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Abstract—The current evolution towards a massive number
of antennas and a large variety of transceiver architectures
forces to revisit the conventional techniques used to improve
the fundamental power amplifier (PA) linearity-efficiency trade-
off. Most of the digital linearization techniques rely on PA
measurements using a dedicated feedback receiver. However, in
modern systems with large amount of RF chains and high carrier
frequency, dedicated receiver per RF chain is costly and complex
to implement. This issue can be addressed by measuring PAs over
the air, but in that case, this extra signalling is sharing resources
with the actual data transmission. In this paper, we look at the
problem from an estimation theory point of view so as to minimize
pilot overhead while optimizing estimation performance. We show
that conventional results in the mathematical statistics community
can be used. We find the least squares (LS) optimal training
design, minimizing the maximal mean squared error (MSE) of
the reconstructed PA response over its whole input range. As
compared to uniform training, simulations demonstrate a factor
10 reduction of the maximal MSE for a L = 7 PA polynomial
order. Using prior information, the LMMSE estimator can achieve
an additional gain of a factor up to 300 at low signal-to-noise ratio
(SNR).

Index Terms—Optimal training, power amplifier, calibration.

I. INTRODUCTION

The power amplifiers (PAs) account for a large part of energy

consumption of base stations [1]. Their operating regime faces

a fundamental trade-off between linearity and efficiency [2].

While linearity is desirable to avoid signal degradation and out-

of-band emission, driving the PA closer to saturation improves

its efficiency while the signal suffers from more nonlinearity.

This is particularly challenging in latest broadband technologies

where the combination of multicarrier transmission and pre-

coding over to multiple users, leads to a high peak-to-average

power ratio, requiring a large linear range of the PA [3].

A. State-of-the-Art

A widely used solution to improve the linearity-efficiency

trade-off is the use of digital pre-distortion (DPD) before the

PA to linearize its response and allow to drive it closer to satura-

tion [4]. A recently proposed solution is the use of distortion-

aware precoding such as the Z3RO precoder [5], [6]. These

techniques require the PA response to be properly estimated.

A conventional approach is to use a feedback loop after the

PA within the transmitter chain [7]. Unfortunately, in massive

MIMO and/or mm-wave systems, this is not always possible or

desirable. Replicating such a feedback mechanism per RF chain

is expensive in terms of hardware. An interesting alternative is

to train the DPD using the over-the-air (OTA) wireless link

with either near-field probes [8], far-field observation antennas

or the entire radio link [9], [10]. As this training signalling uses

the wireless channel, it is important to minimize the signalling

overhead to avoid penalizing data transmission.

To the best of our knowledge, despite this rich literature on

array linearization, there is a lack of an estimation-theoretical

approach of optimal training design to estimate PA model

parameters. Moreover, when using a dedicated feedback loop

directly after the PA, observations are typically obtained con-

tinuously at a very high signal-to-noise ratio (SNR) and noise is

generally neglected [7]. In contrast, OTA training suffers from

channel attenuation, multipath propagation, and limited SNR

due to the lower received signal strength. Hence, the training

design should be optimized to maximize performance while

minimizing the signalling overhead.

B. Contributions

In this paper, we formalize the noisy OTA estimation prob-

lem and rederive the least squares (LS) and linear minimum

mean squared error (LMMSE) estimators for a nonlinear

memoryless polynomial PA model. We derive the LS optimal

training in the sense of minimizing the generalized variance

(determinant) of the error covariance matrix. To do this, we

show that the problem can be viewed as a D-optimal design,

well known in mathematical statistics. Interestingly, the opti-

mal design also minimizes the maximal reconstruction mean

squared error (MSE) when predicting the PA response over

the entire PA input range. The optimal training design can

also be used for the LMMSE estimator but is only optimal

at high SNR. Simulation results demonstrate the superiority of

the optimal design for the LS estimator. We also show, that if

enough prior information is available on the PA response, the

LMMSE estimator can provide a significant gain at low SNR,

especially if the phase of the channel is known (coherent case).

Notations: Vectors and matrices are by bold lowercase and

uppercase letters a and A. Superscripts ∗, T and H stand

for conjugate, transpose and Hermitian transpose. The sym-

bols E(.), ∠(.), ‖A‖ and |A| denote the expectation, phase,

Frobenius norm and determinant. N (µ, σ2) denotes a normal

distribution with mean µ and variance σ2.

II. POWER AMPLIFIER MODEL ESTIMATION

Without loss of generality, we consider a single PA related

to a transmit antenna, which response needs to be estimated.

To do this, over-the-air calibration is considered based on an

observational receiver and a feedback loop. The framework can

be straightforwardly extended to multiple transmit antennas

by using orthogonal transmit sequences and decoupling the
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problem per PA. A series of N pilots are sent, denoted by

sn, n = 0, ..., N − 1. The channel is assumed narrowband and

constant during training. The received signal is then

rn = hf(sn) + wn

where wn is additive noise and h is the complex channel

coefficient. The function f() is the PA transfer function to be

estimated. It is here considered to follow a nonlinear quasi-

memoryless polynomial model

f(s) =

L
∑

l=1

βls|s|l−1

where L is the model order and βl ∈ C are the polynomial

coefficients to be estimated. One can note the presence of

even-order nonlinear terms, which are often neglected when

considering bandpass signals. Still, motivated by [11], we

include them to improve both modelling accuracy while using

low order polynomials, with better numerical properties and

also making the following optimization problem more standard.

Without further assumptions, the problem has L + 1 complex

unknowns including the L beta coefficients plus the channel

coefficient h. In practice, channel estimation will be used at

the receiver so that the equivalent linear channel gain hβ1 will

be estimated. We are interested in the relation of higher order

terms with respect to this one. To solve this ambiguity, we set

h = 1, which we will rediscuss in Section IV. We thus have

rn =

L
∑

l=1

βlsn|sn|l−1 + wn.

In vector form, this gives a linear observation model

r = Φβ +w

where r = (r0, ..., rN−1)
T , β = (β1, ..., βL)

T ∈ C
L×1, w =

(w0, ..., wN−1)
T and

Φ =







s0 . . . s0|s0|L−1

...
. . .

...

sN−1 . . . sN−1|sN−1|L−1






∈ C

N×L.

In the literature, other polynomial bases have been considered,

e.g., orthogonal bases for given distributions of the input

signals [12]. Generally considering another basis Ψ ∈ C
N×L,

we can write Ψ = ΦU where U ∈ CL×L is a full rank matrix.

We would then have r = Ψα+w where α = Uβ.

A. Least Squares Estimator

The classical LS estimate is given by [7], [13]

β̂LS = argmin
β

‖r−Φβ‖2 = (ΦH
Φ)−1

Φ
H
r.

We here consider the noise samples wn identically and inde-

pendently complex circularly symmetric distributed with zero

mean and variance σ2 so that the LS estimate corresponds to the

maximum likelihood (ML) estimate [13]. The error covariance

matrix is

CLS = σ2(ΦH
Φ)−1.

We can use the LS estimate to predict, i.e., reconstruct, the PA

response at Ñ values s̃n, n = 0, ..., Ñ − 1 as Φ̃β̂LS with

Φ̃ =







s̃0 . . . s̃0|s̃0|L−1

...
. . .

...

s̃Ñ−1
. . . s̃Ñ−1

|s̃Ñ−1
|L−1






∈ C

Ñ×L.

The resulting estimate is unbiased with error covariance matrix

C̃LS = σ2
Φ̃(ΦH

Φ)−1
Φ̃

H
. (1)

B. Linear Minimum Mean Squared Estimator

How to choose the polynomial order L? Intuitively, in-

creasing it would only help as it would allow a better fit.

Unfortunately, this is not the case for the conventional LS

estimator due to three reasons. i) It may suffer from numerical

instability if a high polynomial order L is considered [7],

[12]. In other words, the matrix inverse (ΦH
Φ)−1 becomes

ill conditioned. ii) As will be shown in Corol. 1, the prediction

MSE grows with L. Intuitively, more coefficients need to be

estimated leading to less noise averaging. iii) Moreover, the

minimum number of pilots N has to grow with L, since the

matrix Φ needs at least L pilots with different magnitude to be

full rank so that matrix Φ
H
Φ can be inverted.

This requirement of N ≥ L pilots relates to the fact that

the LS estimator gives the same importance to all polynomial

coefficients βl. In practice though, some, especially higher

order ones, may be negligible. This knowledge can help to

regularize the problem inversion (even if N ≤ L). To do

this, we leverage the prior information we have about the PA

transfer function. Indeed, while its exact form is not known,

its general behaviour can be generally assumed to be known,

e.g., its linear gain or saturation level. A LMMSE provides an

attractive solution, which only requires the first and second-

order statistical moments. We now assume that the vector β is

random with mean β̄ and covariance matrix Cβ. In Section IV,

we discuss two cases of prior information depending if the

phase of the channel gain h is known (coherent) or unknown

(noncoherent). The LMMSE estimator is then

β̂LMMSE = β̄ + (ΦH
Φ+ σ2

C
−1

β )−1
Φ

H(r−Φβ̄)

and the error covariance matrix is

CLMMSE = σ2(ΦH
Φ+ σ2

C
−1

β )−1.

Note that the matrix to invert is always full rank, even if N ≤ L.

Moreover, given the positive definite nature of Cβ we have

CLS � CLMMSE, which implies better performance of the

LMMSE estimator. Again, we can predict the PA response at

Ñ values by Φ̃β̂LMMSE with an error covariance matrix

C̃LMMSE = σ2
Φ̃(ΦH

Φ+ σ2
C

−1

β )−1
Φ̃

H
.

Proposition 1. The basis choice has no impact on the predic-

tion performance related to the LS and LMMSE estimators,

i.e., C̃LS and C̃LMMSE do not depend on the basis Ψ.

Proof. We here conduct the proof in the LMMSE case. The

LS case can be found by particularization to the case C
−1

β =



0 (infinite variance of a priori information). We can redo the

previous derivation for a general basis Ψ. We then have Ψ =
ΦU and Ψ̃ = Φ̃U. Since α = Uβ, the random vector α

has a covariance matrix Cα = UCβU
H . The error covariance

matrix then becomes

C̃LMMSE = σ2
Ψ̃(ΨH

Ψ+ σ2
C

−1
α )−1

Ψ̃
H

= σ2
Φ̃U(UH

Φ
H
ΦU+ σ2

C
−1
α )−1

U
H
Φ̃

H

= σ2
Φ̃(ΦH

Φ+ σ2
C

−1

β )−1
Φ̃

H

where we used the fact that the square matrix U is full rank

and is thus invertible. This completes the proof.

III. OPTIMAL TRAINING DESIGN

We now consider the optimal design of the pilot symbols

sn, n = 0, ..., N − 1 or equivalently the matrix Φ. As a

practical constraint, we consider that the PA input power can

be limited by a max level. Therefore, we add the constraint

|sn| ≤ 1, i.e., a unit power constraint which can be generalized

straightforwardly to any power Pmax by scaling training points

sn by
√
Pmax.

In theoretical infinite precision, Prop. 1 shows that all bases

give same performance. Hence, the basis choice has no impact

on the optimal training design minimizing C̃LS/LMMSE. In

practice, when implementing the estimators in finite precision,

some bases will perform better and the conventional Φ should

be avoided. Indeed, its high order terms |s|l go to zero fast

(as O(|s|l)) as |s| → 0 while other bases can keep a decay

in O(|s|), giving them increased robustness (reduced impact of

quantization error) [12]. We now give a lemma that will prove

useful for optimal design.

Lemma 1. The phases of the pilot signals ∠sn have no impact

on the error covariance matrices CLS/LMMSE and C̃LS/LMMSE.

Hence, they can be chosen arbitrarily.

Proof. The error covariance matrices depend on the matrix

Φ
H
Φ =







∑

n |sn|2 . . .
∑

n |sn|L+1

...
. . .

...
∑

n |sn|L+1 . . .
∑

n |sn|2L







which only depends on pilot amplitudes, not phases.

A. Least Squares Estimator

We now consider the design of Φ to minimize the gener-

alized variance, i.e., the determinant, of the LS estimate error

covariance matrix

min
s0,...,sN−1

0≤|sn|≤1, ∀n

|CLS| = σ2L|(ΦH
Φ)−1|. (2)

Theorem 1. If N is a multiple of L, the optimal training design

that solves (2) divides the N pilots sn in L sets of N/L pilots.

The amplitude of the pilots in each set corresponds to one of

the L support points (roots) tl that solve

(1− t)P ′
L(2t− 1) = 0 (3)

where P ′
L(t) is the derivative of the L-th degree Legendre

polynomial PL(t).
1 The phase of the pilots can be chosen

arbitrarily.

Proof. In light of Lemma 1, we can simplify the optimization

problem by restricting sn to be fully real and positive. After

optimization, a phase can be reinserted if desired, without im-

pacting performance. The fully real problem then has the form

of a standard polynomial regression. A large body of literature

exists on so-called optimal design of experiments [14]. The

specific problem of minimizing the determinant is referred to

as a D-optimal design in the mathematical statistics community.

Two key specificities here are that i) no intercept is considered

and ii) pilots should belong to the domain [0, 1]. These con-

straints are considered in [15, Theor. 1], which we tailored to

the formalism of this paper.

Since 1 always is a root of (3), it is optimal to set unit

magnitude to N/L pilots. For other sets of pilots, roots of

P ′
L(2t − 1) should be found. For orders L ≤ 10, closed-form

expressions can be found easily. Indeed, the roots of Legendre

polynomial derivatives P ′
L(t) come in positive/negative pairs

and there is always one in zero for even L, i.e., one root in 1/2
for P ′

L(2t− 1). In any case, these roots can be pre-computed.

The optimal design of Theorem 1 provides an additional

global optimality guarantee on the total regression range. To

introduce it, let us first consider the PA predicted response

for a given input value s̃. Defining φ̃(s̃) = (s̃, ..., s̃|s̃|L−1)T ,

the prediction error variance or MSE is then given by (1)

particularized for Ñ = 1

MSELS(s̃) = σ2φ̃(s̃)H(ΦH
Φ)−1φ̃(s̃)

and the maximal MSE over the regression range, for a given

training matrix Φ, is defined as

dLS(Φ) = max
s̃,|s̃|≤1

MSELS(s̃).

Corollary 1 (Minimax MSE). The optimal design of Theor. 1

also minimizes the maximal prediction MSE over the PA input

range, i.e., it is the solution of

min
s0,...,sN−1

0≤|sn|≤1, ∀n

dLS(Φ)

achieving dLS(Φ) = σ2L/N and thus bounding the prediction

error variance as MSELS(s̃) ≤ σ2L/N .

Proof. The proof directly comes from the Kiefer-Wolfowitz

equivalence theorem [14], [16], particularized to our case.

B. Linear Minimum Mean Squared Estimator

Unfortunately, we do not have the expression of the optimal

training matrix in the LMMSE case. We can still put forward

certain positive aspects about using the LS optimal design

for the LMMSE estimator. In general, given that CLS �
CLMMSE, we also have that |CLS| ≥ |CLMMSE|. Hence min-

imizing |CLS| corresponds to minimizing an upper bound on

1PL(2t − 1) is the shifted Legendre polynomial to the interval [0, 1].
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Fig. 1: LS prediction (reconstruction) MSE for a uniform and

optimal allocation for L = N = 5 and σ2 = 1. Pilot locations

are represented by rectangles and circles respectively.

|CLMMSE|, which is generally beneficial. Given the improved

performance, we also have the guarantee that the maximal

prediction MSE dLMMSE(Φ) is lower or equal than σ2L/N .

Moreover, given that the matrix Φ
H
Φ grows with N , it makes

sense to normalize it by 1/N so that the error covariance matrix

becomes

C̃LMMSE =
σ2

N
Φ̃

(

1

N
Φ

H
Φ+

σ2

N
C

−1

β

)−1

Φ̃
H
.

It is then clear that, as σ2/N → 0, the two estimators

(and their performance) β̂LMMSE and β̂LS converge provided

that Φ is full rank (thus N ≥ L). In other words, when

the noise variance is small and/or the number of pilots is

large, the prior information can be neglected, which intuitively

makes sense [17]. This implies that the optimal designs of

Section III-A are asymptotically optimal in the LMMSE case

as σ2/N → 0.

IV. SIMULATION RESULTS

In the following, as a benchmark, a uniform pilot allocation

is considered, defined as sn = 1/N+n/N for n = 0, ..., N−1.

A. Least Squares Estimator

Fig. 1 illustrates the result of Corol. 1 for a fifth polynomial

order (L = 5), σ2 = 1 and N = L = 5 pilots. The

optimal one performs sensibly better than a naive uniform

allocation. Quantitatively, the maximal MSE is more than two

times reduced by the optimal allocation.

For L = 1 and L = 2, the optimal support points are [1] and

[1/2, 1] and the uniform allocation coincides with the optimal

one. As L increases, the performance gap between the uniform

allocation and the optimal one gets larger. Fig. 2 illustrates

this by plotting the ratio of the maximal prediction MSE dLS
(maximal MSE value in Fig. 1) for L = N . As a reminder,

from Corol. 1, we simply have dLS = σ2 for N = L when

using the optimal allocation, i.e., it remains constant. In other
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Fig. 2: Performance gain of using the optimal versus uniform

allocation in terms of ratio of maximal prediction MSE.

words, the alternations of the blue continuous curve in Fig. 1

will never be over 1, even as L increases. On the other hand, for

the uniform one, the symmetric peaks on the left and right of

the graphs will continue to increase as L grows. This explains

the large improvement observed in Fig. 2.

B. Linear Minimum Mean Squared Error Estimator

The MSE of the LMMSE estimator MSELMMSE does not

scale linearly with σ2 so that the performance gap with the LS

estimator MSELS will generally depend on the SNR which

we define as SNR = Pmax/(Nσ2). In simulations, we set

Pmax = 1 and N = L. To determine the a priori statistics

of the LMMSE β̄ and Cβ, we consider that the PA follows a

random Rapp model without phase distortion so that

f(s) =
Gs

(

1 +
(

Gs
Vsat

)2S
)1/2S

where G ∼ N (1, 0.01), Vsat ∼ N (1, 0.01) and S ∼ N (2, 0.1)
are the linear gain, the saturation voltage and the smoothness,

respectively. We generate M = 100 realizations of the PA

response, for which confidence intervals are shown in Fig. 3.

We then fit a L = 7 polynomial order to obtain coefficients

βm for each realization m. As can be seen in the figure,

this polynomial approximation is very accurate and cannot be

distinguished at first sight from the exact Rapp model response.

As discussed in Section II, in practice, the channel h, assumed

narrowband, will multiply these coefficients. This induces an

attenuation |h|, which we take into account through the scaling

of the noise level σ2 but also a phase rotation e∠h. Depending

if this phase is known, e.g., from previous measurements or as

part of the calibration process, or not, we consider two cases. i)

Coherent case where it is known and can be compensated so

that we can estimate the coefficients mean and covariance as

β̄ = 1/M
∑M−1

m=0
βm and Cβ = 1/M

∑M−1

m=0
βmβH

m − β̄β̄
T

.

ii) Noncoherent case where phase ∠h is unknown, assumed
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uniformly distributed in [0, 2π], causing coefficients to have a

zero mean so that β̄ = 0 and Cβ = 1/M
∑M−1

m=0
βmβH

m.

A performance comparison is given in Fig. 4 showing the

maximal prediction variance dLS/LMMSE(Φ) (for the LS or

LMMSE estimator) as a function of the SNR. A few important

observations can be made. i) Using the optimized allocation

of Theor. 1 provides most gain as compared to the uniform

one when using the LS estimator (factor 10 in accordance to

Fig. 2) while the improvement is negligible when using the

LMMSE estimator. ii) At low SNR, the LMMSE estimator has

a large gain as compared to the LS estimator given the prior

information, especially in the coherent case where even more

prior information is available: factor 300 (coherent) versus 5

(noncoherent) at 0 dB SNR. At high SNR, their performance

converges to the LS one, as expected from Section IV-B. iii)

Interestingly, even at 60 dB SNR, when using the uniform

allocation, the LMMSE estimator has not yet converged to the

LS one. It achieves a similar performance as the LS/LMMSE

one with optimized training. This means that, when using the

LMMSE estimator, a simpler uniform allocation would provide

close-to-optimal solution and can be considered sufficient.

V. CONCLUSION

In this work, we considered OTA PA calibration using

estimation theory. The LS and LMMSE estimators were red-

erived. The optimal training in the LS case was obtained by

minimizing the generalized variance of the error covariance

matrix. This optimal design also minimizes the maximal MSE

when reconstructing the PA over its full input range. Via

simulations, we show an improvement of a factor 10 for a

L = 7 PA order. Leveraging prior information, the LMMSE

estimator provides an additional gain of a factor 5 and 300 in

the noncoherent and coherent cases respectively.
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