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ON THE L? VOLUME OF BERGMAN SPACES

SHENGXUAN ZHOU

ABSTRACT. In this paper, we show that the Calabi volume and Mabuchi volume of Bergman
spaces on the product of a projective manifold and a projective space is infinite. Our result is
inspired by a conjecture of Shiffman-Zelditch in [16].
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1. INTRODUCTION

Let M be a n-dimensional projective manifold, L be a very ample line bundle on M, and
wo € ¢1(L) be a Kéhler metric on M. The pair (M, L) is called a polarized manifold. Then the
space of Kahler metrics and the space of Kahler potentials can be defined as follows:

(1) K={w: dw=0, and w > 0},
and
(2) Hiwo) = {f €CZ(M;R) : wy =wo+V—-190f >0} .

By 80-lemma, one can see that w’ € [wo] = c1(L) if and only if w’ = wy for some f € Hy,,), and
such f is unique up to an additive constant. Hence K, = K N [wo] = H|,,,)/R. For example, see
[7, Chapter VI, Lemma 8.6] or [17, Corollary 2.2].

Since L is very ample, for any k € N, one can construct an embedding M — CP™* by a basis of
H°(M, L*), where Ny = dim H°(M, L¥) — 1. Now we can define the space of Bergman metrics as
following.

(3) Burpr = {%v*wpg, v : M — CPN* given by a basis of H°(M, L¥) } ,
where wpg is the Fubin-Study metric of CP™+. Clearly, Burrr C Kl Vk € N The space of
Bergman metrics will also be abbreviated as By when we do not emphasize the manifold M and
the line bundle L.

The study of the approximation of subspaces By p+ to space K, is an important topic in
Kéhler geometry. In the seminal work [18], Tian utilized his peak section method to prove that
Bergman metrics converge to the original polarized metric in the C2-topology. Consequently, Kol
can be approximation by Bgj in the C?-topology. Following this approach, Ruan [15] proved
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that this convergence holds in the C* sense. Later, Zelditch [20], also Catlin [4] independently,
used the Szegd kernel to obtain an alternative proof of the C*°-convergence of Bergman metrics.
Furthermore, they provided an asymptotic expansion of Bergman kernel function, which is the
Kahler potential of the Bergman metric. Such an asymptotic expansion is called the Tian-Yau-
Zelditch expansion. This expansion can be also obtained by Tian’s peak section method, see

Liu-Lu [12]. By using the heat kernel, Dai-Liu-Ma [6] gave another proof of the Tian-Yau-Zelditch
expansion (see also Ma-Marinescu’s book [13]). There are many important applications of the
Tian—Yau—Zelditch expansion, for example, [3] and [19].

There are two natural metrics on the space K-
The Calabi metric [1, 2] serves as the natural L? metric on K, defined by

(4) GCa,IC[wU] (‘Pa ¢) = /M Aw@Aw(de = /M (trw\/__laéw) ' (trw\/__185¢) dev

where w € [wp], and ¢, € ToKpp =2 C(M,R)/R. It is known that the sectional curvatures
of the Calabi metric Gea,k,, on K, are all equal to 1, and K, does not have conjugate
points with respect to the Calabi metric [3]. Thus, the infinite-dimensional Riemannian manifold
(Klwo)s Gea,ky,;) the space is a portion of an infinite dimensional sphere of constant curvature 1.

Another natural L? metric on K, is the Mabuchi metric arised in [11]. At first, one can defined
an L? metric on H,, by

(5) GMa,'H[wO] (907 ¢) = /M sbédef?

where f € H,,), wp = wo + V=109f > 0, and @, ¢ € TyH |, = C=(M,R).

Clearly, Gany,, is invariant under the action Ac @ Hiyy) — Hiws Ac(f) = f+¢, Ve €
R. Hence (5) gives an L? metric GMaKp, o0 Ky = Hiwo)/R such that the quotient map
(Hfwo]» GMa,H[wO]) — (’C[wo]vGMa,/C[WO]) becomes a Riemannian submersion. By definition, we have

(6) Grtorey (89 = [ (sb -1 sdew) (cﬁ -4 éd%) av.,

where w € i), @16 € TwKpuy) 2 C°(M,R)/R, and fy; ¢dVi, = woriar Joy 9V

Since [wo] = ¢1(L) € H*(M;Z), we have By; s C Kp,,). Hence one can obtain a Riemannian
metric on By px by the restriction of the Calabi metric or the Mabuchi metric on By px. Let
Geoamp and Gy, e denote the restriction of the Calabi metric and the Mabuchi metric on
By, respectively. Then G, py e and Gppg g pr are invariant under the action of Aut(AM) in
some sense. In fact, we have the following property.

Proposition 1.1. Let M be a n-dimensional projective manifold, L be a very ample line bundle
on M, and v € Aut(M). Then the pullback

*
(7) v Bar,pr — BM,'y*Lk
. % _ * —
satisfies Y Goam, v = Goa e and Y Gura v = G, vy Lk

Let pcq and pprq be the measures on By p» corresponding to the Riemannian metrics G, ar,
and G4 a1k, Tespectively. Combining Proposition 1.1 with the parameterization of By« (see
[16, Section 5] or Section 2), we can obtain the following result.
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Theorem 1.1. Let M be a projective manifold, and L be a very ample line bundle on M. Suppose
M = My x CP™, where M; is a projective manifold (which can be a single point) and n € N. Then
forany k € N, pica(Bas,pr) = para(Bag,pr) = 0.

Remark. Actually, Theorem 1.1 holds for any polarized manifold (M, L) such that the automor-
phism group Aut(M, L) is non-compact.

Our Theorem 1.1 is inspired by the following conjecture of Shiffman-Zelditch in [16].
Conjecture 1.1 ([16, Conjecture 5.1]). The Calabi volume picq(Bpy r) is finite for each k.

As highlighted by Shiffman-Zelditch in [16], if this conjecture is true, one can obtain a rigorous
definition of the Polyakov path integral over metrics, which used the Calabi metric to define its
volume form. Such a development would undoubtedly have an impact on both K&ahler geometry
and mathematical physics, fostering new connections between the two fields.

Since Theorem 1.1 shows that Shiffman-Zelditch’s original conjecture may not always hold, we
pose the following problem as a modification of Shiffman-Zelditch’s original conjecture.

Problem 1.1 (Modified Shiffman-Zelditch’s conjecture). Let (M, L) be a polarized manifold, and
wo € ¢1(L) be a Kdhler metric on M. Assume that Aut(M, L) is compact.

(a). Is there an integer ko € N such that for any k > ko, the Calabi volume pcq(Bys r) and the
Mabuchi volume pinra(Bar,pr) are finite?

(b). Is it possible to obtain a rigorous definition of the Polyakov path integral over metrics by using
the Calabi metric or the Mabuchi metric to define its volume form?

This paper is organized as follows. In Section 2, we recall the parameterization of By, ; and use
it to describe the Calabi volume form on By, ;. Then we will prove Proposition 1.1 and Theorem
1.1 in Section 3.

Acknowledgement. The author wants to express his deep gratitude to Professor Gang Tian
for constant encouragement.

2. THE PARAMETERIZATION OF B/ p»

In this section, we recall the parameterization of By, 1x. The following parameterization is known
(for example, see [16, Section 5]), but we include the details for convenience.

Let {Si}¥%, be a basis of HO(M, L*), and let h be a Hermitian metric on L such that the Ricci
curvature wp, = Ric(h) > 0. For any matrix A = (a; j)o<i,j<n, € GL(Ny +1,C), one can construct

a Kahler metric

2
Ni || Nk

(8) wyp = %Fjw}rs = %wh + gﬁalog Z Zai’jsj € By px,
=0 || 7=0 Bk
where wpg is the Fubini-Study metric on CPN*, and Fj is the embedding M — CPN* given by the
basis {ij:ko aiijj}fv:kO. It is easy to see that w, is independent of the choice of h, and a Kahler
metric w € By p» if and only if there exists a matrix A = (a; j)o<i j<n, € GL(Ng +1,C) such that
w=w4i.
Let B = (bi j)o<i,j<n, € GL(Ni +1,C). Assume that ws = wp. Then

2 2
=1 _ N || Nk /1 N || Nk
S5 00log | > 11> ;S| | = —00log [ > |> biiSi|| |,
1=0 ||7=0 i=0 || j=0

hk hk
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and hence there exists a constant p > 0 such that

Nk Nk 2 Nk Nk 2
(9) Do asSi| =Y Db
i=0 |[j=0 Wk i=0 ||j=0 "

Let U, be an open neighborhood of x € M, and let e, be a local frame of L on U,. Without loss
of generality, we can assume that there exists a biholomorphic map F, : U, — B1(0) C C™. Write
S; = fl-e’;. Define
Nk; _ _
(10) o(z,w) = > (aijaik — pbijbix) fi(Fy ' (2)) fi(Fy () € O(B1(0)).
i,5,k=0

Then (9) implies that o(z,z) = 0, Vz € B1(0). Hence ¢ € O(B1(0)) implies that ¢ = 0. Since
{8} Nk is a basis, it can be observed that { f; Nk is linearly independent. Now we can obtain from
(10) that A'A = p*B'B, and hence Q = p"'AB~' € U(Nj, + 1), where A" is the transpose of A,
and A is the conjugate of A.

If A= p@B forsome p > 0 and Q € U(Ni+1), then one can easily to see that wa = wp. It follows
that the corresponding A — w4 gives a diffeomorphism (C* x SU (N +1))\GL(Ni+1,C) = By .
Thus, By 1+ can be parametrized by (C* x SU(Ny+1))\GL(Ny+1,C) = SU(Np+1)\SL(Nx+1,C).

Proposition 2.1 ([16, Section 5]). The map

v - SU(Nk—Fl)\SL(Nk—I—l,(C) —>BM)L1C,
’ [A] = WA

(11)

is well-defined, where A € SL(Ny + 1,C) is a representative of [A] € SU(Ny + 1)\SL(Nx + 1,C).
Moreover, ¥ is a diffeomorphism.

Now we can parameterize By rr» by SU(Ny + 1)\SL(N + 1,C). However, calculating the
integral over SU(Ny + 1)\SL(N;+1,C) is a bit complicated. Our next goal is to construct a global
coordinate of SU(Ny + 1)\SL(Ny + 1,C).

Let A € SL(N 4 1,C). By the Gram-Schmidt process, one can find @ € SU(Njy + 1) such that
R = (rij)o<ij<n, = Q1A is an upper triangular matrix such that r; ; € (0, 00) and HfV:’CO rii=1.
This decomposition is the complex version of the famous QR decomposition [11, Theorem 2.1.14].
Now we assume that Q € SU(Ny+1) and R = (7 ;)o<i,j<n, is an upper triangular matrix such that
7i,i € (0,00), Hf\i‘o s =1 and QR = A. Then we can conclude that Q~'Q = RR~' € SU(Nj, +1)
is an upper triangular matrix such that the diagonal elements are positive numbers. It follows that
Q7 'Q = RR' = Iy, 1. Hence for each A € SL(Ny + 1,C), the pair (Q, R) is uniqueness.

Let T, be the following submanifold of SL(Ny + 1, C):

Ny,
(12) TNk = {R S SL(Nk + 1,@) TG € R+, Hri’i =1, and i = 0, Vi > } .
=0

By the QR decomposition as above, one can see that Ty, is a complete set of representatives of
SU(Ny + 1)\SL(Ny, + 1,C), and the inclusion map Ty, — SL(Ny + 1, C) gives a diffeomorphism:

v
(13) P TN, — SU(Ny, + D\SL(Ng + 1,C) = Br ,
R = (rij)o<ij<n, — [R] < WR.
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Moreover, the elements r; ; give a diffeomorphism

N (Ng+1)
2

148

(14) T:RY xC — SU(Ng +1)\SL(Ny, +1,C) = By .

)

Then for any open subset () C By, 1», the Calabi volume or Mabuchi volume of €2 can be expressed
as

(15) ne(Q) = / v/ det(T*P*T*@3),
T=H@-H (T -H())
Nk(f\;k+1)

and hence can be calculated on the Euclidean domain T~1(@~1(¥~1(Q))) ¢ RY* x C™ =,
where G is the Calabi metric or Mabuchi metric, respectively.
3. PROOF OoF THEOREM 1.1

In this section, we prove Theorem 1.1.
At first, we prove G ar,pr and Gpg pr, v are invariant under the action of Aut(A).

Proposition 3.1 (= Proposition 1.1). Let M be a n-dimensional projective manifold, L be a very
ample line bundle on M, and v € Aut(M). Then the pullback v* gives a diffeomorphism

* .
(16) v BM,L’C — BM,v*Lk'
Moreover, we have v*Geoq v, iv = Goamqy+rr and Y G g v, v = Gara, ML

Proof. Let w € By . Then we have an embedding F,, : M — CP"* such that F;O(1) = L*
and Fwrs = kw, where wrg is the Fubini-Study metric on CPN*. Hence kv*w = v*Flwps =
(F o 7)*wps and (F, 0 7)*O(1) = y*L*. It follows that y*w € Bys.-pr. Clearly, the map
v* i Bag,pr = Bagy+r is smooth. Similarly, (y~1)* is also smooth, and it is the inverse map of ~*.
Now we can conclude that v* : By px — Bpy o+ pr is a diffeomorphism.

By definition, for any ¢, ¢ € ToBypr < TwKpye = C°(M,R)/R, we have dy},¢ = ¢ ov. Hence
(W*GCa,M,L’C)W*w (dvio,dvie) = (Geamir), (@) )
— [ Auasdav.
M
= [ (Bupnid)oriv..
M
| Brateo) (8ru(om) avie
M

= (GCa,M,'y*Lk),Y*w (d’}/:@vd’}/:;(/))a

where ¢, ¢ € ToBar,px- It follows that v*Geog ar, v = Goa,my-0x- By a similar argument, one can
obtain V*GMa,M,Lk = GMG"M’,Y*LIC. O

Before proving Theorem 1.1, we need the following lemma.

Lemma 3.1. Let M be an n-dimensional projective manifold, and let L be a very ample line
bundle on M. Assume that there exist a subgroup I' < Aut(M) and w € By px such that v*L = L,
Vyel, and Tw = {y*w: ~ €T} is an infinite discrete subset of Bys px. Then the Calabi volume
poa(Bapr) and the Mabuchi volume junra (B px) are infinite for each k.
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Proof. Since G g pr, v is a smooth Riemannian metric on By px, one can find a constant € > 0 such
that the metric ball Bige(w) is precompact in By pr. By the discreteness of I'w, we can assume
that Bige(w) NTw = 0. Note that for any v € T', v* : By p» — By v is isometric. Hence

MCa(BM,Lk) > fcCa (UWEFBE('V*W)) = ZNCa (BE(W)) = Q.

By a similar argument, we can conclude that iasq (B px) = 00, and the proof is complete. O

We are ready to prove Theorem 1.1 now. Let us begin with the special case M; = x.

Proposition 3.2. Let M = CP", and L = O(1). Then for any k € N and w € By ), there
exists a subgroup I' < Aut(M) = GL(n+ 1,C) such that Tw = {y*w : v € T'} is an infinite discrete
subset of Byy r. Moreover, for each k € N, pca(Bys ) = piara(Bar,pr) = 00.

Proof. Let (Zy: Zy : -~ : Zy) be the homogeneous coordinate of M. Then {ZF - Zkn Yy 1y
gives a basis of HO(M, L*), and hence Nj, + 1 = dim H°(M, L*) = (ZT:!)!.
By induction on d € N, one can construct a lexicographic order on Z%o such that (p1,--- ,pa) >
(q1, -+ ,qq) if and only if:
® pd > qd, Or
e d>1,pqs=qa, and (p1, - ,pa-1) > (g1, , qa—1).
Let S; = Zém’i e Zﬁ"‘i, 1=20,1,---, Ng, be an arrangement of the basis {Z(’)“O e TRk =k

of H°(M, L*) such that i > j if and only if (ko -+ ,kni) > (Ko, s knj)-
Hence we have Sy, = ZF and Sy, 1 = Z,—1ZF" . Let R = (ri)o<ij<n, = @ 1(¥~1(w)) be
the upper triangular matrix in (13), and

(17) F={vm=Int1+mE,_1n: meZ} <GL(n+1,C) = Aut(M),

where In+1 = (5i1j)0Si7j§"’ Enflyn = (5i,n715j,n)0§i,j§n; and 5k,l is the Kronecker symbol.
By definition, we have v, (Z;) = Z; — md; n—1Zy, and hence for 0 < i < j < Ny, there exists
a; jm € C such that +} (S;) = S; + > aijmS;. In particular, an,—1,n, = —m. Write
0<i<j<Ny
A = (0;j + @i j.m)o<ij<N,. Fix a Hermitian metric h on L such that wp = Ric(h) > 0. Clearly,
A, = AT Since R = (Ti,j)OSi,jgNk = (I)_l(\lf_l(w)), we have

Tmw = ImY(P(R))
2
N, || &
. 1 1 k k
= v %wh—i—%aalog Z Zri7j5’j
i=0 || j=i b
— Ny || ™ 2
1 . _1 B k k .
= %ymwh%—%aalog Z Zri’j%nsj
1=0 || j=¢ L
2
Ny, N Np
1 v—1_-
= %wh-f—%aalog Z sz,j(éj,l—i—aj,hm)sl
i=0 || j=i 1=j B
= U(®(RA).

Note that wy is independent on the choice of h.
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Since for any m € Z, A,, is an upper triangular matrix with all elements on the diagonal
equal to 1, we observe that RA,, € SL(Ny + 1,C) is also an upper triangular matrix, and the
elements on the diagonal of R — RA,, are all equal to 0. Hence the elements on the diagonal of
RA,, € SL(N,+1,C) are all positive. By the argument in Section 2, { RA,, }mez derives a discrete
subset of SU (N, +1)\SL(Ny+1,C) if and only if {RA., }mez is a discrete subset of SL(Ny+1,C).

It is sufficient to show that {RA;, }mez is a discrete subset of SL(Ny + 1, C) now. Write RA,, =
(Té,j,m)oﬁi,jSNk' Since AN, —1,N, = —, We have r?kal,Nk,m = TNy—1,N;, — MIN;—1,N;,—1- Then
TNy—1,No—1 > 0 implies that for any mg € Z, there exists an open neighborhood

TNy—1,Nj—

Umo = {B = (bij)o<ijeny i [bN—1,N, = TNV + 107N 1 N1 | < %}
of R such that Uy, N {RAm }metme = 0.

It follows that {RA,, }mez is a discrete subset of SL(Ny, + 1,C), and hence T'w = {y*w : vy € T'}

is an infinite discrete subset of By, p». By Lemma 3.1, one can conclude that the Calabi volume

pca(Bps,pr) and the Mabuchi volume finsq(Bay,x) are infinite for each k. This is our assertion. [

We now consider Theorem 1.1 in the case L = 77 L; @ 5O (ko) with kg € N, where 71 : M — M,
and mo : M — CP™ are the projections.

Theorem 3.1. Let My be a projective manifold (which can be a single point), and L1 be a very
ample line bundle on My. Consider M = My x CP™ for some n € N, and L = 7i L1 ® m50(ko)
with kg € N, where m; : M — My and 7o : M — CP"™ are the projections. Then for each k,

/LCa(BM,Lk) = MMa(BM,Lk) = o0.

Proof. Let h; and he be Hermitian metrics on Ly and Ly = O(kg), respectively. Assume that
wp, = Ric(hy) and wp, = Ric(hg) are Kahler metrics on M; and CP", respectively. Then h =
mih1 @ m5he is a Hermitian metrics on L such that w, = Ric(h) = wiwp, + miwn, is a Kéhler
metrics on M. Fix € My, and let §, denote the natural embedding CP™ = {2} x CP™ — M.
Clearly, (L, h) = (O(1), he), and Fiw = Ric(he) = wp,.

Let {Si}¥%, be a basis of H°(M, L*), and let w denotes the Bergman metric

1 V1.~ L.
W= —wp + %8810g <Z |Sl|hk> S BM,L"-

2 .
=0

Let {S{}fvz’go be a basis of H°(CP",O(kko)). Then we can find constants a;; € C such that
FrS; = Z;V:’“O ai,ng, 0 <i< N, 0<j < N/. Hence we can use the Gram-Schmidt process to

show that for any 0 < j,1 < N, there exist b;; € C such that

2

Ny, Nl/c Nl/c
(Z ||s1-||ik> oz =YD bS]
i=1 j=0 || 1=0 i
2
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It follows that

. (1 V=1 .- AL
Fow = T (WM—M 9log (;wnhk
= Lo+ ¥ o %HS-HQ 5
= gt gy 00log | | 2 ISl ) o8

! ! 2
N N
1 = k k
= %th + %8810g rzo ;bjylSl’ € BCPn)O(k;O)k = BCP”,O(kkO)-
= = nk

Let T be the subgroup of Aut(CP™) 2 GL(n+ 1,C) in Proposition 3.2 satisfying that I'(Fiw) is
an infinite discrete subset of Bepn o(kk,)- Now we consider the group

Iy =idayy, x T ={(idx,,7): 7€'} <Aut(X).
It is easy to see that v — (idas,,y) gives a natural isomorphism I' — T'ps. For any v € T', we have
§a(idar,7)'w = ' Sw,
and hence §; (I'yyw) = I'(F;w) is an infinite discrete subset in Bepr oki)- It follows that I'prw is

an infinite discrete subset in By r». Now Lemma 3.1 implies that for each k € N, pica (B px) =
para(Bay,pr) = oo, which proves the theorem. O

Now we show that the ample line bundle L on M is always isometric to Ly ® 75O (ko) for some
ko € N, where m; : M — M; and 7 : M — CP" are the projections. The following lemma is
known, but we give the proof here for convenience. See also [5, Lemme 11].

Lemma 3.2. Let My, My be Kdhler manifolds. Assume that H'(My,C) = 0. Then the natural
homomorphism

7t @y HY (My,0*) @ H' (My, O*) — H*(M; x My, O%)
is an isomorphism, where w; : My x My — M; is the projection, i = 1,2. In particular, if L is
an ample line bundle on My x CP™, then L is isometric to Ly ® m50(ko) for some ko € N, where
m M — My and wo : M — CP™ are the projections.

Proof. By considering the long exact sequence derived from the exponential sequence on M;,

0 Zyg,

i

2w/ —1 exp
Y2 O, =25 03, —— 0,

i = 1,2, one can obtain the exact sequence
HY(M;,On,) —2 HY(M;, 03y) —=— H?(M;,Z) N H*(M;,C),

where H?(M;,Z) N H*(Mz,C) is the image of the morphism iy, : H2(M;,Z) — H?*(M;,C) given
by the inclusion map Z — C. Clearly, ker(irs,) = H?(M;, Z)1or is the torsion part of H?(M;,Z).
Then the projections m; : My x My — M;, © = 1,2, yield the following commutative diagram

@2 H (M;, Op,) ———— ®L, H'(M;,0};,) ————— ®L,H*(M;,Z) N H*(M;, C)

I Jrers I

HY(My x Ma, Orgy xary) ——r HY(My x Mo, O%y ap) —— H?(M;y x Mo, Z) N H?(M; x M,,C).
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By the Kiinneth theorem for H?(M; x Mz, Z) [10, Theorem 3B.6], one can see that v is an
isomorphism. Note that H'(Mz,Z) = 0 and H°(M;,Z) = Z, i = 1,2. Similarly, one can apply the
Kiinneth theorem for H(My x Ma, Opp, xar,) =2 HOY (M7 x M, C) [9, p.103 (x)] to show that ¢ is
also an isomorphism. Thus, the homomorphism

7t @y HY (My,0*) @ H' (My, O*) — H*(M; x My, O%)
is an isomorphism, which precisely concludes the lemma. 0
Now we return to the proof of Theorem 1.1.

Proof of Theorem 1.1: Let M; be a projective manifold (which can be a single point), M =
My x CP™ for some n € N, and L be a very ample line bundle on M. Then Lemma 3.2 implies that
L2 7*Ly @7m30(ko) for some kg € N, where 71 : M — M; and w2 : M — CP™ are the projections.
Hence one can apply Theorem 3.1 to show that the Calabi volume jicq(Bps rx) and the Mabuchi
volume finra(Bay, ) are infinite for each k. This completes the proof of Theorem 1.1. |
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