
(5)

where ℜ denotes the real part. We then express the mag-
netization through the components in the rotating frame

Mx = M̃x cosωt+ M̃y sin(ωt) =

B1(χ
′ cos(ωt) + χ′′ sin(ωt)),

(6)

and by comparison with Eq. (5)

χB,+ = χ′(ω) + iχ′′(ω), (7)

or equivalently

χB,+(ω) = χ0
ω0

ω0 − ω − i/T2
. (8)

It is noteworthy that the foregoing derivation assumes a
positive-valued static induction field, enabling LCP light
to drive spin transitions, and resulting in the observed
magnetization

Mx = (χ′ cos(ωt) + χ′′ sin(ωt))B1,

My = (−χ′′ cos(ωt) + χ′ sin(ωt))B1,

Mz = χ0B0,

(9)

which is neatly summarized by the magnetic susceptibil-
ity tensor

χM,+ =
1

2

χB,+ −iχB,+ 0
iχB,+ χB,+ 0

0 0 2χ0

 , (10)

where the third diagonal element highlights the dis-
tinct magnetic response along the z-axis. The time-
harmonic response of the magnetic induction within the
magnetized medium is then obtained from the sum-
mation over the vacuum and spin contributions, B =
µ0(1 + 4πχM,+)H1 = µ0µM,+H1.
Tensor χM,+ in Eq. (10) represents the optical re-

sponse for transitions that are induced by LCP light.
This polarization state predominantly influences the op-
tical response near resonance frequencies in the presence
of positive magnetic fields. To construct a comprehen-
sive tensor encompassing responses for all polarization
states, it is essential to augment the response of right-
handed circularly polarized (RCP) light.50 This augmen-
tation is further based on the principle that any polariza-
tion state and its response from a given medium can be
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represented as a superposition of LCP and RCP compo-
nents. Considering RCP light as the time-reversed analog
of LCP light, the response for RCP light can be derived
by applying the time-reversal operator to χ+.

51,52 In the
frequency-domain, the time reversal results in the follow-
ing transformations53

B0 → −B0,

M0 → −M0,

χ0 → χ0,

ω0 → −ω0.

(11)

This means that Eq. (8) transforms into

χB,− = χ0
ω0

ω0 + ω + i/T2
, (12)

and Eq. (10) into

χM,− =
1

2

 χB,− iχB,− 0
−iχB,− χB,− 0

0 0 2χ0

 , (13)

when considering the response of RCP light as opposed
to LCP light.

The magnetic susceptibility tensor χM which renders
the optical response for all magnetic field directions is
the sum of χM,+’s and χM,−’s transverse components

χM =
1

2

 χB,+ + χB,− −i [χB,+ − χB,−] 0
i [χB,+ − χB,−] χB,+ + χB,− 0

0 0 2χ0

 .

(14)
With Eq. (8) and Eq. (12) we can express the on-diagonal
and off-diagonal components of χM in the frequency do-
main

χM,xx = χM,yy = 2χ0
ω2
0

ω2
0 − ω2 − 2iω/T2

, (15)

χM,xy = −χM,yx = i2χ0
ω0ω

ω2
0 − ω2 − 2iω/T2

. (16)

Equations (15) and (16) are central to the further discus-
sions in this work. It is noted that the on-diagonal com-
ponents are equal. Their frequency dependence is identi-
cal to that of a harmonically broadened Lorentzian oscil-
lator model. This is no surprise since the Bloch equations
describe the motion of a magnetic moment in a harmonic
potential. The off-diagonal components differ in sign and
are purely imaginary in case of infinite relaxation time
T2. Hence, the off-diagonal components render circular
dichroism, and when T2 < ∞, the off-diagonal compo-
nents also describe circular birefringence. The spectral
behavior between on- and off-diagonal components is al-
most identical if ω ≈ ω0; however, it differs distinctly
when ω → 0 or ω → ∞. Specifically, the off-diagonal
components vanish towards infinite wavelengths, while
the on-diagonal components approach χ0, the dc mag-
netic susceptibility. Both components approach zero at
high frequencies. A further interesting feature of this
model is the fact that the on-diagonal components do
not change sign with reversal of the external induction
field, B0, while the off-diagonal terms do. This phe-
nomenon was noted previously during analysis attempts
of THz EPR ellipsometry measurements using an ad-hoc
model approach, which failed to explain the observed sign
changes in Mueller matrix elements upon field reversal.30

Finally, it can be shown that Eqs. 15 and 16 always lead
to loss and no gain for 0 ≤ T2, regardless of direction of
external induction B0 and choice of polarization.

To construct the full permeability tensor, we con-
sider the external induction field parallel direction z, and
Mz =M0 = χ0B0, then

µM = 1+ 4πχM =

1 + 4π
χ0ω

2
0

ω2
0−ω2−2iω/T2

−i4π χ0ω0ω
ω2

0−ω2−2iω/T2
0

i4π χ0ω0ω
ω2

0−ω2−2iω/T2
1 + 4π

χ0ω
2
0

ω2
0−ω2−2iω/T2

0

0 0 1 + 4πχ0

 . (17)

B. Bloch permeability eigenfunction µBl

The Bloch permeability µBl is introduced as the deter-
minant of the permeability tensor which yields

µBl = 1 + 4πχM,xx = 1 + 8πχ0
ω2
0

ω2
0 − ω2 − 2iω/T2

. (18)

Note that χM,xx does not change sign upon change of
the magnetic field direction. Therefore, µBl does not
depend on the external field direction. Furthermore, the

permeability tensor can now be written in the following
form:

µM =
1

2

 1 + µBl i ωω0
(1− µBl) 0

−i ωω0
(1− µBl) 1 + µBl 0

0 0 1
2 (1 + 4πχ0)

 ,

(19)
and we obtain that µBl is indeed eigenfunction to the
magnetic component of the electromagnetic wave for
LCP (RCP) light at frequencies close to resonance ω0

(-ω0), which is easily confirmed by multiplying the ten-
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sor with an LCP (RCP) magnetic field phasor H+ = (1, i, 0)T (H− = (1,−i, 0)T )

B = µMH± =
1

2

 1 + µBl i ωω0
(1− µBl) 0

−i ωω0
(1− µBl) 1 + µBl 0

0 0 1
2 (1 + 4πχ0)

 1
±i
0

 |ω→±ω0
≈

1

2

 1 + µBl ±i(1− µBl) 0
∓i(1− µBl) 1 + µBl 0

0 0 1
2 (1 + 4πχ0)

 1
±i
0

 = µBlH±.

(20)

As such, considering only one circular polarization mode,
the scalar function µBl can be sufficient to represent the
optical response at frequencies close to the resonant fre-
quencies. µBl is measured and modeled in this work
here and will be discussed in Sect. IV. Note specifically
that µBl is eigenfunction near resonance for LCP at pos-
itive field B0 and eigenfunction for RCP at negative field
B0. At resonance, the magnetic permeability response is
unity both for RCP at positive field and for LCP at nega-
tive field. At frequencies outside resonance, the behavior
of the permeability is more complex, and this will be dis-
cussed below in Sect. IID. Note that the polarization of
the light is also affected by the dielectric tensor. The
calculation of the polarization state of the propagating
electromagnetic waves within the material is discussed in
Appendix VIIA.

C. Bloch model extrapolated to high spin systems

The Bloch model, originally formulated on a rate equa-
tion for a two-level system, presents limitations when ap-
plied directly to a high spin system with 2S + 1 levels.
Effectively, this results in 2S distinct EPR active species
corresponding to the 2S spin projections with the lowest

energy. Consequently, the rate equations need to be mod-
ified if there is any interconversion between the species,49

by, for instance, utilizing the Bloch-McConnell equations.
We still motivate using the simple Bloch model as we op-
erate under the condition B1 << B0, resulting in mini-
mal interconversion by photon absorption. Furthermore,
we assume an absence of interactions between the con-
stituent spins within the system as the sample is weakly
doped. Effectively, this means that each spin projection
is considered to be a separate spin species. Secondly,
ZFS results in strongly orientation-dependent effective g-
factors, which introduce inhomogeneous broadening due
to small variations in the orientation of the defects. This
is commonly called g-strain54,55 and results in underesti-
mated relaxation times.
Subsequently, for a spin S > 1/2 system, the

frequency-dependent Bloch susceptibility is extrapolated
from the 2-state model under the assumption that the
2S spin transitions adhere to the line shape predicted by
the derived Bloch susceptibility, i.e.,

χxyM =

2S∑
j=1

χ0,jω0,j

ω2
0,j − ω2 − 2iω/T2,j

(
ω0,j −iω
iω ω0,j

)
, (21)

where the superscript xy denotes only the response in the
xy-plane, or equivalently

χxyM =

2S∑
j=1

χ0,jω0,j

ω2
0,j − ω2 − 2iω/T2,j

[
ω

(
1 −i
i 1

)
+ (ω0,j − ω)

(
1 0
0 0

)
+ (ω0,j − ω)

(
0 0
0 1

)]
. (22)

where χ0,j , ω0,j and T2,j denote the contribution to the
dc magnetic susceptibility, the resonance frequency, and
the transverse relaxation time for a given spin projection
j = 1, . . . 2S, respectively. Here j = 1 corresponds to
the transition from the lowest to the second lowest-lying
state, j = 2 from the second to the third lowest-lying
state, etc.

D. Bloch eigenmagnetic polarizability model

Inspired by Max Born’s description of lattice dynamics
in crystalline materials,56 an eigendielectric displacement
vector dyad summation was recently proposed as a phys-
ical model approach to render the measured dielectric
function tensor across the spectral range of j = 1, .., N
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long-wavelength active phonon modes35,36,57–60

ε = ε∞ +

N∑
j=1

ϱj(ê
†
j ⊗ êj), (23)

where ϱl is a complex-valued response function represent-
ing dispersion and loss caused by phonon mode l, êj is
a vector whose direction renders the maximum response
of phonon mode j to the electric field component of an
electromagnetic wave, † indicates transpose and complex-
conjugate, and ⊗ is the dyadic product. êj further de-
fines a normal to the plane within which the electric field
cannot excite mode j. The obvious advantage of this
summation approach lies in the possibility to add contri-
butions of individual dipolar linear optical excitations to
the total response function of a given material, i.e., the di-
electric function tensor. The eigenpolarization direction
parameter êj and eigendielectric function ϱj were demon-
strated as necessities to correctly describe and determine
phonon mode frequency parameters including their am-
plitudes and broadening information for materials with
low-symmetry lattice structures, i.e., monoclinic and tri-
clinic crystal systems.35,36,57–60 The approach is gener-
ally valid for all symmetries, and correctly predicts gen-
eralized, coordinate-invariant representations of the di-
electric functions and coordinate-invariant formulations
of the Lyddane-Sachs-Teller relationship,57 the evolution
of longitudinal phonon mode coupling with free charge
carriers,61 the existence of hyperbolic shear polaritons,62

and the anisotropic properties of band-to-band transi-
tions in low-symmetry solid-state materials,63 for exam-
ple.

It is of interest here to analyze the Bloch susceptibil-
ity model for its representation in terms of an analogous
summation and the aim is to identify a concept analo-
gous to the summation of lattice excitations, where the
occurrence of multiple magnetic excitations can be added
arbitrarily with respect to their magnetic polarization
properties. The question that follows is, can a similar
eigenvector be found which represents a magnetic exci-
tation and a response function be rendered that contains
dispersion and loss. Inspecting the result in Eq. 22 one
recognizes a dyad decomposition into three contributions
such that

µ = 1 +

2S∑
j=1

(
ϱCPj (â†j ⊗ âj) + ϱLPj

[
x̂†
j ⊗ x̂j + ŷ†

j ⊗ ŷj

])
,

(24)
where âj = (1,−i, 0), x̂j = (1, 0, 0), and ŷj = (0, 1, 0).
Eq. 24 is the Bloch eigenmagnetic polarizability model
and is a central finding of this work. We note with

interest that dyad (1,±i, 0)†j ⊗ (1,±i, 0) was shown in
Ref. 30 to represent the magnetic susceptibility ten-
sor for a purely left/right-circularly polarized eigenpro-
cess. Eigenvectors x̂j = (1, 0, 0) and ŷj = (0, 1, 0)
are the previously described linear eigenpolarization
vectors.35,36,57–60 Note that Eq. 24 remains unchanged
under rotation around vector â⋆j × âj = (0, 0,−2i), where

× indicates the cross or vector product and ⋆ is the
complex-conjugate. Likewise, rotation around direction
x̂⋆× ŷ = (0, 0, 1) leaves Eq. 24 unchanged. Here, this di-
rection is parallel to the external magnetic field direction,
B0

B0
. Thereby, we can also express the gyration vector of

the j-th eigenmagnetic polarizability contribution

gj =
i

2
â⋆j × âj = x̂⋆ × ŷ. (25)

Note further that rotation of the magnetic susceptibil-
ity tensor µ relative to a given sample and ellipsome-
ter coordinate system can be perform simply by using
Euler angle rotations and rotation matrix A defined in
Appendix VIID. Equation 24 is then rewritten for new
µ′ = AµA−1 by replacing ê′j = êjA

−1, x̂′
j = x̂jA

−1,

and ŷ′
j = ŷjA

−1, hence, g′j = Agj .
64 It is commonly as-

sumed that gyration vectors of all j spin resonances are
parallel to the external magnetic field, g′j = B0

B0
. How-

ever, this latter statement may not necessarily be true.
Investigations using THz EPR ellipsometry at multiple
angles of incidence, for example, could be used to test
this assumption in the future.
When the eigenvectors âj , x̂j , and ŷj are all equal

among the j = 1 . . . 2S magnetic transitions, then the
associated Bloch response function components obtained
here are65

ϱCPj =
χ0,jω0,jω

ω2
0,j − ω2 − 2iω/T2,j

,

ϱLPj =
χ0,jω0,j(ω0,j − ω)

ω2
0,j − ω2 − 2iω/T2,j

,
(26)


ω → 0 then ϱCPj → 0

ω → ω0,j then ϱCPj → 2iχ0,jω0,jT2
ω → ∞ then ϱCPj → 0
ω → 0 then ϱLPj → χ0,j

ω → ω0,j then ϱLPj → 0

ω → ∞ then ϱLPj → 0

(27)

The two functions differ subtly in their spectral depen-
dencies. The circularly polarized process is linear in the
external magnetic induction, B0, while the linearly polar-
ized process has a component which is linear and another
which is quadratic in B0. The circularly polarized process
disappears when ω approaches zero and infinity, while at
resonance, the response function is purely imaginary and
the amplitude is proportional to the magnetization as-
sociated with the lth spin transition, its frequency, and
transverse relaxation time. At resonance, there is no lin-
early polarized component of the magnetization. The
latter also vanishes at infinite frequencies. However, at
zero frequency, the linear polarizability function reveals
χ0,j . The linear components constitute a superposition
of two equivalent linear eigenmagnetic contributions po-
larized within the (x, y) plane in this coordinate system
and the response within this plane is isotropic.
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It is useful to introduce the Bloch susceptibility func-
tion for magnetic transition j, χBl,j

χBl,j =
χ0,jω0,jω

ω2
0,j − ω2 − 2iω/T2,j

; (28)

and rewrite Eq. 26

ϱCPl = χBl,j ;

ϱLPl = χBl,j
ω0,j − ω

ω
.

(29)

We can then express, and plot if necessary, the scalar,
complex-valued Bloch permeability eigenfunction as a
sum over all Bloch susceptibility functions for all mag-
netic transitions j = 1, . . . , 2S

µBl = 1 +

2S∑
j,1

χBl,j . (30)

We propose use of Eq. 24 and its component vectors and
functions as suitable decomposition approach to analyze
the measured spectral appearances of real and imaginary
parts of the magnetic permeability function, for example,
obtained from THz-EPR ellipsometry, or magnetooptic
ellipsometry investigations. We also propose use of Eq. 30
to present and discuss the spectral response of spin tran-
sitions if such can be considered to share a common gy-
ration vector. Future work will illuminate properties and
usefulness of this approach.

E. The Hamiltonian of the S=5/2 Fe3+ defect in
GaN

Iron-doped wurtzite GaN has previously been studied
extensively by several groups,47,66,67 where it has been
shown that the spin-Hamiltonian suggested by Bleany et
al.68 and altered by Geschwind69 suffices to explain the
experimental results and local symmetry of the S = 5/2
Fe3+ defect

H = gµBB0Szcosθ +
1

2
gµBB0sinθ(S+ + S−) +D(S2

z −
1

3
S(S+ 1))

− 1

180
(a− F )(35S4

z − 30S(S+ 1)S2
z + 25S2

z − 6S(S+ 1) + 3S2(S+ 1)2)
√
2

36
a(Sz(S

3
+e

−i3(ψ±α) + S3
−e

i3(ψ±α)) + (S3
+e

−i3(ψ±α) + S3
−e

i3(ψ±α))Sz).

(31)

Here, the g-factor is taken to be isotropic, and S, S+,
S− and Sz are the usual S = 5/2 spin matrices. Fur-
thermore, the effect of ZFS is represented in Eq. (31)
by D and F , which are the axial crystal field parame-
ters to the second and fourth order, respectively, and a
is the cubic crystal field parameter. Kashiwagi et al.47

conclusively demonstrated by applying Eq. (31) to con-
ventional X- and Q-band EPR that Fe3+ substitution of
Ga3+ in GaN occurs, and observed that there are two
nonequivalent Ga-sites in wurtzite GaN with respect to
the internal crystal field (Fig. 1). The nonequivalence is
due to the two sites’ different rotations with regard to
the internal crystal (ligand) field, and thus have different
α-angles, as discussed below. In addition, the selection
rule ∆ms = ±1, where ms is the sextet of projections,
suggests that five spin transitions are allowed for each of
the two sites, resulting in up to a total of ten allowed spin
transitions. The angles θ, γ, and α correspond to the an-
gle between the magnetic field and the [0001] axis, the
angle between the magnetic field projection onto (112̄3)
and the [101̄0]-direction, and the angle between the cu-
bic crystal field axis a1,2 and the [21̄1̄0]-direction, respec-
tively, are depicted in Fig. 1. For all measurements, the
sample was rotated such that it rendered the two distinct

sites equivalent in terms of the crystal field, consequently
resulting in a total of five discreet spin transitions ob-
servable within each spectrum. This is the case when
the magnetic field is aligned with ⟨11̄00⟩. Consequently,
the spin species corresponding to each of the two sites
are treated as one, which is an exception for this given
rotation.

F. The Brillouin magnetization of the S=5/2 Fe3+
defect in GaN

In extension to using Eq. (17) and to best-match model
the frequency-dependent permeability function we aug-
ment additional constraints for our specific S = 5/2 sys-
tem. The constraints affect the amplitude values of the
spin transitions at a fixed magnetic field, and are ob-
tained from the summation of magnetic moments accord-
ing to their thermal population. This constraint then
permits the use of the spin volume concentration ne as
the input parameter for the MMF approach. A similar
analysis was performed by Maryasov and Bowman on a
S = 5/2 system.71 We start by writing the dc magneti-
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FIG. 1. a) Wurtzite crystal structure of GaN along the [0001̄]
direction (c-axis). The Nitrogen atoms are depicted in blue
color and the Gallium atoms are depicted in green color and
denoted by either Ga1 or Ga2, depending on the relative ro-
tation of the two nonequivalent Gallium sites with respect to
the internal ligand field. Produced with computer software
VESTA.70 b) Projection onto the (112̄3) plane of the crys-
talline field-axes of the two Gallium sites, as given by Ref.
69. The definitions of the angles γ and α are schematically
drawn, as well as the magnetic field H and a few relevant
crystallographic directions.

zation as

M0 =
gµB
2

((n+1/2 − n−1/2) + 3(n+3/2 − n−3/2)

+ 5(n+5/2 − n−5/2)).
(32)

The expression, sometimes referred to as Brillouin mag-
netization, can be comprehended as an outcome wherein

each unpaired electron contributes gmsµBl to the overall
magnetization, and n+1/2, n−1/2, etc., refer to the spin
population volume density in level +1/2, -1/2, etc. Fur-
thermore, Eq. (32) can be restructured as

M0 =
gµB
2

(5(n+5/2 − n+3/2) + 8(n+3/2 − n+1/2)

+ 9(n+1/2 − n−1/2) + 8(n−1/2 − n−3/2)

+ 5(n−3/2 − n−5/2)) =

5∑
j

M0,j ,

(33)

i.e., as a sum corresponding to the five allowed spin tran-
sitions. The occupancy of each state is given by its Boltz-
mann factor

nn − nn−1 =
e−En/kT − e−En−1/kT∑

j e
−Ej/kT

ne. (34)

where the energy levels En are given by the eigenvalues
of Eq. (31). In the same manner, the dc magnetic suscep-
tibility function is modeled as a sum of all allowed spin
transitions contributing independently

χ0 =
M0

B0
=

5∑
j

M0,j

B0
=

5∑
j

χ0,j . (35)

Hence, Eq. 34 provides specific ratios between amplitude
strengths among the five transitions of the S=5/2 spin
system for any given magnetic field B0, and the scaling
factor on all amplitudes provides the spin density. Be-
cause the magnetic field changes the eigenenergies, the
ratios of amplitudes change as well, which can be mea-
sured by THz-EPR ellipsometry. Hence, measurements
at different magnetic fields and/or different temperatures
combined provide sensitivity to the spin density.

III. EXPERIMENTS AND METHODS

A. Sample

We conduct a quantitative assessment of the THz mag-
netic permeability properties of a wurtzite-structure sin-
gle crystalline GaN substrate doped with Fe. The GaN
substrate with (0001) c-plane surface orientation is fab-
ricated by hydride vapor phase epitaxy.72The substrate
thickness of 0.365 mm, as measured by THz ellipsome-
try, agrees very well with the value of 0.350±0.015 mm,
specified by the provider Suzhou Nanowin Science and
Technology Co. Ltd. The lateral dimensions of the GaN
sample are 20×20 mm2. The dislocation density in the
GaN samples was estimated from x-ray diffraction73 and
cathodoluminescence panchromatic imaging74 to be in
the order of 1×107cm−2. The GaN substrate is semi-
insulating with a resistivity > 106 Ω.cm at 300 K.
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B. THz-EPR ellipsometry

Measurements of the Mueller matrix elements are per-
formed using an in-house built THz ellipsometer system
at the Terahertz Materials Analysis Center at Lund Uni-
versity. The instrument uses a dual-rotating waveplate
setup with fast continuing frequency-sweeping, which dif-
fers from the optical Hall effect and THz EPR general-
ized ellipsometry instruments described in our previous
works.27–30 Note that the instrument incorporates addi-
tional anisotropic polarizing optical elements allowing for
the measurements of the 15 normalized Mueller matrix el-
ements as reported here. It further uses a fixed linear po-
larizer, rotating waveplate, sample, rotating waveplate,
and fixed linear polarizer (analyzer) configuration. The
instrument calibration and operation schemes for data
acquisition follow the same procedures as described by
Ruder et al.75,76 The anisotropic waveplates consist here
of 3D-printed plastic slanted columnar thin films. Such
structures produce sufficient anisotropy in the THz spec-
tral range to modulate the Stokes vector components at
normal incidence transmission upon rotating the wave-
plates around its surface normal.77,78 A more detailed
description of the instrument will be provided elsewhere.
For measurements with the sample immersed in a mag-
netic field, a superconducting split-coil magnet is em-
ployed capable of creating magnetic fields from -8 T to
8 T with a field homogeneity of approximately 3000 ppm
across a central cylindric volume with a diameter of 10
mm (Cryogenics Ltd. London UK). Further details of
the magnet setup are given in Refs. 28 and 30.

THz EPR ellipsometry measurements were performed
in the spectral range from 199-208 GHz in steps of
9.8 MHz. The source bandwidth was approximately
50 kHz. The instrument uses a solid-state synthe-
sizer source with digital control over frequency and duty
cycle.30 The Mueller matrix elements are obtained from
a subsequent collection of intensity readings at the solid-
state detector for various settings of polarizer, waveplate
1, waveplate 2, and analyzer as described by Ruder et
al.75,76 The instrument then records the full 4×4 Mueller
matrix, i.e., 16 elements normalized by element M11.
Measurements are performed in reflection configuration
with the sample positioned between the split coils at 45◦

angle of incidence. In this configuration, the magnetic
field direction aligns parallel with the incident beam.
Thereby the magnetic field is oriented at an angle of
45◦ towards the crystallographic axis c of the GaN sam-
ple. Additionally, the sample is rotated around its nor-
mal (azimuthal rotation) to achieve positioning of the
two nonequivalent gallium sites with respect to the static
magnetic field such that their respective magnetic spin
eigenenergy values coincide. This is the case when the
magnetic field is aligned with [11̄00] or an equivalent di-
rection as described in Sect. II E. As a result, the two
quintuplets merge and appear as exactly one quintuplet
in the THz-EPR ellipsometry spectra. This orientation
is selected here for the purpose of simplifying the analy-

sis by reducing necessary model calculations because the
thermodynamic distribution across one common spin sys-
tem must be considered only. The purpose of the exper-
iment is to demonstrate the approach. The sample tem-
perature is held constant during measurements. Data
were measured at temperatures of 20 K and 30 K, and
at a magnetic field strength of -7.23 T and 7.23 T. Data
were also measured at zero field, and the zero-field data
were subtracted from the field data in order to deter-
mine small-signal difference data which were then used
as target data during the subsequent Hamiltonian and
best-match model calculation analyses. Finally, the data
collected from the -7.23 T scan was subtracted from the
+7.23 T scan, to further amplify the signal strength.

C. Ellipsometry model calculations

The ellipsometry data model analysis is performed us-
ing the Berreman79 4× 4 transfer matrix approach aug-
mented with modifications described by Schubert.80 The
approach is briefly summarized in Appendix VIIB. A
three-phase substrate-film-ambient model is used. The
ambient is air. The substrate constitutes a metallic
substrate, assumed to exhibit complete reflectance to
the incident electromagnetic waves. The substrate is
non-magnetic and modeled as a highly conductive di-
electric material using the isotropic Drude model, ε =

1− ω2
p

ω(ω−iγp) with plasma frequency ωp = 10−6cm−1 and

plasma scattering time γp = 0 cm−1. The subsequent
layer is GaN with a thickness of 365 µm. The dielec-
tric properties of the GaN layer were calculated using
the anisotropic dc dielectric constant values reported by
Hibberd et al.,81 where εa and εc refer to the dielectric
permittivity for polarization along crystal axes a and c,
respectively,

ϵ =

εa 0 0
0 εa 0
0 0 εc

 =

9.22 0 0
0 9.22 0
0 0 10.32

 , (36)

and wherein the coordinate system (x′, y′, z′) of the di-
electric tensor is congruent with the laboratory reference
frame utilized for the ellipsometric data evaluation. Note
that due to the fact that Fe acts as compensating dopant
in GaN, the material is electrically fully insulating and
no Drude model contribution to the model dielectric ten-
sor is necessary. The magnetic permeability tensor was
modeled according to Eq. (17) and the parameters were
inferred from the best-match parameter model described
below. This tensor undergoes a rotation, explained in
Appendix VIID, employing Euler angles ψ = −90◦ and
θ = 45◦. This rotation is imperative to align the tensor’s
gyration (Eq. 25 in Sect. IID) axis with the externally
applied magnetic field and to align the (x, z)-plane with
the incidence plane of the electromagnetic wave. Sub-
sequently, both the dielectric and permeability tensors
are integrated into the ∆̂-matrix (Appendix VIIB). This
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integration facilitates the computation of the optical re-
sponse via the 4×4-matrix approach.
From the 4×4-matrix method, the calculated Mueller-

matrix elements M23, M32, M14 and M41 are compared
to the best-match model. These specific elements are
most sensitive to spin transitions and are thus chosen. A
more detailed explanation of how these are calculated is
presented in Appendix VIIC. To improve the signal-to-
noise ratio, we add M32 to M23 and subtract M41 from
M14, because it follows from the magnetic permeability
tensor model (17) used in our analysis it follows that
M32 =M23 and M14 = −M41. This can be seen directly
in the full Mueller matrix element spectra set in the sup-
plementary material. As such, ’effective’ Mueller-matrix
elements are calculated from experimental and model cal-
culated data

M23+32 =
M23 +M32

2
, (37)

and

M14−41 =
M14−M41

2
. (38)

D. MMF parameter regression analysis

The best-match model was calculated using the
curve fit function from the SciPy library.82 The curve fit
function uses a trust region reflective algorithm, which
aims to minimize the sum of squared residuals

S =

j∑
i=1

(yi − fi)
2, (39)

where the sum runs over all frequencies, yi =
[M23+32,M14−41](ωi) at frequency ωi, and N is the total
number of frequencies at which Mueller matrix elements
were included into the regression analysis. The model
response fi is calculated by simultaneously optimizing
parameters related to the spin-Hamiltonian D, a, F , g,
and θ, and the Bloch permeability parameters ne and T2,j
for all j = 1, . . . , 5 spin transitions. Error estimates are
determined as the square root of the diagonal elements of
the covariance matrix, as computed by the curve-fitting
procedure. Note that no data-point uncertainty-based
biasing was performed in Eq. 39 because the experimen-
tally determined uncertainty (variance) on every Mueller
matrix element was observed to be uniform (≈0.01%, see
Mueller matrix spectra shown in supplementary mate-
rial) across the spectral range investigated.

IV. EXAMPLE: SPIN TRANSITIONS IN
FE-DOPED GAN

The experiment on the spin S = 5/2 system in GaN is
selected here for the purpose of demonstration. THz EPR

ellipsometry was performed as described above. The
Hamiltonian description of the zero-field split system is
well known, and thereby is suitable for the purpose here.
As outlined in earlier sections, the sample is oriented such
that the two ZFS quintuplets align in their eigenvalues
and thermodynamic spin distributions. As a result, only
one common quintuplet is observed.

A. Results

Figs. 2(a,b) and Fig. 2(c,d) show experimental and
best-match model calculated data for M14−41 and
M23+32 at 20 K and at 30 K, respectively. Note the
different amplitude distributions between the different
temperature measurements. The full sets of Mueller ma-
trix data taken at the two magnetic fields at 20 K are
shown in the supplementary material. The best-match
model calculated data are obtained by varying the Hamil-
tonian parameters for calculation of the eigenenergies
ω0,j , the total spin density ne, and the transverse re-
laxation time parameters for each transition. An excel-
lent match between experimental and model-calculated
data is obtained. The match illustrates the correctness
of the model derived in this work. Particularly, the match
upon reversal of field, which changes signatures such that
M14(B) = M41(−B), M23(B) = −M32(−B) as well as
M14(B) = −M41(B) and M23(B) = M32(B) is consis-
tent between experiment and theory. This observation
is the first to our knowledge because no Mueller matrix
elements have been reported thus far for spin resonances
in the THz spectral range. Eq. (17) can account for the
expected sign change upon magnetic field reversal exper-
imentally observed here, which was not the case with the
ad-hoc model used previously for THz-EPR ellipsometry
data analysis.30 There, the permeability tensor suffered
from being invariant to a change of the sign of ω0.
The congruence between the model and experimental

observations is further noteworthy because the amplitude
variations are consistent with predictions derived from
the Brillouin magnetization theory, and the spectral line
shapes align with the theoretical projections based on
the Bloch equations. This can be seen by the amplitude
distribution match in Figs. 2(a-d) as well as in the full
Mueller matrix displayed in the supplementary materi-
als. The extracted Bloch permeability µBl as given by
Eq. (30) obtained from the experimental data at 7.23 T
and 20 K is shown in Fig. 3. This result highlights the
ability of the method to measure and determine both the
imaginary and real part of the frequency-dependent per-
meability tensor and thus yield access to further polariza-
tion properties of a given magnetic transition as well as
the possibility of inferring dc properties by extrapolating
the value of µBl at ω = 0.
The ZFS, g-factor, and spin density parameters de-

duced from our best-match model calculations are cat-
aloged in Table I. The transverse relaxation times are
summarized in Table II.
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FIG. 2. Results from frequency-swept THz-EPR ellipsometry measurements performed at a,b) 20 K and c,d) 30 K. The
calculated best-match model is represented by the solid red line and is based on the Bloch-Brillouin model. The black symbols
indicate the experimental data. In a,c) M14−41 = (M14 − M41)/2 is shown, which scales with circular dichroism. In b,d)
M23+32 = (M23 +M32)/2 is shown, which scales with circular birefringence. Experimental and model data are obtained as
difference data for magnetic field B = −7.23 T and B = 7.23 T.

TABLE I. Summary of model parameters obtained from analysis of the THz-EPR ellipsometry measurements on iron-doped
GaN. The parameters were determined by minimizing the least-squares difference between the best-match model and experi-
mental data gathered at temperatures of 20 and 30 K. The optimization process was confined to the Mueller-matrix elements
M23, M32, M14, and M41. All parameters are shown with error bars according to one standard deviation as approximated from
the square roots of the covariance matrix.

D a F g θ ne

MHz MHz MHz n/a ◦ cm−3

This work -2250 ± 14 210 ± 280 15 ± 280 2.008200 ± 8·10−6 44.4 ± 0.05 1.92·1018 ± 1.57·1016
Kashiwagi et al.a -2290 240 -27 2.008 - -
Maier et al.b -2138 144 -12 1.995 - -
Baranov et al.c |2144| - - 1.994 - -

a X- and Q-band EPR, Ref. 47.
b Ref. 67.

c X-band EPR, Ref. 66.

TABLE II. Measured transverse relaxation time T2,j parame-
ters and one standard deviation in units of 10−11s for various
temperatures.

T T2,1 T2,2 T2,3 T2,4 T2,5

K 10−11s 10−11s 10−11s 10−11s 10−11s
20 224±5 232±5 288±7 240±10 238±24
30 215±5 217±4 260±5 191±6 223±13

B. Discussion

The ZFS parameters deduced here agree well with
those reported in prior studies.47,66,67 Nevertheless, the
substantial standard deviations, in particular for param-

eters a and F indicate that multiple combinations of the
ZFS parameters can produce equally satisfactory model
calculations matching our data obtained for a singular
sample azimuth (rotation) orientation. Additionally, a
small angular offset between the magnetic field direction
and the sample plane was observed and is due to a slight
misalignment of the magnet cryostat to dampen stand-
ing waves within the inner wedged diamond windows of
the cryostat. The quantitatively determined spin vol-
ume concentration ne is in agreement with the nominal
range of iron concentration of this specific sample. In
light of these findings, a future comprehensive analyti-
cal investigation is warranted to ascertain the reliability
and accuracy of this technique for measuring spin volume
concentration by augmenting further magnetic field, tem-
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FIG. 3. Extracted Bloch permeability eigenfunction µBl at
B = 7.23 T and 20 K from the best-match model accord-
ing to (30). The lower part shows the imaginary part of µBl

as a solid blue line, and the upper half shows the real part
of µBl as a solid green line. The distribution of amplitudes
across the five spin transitions is the result of the thermody-
namic Brillouin model, the eigenfrequencies are the result of
the Hamiltonian calculations predicting the ZFS spin transi-
tion in this example.

perature, and sample rotation data.
The calculated transverse relaxation times are pre-

sented in table II. It is important to emphasize that these
relaxation times are inflated due to the rather large mag-
netic field broadening introduced by our superconducting
magnet, which is not engineered for optimal field ho-
mogeneity. This lack of flatness introduces a notable
broadening of the observed transitions.83. To obtain
more accurate relaxation time parameters, a thorough
consideration of the broadening causes attributable to
both the magnetic field inhomogeneity and g-strain is re-
quired. However, such an in-depth analysis falls beyond
the scope of this article. It is noted that the T2,j-values
differ among the transitions. The cause of this could be
due to several reasons, such as the two nonequivalent
sites not perfectly overlapping or the width of the transi-
tions being unequal because of the difference in how the
spin projections interact with the local environment. The
longitudinal relaxation times are not accessible from this
steady-state continuous-wave single-frequency type mea-
surement, and time-dependent measurement approaches
are necessary. Such are conceivable using solid-state
source- and detector-based techniques and could be the
subject of further investigations. We propose that THz-
EPR ellipsometry is a robust technique for investigating
transverse spin relaxation times, offering significant po-
tential for future studies in this domain.

The pairs of Mueller matrix elements M14, M41 and
M23, M32 are routinely associated with circular dichro-
ism and circular birefringence.84 Hence, one can inter-
pret data in Figs. 2(a,b) with circular dichroism and in
Figs. 2(c,d) with circular birefringence. The former is
then expected to appear as a Lorentzian absorption line,
while the latter is expected to appear as a form with in-

creasing normal dispersion towards resonance, negative
dispersion across resonance, and normal dispersion ap-
proaching zero above resonance. Note that all features
shown in Figs. 2(a-d) invert with magnetic field reversal,
while spectra shown in Fig. 3 remain unchanged. This is
due to the definition we chose in Sec. IID. Then, function
µBl represents the LCP circular birefringence in its real
part and circular polarized loss in its imaginary part for
positive field. Upon field reversal, µBl then represents
the RCP circular birefringence in its real part and circu-
lar polarized loss in its imaginary part. Both functions
are unchanged between LCP at positive and RCP at neg-
ative fields. Hence, µBl directly represents the chiropti-
cal properties of magnetic resonance transitions. We note
that signatures observed in our experiment relate to elec-
tron spin resonance. Antiferromagnetic resonance may
reveal also signatures opposite to those observed here.
Future research trajectories may consider the imple-

mentation of advanced versions of the Bloch equations to
delve deeper into magnetic resonance phenomena. This
includes the Bloch-Bloembergen equations85 which mod-
ify the external magnetic field to an effective field that
encompasses the internal field generated by the sam-
ple, thereby making it more suitable for systems with
higher spin volume concentrations. This modification
allows for a more accurate representation in ferromag-
netic resonance studies. In parallel, both the Gilbert
equation86 and Landau–Lifshitz equation87 offer a refor-
mulation where phenomenological relaxation times are
substituted with a relaxation rate that is proportional
to the time derivative of the magnetization, accompa-
nied by a damping parameter. This damping parameter
is crucial in the study of energy dissipation within the
system, particularly relevant for the investigation of spin
waves and strong ferromagnets characterized by inter-
acting magnetic moments and domain formation.88 The
Bloch-McConnell38 equations represent another exten-
sion of the original Bloch equations, designed to include
the dynamics of chemical exchange processes in NMR
studies. These modified equations are essential for ex-
amining the interaction of nuclear spins in systems where
species undergo interconversion, leading to distinct NMR
signatures. By integrating terms for chemical exchange
rates, the Bloch-McConnell equations enhance the capa-
bility to analyze the impact of such exchanges on the
system’s magnetization. The Bloch equations can also
be applied to pulsed magnetic resonance89, making it
feasible to study fast processes such as spin dynamics
in biological samples.90

V. CONCLUSIONS

We presented a generalized approach based on Bloch’s
equation of motion of nuclear magnetic moments. Our
approach can model the frequency, magnetic field, mo-
ment density, and temperature dependencies of the mag-
netic permeability in magnetic resonance. Our model
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predicts polarization properties in electromagnetic wave
interactions, which can be observed, for example, in
full polarization-resolved Mueller matrix element spec-
tra measured across magnetic resonances as a function of
frequency, magnetic field, spin density, and temperature.
Thermodynamic considerations are augmented using the
concept of Brillouin magnetization. Hamiltonian pertur-
bation approaches for ZFS and Zeeman interaction are
incorporated further and the magnetic eigenvalue spec-
trum, spectral amplitude distribution, and geometrical
orientation parameters of the magnetic moment density
are obtainable from comparing the generalized model ap-
proach to experimental data. We demonstrate the valid-
ity of our approach by analyzing the oblique angle of in-
cidence terahertz spectral range magnetic field ellipsom-
etry to detect electron spin resonance quintuplet transi-
tions in wurtzite-structure GaN doped with iron. Mea-
surements at magnetic fields of ±7.23 T and cryogenic
temperatures of 20 K and 30 K detail the occurrence
of linear and circular birefringence and dichroism associ-
ated with each of the zero-field split spin transitions in
the S = 5/2 system. We derive and discuss the spectral
dependence of the magnetic susceptibility function and
obtain the temperature and magnetic field-dependent
Hamiltonian parameters and spin density. The 15 in-
dependent elements of the normalized Mueller matrix for
both positive and negative magnetic fields are matched
excellently with our model. We propose the employment
of our approach to study magnetic resonance in ferromag-
netic, antiferromagnetic, and nuclear magnetic resonance
spectroscopy.
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VII. APPENDIX

A. Generalized Spectroscopic Ellipsometry

The results of Mueller-matrix ellipsometry34 are com-
monly described by Mueller-Calculus, which is a mathe-
matical framework where Mueller matrices44

M =

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 , (40)

operate on Stokes vectors34

S =

 Ip + Is
Ip − Is

I45◦ − I−45◦

IRCP − ILCP

 , (41)

where s, p, ±45◦ denote linearly polarized light perpen-
dicular, parallel, ± 45◦ to the plane of incidence, while
RCP and LCP denote right and left circularly polarized
light, respectively.

B. 4×4 matrix formalism

To compute the Mueller matrix and establish a connec-
tion between experimental data and a theoretical model,
employing the 4×4 formalism introduced by Berreman79

is convenient. This formalism was further elaborated
upon by Schubert.80 Fundamentally, the formalism is
based on the transfer matrix equation, which can be writ-
ten as within the coordinate system introduced in Ref. 80

EIp
EIs
ERp
ERs

 = L


ETp
ETs
EBp
EBs

 , (42)

where I and R pertain to the electric components of
the incoming and reflected electromagnetic (EM) waves,
while B and T correspond to the electric components of
the backward-traveling and transmitted portions of the
outgoing EM waves. The transfer matrix L consists of
three factors:

L = L−1
I

k∏
j

LjLT . (43)

In this expression, the incident transfer matrix L−1
I

projects the incident electromagnetic plane wave onto
the sample’s surface, and the exit transfer matrix LT
projects the transmitted wave components onto the sub-
strate. The second factor encapsulates the properties of
the various layers within the sample, with k representing



15

the total number of layers. The transfer matrix for each
individual layer can be expressed as:

Lj = exp

(
−iω∆̂d

c

)
(44)

where c is the speed of light in vacuum, ω is the frequency
of the electromagnetic wave, d the thickness of the sam-
ple. The ∆̂-matrix is derived directly from Maxwell’s
equations and contains elements of the permeability and
permittivity tensor in the frequency domain expansion:

∆̂ =


−qx εzxεzz

qx(− εzy
εzz

+ µzx

µzz
) µyx − µyzµzx

µzz
−q2x 1

εzz
+ µyy − µyzµzy

µzz

0 −qx µxz

µzz
−µxx + µxzµzx

µzz
−µxy + µxzµzy

µzz

−εyx + εyzεzx
εzz

−εyy + εyzεzy
εzz

+ q2x
1
µzz

−qx µzx

µzz
qx(

εyz

εzz
− µzy

µzz
)

εxx − εxzεzx
εzz

εxy − εxzεzy
εzz

0 −qx εxz

εzz

 , (45)

where qx = nIsinθ is the x-component of the reduced
wavevector ω

c q = k of the incoming wave vector k at the
sample surface parallel to the plane of incidence, nI is
the index of refraction of the isotropic incident medium,
and θ is the angle of incidence to the surface normal.
In this coordinate choice, the plane of incidence is the
(x, z) plane, the sample surface is parallel to the (x, y)
plane, z points into the sample, and the surface is at the
coordinate origin of the Cartesian system (x, y, z). Given
that spin transitions manifest as magnetic resonances, it
becomes imperative to model the permeability tensor in
addition to the permittivity tensor.

C. Mueller matrix elements

Once the transfer matrix is calculated, determining
the Mueller matrix elements becomes a straightforward
task. For an in-depth explanation, readers are referred
to references34,44,46,91. To exemplify the procedure, the
derivation of elements M14,41 and M23,32 from the re-
sult of the 4×4 calculation scheme are presented here.
It has been observed that the Mueller-matrix elements
M14,41 are proportional to the circular dichroism, and the
Mueller-matrix elements M23,32 are proportional to the
circular birefringence caused by the spin transitions.30

Consequently, the Mueller matrix elements M23,32 and
M14,41 are employed for the detection of EPR signals in
this study. These elements can be written in the form of
transfer matrix elements Lk,l with k, l = 1, 2, 3, 4:

M23 =

ℜ
(
(L11L43 − L13L41)(L11L23 − L13L21)

∗

L11L33 − L13L31

− (L33L21 − L31L23)(L33L41 − L31L43)
∗

L11L33 − L13L31

)
,

(46)

M32 =

ℜ
(
(L11L43 − L13L41)(L33L41 − L31L43)

∗

L11L33 − L13L31

− (L33L21 − L31L23)(L11L23 − L13L21)
∗

L11L33 − L13L31

)
,

(47)

FIG. 4. Definition of the Euler angles φ, θ, and ψ and the
orthogonal rotations as provided by A. (ξ, η, ζ), and (x, y, z)
refer to the Cartesian auxiliary and laboratory coordinate sys-
tems, respectively. Reprinted from Ref. 35 with copyright
permission by American Physical Society.

M14 =

ℑ
(
(L11L43 − L13L41)(L11L23 − L13L21)

∗

L11L33 − L13L31

− (L33L21 − L31L23)(L33L41 − L31L43)
∗

L11L33 − L13L31

)
,

(48)

and

M41 =

ℑ
(
(L11L43 − L13L41)(L33L41 − L31L43)

∗

L11L33 − L13L31

− (L33L21 − L31L23)(L11L23 − L13L21)
∗

L11L33 − L13L31

)
,

(49)

where ∗ symbolizes complex conjugate. From these ex-
pressions it is evident that M14 and M23 are the imagi-
nary and real part of the same function, respectively, and
the same holds true for M41 and M32.

D. Euler rotations

For a given magnetic field orientation, Euler angle
rotations are required to bring µ into the correct ap-
pearance within the ellipsometer system (x, y, z). Euler
rotations which perform such operations are shown in
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Fig. 4. Operation R1(v = ϕ) renders rotation around z,
R2(v = θ) around x, and R1(v = ψ) around new direc-
tion ζ with mathematically positive (negative) sense for
positive (negative) arguments

R1(v) =

 cos v − sin v 0
sin v cos v 0
0 0 1

 , (50)

R2(v) =

 1 0 0
0 cos v − sin v
0 sin v cos v

 . (51)

The full set of rotations, φ, θ, ψ indicated in Fig. 4, is
then described by matrix A

A = R1(φ)R2(θ)R1(ψ), (52)

where µ̂ indicates the tensor appearance of µ in a new
auxiliary system

µ̂ = AµA−1. (53)

Due to the rotational invariance of Eq. 24 around its
gyration vector in Eq. 25 rotation R1(ψ) is not needed
for addressing the magnetic field direction relative to the
sample system within the ellipsometer system. However,
the rotational dependencies of the Hamiltonian param-
eters will depend on the sample orientation relative to
the ellipsometer system and the magnetic field direction.
For proper sample rotation to align the dielectric tensor
within the ellipsometer system, all three Euler rotations
maybe necessary.
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I. FULL MUELLER MATRIX RESULTS

FIG. 1. Orange dots show experimental data gathered from terahertz magnetic resonance ellipsometry at 20 K. The data is
the difference between a 0 T and a 7.23 T measurement. The blue solid line corresponds to the calculated best-match model
as per the Bloch model derived in the main paper.
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2

FIG. 2. Same as Fig. 1 but with a negative-valued magnetic field strength of -7.23 T.
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