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ABSTRACT

The inducibility of a graph represents its maximum density as an induced subgraph over all
possible sequences of graphs of size growing to infinity. This invariant of graphs has been
extensively studied since its introduction in 1975 by Pippenger and Golumbic. In 2017,
Czabarka, Székely and Wagner extended this notion to leaf-labeled rooted binary trees, which
are objects widely studied in the field of phylogenetics. They obtain the first results and
bounds for the densities and inducibilities of such trees. Following up on their work, we apply
Razborov’s flag algebra theory to this setting, introducing the flag algebra of rooted leaf-labeled
binary trees. This framework allows us to use polynomial optimization methods, based on
semidefinite programming, to efficiently obtain new upper bounds for the inducibility of trees
and to improve existing ones. Additionally, we obtain the first outer approximations of profiles
of trees, which represent all possible simultaneous densities of a pair of trees. Finally, we are
able to prove the non-convexity of some of these profiles.

Keywords Inducibility · binary tree · graph profile · flag algebras · semidefinite programming

1 Introduction

Asymptotic extremal graph theory studies the behaviour of graphs whose number of vertices grows towards infin-
ity. It is an old and well-studied area of graph theory in which many areas of mathematics meet, and where even
simple-sounding conjectures can prove extremely challenging. A main topic in this area is the problem of finding
the inducibility of a graph, i.e., its maximum density in an arbitrarily large graph. It is a very hard problem that
remains open even for many “simple” graphs despite being widely studied: for instance, even determining the
inducibility of the 5-cycle is extremely hard [30]. An adjacent problem consists in determining the profile of a set
of graphs: that is, the exact relations between the densities of these graphs. In 2017, Czabarka, Székely and Wag-
ner [13] extend the notions of density and inducibility to leaf-labeled rooted binary trees, a type of trees stemming
from phylogenetics. They obtain the first results and bounds for the inducibilities of these trees. In this paper, we
follow up on their work and apply, for the first time, flag algebra theory to the setting of leaf-labeled rooted binary
trees. Flag algebras are a powerful tool of extremal combinatorics, introduced in 2007 by Razborov [38]. They
have been successfully used to tackle and solve several very challenging problems of graph theory, by allowing the
application of tools from polynomial optimization, computationally in the form of semidefinite programming, to
extremal combinatorics. Here, we use them to develop a computer-assisted way to obtain strong rigorous bounds
on inducibilities of trees. As main results, we recover all known inducibilities of small trees (up to a small epsilon),
obtain over 300 new bounds on inducibilities, and the first outer approximations of profiles of trees, for some of
which we prove nonconvexity. To do so, we solve the first instance of a generalized problem of moments in flag
algebras.

∗This research was funded in part by the Austrian Science Fund (FWF) [10.55776/DOC78]. For open access purposes, the
author has applied a CC BY public copyright license to any author-accepted manuscript version arising from this submission.
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In what follows we describe the organization of the paper. In Section 2, we start by defining the setting of
leaf-labeled rooted binary trees introduced by Czabarka et al. and the notions of densities, inducibilities and
tree-profiles in this context. Section 3 defines the flag algebra of rooted binary trees and explains the main tools
of Razborov’s flag algebra theory we use in this setting. We describe in Section 4 how we can turn it into a
computational approach based on semidefinite programming and polynomial optimizations tools. This allows us
to compute, in a systematic manner, bounds on the inducibilities of trees. We detail in Section 5 our results: we
recover all known inducibilities of small trees, improve the existing bounds on one specific tree, and obtain more
than 300 new bounds as well as the first outer approximations of tree-profiles. Furthermore, we give some exact
results on parts of the tree-profiles of two types of trees: the caterpillar tree of size k for k ∈ {4,5, 6} and the even
tree of size 6. This profile for k = 4 is shown in Figure 1 In particular, we prove one new characteristic point of
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Fig. 1 Tree-profile of the caterpillar tree of size 4 and the even tree of size 6
with three known points and our conjecture for the upper boundary

the upper boundaries of these profiles using exact sum of squares certificates computed by our flag algebra-based
framework. Finally, we are able to prove non-convexity of some tree-profiles, using rigorous (but not sharp), sum
of squares certificates generated by our implementation of the flag algebra of rooted binary trees.

2 Density and inducibility of rooted leaf-labeled binary trees

2.1 Rooted leaf-labeled binary trees and induced subtrees

In this article, we are working with rooted leaf-labeled binary trees. “Leaf-labeled” meaning that only the leaves
are considered “vertices” (these trees are sometimes called “topological trees” [16]), and “rooted binary” that
every vertex that is not a leaf has exactly two children. In this setting, trees are no longer sparse but dense
objects, which makes it possible to define meaningful subtree densities in a natural way. In this paper, every
mention of a tree will now refer to a leaf-labeled rooted binary tree, except when explicitly stated otherwise. For
a tree T , we denote L(T ) its set of leaves, and we define its size |T |= |L(T )| as its number of leaves. We consider
the trees up to isomorphism, defined in the natural way. We call the set of all trees up to isomorphism T, and let
Tn ⊆ T denote the subset of trees with n leaves. The number of such trees in Tn is the Wedderburn-Etherington
number Wn: The first few numbers in the sequence are 1, 1,1, 2,3, 6,11, 23 . . .. Figure 2 depicts the one and only
tree of size 3, the two trees of size 4, as well as the three trees of size 5.
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(a) Tree of size 3
(b) Trees of size 4 (c) Trees of size 5

Fig. 2 All trees of sizes 3, 4 and 5.

These trees are essential to the topic of phylogenetics where they are extensively studied [42]. They are used to
represent the evolutionary history of a set of species, and studying their properties is primordial to understand
the evolution of species with respect to each other.

We illustrate in Figure 3 the process of obtaining a subtree of a tree T (3a) following [13]. For a subset A⊆ L(T )
of leaves of T (3b), the subtree of T induced by A is obtained by removing from T all leaves in L(T ) \ A as well
as the paths leading exclusively to them (3c, 3d). All remaining inner vertices (i.e., any vertex that is not a leaf)
of degree 2 are then contracted, in order to obtain another rooted binary tree (3e). We use the notation S ⊆ T to

1 2 3

4 5

(a)

1 2 3

4 5

(b)

1 2 3

4 5

(c)

1 3

4

(d)

1

3 4

(e)

Fig. 3 Subtree induced by the set of leaves {1, 3,4}

express that S is a subtree of T . We define the height of a leaf as its distance (including inner vertices) to the root.
For instance, in the tree in Figure 4, leaf 1 has height 1, leaf 2 has height 2, and all other leaves have height 4.
Some trees have particular structures that make them especially interesting to study. We call caterpillar tree (or

1

2

Fig. 4 Height of a leaf
sometimes just caterpillar) of size n, denoted by Catn, the tree where each inner node has as children a leaf and
another caterpillar tree of size n−1, the caterpillar tree of size 1 being the consisting of one leaf. In other words,
the inner vertices of the caterpillar tree form a path. Caterpillars form a very important set of trees with interesting
and useful properties; their unrooted counterparts are also of great importance in phylogenetics [2]. We call even

Fig. 5 Cat7

tree of size n and denote En the tree in which the two children of each inner node have a size difference of at most
1. In particular, for every k ≥ 1, the even tree of size 2k is the complete binary tree of height k.

2.2 Inducibility of trees

Inducibility of graphs. The notion of inducibility of graphs has been introduced in 1975 by Pippenger and
Golumbic [36], who studied the maximum frequency with which a fixed graph on k vertices can appear in another
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(a) E5 (b) E6 (c) E7 (d) E8

Fig. 6 Even trees of sizes 5 to 8.

graph whose number of vertices goes to infinity. It is an extensively studied topic that has been approached in many
different ways. In particular, Razborov’s flag algebra theory has already been successfully applied to problems of
inducibility in graphs. Indeed, it was used by Sperfeld in 2011 to determine new bounds on the inducibility of
several oriented graphs. In 2012, Falgas-Ravry and Vaughan [21] introduce the software ‘Flagmatic’ to determine
exact inducibilities and upper bounds for several 3-graphs up to 5 vertices, as well as for oriented star graphs
of size 3 and 4. In 2013, Hirst [24] determines the inducibilities in graphs of K1,1,2 and of the so-called paw
graph. In 2016, Balogh, Hu, Lidický and Pfender [5] prove, using flag algebras, that the maximum density of
the induced 5-cycle C5 is achieved by an iterated blow-up of 5-cycle. Following up on this, Lidický, Mattes and
Pfender [30] determine in 2022 the maximum number of induced copies of C5 in a graph on n vertices, as well
as all the maximizer graphs.

Inducibility of leaf-labeled rooted binary trees. Czabarka et al. [13] adapt the concept of inducibility in graphs
to rooted leaf-labeled binary trees in the following way: We consider two trees S and T , with |S|= k and |T |= n
(n ≥ k). C(S, T ) is the number of induced subtrees in T that are isomorphic to S. The subtree density of the tree
S in the tree T is

p(S; T ) :=
C(S, T )
�n

k

� .

It is the proportion of copies of S in T over all subtrees of the same size of T . In other words, it is the probability
of obtaining a subtree isomorphic to S when picking uniformly at random a subtree of size |S| in T . As such, we
can reformulate the definition as

p(S; T ) = P[T |V ∼= S] ∈ [0, 1],

where V is a random subset of leaves of T of size |S|, and T |V is the subtree of T induced by V.

We now consider an increasing sequence of trees T = (Tk)k≥1, i.e. (|Tk|)k≥0 is strictly increasing. We define the
subtree density of a tree S in this increasing sequence of trees as

φT (S) := lim
n→∞

p(S; Tn) = lim
n→∞
P[ Tn|Vn

∼= S] ∈ [0,1],

where Vn is a random subset of leaves of Tn of size |S|. Note that, by Tychonoff’s theorem, we can always find
a subsequence such that all the densities converge [32]. From now on, we always work (implicitly) with such
converging increasing subsequences.

The inducibility of the tree S is then the maximum of this quantity over all possible converging increasing sequences
of trees:

I(S) :=max
T
φT (S).

This coincides with the definition of the inducibility of a tree in [13] as the limit superior of the maximum subtree
density of S in a tree.

i(S) = lim sup
|T |→∞

p(S; T ) = limsup
n→∞

max
T :|T |=n

p(S; T )

Indeed, by Tychonoff’s theorem, the sequence of maximizers of p(S; ·) of size n has a converging subsequence.
i(S) is thus equal to the maximum subtree density of S in a converging increasing sequence of trees: that is, to
I(S). ’

4
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Previous results on the inducibility of trees. In 2017, Czabarka et al. [13] prove that every binary tree has
positive inducibility and that the only trees with inducibility 1 are the caterpillar trees. They also obtain the first
inducibilities of binary trees: the complete binary tree of height 2, the even tree of size r; and provide bounds
on other trees. They apply these results to crossings in random tanglerams, which are pairs of binary trees of
same size, whose leaves are joined by a perfect matching. These tanglegrams are related to the tree-pairs of
phylogenetic trees studied in [2].

Several articles have also focused on the inducibility of d-ary trees, i.e., trees in which each of the non-leaf vertices
of has between 2 and d children. In 2018, Dossou-Olory and Wagner [16] study the relation between inducibilities
with fixed degree and with bounded degree; they also provide a lower bound on the limit inferior on the density
of the binary caterpillar. Additionally, they compute in [17] stronger bounds on the inducibility of small, but very
challenging binary and ternary trees. In 2021, they are able to obtain more exact inducibilities and bounds on
binary and d-ary trees, and obtain results on the speed of convergence of the maximum density of a tree [18]. In
2020, Czabarka et al. [12] proved the following theorem: for any d-ary tree T (i.e., each of the non-leaf vertices
of T has between 2 and d children),

max
|S|=n

p(T ; S) = I(T ) +O(n−1).

They showed as well that, for any binary tree T , the inducibility of T in binary trees is equal to its inducibility in
d-ary trees and in strictly d-ary trees (trees in which every vertex has exactly 0 or d children).

In 2016, Alon, Naves and Sudakov [2] study the density of some patterns of size 4 (“quartets”) in tree-pairs of
trivalent trees, which are unrooted trees in which every non-leaf vertex has exactly three neighbors. To do so,
they use flag algebra calculus that they adapt to this particular setting. They then solve a semidefinite program
to obtain bounds and various results on the density of such patterns. They obtain as well some further results
on (unrooted) caterpillar trees, by seeing them as permutations and using flag algebras applied to permutations
theory.

2.3 Tree profiles

For two trees T and S, the tree-profile of T and S is the set of pairs of densities
(φT (T ),φT (S)) that can be attained simultaneously from the same increasing sequence of trees T .

profile(T, S) := {(φT (T ),φT (S)) | T is an increasing sequence of trees} ⊆ [0,1]2

Graph profiles were first introduced in 1979 by Erdős, Lovász, and Spencer [19], who investigated how the
densities of two graphs behaved with respect to each other. In particular, they showed that the profile of any
m connected graphs is full-dimensional in Rm. However, graph profiles have proven very challenging to study;
they are not necessarily convex or even semialgebraic sets, and still very little is known about them. A major
breakthrough on the topic was obtained in 2008 by Razborov [39], who used his flag algebra theory to obtain the
exact relation between the density of triangles in a graph and its edge density. In other words, he gave the first
full description of a graph profile, the profile of the triangle and the edge graph. This problem was introduced by
Turán in 1941 [43], and was until then still (mostly) unsolved. The case of edge versus the complete graph K4 was
then solved by Nikiforov in 2010 [35]. The general case of Kn and the edge was solved in 2016 by Reiher [40],
proving a conjecture of Lovász and Simonovits [33].

There is no known full profile of three or more connected graphs, though there exist partial results. In 2013,
Huang et al. [25] study profiles of four induced graphs with up to three vertices, and describe exactly the profile
of 3-cliques and 3-anticliques on three vertices. They also give an exact description in the triangle-free case, with
the use of flag algebras. Glebov et al. [22] follow on this work in 2016 by determining all profiles of two induced
graphs of size 3. Graph profiles of the edge and the k-edge path have been determined in 2016 by Nagy for
n= 4 [34], notably using results from Ahlswede and Katona who proved the upper boundary in the case k = 2 in
1978 [1]. In 2018, Reiher and Wagner [41] obtained an upper bound on the profile of the edge and the k-star for
all integers k ≤ 2. Recently, Cairncross and Muyabi [10] obtained exact profiles of ordered graphs, and the first
results on profiles of colored graphs. In 2022, Blekherman et al. [7] computed and studied the tropicalization
of graph and hypergraph profiles and, through it, exhibited limitations for the sums of squares method to prove
graph density inequalities.

In 2016, Bubeck and Linial [9] define the density of a tree S in another tree T as the number of copies of S divided
by the number of connected subgraphs of size |S| inducing a tree in T . In this context, they investigate the limit
sets of k-profiles of trees, that is, the profile of all trees on k vertices. They show that these profiles are always
convex. Following up on this paper, Chan et al. [11] proved further results on the densities and inducibilities of
such trees.
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3 The flag algebra of rooted binary trees

Flag algebras, first introduced by Alexander Razborov in 2007 [38], are one of the most powerful and promising
tools in extremal combinatorics. They provide a way to formulate extremal problems in graphs analogously to
polynomial optimization problems. These can then be relaxed into semidefinite programs that can efficiently
be solved by a computer, thus providing automated certificates for (often tight) bounds for such problems. The
similarities to polynomial optimization are not coincidental: recent developments have brought to light that sums
of squares in flag algebras correspond to solving the limit of a sequence of polynomial optimization problems. The
problems in the sequence grow in the number of variables (but not degree), counterbalanced by exhibiting more
and more symmetries [37]. Interpreted this way, flag algebras can be recovered from the representation stability
of the problem, relating to dimension free descriptions of the relevant cones, a more general concept recently
investigated in the setting of optimization in [29].

Flag algebras have been used for a wide variety of problems, from densities in
graphs [20, 23] to hypergraphs [26], permutations [4], Ramsey numbers [31], crossing numbers of graphs [6],
and more. Flag algebras have been used by Alon, Navese and Sudakov in [2] to study tree-pairs of trivalent
phylogenetic trees. To the best of our knowledge, they have so far not been used on other types of trees, in
particular not on rooted binary trees. A thorough overview of the theory of flag algebras is given in [14], another
one in [8], although more focused on non-induced flag algebras. We explain it here in the setting of trees.

3.1 Model theoretic view

Razborov introduced flag algebras in the setting of first-order model theory [38]. To avoid having to reprove the
same results in our setting, we provide a model theoretic description of leaf-labeled trees.

For this, we define a predicate P that uniquely defines trees.

Theorem 3.1. Let n≥ 3, and let P : [n]3→ {0, 1}. The two following statements are equivalent:

(i) There exists a unique tree T such that, for any three distinct leaves {i, j, k} ∈ L(T ),

P(i; j, k) :=

�

1, if in the subtree of T induced by {i, j, k}, i is at height 1,
0, else.

(1)

(ii) P satisfies the following axioms:

(a) P(i; j, k) = P(i; k, j) for every pairwise-disjoint (i, j, k) ∈ [n]3,
(b) exactly one of {P(i; j, k),P( j; i, k),P(k; i, j)} is equal to 1, for all pairwise-disjoint (i, j, k) ∈ [n]3,
(c) (P(i; j, k) = 1) =⇒ (P(ℓ; j, k) = 1)∨ (P(i; j,ℓ) = 1) for all pairwise-disjoint (i, j, k,ℓ) ∈ [n]4.

Proof. We start by proving that (i) implies (ii). Let us assume that P : [n]3→ {0,1} satisfies (i): P then represents
a unique tree T of size n. Axioms (a) and (b) follow directly from the definition of a tree. To prove axiom (c),
let us consider (i, j, k,ℓ) ∈ [n]4 pairwise-disjoint. We can assume without loss of generality that P(i; j, k) = 1.
We then consider the subtree induced by {ℓ, j, k} in T . If ℓ is at height 1 in this subtree, P(ℓ; j, k) = 1 and (c)
holds. If not, we can assume without loss of generality that j is at height 1, i.e., P( j;ℓ, k) = 1. Then, since i is
at height 1 in the subtree induced by {i, j, k}, i has to be at height 1 as well in the subtree induced by {i, j,ℓ},
hence P(i; j,ℓ) = 1 and (c) holds as well.

We now prove that (ii) implies (i). To do so, we proceed by induction. For n= 3, let P : {1, 2,3}3→ {0,1} fulfilling
the axioms of (ii). Then, there exists i ∈ {1,2, 3} such that P(i; j, k) = P(i; k, j) = 1, where {i, j, k} = {1, 2,3}.
By assumption, P is equal to 0 on the rest of {1,2, 3}3. Then, with T the tree of size 3 with leaf i at height 1 and
leaves j and k at height 2, represented in Figure 7, (i) holds.

i

j k

Fig. 7 The unique tree on {i, j, k} with P(i; j, k) = 1
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Let n ≥ 4, and suppose that for any 3 ≤ k ≤ n, any P : [k]3 → {0,1} satisfying (ii) also satisfies (i). Let
P : [n+ 1]3→ {0,1} fulfilling the axioms of (ii). We denote by P|n be the restriction of P to [n]3. By induction,
P|n uniquely describes a tree Tn of size n. We will now show that P uniquely describes a tree Tn+1 obtained by
attaching to Tn the leaf (n+ 1) in a position uniquely defined by P.

We define a graph G0 with vertices [n] = {1, . . . , n} and an edge for every pair {i, j} such that P(n+ 1; i, j) = 1.
We denote by T1 and T2 the two subtrees joining at the root of Tn, and by L1 and L2 their respective sets of leaves:
L1 = L(T1) and L2 = L(T2). Note that for every i in L1 (resp. L2), for every j, k in L2 (resp. L1), P(i; j, k) = 1
holds. Indeed, leaves from the same branch will have a common inner node higher than the root, but two leaves
in separate branches will only join at the root node. By the same reasoning, P(i; j, k) = 1 for some {i, j, k} implies
that j and k have to be in the same branch T1 or T2.

We make the following claims:

Claim 3.1.1. At least one of G0|T1
and G0|T2

is a complete graph.

Proof. Let us assume that neither G0|T1
nor G0|T2

are complete. This means that there exist (i, j) in L2
1 and (i′, j′)

in L2
2 such that P(n+1; i, j) = P(n+1; i′, j′) = 0. Since i is in L1 and both i′ and j′ are in L2, P(i; i′, j′) = 1. As P

fulfills (c), this implies P(n+1; i′, j′) = 1 or P(i; i′, n+1) = 1. Because we assumed P(n+1; i′, j′) = 0, P(i; i′, n+1)
has to be equal to 1. Similarly, we have P(i′; i, j) = 1, which implies P(n + 1; i, j) = 1 or P(i′; i, n + 1) = 1,
hence P(i′; i, n+ 1) = 1 by assumption. Finally, we obtain P(i; i′, n+ 1) = P(i′; i, n+ 1) = 1, which contradicts
axiom (b).

Claim 3.1.2. P(n+ 1; ·, ·) is constant on L1 × L2, i.e., for every (i, j) ∈ L2
1, for every (i′, j′) ∈ L2

2, P(n+ 1; i, i′) =
P(n+ 1; j, j′).

Proof. Let (i, j) ∈ L2
1 and (i′, j′) ∈ L2

2. Let’s assume, without loss of generality, that G0|T1
is complete. Then,

P(n+ 1; i, j) = 1. If P(n+ 1; i, i′) = 1, then (c) implies P( j′; i, i′) = 1 or P(n+ 1; i, j′) = 1. Since i is in L1 and
i′, j′ are in L2, P(i; i′, j′) = 1, hence P(n + 1; i, j′) = P(n + 1; j′, i) = 1. This implies in turn P( j; j′, i) = 1 or
P(n+ 1; j′, j) = 1. Since (i, j) and j′ are in separate branches, we thus obtain P(n+ 1; j′, j) = P(n+ 1; j, j′) =
P(n + 1; i, i′) = 1. If P(n + 1; i, i′) = 0, since we have P( j′; i, i′) = 0, the contraposition of axiom (c) implies
P(n + 1; i, j′) = P(n + 1; j′, i) = 0. This results, combined with the fact that P(i; j′, j) = 0, imply in turn that
P(n+ 1; j′, j) = P(n+ 1; j, j′) = P(n+ 1; i, i′) = 0.

The first claim allows us to split the problem in five cases, depending on the completeness of G0 and its restrictions.
We start by considering the case where both G0|T1

and G0|T2
are complete. This directly implies that the vertex

(n+ 1) has to be attached at height 1 or 2 of the tree. Three different configurations are possible, illustrated in
Figure 8. First, if G0 is complete, P(n+ 1; i, j) = 1 for all vertices {i, j} of Tn. The tree with n+ 1 at height 1,
and the lowest common root of T1 and T2 at height 2 then fulfills (1) for P, and it is the only one (Fig. 8a). If G0
is not complete, (n+ 1) has to be attached at a height of exactly 2 of the tree, that is, at the root of either T1 or
T2. Since G0|T1

and G0|T2
are complete, G0 misses an edge between T1 and T2. There are then two possibilities. If

there exists i ∈ L1 and j ∈ L2, such that P(i; n+ 1, j) = 1, (n+ 1) has to be attached in T2. Then, the tree where
the root of T1 is at height 1, and n + 1 and the root of T2 are at height 2 is the unique tree fulfilling (1) for P
(Fig. 8b). Otherwise, there exists i ∈ L1 and j ∈ L2, such that P( j; n+1, i) = 1. Then the unique tree fulfilling (1)
for P has the root of T2 at height 1, and n+ 1 and the root of T1 at height 2 (Fig. 8c).

We now consider the case where G0|T1
is not complete: there exist (i, j) in L2

1 such that P(i; n + 1, j) = 1. It
implies that vertex (n + 1) has to be attached somewhere in T1. We then repeat the process recursively in T1:
our second claim ensures that there will be no contradiction with the predicate on T2. This provides us with one
unique way of attaching (n+ 1) to T1 and thus to Tn. We proceed analogously if G0|T2

is not complete.

n+1

T1 T2

(a) Case G0 complete

T1

n+1 T2

(b) Case P(i; n+ 1, j) = 1
with i ∈ L1 and j ∈ L2

T2

n+1 T1

(c) Case P( j; n+ 1, i) = 1
with i ∈ L1 and j ∈ L2

Fig. 8 Possible configurations with G0|T1
and G0|T2

complete

7
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This allows us to directly apply the theory of flag algebras introduced in [38] in our setting.

3.2 Types and flags

Using the notations of Razborov [38] (see also [14]) adapted to our setting, a type of size k is a tree σ of size k,
with L(σ) = {1, . . . , k}. The empty type (of size 0) is denoted by ∅.

An embedding of a type σ of size k in a tree T (with k ≤ |T |) is an injective function θ : {1, . . . , k} → L(T ) that
defines an isomorphism between σ and the subtree of T induced by Im(θ ).

A σ-flag (T,θ ) is a tree T together with an embedding of σ. Put simply, it is a tree whose set of leaves is
partially labeled (flagged), the labeled leaves inducing a subtree isomorphic to σ. In practice, we only specify the
embedding if it is relevant to the context; the type can also be omitted when it is either obvious or irrelevant.

(a) A 1 -tree-flag

1

2

(b) A 1 2 -tree-flag

Fig. 9 Two tree-flags on different types

The automorphisms of the σ-tree-flag (T,θ ) are the automorphisms of the unlabeled tree T that leave the labeled
leaves Imθ in place. We denote by Aut(T,θ ) the set of automorphisms of the tree-flag (T,θ ).

Isomorphism between flags is the same as between trees, with the added condition that the labeling has to be
preserved. More precisely, two σ-tree-flags (T,θ ) and (S,η) are isomorphic if there is a graph isomorphism ρ
between T and S such that ρ(θ (i)) = η(i) for every leaf i of the type σ. For instance, in Figure 10 are depicted

three 1

2 3

-tree-flags of size 4: 10a and 10b are isomorphic to each other, but not to 10c or 10d.

1

2

3

(a)

1

2

3

(b)

1

2 3

(c)

1 2 3

(d)

Fig. 10 Four 1

2 3

-tree-flags of size 4

The size |(T,θ )| of a flag we still define as the number of leaves |L(T )| of the underlying tree T . We denote by Tσn
the set of all σ-tree-flags of size n (up to isomorphism), and by Tσ the set of all σ-tree-flags (up to isomorphism).
We say that two σ-tree-flags (T,θ ) and (S,η) are disjoint if the sets of their leaves differ outside the embedding of
σ, i.e. when (L(T )\ Imθ )∩ (L(S)\ Imη) = ;. Subflags we define analogously to subtrees by (T,θ )|V := (T |V,θ ),
under the condition that the subset of leaves contains the labeled leaves Imθ ⊆ V ⊆ L(T ).

3.3 Densities of flags

We can extend the notion of density in trees to flags. We define the density of a σ-tree-flag (S,θ ) in another σ-
tree-flag (T,η) as the probability of obtaining a tree-flag isomorphic to (S,θ ) when choosing uniformly at random
a σ-subtree-flag of size |S| in T . I.e. it is the probability

p((S,θ ); (T,η)) := P[(T,η)|V∪Imη
∼= (S,θ )] ∈ [0, 1],

where V is a random subset of L(T ) \ Im(η) of size |S| − |σ|.

Densities of flags follow the chain rule in Lemma 3.1.1.

8
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Lemma 3.1.1 (Chain rule for flags [38]). For S, T ∈ Tσ and an integer n such that |S| ≤ n≤ |T | we have

p(S; T ) =
∑

S′∈Tσn

p(S; S′)p(S′; T ). (2)

Analogously to the unlabeled case, we define the density of a flag (S,θ ) in an increasing sequence of flags T =
(Tk,η)k≥1 ((|Tn|)n≥0 is strictly increasing) as

φT (S,θ ) = lim
n→∞

p((S,θ ); (Tn,ηn)) ∈ [0, 1].

As before, we assume the limits exist; we are working with converging sequences of flags, again obtainable by
choosing appropriate subsequences of flags.

We can linearly extend densities of tree-flags to formal (real) linear combinations of tree-flags in RTσ, which we
call quantum trees, following Lovász’s quantum graphs [32].

3.4 Products of flags

Our goal is now to understand products of densities of flags. Given two σ-flags S1, S2 ∈ Tσ we want to find a
quantum tree S1 · S2 ∈ RTσ such that

φT (S1)φT (S2) = φT (S1 · S2)

for all increasing sequences of flags T .

To compute these, we need to define the sunflower density of two flags S1, S2 ∈ Tσ in another flag T = (t,θ ) ∈ Tσ.
It is given by

p(S1, S2; T ) := P[T |V1
∼= S1 ∧ T |V2

∼= S2] ∈ [0, 1],

where {V1,V2} ∈ P(L(T ))2 is a uniformly random sunflower with center V1 ∩ V2 = Imθ and petals of sizes
|Vi \ Imθ |= |Si | − |σ|. It is the probability that S1 and S2 fit in T simultaneously, matching only on the type σ.

The chain rule in Lemma 3.1.1 can be generalized to compute the sunflower density of several tree-flags. For
every |S1|+ |S2| − |σ| ≤ n≤ |T |, the identity

p(S1, S2; T ) =
∑

T̃∈Tσn

p(S1, S2; T̃ )p(T̃ ; T ) (3)

holds (Lemma 2.2 in [38]).

The sunflower densities of flags exactly describe the products of densities in the limit, captured by the following
Theorem 3.2 (adapted from Theorem 2 in [14], see also Lemma 2.3 in [38]):

Theorem 3.2. If S1 and S2 are fixed σ-tree-flags, then for any σ-tree-flag T such that S1, S2 fit in T ,

p(S1, S2; T ) = p(S1; T )p(S2; T ) +O (1/|T |) .

Indeed, the probability that two (independently) random σ-subtree-flags in T of sizes |S1| and |S2| are disjoint
approaches 1 as T gets larger.

Theorem 3.2 tells us that the product φT (S1)φT (S2) of densities of flags in an increasing sequence T behaves,
asymptotically, like the sunflower density of S1 and S2. And the chain rule (3) tells us how to compute it:

φT (S1)φT (S2) =
∑

T∈Tσn

p(S1, S2; T )φT (T )

for any n≥ |S1|+ |S2| − |σ|.

Thus, we find a natural way to define the gluing product of tree-flags as

S1 · S2 :=
∑

T∈Tσn

p(S1, S2; T )T ∈ RTσ.

Note that every tree-flag T appearing in the sum with nonzero coefficients can be obtained by “gluing” the leaves
of S1 and S2 with same labels on top of each other, and sending the unlabeled leaves to distinct leaves of T .

9
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This product is not yet entirely well-defined; it depends on the choice of n. To solve this, we define the flag algebra
of trees of type σ as the quotient

Aσ := RTσ/Kσ,
where Kσ is the linear span of all elements

S −
∑

S′∈Tσn

p(S; S′)S′, (4)

where S ∈ Tσ and n ≥ |S|. The elements of σ are exactly the zeroes implied by the chain rule Lemma 3.1.1.
Quotienting them out turns Aσ into an algebra and the product S1 · S2 well-defined (Lemma 2.4 in [38]).

We say that a quantum tree T ∈Aσ is nonnegative, denoted by T ≥ 0, if

φT (T )≥ 0

for all increasing sequences T .

To illustrate this, we express the square of the following 1 -tree-flag of size 3 in function of 1 -tree-flags of

size 5 (the minimum size possible). We can construct the tree-flags that will appear in the product by the gluing

operation described above, and obtain the three following tree-flags: , and .

It is straightforward to check that they all can simultaneously contain 2 disjoint subtree-flags isomorphic to ,

and that no other 1 -tree-flag of size 5 does.

To determine the coefficient of each tree-flag in the product, we compute the probability of two randomly chosen

disjoint 1 -subtree-flags of size 3 in this tree-flag to be both isomorphic to .

All the possible ways (up to isomorphism) of obtaining two disjoint subtree-flags isomorphic to in each

tree present in the product are represented in Figure 11. In each figure one subtree is represented in red and the
other one in blue.

1

(a)

1

(b)

1

(c)

1

(d)

1

(e)

Fig. 11 Every way (up to isomorphism) to obtain two disjoint subtree-flags

isomorphic to in trees of size 5

We then see that, for and , this probability is equal to 1: any 1 -subtree-flag of size 3 in these tree-

flags is isomorphic to . For , this probability is equal to 1
3 . Indeed, the only 1 -subtree-flags isomorphic

to in this tree are induced by pairs of leaves of the same height, who account for 1
3 of all the pairs of leaves.

Finally, we obtain the following expression for the square of :

· = + +
1
3

10
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3.5 Downward operator

To go back from the space of linear combinations of tree-flags to the set of quantum trees, we use the downward
operator adapted to rooted binary trees. The downward operator ⟦·⟧ averages flags over all choices of labels: it
unlabels the flags. For a σ-tree-flag T , we denote T |0 the tree obtained simply by forgetting the labels of T . We
then have

⟦T⟧σ = qσ(T ) · T |0,

where

qσ(T ) =
(n− |σ|)!

n!
·
|Aut(T |0)|
|Aut(T )|

is a normalizing factor equal to the probability that a random injective map θ : V (σ)→ V (T ) is such that (T |0,θ )
is a σ-tree-flag isomorphic to T . We can extend this operator to quantum graphs: this then provides us with a
linear map from Aσ to the space of (unlabeled) trees T∅. This is exceedingly useful, as Theorem 3.3 makes it
possible to prove statements in A∅ using true statements in Aσ.

Theorem 3.3 (Theorem 3.1 in [38]). Let T ∈Aσ be a nonnegative quantum tree, i.e. φT (T )≥ 0 for all increasing
sequences T . Then ⟦T⟧≥ 0 is also nonnegative.

We give a few examples of applications of the downwards operator below.

�

1

�

=
1
3

�

1

�

=
2
3

� �

1

�2 �

=
1
5

+
1
5

+
1

15

All averaged products of trees-flags needed for up to the 6th level of the hierarchy (defined in the next section)
are given in Appendix 6.

4 Flag sums of squares and semidefinite programming

We now explain how we use and implement the flag algebra of trees to obtain computer-assisted bounds on
inducibilities of trees.

Quantum trees S ∈ Aσ correspond to functions which send tree sequences T to real numbers φT (S). Thus,
analogously to polynomial optimization [28], we can use the sums of squares method to compute bounds on
extremal problems in trees. The idea is simple: If f = c1T1 + · · ·+ cnTn is a quantum flag in the algebra Aσ, then
both its square f 2 and, more importantly, its unlabeled square ⟦ f 2

⟧ are nonnegative functions on tree sequences
(see Theorem 3.14 in [38]). Thus, every squared and unlabeled quantum flag proves an inequality of the form
⟦ f 2
⟧≥ 0 in A∅.

Let Fσ be a vector of n tree-flags of type σ. Quantum flags in RFσ ⊂Aσ are of the form

f = c⊤Fσ,

where c ∈ RFσ is the vector of coefficients of the quantum flag. Unlabeled squares of quantum flags can be written
as

⟦ f 2
⟧= ⟦(c⊤Fσ)2⟧= ⟦〈cc⊤,FσF⊤σ 〉⟧= 〈cc⊤,⟦FσF⊤σ ⟧〉,

where

〈A, B〉 := tr(A⊤B) =
n
∑

i, j=1

Ai jBi j

11
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denotes the trace inner product of (symmetric) matrices A, B ∈ Sn.

Here, cc⊤ is a rank-one positive semidefinite matrix, i.e. v⊤(cc⊤)v = (c⊤v)2 ≥ 0 for all vectors v ∈ Rn. Positive
semidefinite matrices form a convex cone Sn

≽0. We denote X ∈ Sn
≽0 by X ≽ 0. Hence, flag sums of squares

⟦

∑k
i=1 f 2

i ⟧, where the fi are quantum flags in Aσ, are of the form

〈Mσ,⟦FσF⊤σ ⟧〉
where Mσ ∈ Sn

≽0 is a positive semidefinite matrix.

Of course, we can combine sums of squares coming from algebras Aσ of different types σ. In general, we can
work with a family (Fσ)σ, where Fσ ⊆Aσ are vectors of flags. We call

f =
∑

σ

〈Mσ,⟦FσF⊤σ ⟧〉,

where the Mσ are positive semidefinite matrices of appropriate sizes, a sum of squares certificate for the nonneg-
ativity of a quantum tree f ∈A∅.

4.1 A hierarchy of SDPs

Comparing the coefficients of a quantum flag f ∈A∅ with the coefficients in the sum of squares
∑

σ〈Mσ,⟦FσF⊤σ ⟧〉
(up to quotienting out K∅) leads to linear constraints on the coefficients of the positive semidefinite matrices Mσ.
To implement the quotient algebra A∅ := RF∅/K∅ we can add free variables corresponding to a basis of K∅.

What remains to decide is which vectors of flags Fσ to use. We chose to implement the analogue of the SDP
hierarchy used by the software Flagmatic, as it is described in Section 2.3 of [21]. For each natural number
L ∈ N, we define a level L of the hierarchy, which we denote by SOSL ⊆ A∅. For level L of the hierarchy, we
consider flags of types σ with |σ| ≤ L and |σ| ≡ L mod 2. We then form the vector Fσ to consist of all σ-flags
with exactly (L− |σ|)/2 unlabeled leaves up to (label preserving) isomorphism. This way, all products of flags in
each FσF⊤σ results in a tree with exactly L vertices. We would not gain anything here by considering types with
|σ|+ 1≡ L mod 2, or flags with fewer unlabeled leaves due to the quotient relations (4).

With this choice of types and vectors of flags, we define the Lth level of the hierarchy as

SOSL :=

�

∑

σ

〈Mσ,⟦FσF⊤σ ⟧〉 | Mσ ≽ 0

�

⊆A∅.

We give a list of sizes of the semidefinite blocks of the hierarchy for the first few levels in Table 1.

Level Block sizes Sum

4 3113 6
5 512113 10
6 917217 30
7 2019341111 62
8 35225111621123 186
9 701543131191146 430

10 1472776691152331198 1271
11 264323011041120117461207 3175

Table 1: The block sizes of the hierarchy SOSLevel. They are given in the form (size of block)multiplicity of block.

4.2 Computational approach

We implemented the flag algebra of trees as part of the Julia package FlagSOS.jl2 introduced in the thesis [8].
All code to recover the results of the paper is available as ancillary file.

Computing products of tree flags. We compute all relevant products between flags simultaneously in a pre-
processing step: We first generate all trees up to isomorphism (up to a T number of leaves, where L is the level
of the hierarchy). For each such tree t we then compute all pairs of (possibly overlapping) subtrees (t1, t2) of
t such that their union of leaves is the set of leaves of t. Adding labels to the vertices in the overlap gives us a
contribution to the product of the flags t1 · t2.

2https://github.com/DanielBrosch/FlagSOS.jl
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Rounding. The matrices Mσ returned by the solver are only approximately positive semi-definite, i.e. the ma-
trices may have eigenvalues slightly below zero. To work around this, we do the following: We (numerically)
compute the eigenvalues and eigenvectors of the Mσ, and fix the negative eigenvalues to zero. We then round
the eigenvectors, scaled by the square roots of the positive eigenvalues, to rationals, to compute a decomposition
Mσ ≈ VσV⊤σ ≽ 0, where Vσ is a rational rectangular matrix. As VσV⊤σ is positive semidefinite, we obtain a rational
certificate:

∑

σ

〈Mσ,⟦FσF⊤σ ⟧〉+ ferr =
∑

σ

〈VσV⊤σ ,⟦FσF⊤σ ⟧〉 ≥ 0.

Here ferr =
∑

T cT T ∈ A∅ is an error term resulting from the rounding. By definition of trees T as density
functionals, we know T takes values in the interval [0, 1]. This way we can bound the error term to take values
in the interval

−
∑

t

|cT | ≤ ferr ≤
∑

t

|cT |.

In practice, this error is of order 10−6. We add this error with the appropriate sign to computed bounds to obtain
rigorous bounds.

Solvers. We solve all SDPs in this paper with Mosek [3] on a server equipped with an AMD EPYC 7532 32-Core
Processor @ 3.30GHz and 1024GB of RAM. The loss in objective after applying the above rounding procedure
was, in all cases, of order 10−6.

5 Results

In this section, we show and explain some of the more interesting results we obtained thanks to the flag algebra
of trees, on the inducibility of trees and on their tree-profiles.

5.1 Inducibility

We can build an SDP based hierarchy for approximating the inducibility of a tree S the following way:

I(S) :=max
T
φT (S) =max S =min{t | t − S ≥ 0} ≤min{t | t − S ∈ SOSL}=: IL(S),

where L ≥ |S| is the level of the hierarchy. We are able to compute I11(S) numerically for all trees with up to
11 leaves in at most 10 seconds each. All these results are given in Appendix 6. We present here our results for
some selected trees: all the non-trivial trees up to size 6, the ones with a known inducibility proven in [13]; and
the one with known tight upper and lower bounds, obtained in [17], for which we detail the evolution with the
levels of the hierarchy.

Recovering known inducibilities. We recall the exact inducibilities obtained by Czabarka et al. [13]: all cater-
pillar trees have inducibility 1, and each even tree of size k has inducibility I(Ek) = k! · ck, where

c2s =
c2

s

22s − 2
,

c2s+1 =
cscs+1

22s − 1
.

We show in Table 2 the bounds on the inducibility that we obtain at levels 10 (in column I10) and 11 (in column

I10) of the hierarchy for the inducibilities of all non-trivial trees up to size 6 (excluding tree for which we

give more detailed results below). We also include our bounds for the even trees up to size 10, and compare them
to their inducibility. Note that in some cases I11(T )> I10(T ), which is due to the SDP solver not solving the SDP
exactly, and the rounding procedure described in Section 4.2 applied after.

We note that level 10 of the hierarchy already allows us to recover known inducibilities up to a precision of 10−5.

Improving bounds on a particular tree. The tree has proven very challenging to study. Its inducibility is

not yet known, but some bounds have been obtained algorithmically by Dossou-Olory and Wagner [17], improving

13
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Tree I11 I10 Inducibility

E4 = 0.4285724 0.4285723 0.4285714

Cat4 = 1.0000023 1.0000001 1.0000000

E5 = 0.6666669 0.6666692 0.6666667

E6 = 0.3225817 0.3225814 0.3225806

0.2073743 0.2073739 -

0.4687508 0.4687506 -

0.3411657 0.3411696 -

0.1914539 0.1914929 -

E7 = 0.2380974 0.2380958 0.2380952

E8 = 0.0506190 0.0506189 0.0506187

E9 = 0.1411782 0.1411783 0.1411765

E10 = 0.1095907 0.1095919 0.1095890

Table 2: Bounds and inducibilities of non-trivial trees up to size 6
and even trees up to size 10

results from [13]. They are as follows

0.247071≤ I
� �

≤
32828685715097

132667832500200
≈ 0.247450 . (5)

In Table 3, we present the upper bounds we obtain for the inducibility of at each level of the SDP hierarchy

between 5 and 11, where the ones improving (5) are marked in red.

We see that we are able to improve the previous best bound from level 9 upwards. With level 11, the bound we
obtain allows us to reduce substantially the optimality gap in (5): from 37.9 · 10−5 to 8.5 · 10−5.

In both [13] and [17], the authors raise the possibility that this tree may have an irrational inducibility - if rational,
it would have to have a denominator of at least 89. Proving this could be possible using our flag algebra software,
and would answer the still open question of the possible irrationality of the inducibility of a tree.

14
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Level Bound

5 0.3333335
6 0.2602938
7 0.2506628
8 0.2476918
9 0.2471867
10 0.2471585
11 0.2471566

Table 3: Evolution of the bounds in function of the level of the hierarchy for

5.2 Tree-profiles

We can compute a hierarchy of outer approximations of profiles of trees profile(T, S) ⊆ [0,1]2. The idea is the
following: We partition the interval [min T, max T] into smaller intervals

[min T,max T] = [a1 =min T, a2]∪ [a2, a3]∪ . . .∪ [an−1, an =max T].

On each interval [ai , ai+1] we can then compute functions flower and fupper which lower- (resp. upper-) bound the
slice

profile(T, S)∩ ([ai , ai+1]×R) ,
in the sense that S − flower(T )≥ 0 and fupper(T )− S ≥ 0 if T ∈ [ai , ai+1]. We can optimize over (a suitable family
of) integrable functions, trying to match them as closely as possible to the profile:

max
flower

∫ ai+1

ai

flower(x) d x min
fupper

∫ ai+1

ai

fupper(x) d x

s.t. S − flower(T )≥ 0 if T ∈ [ai , ai+1]. s.t. fupper(T )− S ≥ 0 if T ∈ [ai , ai+1].

Note that f (T ) ∈ A∅ if f is a polynomial in R[x]. While we can compute a high enough level of the hier-
archy to use quadratic functions if T has less than 6 leaves, in practice it does not seem to result in much
better approximations when compared to linear functions. Thus, we compute linear upper and lower bounds
flower(x) = ax + b, fupper(x) = cx + d on the (sliced) profile by approximating

max
a,b

1
2

a(a2
i+1 − a2

i ) + b(ai+1 − ai) min
c,d

1
2

c(a2
i+1 − a2

i ) + d(ai+1 − ai)

s.t. S − aT − b ≥ 0 if T ∈ [ai , ai+1]. s.t. cT + d − S ≥ 0 if T ∈ [ai , ai+1].

This kind of problem is an instance of the flag algebraic analogue to the generalized problem of moments, see for
example the dual formulation (equation 4) in the survey [27].

We can relax this problem (following the outer approximation in [27]) to an SDP by replacing the nonnegativity
constraint by being an element of the truncated quadratic module generated by T − ai ≥ 0 and ai+1 − T ≥ 0

ML(T − ai , ai+1 − T ) :=
�

s0 + (T − ai)s1 + (ai+1 − T )s2 | s0 ∈ SOSL , s1, s2 ∈ SOSL−|T |
	

.

Note that, by definition, the elements of ML(T−ai , ai+1−T ) ⊆A∅ are nonnegative on sequences of trees whose T
density lies in [ai , ai+1]. Optimizing over the quadratic module amounts to solving an SDP. Here ML(T−ai , ai+1−T )
was truncated such that it only contains quantum trees with at most L leaves.

What we call level L of the outer approximation of the (T, S)-profile is the piece-wise linear bound obtained from
solving all pairs of SDPs for each slice of the profile:

max
a,b

1
2

a(a2
i+1 − a2

i ) + b(ai+1 − ai) min
c,d

1
2

c(a2
i+1 − a2

i ) + d(ai+1 − ai)

s.t. S − aT − b ∈ ML(T − ai , ai+1 − T ). s.t. cT + d − S ∈ ML(T − ai , ai+1 − T ).

In all profile approximations pictured in this paper we sliced them into 100 sections.

we provide in Appendix 6 8 particularly interesting outer approximations of tree-profiles, where several level of
the hierarchy are represented. We will now study three of them more thouroughly.
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Outer approximations of the tree-profiles of the caterpillar trees of sizes 4 to 6 versus the even tree of size
6. We turn our attention to the tree-profiles of Catk, the caterpillar tree of size k, and E6, the even tree of size
6, for k ∈ {4, 5,6}. The four trees involved are recalled in Figure 12.

(a) Cat4 (b) Cat5 (c) Cat6 (d) E6

Fig. 12 The caterpillar trees of sizes 4, 5 and 6 and the even tree of size 6

The three outer approximations of the tree-profiles of Catk and E6 for k ∈ {4,5, 6} are represented in the first row
of Figure 13. Each level of the SDP hierarchy from 6 to 11 is drawn, the approximation becoming tighter as the
level increases. We can thus clearly visualize the improvement brought the levels of the hierarchy, and note that
they all seem to converge to tree-profiles with similar characteristics. The upper boundary appears to have two
parts: we will give a conjecture for the expression of the right part. The right part of the upper bound turns non-
convex and appears (numerically) sharp at levels 8, 9 and 10, respectively. The lower boundary, however, seems
more complex: the approximations are composed of multiple different sections (some which, maybe most of
which, may not be visible yet), and each level of the hierarchy is able to substantially improve the approximation.
This behavior is made obvious when plotting separately the improvement of the lower approximation with each
level of the hierarchy. In each figure of the second row of Figure 13 are represented the respective gaps between
the lower boundary obtained at levels 7, 8 and 8 respectively of the hierarchy and those obtained at each level
from 6 to 11. The leftmost section of each lowerbound appears (close to) linear, and is followed by (at least) two
"scallops". As soon as the level reaches 7,8 and 8 respectively, the bound appears to stabilize at the point where the
two scallops meet, suggesting existence of a "nice" extremal configuration. In the scallops themselves, the bounds
improve strictly at every level, but numerics become more obvious, making it hard to claim anything specific. The
apparent complexity of approximating these lower boundaries suggests that more advanced strategies (such as
the variational methods Razborov used for the triangle-edge profile [39]) may be necessary to find exact bounds.

0.6 0.7 0.8 0.9 1.0
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Fig. 13 Tree-profiles and lower bound differences of Cat4, Cat5 and Cat6 versus E6

We will now formulate a conjecture for the right part of the upper boundary of each of these tree-profiles and
prove some points of interest on these boundaries, depicted in Figure 14 for Cat4.
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C4 = ( • ( • ( • • )))
0.6 0.7 0.8 0.9 1.0

E 6
=

((
•

(
•

•
))

(
•

(
•

•
))

)

0.0

0.1

0.2

0.3
DCat∞

1/2,1/2 : (5
8
, 5

16)

C∞ : (1
1
, 0

1)

E∞ : (4
7
, 10

31)

DCat t,1 − t
: (20t 3

(1 − t) 3
,t 4

+
(1 − t 4

) +
4(t 3

(t −
1) + t(t −

1) 3
))

Fig. 14 Tree-profile of Cat4 and E6

Point 1: Right-most corner of the upper boundary. In each of these profiles, we can easily identify the known
point (1,0) corresponding to the infinite caterpillar Cat∞, in which every finite caterpillar has density 1 and all
other trees have density 0.

Right part of the upper boundary: the infinite double caterpillar. Let us denote DCatp,q
n the double caterpillar

of size n, composed of two caterpillars of size n joined at the root with ratio (p, q), i.e., one of the sides is a
caterpillar of size ⌊pn⌋ and the other is a caterpillar of size ⌈qn⌉, with p+ q = 1.

Fig. 15 DCat
1
2 , 1

2
8 : the double caterpillar of size 8 with ratio ( 1

2 , 1
2 )

For any k ≥ 1, the subtree density of Catk in DCatp,q
n is

p(Catk,DCatp,q
n ) =

�⌊pn⌋
k

�

+
�⌈qn⌉

k

�

+ ⌊pn⌋ ·
�⌈qn⌉

k−1

�

+ ⌈qn⌉ ·
�⌊pn⌋

k−1

�

�n
k

� .

Indeed, among the
�n

k

�

ways to pick a subset of leaves of size k of DCatp,q
n , the ones inducing a tree isomorphic to

Catk are:

• the
�⌊pn⌋

k

�

+
�⌈qn⌉

k

�

ways of picking all k leaves from the same side of the double caterpillar;

• and the ⌊pn⌋ ·
�⌈qn⌉

k−1

�

+ ⌈qn⌉ ·
�⌊pn⌋

k−1

�

ways of picking (k−1) leaves on the same side of the double caterpillar,
and the last leaf on the opposite side.
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As n tends to infinity, we obtain that

p(Catk,DCatp,q
∞) =

pknk

k! +
qknk

k! +
pqk−1nk

(k−1)! +
pk−1qnk

(k−1)!

nk

k!

= pk + qk + k(pqk−1 + pk−1q),

(6)

where DCatp,q
∞ = (DCatp,q

n )n≥2 is the increasing sequence of double caterpillars with ratio (p, q).

The subtree density of E6 in DCatp,q
n is

p(E6,DCatp,q
n ) =

�⌊pn⌋
3

��⌈qn⌉
3

�

�n
6

� .

Indeed, the only way to pick a subset of 6 leaves in DCatp,q
n inducing a tree isomorphic to E6, is to pick 3 leaves

on each side of DCatp,q
n . We can thus compute the density of E6 in DCatp,q

∞ :

p(E6,DCatp,q
∞) =

p3q3n6

(3!)2

n6

6!

= 20p3q3.

(7)

Conjecture 1. DCatp,1−p
∞ lies on the upper boundary of the tree-profile of Catk and E6 for all values of k ≥ 4 and

p ∈ [0, 1].

For every point of this curve, we are able to obtain a (numerically exact) sum of squares certificate that it indeed
lies on the boundary of the profile. However, in the absence of information about the algebraic degree of the
curve, this is not enough to prove Conjecture 1, for we would need a parametrized family of sum of squares
certificates for each point.

Point 2: Middle corner of the upper boundary. For each k ∈ {4,5, 6}, we will now prove one point on the
upper boundary of the tree-profile of Catk and E6: the points ( 5

8 , 5
16 ) for k = 4, ( 3

8 , 5
16 ) for k = 5 and ( 7

32 , 5
16 ) for

k = 6. To do so, we will first show that each point is part of the profile corresponding to the densities of Catk and
E6 in the infinite double caterpillar; then we will provide a sum of squares certificate proving that they indeed lie
on the upper boundary.

We can apply our previous results to compute the densities of Cat4, Cat5, Cat6 and E6 in the “balanced” infinite
double caterpillar, i.e. the infinite double caterpillar with ratio ( 1

2 , 1
2 ). In this case, we obtain from (6)

p(Catk,DCat
1
2 , 1

2
∞ ) =

k+ 1
2k−1

.

We thus have

p(Cat4, DCat
1
2 , 1

2
∞ ) =

5
8
= 0.625,

p(Cat5, DCat
1
2 , 1

2
∞ ) =

3
8
= 0.375,

p(Cat6, DCat
1
2 , 1

2
∞ ) =

7
32
= 0.21875,

and, following from (7)

p(E6,DCat
1
2 , 1

2
∞ ) =

5
16
= 0.3125.

Our flag algebra software then gives us for each of these points a sum of squares certificate proving that they
actually lie on the upper boundary of the tree-profiles. We detail below the certificate for k = 4, and include (very
similar) certificates for k ∈ {5, 6} as ancillary files.

We have

� �

2
3 4 2

1

+ 2
3 4

1 2

+ 2
3 4 1

2

−
3 4 1 2

�2 �
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=
4

15
+

4
15

−
2
5

+
1
3

We recall that all averaged products of trees-flags with up to 6 vertices are given in Appendix 6. We thus obtain
that

4 + 4 − 6 + 5 ≥ 0. (8)

Using the following quotient relations

= +

and

=
2
3

+ +
1
6

+
2
3

we can rewrite (8) as

5− 5 − 6 ≥ ≥ 0,

i.e.,

5 + 6 ≤ 5. (9)

The point ( 5
8 , 5

16 ) maximizes (9) in both directions. Thus, it lies on a corner of upper boundary of the tree-profile
of Cat4 and E6.

The certificates for Cat5 and Cat6 are very similar, and are given as ancillary files.

Point 3: Left-most corner of the upper boundary. The works of Dossou-Olory and Wagner provide us with
the left-most corners of the upper boundaries: the points ( 4

7 , 10
31 ), (

4
21 , 10

31 ), and ( 8
217 , 10

31 ), for k = 4, k = 5, and
k = 6, respectively. Indeed, they showed that they correspond to the densities of Catk and E6 in the sequence of
even trees E∞ = (En)n→∞, who simulateously minimize the density of Catk and maximize the one of E6 .

Dossou-Olory proves in [15] that the minimum asymptotic density of caterpillar trees is attained for E∞, and
gives an explicit expression of this density. In the case of a binary caterpillar of size k, the formula is the following

p(Catk, E∞) =
k!
2
·

k−1
∏

j=1

(2 j − 1)−1.

Applying this for k = 4,5, 6, we directly obtain

p(Cat4, E∞) =
4
7

,

p(Cat5, E∞) =
4
21

and

p(Cat6, E∞) =
8

217
.
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We know from [13] that for every r ≥ 1, the inducibility of Er is attained in the sequence E∞, and that i(Er) =
p(Er , E∞) = r! · cr , where

c2s =
c2

s

22s − 2
,

c2s+1 =
cscs+1

22s − 1
.

This then gives us, with r = 6,

p(E6, E∞) =
10
31

.

Proving nonconvexity of the profiles. In contrast to the (local) profiles of trees considered by Bubeck and
Linial [9], Figures 13 and 14 show clearly that the tree-profiles considered in this paper can be nonconvex. We
computed a rounded (and as such rigorous) sum of squares certificate for the upper bound 3322279122457465127

25200000000000000000 ≈
0.1318365 ≈ 135

1024 = p(E6,DCat1/4,3/4) for the E6 density when Cat4 =
101
128 = p(Cat4,DCat1/4,3/4). The certificate

is given ancillary file, as it is unfortunately too large to be detailed here.

6 Concluding remarks and open problems

Applying the flag algebra theory to rooted binary trees has proved extremely efficient to obtain bounds on the
densities and inducibilities of these trees. These very promising results give us many directions in which to
continue researching on this topic: we list here the main ones.

Proving open conjectures on the inducibilities of trees. There are several conjectures about the maximizers
of the density of a graph over all graphs of a fixed size. For example, in [13], Czabarka et al. make the following
conjecture: for every n ≥ k, En has the largest number of copies of Ek among all binary trees with n leaves. In a
similar fashion to what has been done in [30], it may be possible to prove these conjectures using flag algebras.
In [17], Dossou-Olory and Wagner make the hypothesis that some trees may have an irrational inducibility, fol-
lowing on a question stated in [13]. As we mentioned in Section 5.1, they consider the even tree on 5 vertices E5
as a possible tree with irrational inducibility. If the inducibility of this tree is indeed irrational, proving it could
be possible using our framework, and would answer this open question.

Further investigation on the tree-profiles. There is still a lot to be discovered about tree-profiles. Our next
goal would be to compute the exact description of the tree-profiles in Figure 13. This means, on the one hand
proving Conjecture 1, and on the other hand determining the lower boundary which seems, as shown before,
much more challenging to approach. Studying other tree-profiles in detail would also be of great interest and
could lead us to learn more about the behavior and characteristics and the densities of these trees. In particular,
we notice in Figure 23 a sharp angle present on the x-axis at every level of the hierarchy above 1. This leads us

to think that we could obtain an exact Turán number of excluding .

Adapting to other types of trees. The settings to which this can be extended are numerous: d-ary and strictly
d-ary trees, unrooted trees, colored trees, tree-pairs of phylogenetic trees as in [2]...
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Appendix 1: Table of averaged products of trees

We give here all the averaged products of trees-flags with up to 11 leaves, and the equations obtained from
quotienting out K∅, as explained in Section 3.3. In the interest of space, the trees are written in a compact way:
unlabeled leaves are written as • and labeled leaves simply as their label ( 1 is written as 1). The structure of the
tree is given by the brackets: a tree with two branches T1 and T2 joining at the root node is written (T1T2), and

we proceed recursively to write the whole tree. For example, (•(••)) = and ((12)(3(4•))) =
1 2 3

4

.

Type ∅

⟦∅ ·∅⟧=∅

⟦∅ · •⟧= •

⟦∅ · (••)⟧= (••)

⟦∅ · (•(••))⟧= (•(••))

⟦• · •⟧= (••)

⟦• · (••)⟧= (•(••))

⟦• · (•(••))⟧= (•(•(••))) + ((••)(••))

⟦(••) · (••)⟧= (•(•(••))) + ((••)(••))

⟦(••) · (•(••))⟧= (•(•(•(••)))) + (•((••)(••)))

+ ((••)(•(••)))

⟦(•(••)) · (•(••))⟧= ((•(••))(•(••))) + ((••)((••)(••)))

+ ((•((••)(••)))•) + ((••)(•(•(••))))

+ (•(•(•(•(••))))) + (•((••)(•(••))))

Type •

⟦1 · 1⟧= •

⟦1 · (1•)⟧= (••)

⟦1 · (1(••))⟧= 1
3 (•(••))

⟦1 · (•(1•))⟧= 2
3 (•(••))

⟦(1•) · (1•)⟧= (•(••))

⟦(1•) · (1(••))⟧= 1
3 ((••)(••)) +

1
3 (•(•(••)))

⟦(1•) · (•(1•))⟧= 2
3 ((••)(••)) +

2
3 (•(•(••)))

⟦(1(••)) · (1(••))⟧= 1
5 (•(•(•(••)))) +

1
5 (•((••)(••)))

+ 1
15 ((••)(•(••)))

⟦(1(••)) · (•(1•))⟧= 2
15 (•(•(•(••)))) +

2
15 (•((••)(••)))

+ 4
15 ((••)(•(••)))

⟦(•(1•)) · (•(1•))⟧= 8
15 (•(•(•(••)))) +

8
15 (•((••)(••)))

+ 2
5 ((••)(•(••)))

Type

⟦(12) · (12)⟧= (••)

⟦(12) · (1(2•))⟧= 1
3 (•(••))

⟦(12) · (•(12))⟧= 1
3 (•(••))

⟦(12) · ((12)(••))⟧= 1
3 ((••)(••))

⟦(12) · ((1•)(2•))⟧= 2
3 ((••)(••))

⟦(12) · (1(2(••)))⟧= 1
12 (•(•(••)))

⟦(12) · (1(•(2•)))⟧= 1
6 (•(•(••)))

⟦(12) · (•(1(2•)))⟧= 1
6 (•(•(••)))

⟦(12) · (•(•(12)))⟧= 1
6 (•(•(••)))

⟦(1(2•)) · (1(2•))⟧= 1
4 (•(•(••)))

⟦(1(2•)) · (2(1•))⟧= 1
3 ((••)(••))

⟦(1(2•)) · (•(12))⟧= 1
12 (•(•(••)))

⟦(1(2•)) · ((12)(••))⟧= 1
30 ((••)(•(••)))

⟦(1(2•)) · ((1•)(2•))⟧= 1
5 ((••)(•(••)))

⟦(1(2•)) · (1(2(••)))⟧= 1
15 (•(•(•(••)))) +

1
15 (•((••)(••)))

⟦(1(2•)) · (1(•(2•)))⟧= 2
15 (•(•(•(••)))) +

2
15 (•((••)(••)))

⟦(1(2•)) · (2(1(••)))⟧= 1
30 ((••)(•(••)))

⟦(1(2•)) · (2(•(1•)))⟧= 1
15 ((••)(•(••)))

⟦(1(2•)) · (•(1(2•)))⟧= 1
10 (•(•(•(••))))

⟦(1(2•)) · (•(2(1•)))⟧= 2
15 (•((••)(••)))

⟦(1(2•)) · (•(•(12)))⟧= 1
30 (•(•(•(••))))

⟦(•(12)) · (•(12))⟧= 1
6 (•(•(••))) +

1
3 ((••)(••))

⟦(•(12)) · ((12)(••))⟧= 1
15 (•((••)(••))) +

2
15 ((••)(•(••)))

⟦(•(12)) · ((1•)(2•))⟧= 2
15 (•((••)(••)))

⟦(•(12)) · (1(2(••)))⟧= 1
60 (•(•(•(••))))

⟦(•(12)) · (1(•(2•)))⟧= 1
30 (•(•(•(••))))

⟦(•(12)) · (•(1(2•)))⟧= 1
15 (•(•(•(••)))) +

1
15 ((••)(•(••)))

⟦(•(12)) · (•(•(12)))⟧= 1
10 (•(•(•(••)))) +

2
15 (•((••)(••)))

+ 1
15 ((••)(•(••)))

⟦((12)(••)) · ((12)(••))⟧= 1
9 ((••)((••)(••))) +

1
15 ((••)(•(•(••))))

⟦((12)(••)) · ((1•)(2•))⟧= 2
45 ((••)((••)(••)))

⟦((12)(••)) · (1(2(••)))⟧= 1
180 ((••)(•(•(••))))

⟦((12)(••)) · (1(•(2•)))⟧= 1
90 ((••)(•(•(••))))

⟦((12)(••)) · (•(1(2•)))⟧= 1
15 ((•(••))(•(••))) +

1
90 ((••)(•(•(••))))

+ 1
90 (•((••)(•(••))))

⟦((12)(••)) · (•(•(12)))⟧= 1
15 ((•(••))(•(••))) +

1
45 ((•((••)(••)))•)

+ 1
90 ((••)(•(•(••)))) +

2
45 (•((••)(•(••))))

⟦((1•)(2•)) · ((1•)(2•))⟧= 2
5 ((•(••))(•(••)))

⟦((1•)(2•)) · (1(2(••)))⟧= 2
45 ((••)((••)(••))) +

2
45 ((••)(•(•(••))))

⟦((1•)(2•)) · (1(•(2•)))⟧= 4
45 ((••)((••)(••))) +

4
45 ((••)(•(•(••))))

⟦((1•)(2•)) · (•(1(2•)))⟧= 1
15 (•((••)(•(••))))

⟦((1•)(2•)) · (•(•(12)))⟧= 2
45 ((•((••)(••)))•)

⟦(1(2(••))) · (1(2(••)))⟧= 1
30 ((•((••)(••)))•) +

1
30 (•(•(•(•(••)))))

+ 1
90 (•((••)(•(••))))

⟦(1(2(••))) · (1(•(2•)))⟧= 1
45 ((•((••)(••)))•) +

1
45 (•(•(•(•(••)))))

+ 2
45 (•((••)(•(••))))

⟦(1(2(••))) · (2(1(••)))⟧= 1
90 ((•(••))(•(••)))

⟦(1(2(••))) · (2(•(1•)))⟧= 1
45 ((•(••))(•(••)))

⟦(1(2(••))) · (•(1(2•)))⟧= 1
45 ((•((••)(••)))•) +

1
45 (•(•(•(•(••)))))

⟦(1(2(••))) · (•(2(1•)))⟧= 1
90 (•((••)(•(••))))

⟦(1(2(••))) · (•(•(12)))⟧= 1
180 (•(•(•(•(••)))))

⟦(1(•(2•))) · (1(•(2•)))⟧= 4
45 ((•((••)(••)))•) +

4
45 (•(•(•(•(••)))))

+ 1
15 (•((••)(•(••))))

⟦(1(•(2•))) · (2(•(1•)))⟧= 2
45 ((•(••))(•(••)))

⟦(1(•(2•))) · (•(1(2•)))⟧= 2
45 ((•((••)(••)))•) +

2
45 (•(•(•(•(••)))))

⟦(1(•(2•))) · (•(2(1•)))⟧= 1
45 (•((••)(•(••))))

⟦(1(•(2•))) · (•(•(12)))⟧= 1
90 (•(•(•(•(••)))))

⟦(•(1(2•))) · (•(1(2•)))⟧= 1
15 ((••)(•(•(••)))) +

1
15 (•(•(•(•(••)))))

⟦(•(1(2•))) · (•(2(1•)))⟧= 4
45 ((••)((••)(••))) +

4
45 ((•((••)(••)))•)

⟦(•(1(2•))) · (•(•(12)))⟧= 1
45 ((••)(•(•(••)))) +

1
30 (•(•(•(•(••)))))

+ 1
45 (•((••)(•(••))))
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⟦(•(•(12))) · (•(•(12)))⟧= 4
45 ((••)((••)(••))) +

4
45 ((•((••)(••)))•)

+ 2
45 ((••)(•(•(••)))) +

1
15 (•(•(•(•(••)))))

+ 2
45 (•((••)(•(••))))

Type

⟦(1(23)) · (1(23))⟧= 1
3 (•(••))

⟦(1(23)) · ((1•)(23))⟧= 1
3 ((••)(••))

⟦(1(23)) · (1(2(3•)))⟧= 1
12 (•(•(••)))

⟦(1(23)) · (1(•(23)))⟧= 1
12 (•(•(••)))

⟦(1(23)) · (•(1(23)))⟧= 1
12 (•(•(••)))

⟦((1•)(23)) · ((1•)(23))⟧= 1
10 ((••)(•(••)))

⟦((1•)(23)) · (1(2(3•)))⟧= 1
30 ((••)(•(••)))

⟦((1•)(23)) · (1(•(23)))⟧= 1
30 ((••)(•(••)))

⟦((1•)(23)) · (•(1(23)))⟧= 1
15 (•((••)(••)))

⟦(1(2(3•))) · (1(2(3•)))⟧= 1
20 (•(•(•(••))))

⟦(1(2(3•))) · (1(3(2•)))⟧= 1
15 (•((••)(••)))

⟦(1(2(3•))) · (1(•(23)))⟧= 1
60 (•(•(•(••))))

⟦(1(2(3•))) · (•(1(23)))⟧= 1
60 (•(•(•(••))))

⟦(1(•(23))) · (1(•(23)))⟧= 1
30 (•(•(•(••)))) +

1
15 (•((••)(••)))

⟦(1(•(23))) · (•(1(23)))⟧= 1
60 (•(•(•(••))))

⟦(•(1(23))) · (•(1(23)))⟧= 1
30 (•(•(•(••)))) +

1
30 ((••)(•(••)))

Type

⟦((12)(34)) · ((12)(34))⟧= 1
3 ((••)(••))

⟦((12)(34)) · ((12)(3(4•)))⟧= 1
30 ((••)(•(••)))

⟦((12)(34)) · ((12)(•(34)))⟧= 1
30 ((••)(•(••)))

⟦((12)(34)) · (•((12)(34)))⟧= 1
15 (•((••)(••)))

⟦((12)(3(4•))) · ((12)(3(4•)))⟧= 1
60 ((••)(•(•(••))))

⟦((12)(3(4•))) · ((12)(4(3•)))⟧= 1
45 ((••)((••)(••)))

⟦((12)(3(4•))) · ((12)(•(34)))⟧= 1
180 ((••)(•(•(••))))

⟦((12)(3(4•))) · ((34)(1(2•)))⟧= 1
90 ((•(••))(•(••)))

⟦((12)(3(4•))) · ((34)(•(12)))⟧= 1
90 ((•(••))(•(••)))

⟦((12)(3(4•))) · (•((12)(34)))⟧= 1
180 (•((••)(•(••))))

⟦((12)(•(34))) · ((12)(•(34)))⟧= 1
45 ((••)((••)(••))) +

1
90 ((••)(•(•(••))))

⟦((12)(•(34))) · ((34)(•(12)))⟧= 1
90 ((•(••))(•(••)))

⟦((12)(•(34))) · (•((12)(34)))⟧= 1
180 (•((••)(•(••))))

⟦(•((12)(34))) · (•((12)(34)))⟧= 1
45 ((••)((••)(••))) +

1
45 ((•((••)(••)))•)

Type

⟦(1(2(34))) · (1(2(34)))⟧= 1
12 (•(•(••)))

⟦(1(2(34))) · ((1•)(2(34)))⟧= 1
30 ((••)(•(••)))

⟦(1(2(34))) · (1((2•)(34)))⟧= 1
15 (•((••)(••)))

⟦(1(2(34))) · (1(2(3(4•))))⟧= 1
60 (•(•(•(••))))

⟦(1(2(34))) · (1(2(•(34))))⟧= 1
60 (•(•(•(••))))

⟦(1(2(34))) · (1(•(2(34))))⟧= 1
60 (•(•(•(••))))

⟦(1(2(34))) · (•(1(2(34))))⟧= 1
60 (•(•(•(••))))

⟦((1•)(2(34))) · ((1•)(2(34)))⟧= 1
30 ((•(••))(•(••)))

⟦((1•)(2(34))) · (1((2•)(34)))⟧= 1
45 ((••)((••)(••)))

⟦((1•)(2(34))) · (1(2(3(4•))))⟧= 1
180 ((••)(•(•(••))))

⟦((1•)(2(34))) · (1(2(•(34))))⟧= 1
180 ((••)(•(•(••))))

⟦((1•)(2(34))) · (1(•(2(34))))⟧= 1
180 ((••)(•(•(••))))

⟦((1•)(2(34))) · (•(1(2(34))))⟧= 1
180 (•((••)(•(••))))

⟦(1((2•)(34))) · (1((2•)(34)))⟧= 1
60 (•((••)(•(••))))

⟦(1((2•)(34))) · (1(2(3(4•))))⟧= 1
180 (•((••)(•(••))))

⟦(1((2•)(34))) · (1(2(•(34))))⟧= 1
180 (•((••)(•(••))))

⟦(1((2•)(34))) · (1(•(2(34))))⟧= 1
90 ((•((••)(••)))•)

⟦(1((2•)(34))) · (•(1(2(34))))⟧= 1
90 ((•((••)(••)))•)

⟦(1(2(3(4•)))) · (1(2(3(4•))))⟧= 1
120 (•(•(•(•(••)))))

⟦(1(2(3(4•)))) · (1(2(4(3•))))⟧= 1
90 ((•((••)(••)))•)

⟦(1(2(3(4•)))) · (1(2(•(34))))⟧= 1
360 (•(•(•(•(••)))))

⟦(1(2(3(4•)))) · (1(•(2(34))))⟧= 1
360 (•(•(•(•(••)))))

⟦(1(2(3(4•)))) · (•(1(2(34))))⟧= 1
360 (•(•(•(•(••)))))

⟦(1(2(•(34)))) · (1(2(•(34))))⟧= 1
90 ((•((••)(••)))•) +

1
180 (•(•(•(•(••)))))

⟦(1(2(•(34)))) · (1(•(2(34))))⟧= 1
360 (•(•(•(•(••)))))

⟦(1(2(•(34)))) · (•(1(2(34))))⟧= 1
360 (•(•(•(•(••)))))

⟦(1(•(2(34)))) · (1(•(2(34))))⟧= 1
180 (•(•(•(•(••))))) +

1
180 (•((••)(•(••))))

⟦(1(•(2(34)))) · (•(1(2(34))))⟧= 1
360 (•(•(•(•(••)))))

⟦(•(1(2(34)))) · (•(1(2(34))))⟧= 1
180 ((••)(•(•(••)))) +

1
180 (•(•(•(•(••)))))

Type

⟦(1(2(3(45)))) · (1(2(3(45))))⟧= 1
60 (•(•(•(••))))

Type

⟦(1((23)(45))) · (1((23)(45)))⟧= 1
15 (•((••)(••)))

Type

⟦((12)(3(45))) · ((12)(3(45)))⟧= 1
30 ((••)(•(••)))

Type

⟦((1((23)(45)))6) · ((1((23)(45)))6)⟧= 1
90 ((•((••)(••)))•)

Type

⟦((12)(3(4(56)))) · ((12)(3(4(56))))⟧= 1
180 ((••)(•(•(••))))

Type

⟦(1((23)(4(56)))) · (1((23)(4(56))))⟧= 1
180 (•((••)(•(••))))

Type

⟦((1(23))(4(56))) · ((1(23))(4(56)))⟧= 1
90 ((•(••))(•(••)))
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Type

⟦((12)((34)(56))) · ((12)((34)(56)))⟧= 1
45 ((••)((••)(••)))

Type

⟦(1(2(3(4(56))))) · (1(2(3(4(56)))))⟧= 1
360 (•(•(•(•(••)))))

Quotient:

∅= • ·∅= •

•= • · •= (••)

(••) = • · (••) = (•(••))

(•(••)) = • · (•(••)) = ((••)(••)) + (•(•(••)))

(•(•(••))) = • · (•(•(••))) = (•(•(•(••)))) + 4
5 (•((••)(••))) +

2
5 ((••)(•(••)))

((••)(••)) = • · ((••)(••)) = 1
5 (•((••)(••))) +

3
5 ((••)(•(••)))

(•(•(•(••)))) = • · (•(•(•(••)))) = 2
3 ((•((••)(••)))•) +

1
3 ((••)(•(•(••))))

+ 1
3 (•((••)(•(••)))) + (•(•(•(•(••)))))

((••)(•(••))) = • · ((••)(•(••))) = 2
3 ((••)(•(•(••)))) + ((•(••))(•(••)))

+ 1
6 (•((••)(•(••)))) +

2
3 ((••)((••)(••)))

(•((••)(••))) = • · (•((••)(••))) = 1
3 ((•((••)(••)))•) +

1
2 (•((••)(•(••))))

+ 1
3 ((••)((••)(••)))

Appendix 2: Bounds on the inducibility of trees

The full list of bounds for the inducibility of trees with up to 11 leaves. The bounds are given in the form
T ≤ I11(T )≤ I10(T ). If T has more than 10 leaves, we only give the bound I11(T ). The bounds were obtained by
numerically solving the SDPs of Section 5.1, and then rounding their numerical certificates to rigorous rational
certificates using the procedure described in Section 4.2. Due to the number of digits in the fractions of the
resulting rational bounds, we here only give their first few decimals, rounded up. In some cases the bound at
level 11 is slightly worse than the bound at level 10 after rounding. In those cases the second inequality is marked
in red, and should be interpreted as T ≤ min(I11(T ), I10(T )). The known inducibilites from that we recover (up
to precision 10−5), and the known bounds that we improve are marked with a star.

• ≤ 1.0≤ 1.0∗

(••)≤ 1.0≤ 1.0∗

(•(••))≤ 1.0≤ 1.0∗

((••)(••))≤ 0.4285724≤0.4285723∗

(•(•(••)))≤ 1.0000023≤1.000001∗

((••)(•(••)))≤ 0.6666669≤ 0.6666692∗

(•((••)(••)))≤ 0.2471566≤ 0.2471585∗

(•(•(•(••))))≤ 1.0000001≤ 1.0000003∗

((•(••))(•(••)))≤ 0.3225817≤0.3225814∗

((••)((••)(••)))≤ 0.2073743≤0.2073739

((••)(•(•(••))))≤ 0.4687508≤0.4687506

(•((••)(•(••))))≤ 0.3411657≤ 0.3411696

(•(•((••)(••))))≤ 0.1914539≤ 0.1914929

(•(•(•(•(••)))))≤ 1.0000036≤1.000001∗

((•(••))((••)(••)))≤ 0.2380974≤0.2380958∗

((•(••))(•(•(••))))≤ 0.5468753≤ 0.5468759

((••)((••)(•(••))))≤ 0.2472173≤ 0.2472174

((••)(•((••)(••))))≤ 0.0880895≤ 0.0881718

((••)(•(•(•(••)))))≤ 0.3456807≤0.3456797

(•((•(••))(•(••))))≤ 0.1440113≤ 0.1440145

(•((••)((••)(••))))≤ 0.1048657≤ 0.1048672

(•((••)(•(•(••)))))≤ 0.2086242≤ 0.2086268

(•(•((••)(•(••)))))≤ 0.2557124≤ 0.2557527

(•(•(•((••)(••)))))≤ 0.1689918≤ 0.1690628

(•(•(•(•(•(••))))))≤ 1.0000001≤ 1.0000008∗

(((••)(••))((••)(••)))≤ 0.050619≤0.0506189∗

(((••)(••))(•(•(••))))≤ 0.1349838≤ 0.134984

((•(•(••)))(•(•(••))))≤ 0.2734403≤0.2734386

((•(••))((••)(•(••))))≤ 0.2939654≤0.2939636

((•(••))(•((••)(••))))≤ 0.1083039≤ 0.1083669

((•(••))(•(•(•(••)))))≤ 0.4375042≤0.437501

((••)((•(••))(•(••))))≤ 0.1092112≤ 0.1092115

((••)((••)((••)(••))))≤ 0.0702087≤ 0.0702093

((••)((••)(•(•(••)))))≤ 0.1479366≤0.1479356

((••)(•((••)(•(••)))))≤ 0.1117998≤ 0.1118649

((••)(•(•((••)(••)))))≤ 0.0607014≤ 0.0608194

((••)(•(•(•(•(••))))))≤ 0.315595≤ 0.3155953

(•((•(••))((••)(••))))≤ 0.1006769≤ 0.10068

(•((•(••))(•(•(••)))))≤ 0.218171≤ 0.2181722

(•((••)((••)(•(••)))))≤ 0.1311494≤ 0.131184

(•((••)(•((••)(••)))))≤ 0.0445721≤ 0.0449494

(•((••)(•(•(•(••))))))≤ 0.1566008≤ 0.1567041

(•(•((•(••))(•(••)))))≤ 0.110595≤ 0.1105952

(•(•((••)((••)(••)))))≤ 0.0781389≤ 0.0781907

(•(•((••)(•(•(••))))))≤ 0.1532779≤ 0.1533452

(•(•(•((••)(•(••))))))≤ 0.2231186≤ 0.2232376

(•(•(•(•((••)(••))))))≤ 0.156537≤ 0.1568862

(•(•(•(•(•(•(••)))))))≤ 1.0≤ 1.0000012∗

(((••)(••))((••)(•(••))))≤ 0.1411782≤ 0.1411783∗

(((••)(••))(•((••)(••))))≤ 0.0369633≤ 0.0370008

(((••)(••))(•(•(•(••)))))≤ 0.1115373≤ 0.1115422

((•(•(••)))((••)(•(••))))≤ 0.1922642≤ 0.1922674

((•(•(••)))(•((••)(••))))≤ 0.0951453≤ 0.0952781

((•(•(••)))(•(•(•(••)))))≤ 0.4921905≤0.4921887

((•(••))((•(••))(•(••))))≤ 0.1063606≤ 0.106361

((•(••))((••)((••)(••))))≤ 0.0683775≤ 0.0683789

((•(••))((••)(•(•(••)))))≤ 0.1538092≤0.1538091

((•(••))(•((••)(•(••)))))≤ 0.1120877≤ 0.1124398

((•(••))(•(•((••)(••)))))≤ 0.0630144≤ 0.0634229

((•(••))(•(•(•(•(••))))))≤ 0.3281263≤0.3281259

((••)((•(••))((••)(••))))≤ 0.0767213≤ 0.0767225

((••)((•(••))(•(•(••)))))≤ 0.1677236≤ 0.167724

((••)((••)((••)(•(••)))))≤ 0.0835942≤ 0.0835972

((••)((••)(•((••)(••)))))≤ 0.0285892≤ 0.0287976

((••)((••)(•(•(•(••))))))≤ 0.1060242≤ 0.1060431

((••)(•((•(••))(•(••)))))≤ 0.0456309≤ 0.0457598

((••)(•((••)((••)(••)))))≤ 0.0334688≤ 0.0334714
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((••)(•((••)(•(•(••))))))≤ 0.0657211≤ 0.0658082

((••)(•(•((••)(•(••))))))≤ 0.0786251≤ 0.0787129

((••)(•(•(•((••)(••))))))≤ 0.0519508≤ 0.0521146

((••)(•(•(•(•(•(••)))))))≤ 0.3066941≤ 0.3066951

(•(((••)(••))((••)(••))))≤ 0.0204504≤ 0.0204549

(•(((••)(••))(•(•(••)))))≤ 0.0545345≤ 0.0545396

(•((•(•(••)))(•(•(••)))))≤ 0.1069244≤ 0.1069273

(•((•(••))((••)(•(••)))))≤ 0.1214086≤ 0.1214095

(•((•(••))(•((••)(••)))))≤ 0.0430079≤ 0.0434258

(•((•(••))(•(•(•(••))))))≤ 0.1723559≤ 0.172359

(•((••)((•(••))(•(••)))))≤ 0.0539278≤ 0.0539904

(•((••)((••)((••)(••)))))≤ 0.0376985≤ 0.0377181

(•((••)((••)(•(•(••))))))≤ 0.0701662≤ 0.0703284

(•((••)(•((••)(•(••))))))≤ 0.057187≤ 0.057908

(•((••)(•(•((••)(••))))))≤ 0.0297153≤ 0.0305371

(•((••)(•(•(•(•(••)))))))≤ 0.1470463≤ 0.147387

(•(•((•(••))((••)(••)))))≤ 0.0770303≤ 0.0770328

(•(•((•(••))(•(•(••))))))≤ 0.1674006≤ 0.1674007

(•(•((••)((••)(•(••))))))≤ 0.0976269≤ 0.097758

(•(•((••)(•((••)(••))))))≤ 0.0347112≤ 0.0358522

(•(•((••)(•(•(•(••)))))))≤ 0.1170884≤ 0.1180212

(•(•(•((•(••))(•(••))))))≤ 0.0969838≤ 0.0969874

(•(•(•((••)((••)(••))))))≤ 0.0676847≤ 0.0678276

(•(•(•((••)(•(•(••)))))))≤ 0.1320994≤ 0.132266

(•(•(•(•((••)(•(••)))))))≤ 0.2052418≤ 0.205465

(•(•(•(•(•((••)(••)))))))≤ 0.1486806≤ 0.1493087

(•(•(•(•(•(•(•(••))))))))≤ 1.000006≤1.0000011∗

(((••)(•(••)))((••)(•(••))))≤ 0.1095907≤ 0.1095919∗

(((••)(•(••)))(•((••)(••))))≤ 0.0545185≤ 0.054681

(((••)(•(••)))(•(•(•(••)))))≤ 0.1641412≤ 0.1641494

(((••)(••))((•(••))(•(••))))≤ 0.0568157≤ 0.0568163

(((••)(••))((••)((••)(••))))≤ 0.0365269≤ 0.0365296

(((••)(••))((••)(•(•(••)))))≤ 0.0720995≤ 0.0721028

(((••)(••))(•((••)(•(••)))))≤ 0.0417168≤0.0417147

(((••)(••))(•(•((••)(••)))))≤ 0.020993≤ 0.0212709

(((••)(••))(•(•(•(•(••))))))≤ 0.1075≤ 0.1075031

((•((••)(••)))(•((••)(••))))≤ 0.0150657≤ 0.0151785

((•((••)(••)))(•(•(•(••)))))≤ 0.0660705≤ 0.0677592

((•(•(•(••))))(•(•(•(••)))))≤ 0.2460954≤0.2460945

((•(•(••)))((•(••))(•(••))))≤ 0.0813881≤ 0.081396

((•(•(••)))((••)((••)(••))))≤ 0.0523329≤0.0523192

((•(•(••)))((••)(•(•(••)))))≤ 0.1212067≤ 0.1212832

((•(•(••)))(•((••)(•(••)))))≤ 0.1075205≤ 0.107755

((•(•(••)))(•(•((••)(••)))))≤ 0.070611≤ 0.071158

((•(•(••)))(•(•(•(•(••))))))≤ 0.4101601≤0.4101573

((•(••))((•(••))((••)(••))))≤ 0.0673361≤0.067335

((•(••))((•(••))(•(•(••)))))≤ 0.151672≤ 0.151672

((•(••))((••)((••)(•(••)))))≤ 0.0700246≤ 0.0700337

((•(••))((••)(•((••)(••)))))≤ 0.024991≤ 0.0260398

((•(••))((••)(•(•(•(••))))))≤ 0.0958826≤ 0.0959416

((•(••))(•((•(••))(•(••)))))≤ 0.0401573≤ 0.0403922

((•(••))(•((••)((••)(••)))))≤ 0.0291906≤ 0.0292522

((•(••))(•((••)(•(•(••))))))≤ 0.0580703≤ 0.0582923

((•(••))(•(•((••)(•(••))))))≤ 0.0710672≤ 0.0713126

((•(••))(•(•(•((••)(••))))))≤ 0.047099≤ 0.0475895

((•(••))(•(•(•(•(•(••)))))))≤ 0.2773396≤ 0.27734

((••)(((••)(••))((••)(••))))≤ 0.0157936≤ 0.0158019

((••)(((••)(••))(•(•(••)))))≤ 0.0421139≤0.0421076

((••)((•(•(••)))(•(•(••)))))≤ 0.0825958≤ 0.0825965

((••)((•(••))((••)(•(••)))))≤ 0.0916893≤ 0.0916936

((••)((•(••))(•((••)(••)))))≤ 0.0330448≤ 0.0333551

((••)((•(••))(•(•(•(••))))))≤ 0.1321533≤ 0.1321539

((••)((••)((•(••))(•(••)))))≤ 0.0355028≤ 0.0355186

((••)((••)((••)((••)(••)))))≤ 0.0230787≤0.0230724

((••)((••)((••)(•(•(••))))))≤ 0.0447242≤ 0.04474

((••)((••)(•((••)(•(••))))))≤ 0.0357857≤ 0.0360811

((••)((••)(•(•((••)(••))))))≤ 0.0188528≤ 0.0196592

((••)((••)(•(•(•(•(••)))))))≤ 0.09544≤ 0.0954771

((••)(•((•(••))((••)(••)))))≤ 0.031395≤ 0.0314173

((••)(•((•(••))(•(•(••))))))≤ 0.0679941≤ 0.068037

((••)(•((••)((••)(•(••))))))≤ 0.0413824≤ 0.0415641

((••)(•((••)(•((••)(••))))))≤ 0.0144759≤ 0.0165141

((••)(•((••)(•(•(•(••)))))))≤ 0.0490942≤ 0.050696

((••)(•(•((•(••))(•(••))))))≤ 0.0334156≤ 0.0334726

((••)(•(•((••)((••)(••))))))≤ 0.0236896≤ 0.0239339

((••)(•(•((••)(•(•(••)))))))≤ 0.0465471≤ 0.0470627

((••)(•(•(•((••)(•(••)))))))≤ 0.0674928≤ 0.0677231

((••)(•(•(•(•((••)(••)))))))≤ 0.0474298≤ 0.0478606

((••)(•(•(•(•(•(•(••))))))))≤ 0.3020641≤ 0.3020658

(•(((••)(••))((••)(•(••)))))≤ 0.0558554≤ 0.0558602

(•(((••)(••))(•((••)(••)))))≤ 0.0145222≤ 0.014862

(•(((••)(••))(•(•(•(••))))))≤ 0.043377≤ 0.0434295

(•((•(•(••)))((••)(•(••)))))≤ 0.0756829≤ 0.0757179

(•((•(•(••)))(•((••)(••)))))≤ 0.0371911≤ 0.0377163

(•((•(•(••)))(•(•(•(••))))))≤ 0.1909558≤ 0.1909597

(•((•(••))((•(••))(•(••)))))≤ 0.0441847≤ 0.0442173

(•((•(••))((••)((••)(••)))))≤ 0.0285515≤0.0285476

(•((•(••))((••)(•(•(••))))))≤ 0.0613023≤ 0.0613409

(•((•(••))(•((••)(•(••))))))≤ 0.0442962≤ 0.0457139

(•((•(••))(•(•((••)(••))))))≤ 0.0248663≤ 0.0260477

(•((•(••))(•(•(•(•(••)))))))≤ 0.1282351≤ 0.128252

(•((••)((•(••))((••)(••)))))≤ 0.036057≤ 0.0360871

(•((••)((•(••))(•(•(••))))))≤ 0.0725516≤ 0.0725724

(•((••)((••)((••)(•(••))))))≤ 0.0453039≤ 0.0455103

(•((••)((••)(•((••)(••))))))≤ 0.0151569≤ 0.0168906

(•((••)((••)(•(•(•(••)))))))≤ 0.0521377≤ 0.0530988

(•((••)(•((•(••))(•(••))))))≤ 0.0227812≤ 0.023975

(•((••)(•((••)((••)(••))))))≤ 0.0171237≤ 0.017879

(•((••)(•((••)(•(•(••)))))))≤ 0.0337422≤ 0.0367598

(•((••)(•(•((••)(•(••)))))))≤ 0.0384892≤ 0.0401641

(•((••)(•(•(•((••)(••)))))))≤ 0.0247273≤ 0.0267558

(•((••)(•(•(•(•(•(••))))))))≤ 0.1430699≤ 0.1438289

(•(•(((••)(••))((••)(••)))))≤ 0.015781≤ 0.0157837

(•(•(((••)(••))(•(•(••))))))≤ 0.0420831≤0.042071

(•(•((•(•(••)))(•(•(••))))))≤ 0.0825765≤ 0.0825765

(•(•((•(••))((••)(•(••))))))≤ 0.0916172≤ 0.0916186

(•(•((•(••))(•((••)(••))))))≤ 0.0330789≤ 0.0335285

(•(•((•(••))(•(•(•(••)))))))≤ 0.1321212≤ 0.1321234

(•(•((••)((•(••))(•(••))))))≤ 0.0395341≤ 0.0397238

(•(•((••)((••)((••)(••))))))≤ 0.0281547≤ 0.0282735

(•(•((••)((••)(•(•(••)))))))≤ 0.0512426≤ 0.0519989

(•(•((••)(•((••)(•(••)))))))≤ 0.0444578≤ 0.0464682

(•(•((••)(•(•((••)(••)))))))≤ 0.0229626≤ 0.0258078

(•(•((••)(•(•(•(•(••))))))))≤ 0.1109042≤ 0.1121893

(•(•(•((•(••))((••)(••))))))≤ 0.0671513≤0.0671494

(•(•(•((•(••))(•(•(••)))))))≤ 0.1459225≤ 0.1459252

(•(•(•((••)((••)(•(••)))))))≤ 0.084083≤ 0.0845377

(•(•(•((••)(•((••)(••)))))))≤ 0.0305436≤ 0.0325929

(•(•(•((••)(•(•(•(••))))))))≤ 0.1015992≤ 0.1036481

(•(•(•(•((•(••))(•(••)))))))≤ 0.089068≤ 0.0890797

(•(•(•(•((••)((••)(••)))))))≤ 0.0618614≤ 0.0623212

(•(•(•(•((••)(•(•(••))))))))≤ 0.1204158≤ 0.1208088

(•(•(•(•(•((••)(•(••))))))))≤ 0.1938207≤ 0.1940385

(•(•(•(•(•(•((••)(••))))))))≤ 0.1432937≤ 0.1442329

(•(•(•(•(•(•(•(•(••)))))))))≤ 1.0000037≤1.0000015∗

(((••)(•(••)))((•(••))(•(••))))≤ 0.0971236∗

(((••)(•(••)))((••)((••)(••))))≤ 0.062443

(((••)(•(••)))((••)(•(•(••)))))≤ 0.1321834
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(((••)(•(••)))(•((••)(•(••)))))≤ 0.0656563

(((••)(•(••)))(•(•((••)(••)))))≤ 0.0309013

(((••)(•(••)))(•(•(•(•(••))))))≤ 0.1574119

(((••)(••))((•(••))((••)(••))))≤ 0.0329195

(((••)(••))((•(••))(•(•(••)))))≤ 0.0660954

(((••)(••))((••)((••)(•(••)))))≤ 0.0312717

(((••)(••))((••)(•((••)(••)))))≤ 0.0112434

(((••)(••))((••)(•(•(•(••))))))≤ 0.0396759

(((••)(••))(•((•(••))(•(••)))))≤ 0.0155952

(((••)(••))(•((••)((••)(••)))))≤ 0.0112518

(((••)(••))(•((••)(•(•(••))))))≤ 0.022193

(((••)(••))(•(•((••)(•(••))))))≤ 0.0268531

(((••)(••))(•(•(•((••)(••))))))≤ 0.0177505

(((••)(••))(•(•(•(•(•(••)))))))≤ 0.1045095

((•((••)(••)))((•(••))(•(••))))≤ 0.0226776

((•((••)(••)))((••)((••)(••))))≤ 0.016968

((•((••)(••)))((••)(•(•(••)))))≤ 0.0280677

((•((••)(••)))(•((••)(•(••)))))≤ 0.0380457

((•((••)(••)))(•(•((••)(••)))))≤ 0.018366

((•((••)(••)))(•(•(•(•(••))))))≤ 0.0585165

((•(•(•(••))))((•(••))(•(••))))≤ 0.0762186

((•(•(•(••))))((••)((••)(••))))≤ 0.0490018

((•(•(•(••))))((••)(•(•(••)))))≤ 0.1106769

((•(•(•(••))))(•((••)(•(••)))))≤ 0.0808743

((•(•(•(••))))(•(•((••)(••)))))≤ 0.0636934

((•(•(•(••))))(•(•(•(•(••))))))≤ 0.4511739

((•(•(••)))((•(••))((••)(••))))≤ 0.0583844

((•(•(••)))((•(••))(•(•(••)))))≤ 0.1333566

((•(•(••)))((••)((••)(•(••)))))≤ 0.0605023

((•(•(••)))((••)(•((••)(••)))))≤ 0.021838

((•(•(••)))((••)(•(•(•(••))))))≤ 0.0847542

((•(•(••)))(•((•(••))(•(••)))))≤ 0.0352903

((•(•(••)))(•((••)((••)(••)))))≤ 0.0261751

((•(•(••)))(•((••)(•(•(••))))))≤ 0.0533813

((•(•(••)))(•(•((••)(•(••))))))≤ 0.072829

((•(•(••)))(•(•(•((••)(••))))))≤ 0.0517956

((•(•(••)))(•(•(•(•(•(••)))))))≤ 0.3222706

((•(••))(((••)(••))((••)(••))))≤ 0.0136125

((•(••))(((••)(••))(•(•(••)))))≤ 0.0362962

((•(••))((•(•(••)))(•(•(••)))))≤ 0.072188

((•(••))((•(••))((••)(•(••)))))≤ 0.0790186

((•(••))((•(••))(•((••)(••)))))≤ 0.0288268

((•(••))((•(••))(•(•(•(••))))))≤ 0.1155022

((•(••))((••)((•(••))(•(••)))))≤ 0.0293984

((•(••))((••)((••)((••)(••)))))≤ 0.0189046

((•(••))((••)((••)(•(•(••))))))≤ 0.0390967

((•(••))((••)(•((••)(•(••))))))≤ 0.0300035

((•(••))((••)(•(•((••)(••))))))≤ 0.0162861

((•(••))((••)(•(•(•(•(••)))))))≤ 0.0833444

((•(••))(•((•(••))((••)(••)))))≤ 0.0266453

((•(••))(•((•(••))(•(•(••))))))≤ 0.0576713

((•(••))(•((••)((••)(•(••))))))≤ 0.0348056

((•(••))(•((••)(•((••)(••))))))≤ 0.01262

((•(••))(•((••)(•(•(•(••)))))))≤ 0.0417166

((•(••))(•(•((•(••))(•(••))))))≤ 0.0292303

((•(••))(•(•((••)((••)(••))))))≤ 0.0207011

((•(••))(•(•((••)(•(•(••)))))))≤ 0.0406586

((•(••))(•(•(•((••)(•(••)))))))≤ 0.0590266

((•(••))(•(•(•(•((••)(••)))))))≤ 0.0415539

((•(••))(•(•(•(•(•(•(••))))))))≤ 0.2640024

((••)(((••)(••))((••)(•(••)))))≤ 0.0430452

((••)(((••)(••))(•((••)(••)))))≤ 0.0111632

((••)(((••)(••))(•(•(•(••))))))≤ 0.0334361

((••)((•(•(••)))((••)(•(••)))))≤ 0.0581597

((••)((•(•(••)))(•((••)(••)))))≤ 0.0285765

((••)((•(•(••)))(•(•(•(••))))))≤ 0.147039

((••)((•(••))((•(••))(•(••)))))≤ 0.0328586

((••)((•(••))((••)((••)(••)))))≤ 0.0211295

((••)((•(••))((••)(•(•(••))))))≤ 0.0459686

((••)((•(••))(•((••)(•(••))))))≤ 0.0337921

((••)((•(••))(•(•((••)(••))))))≤ 0.0190919

((••)((•(••))(•(•(•(•(••)))))))≤ 0.0980288

((••)((••)((•(••))((••)(••)))))≤ 0.0240934

((••)((••)((•(••))(•(•(••))))))≤ 0.0501322

((••)((••)((••)((••)(•(••))))))≤ 0.0276363

((••)((••)((••)(•((••)(••))))))≤ 0.0094195

((••)((••)((••)(•(•(•(••)))))))≤ 0.0323844

((••)((••)(•((•(••))(•(••))))))≤ 0.0144613

((••)((••)(•((••)((••)(••))))))≤ 0.0106603

((••)((••)(•((••)(•(•(••)))))))≤ 0.0207861

((••)((••)(•(•((••)(•(••)))))))≤ 0.0242244

((••)((••)(•(•(•((••)(••)))))))≤ 0.0158174

((••)((••)(•(•(•(•(•(••))))))))≤ 0.0917822

((••)(•(((••)(••))((••)(••)))))≤ 0.0063735

((••)(•(((••)(••))(•(•(••))))))≤ 0.0169653

((••)(•((•(•(••)))(•(•(••))))))≤ 0.0332716

((••)(•((•(••))((••)(•(••))))))≤ 0.0373028

((••)(•((•(••))(•((••)(••))))))≤ 0.0135754

((••)(•((•(••))(•(•(•(••)))))))≤ 0.0533437

((••)(•((••)((•(••))(•(••))))))≤ 0.0167977

((••)(•((••)((••)((••)(••))))))≤ 0.0118462

((••)(•((••)((••)(•(•(••)))))))≤ 0.0218306

((••)(•((••)(•((••)(•(••)))))))≤ 0.0185545

((••)(•((••)(•(•((••)(••)))))))≤ 0.01

((••)(•((••)(•(•(•(•(••))))))))≤ 0.0460062

((••)(•(•((•(••))((••)(••))))))≤ 0.0230307

((••)(•(•((•(••))(•(•(••)))))))≤ 0.0500705

((••)(•(•((••)((••)(•(••)))))))≤ 0.0293239

((••)(•(•((••)(•((••)(••)))))))≤ 0.0111047

((••)(•(•((••)(•(•(•(••))))))))≤ 0.0357995

((••)(•(•(•((•(••))(•(••)))))))≤ 0.0290179

((••)(•(•(•((••)((••)(••)))))))≤ 0.020317

((••)(•(•(•((••)(•(•(••))))))))≤ 0.0396144

((••)(•(•(•(•((••)(•(••))))))))≤ 0.0614394

((••)(•(•(•(•(•((••)(••))))))))≤ 0.0446234

((••)(•(•(•(•(•(•(•(••)))))))))≤ 0.298744

(•(((••)(•(••)))((••)(•(••)))))≤ 0.0427034

(•(((••)(•(••)))(•((••)(••)))))≤ 0.0212429

(•(((••)(•(••)))(•(•(•(••))))))≤ 0.063534

(•(((••)(••))((•(••))(•(••)))))≤ 0.0222191

(•(((••)(••))((••)((••)(••)))))≤ 0.0142899

(•(((••)(••))((••)(•(•(••))))))≤ 0.0279132

(•(((••)(••))(•((••)(•(••))))))≤ 0.0162353

(•(((••)(••))(•(•((••)(••))))))≤ 0.0083416

(•(((••)(••))(•(•(•(•(••)))))))≤ 0.0415536

(•((•((••)(••)))(•((••)(••)))))≤ 0.0059523

(•((•((••)(••)))(•(•(•(••))))))≤ 0.0258215

(•((•(•(•(••))))(•(•(•(••))))))≤ 0.0949084

(•((•(•(••)))((•(••))(•(••)))))≤ 0.0324341

(•((•(•(••)))((••)((••)(••)))))≤ 0.0207928

(•((•(•(••)))((••)(•(•(••))))))≤ 0.0470275

(•((•(•(••)))(•((••)(•(••))))))≤ 0.0417464

(•((•(•(••)))(•(•((••)(••))))))≤ 0.0275483

(•((•(•(••)))(•(•(•(•(••)))))))≤ 0.1582911

(•((•(••))((•(••))((••)(••)))))≤ 0.0286278

(•((•(••))((•(••))(•(•(••))))))≤ 0.0599812

(•((•(••))((••)((••)(•(••))))))≤ 0.0303138

(•((•(••))((••)(•((••)(••))))))≤ 0.0111186
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(•((•(••))((••)(•(•(•(••)))))))≤ 0.0383284

(•((•(••))(•((•(••))(•(••))))))≤ 0.016262

(•((•(••))(•((••)((••)(••))))))≤ 0.0116694

(•((•(••))(•((••)(•(•(••)))))))≤ 0.0235487

(•((•(••))(•(•((••)(•(••)))))))≤ 0.0280953

(•((•(••))(•(•(•((••)(••)))))))≤ 0.0188036

(•((•(••))(•(•(•(•(•(••))))))))≤ 0.1085368

(•((••)(((••)(••))((••)(••)))))≤ 0.0069791

(•((••)(((••)(••))(•(•(••))))))≤ 0.0185711

(•((••)((•(•(••)))(•(•(••))))))≤ 0.0342061

(•((••)((•(••))((••)(•(••))))))≤ 0.0425295

(•((••)((•(••))(•((••)(••))))))≤ 0.014193

(•((••)((•(••))(•(•(•(••)))))))≤ 0.0554156

(•((••)((••)((•(••))(•(••))))))≤ 0.0181066

(•((••)((••)((••)((••)(••))))))≤ 0.0128573

(•((••)((••)((••)(•(•(••)))))))≤ 0.0233441

(•((••)((••)(•((••)(•(••)))))))≤ 0.019107

(•((••)((••)(•(•((••)(••)))))))≤ 0.0103594

(•((••)((••)(•(•(•(•(••))))))))≤ 0.048504

(•((••)(•((•(••))((••)(••))))))≤ 0.015401

(•((••)(•((•(••))(•(•(••)))))))≤ 0.0333184

(•((••)(•((••)((••)(•(••)))))))≤ 0.0212784

(•((••)(•((••)(•((••)(••)))))))≤ 0.009088

(•((••)(•((••)(•(•(•(••))))))))≤ 0.0268518

(•((••)(•(•((•(••))(•(••)))))))≤ 0.0161156

(•((••)(•(•((••)((••)(••)))))))≤ 0.0118507

(•((••)(•(•((••)(•(•(••))))))))≤ 0.023627

(•((••)(•(•(•((••)(•(••))))))))≤ 0.0321444

(•((••)(•(•(•(•((••)(••))))))))≤ 0.0226679

(•((••)(•(•(•(•(•(•(••)))))))))≤ 0.140389

(•(•(((••)(••))((••)(•(••))))))≤ 0.0429334

(•(•(((••)(••))(•((••)(••))))))≤ 0.0111578

(•(•(((••)(••))(•(•(•(••)))))))≤ 0.0334201

(•(•((•(•(••)))((••)(•(••))))))≤ 0.058034

(•(•((•(•(••)))(•((••)(••))))))≤ 0.0285983

(•(•((•(•(••)))(•(•(•(••)))))))≤ 0.1470347

(•(•((•(••))((•(••))(•(••))))))≤ 0.0330857

(•(•((•(••))((••)((••)(••))))))≤ 0.0212749

(•(•((•(••))((••)(•(•(••)))))))≤ 0.0459748

(•(•((•(••))(•((••)(•(••)))))))≤ 0.0338421

(•(•((•(••))(•(•((••)(••)))))))≤ 0.0191234

(•(•((•(••))(•(•(•(•(••))))))))≤ 0.0980258

(•(•((••)((•(••))((••)(••))))))≤ 0.0260933

(•(•((••)((•(••))(•(•(••)))))))≤ 0.0517623

(•(•((••)((••)((••)(•(••)))))))≤ 0.0337782

(•(•((••)((••)(•((••)(••)))))))≤ 0.0118

(•(•((••)((••)(•(•(•(••))))))))≤ 0.038892

(•(•((••)(•((•(••))(•(••)))))))≤ 0.0174256

(•(•((••)(•((••)((••)(••)))))))≤ 0.0131765

(•(•((••)(•((••)(•(•(••))))))))≤ 0.0270876

(•(•((••)(•(•((••)(•(••))))))))≤ 0.0297785

(•(•((••)(•(•(•((••)(••))))))))≤ 0.0192499

(•(•((••)(•(•(•(•(•(••)))))))))≤ 0.1077698

(•(•(•(((••)(••))((••)(••))))))≤ 0.0136964

(•(•(•(((••)(••))(•(•(••)))))))≤ 0.0364981

(•(•(•((•(•(••)))(•(•(••)))))))≤ 0.0716329

(•(•(•((•(••))((••)(•(••)))))))≤ 0.0794783

(•(•(•((•(••))(•((••)(••)))))))≤ 0.0287851

(•(•(•((•(••))(•(•(•(••))))))))≤ 0.1146128

(•(•(•((••)((•(••))(•(••)))))))≤ 0.0339684

(•(•(•((••)((••)((••)(••)))))))≤ 0.0241595

(•(•(•((••)((••)(•(•(••))))))))≤ 0.0438161

(•(•(•((••)(•((••)(•(••))))))))≤ 0.0391523

(•(•(•((••)(•(•((••)(••))))))))≤ 0.0207505

(•(•(•((••)(•(•(•(•(••)))))))))≤ 0.0960874

(•(•(•(•((•(••))((••)(••)))))))≤ 0.0613767

(•(•(•(•((•(••))(•(•(••))))))))≤ 0.1333636

(•(•(•(•((••)((••)(•(••))))))))≤ 0.0765637

(•(•(•(•((••)(•((••)(••))))))))≤ 0.0284654

(•(•(•(•((••)(•(•(•(••)))))))))≤ 0.0931223

(•(•(•(•(•((•(••))(•(••))))))))≤ 0.08385

(•(•(•(•(•((••)((••)(••))))))))≤ 0.0581878

(•(•(•(•(•((••)(•(•(••)))))))))≤ 0.1129824

(•(•(•(•(•(•((••)(•(••)))))))))≤ 0.1857998

(•(•(•(•(•(•(•((••)(••)))))))))≤ 0.1394359

(•(•(•(•(•(•(•(•(•(••))))))))))≤ 1.0000029∗

Appendix 3: Profiles of trees

We provide here the outer approximations of the tree-profiles of eight pairs of trees between 4 and 6 leaves.
The approximations obtained from levels 6 to 11 of the hierarchy are represented: the approximations becomes
obviously tighter as the level increases.
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Fig. 16 Outer approximations of the tree-profile of and
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Fig. 17 Outer approximations of the tree-profile of and
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Sums of Squares for Infinite Trees D. BROSCH AND D. PUGES
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Fig. 18 Outer approximations of the tree-profile of and
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Sums of Squares for Infinite Trees D. BROSCH AND D. PUGES

( • ( • ( • ( • • ))))
0.2 0.4 0.6 0.8 1.0

((
•

(
•

•
))

(
•

(
•

•
))

)

0.0

0.1

0.2

0.3

Fig. 19 Outer approximations of the tree-profile of and
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Fig. 20 Outer approximations of the tree-profile of and
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Fig. 21 Outer approximations of the tree-profile of and
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Fig. 22 Outer approximations of the tree-profile of and
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Sums of Squares for Infinite Trees D. BROSCH AND D. PUGES
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Fig. 23 Outer approximations of the tree-profile of and
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