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Abstract

Geometry optimization is an important task in quantum chemical calculations to

analyze the characteristics of molecules. A top concern on it is a long execution time

because time-consuming energy and gradient calculations are repeated across several

to tens of steps. In this work, we present a scheme to estimate the execution times

of geometry optimization of a target molecule at different accuracy levels (i.e., the

combinations of ab initio methods and basis sets). It enables to identify the accuracy

levels where geometry optimization will finish in an acceptable time. In addition, we

propose a gradient-based method switching (GMS) technique that reduces the execution

time by dynamically switching multiple methods during geometry optimization. Our

evaluation using 46 molecules in total shows that the geometry optimization times

at 20 accuracy levels are estimated with a mean error of 29.5%, and GMS reduces the

execution time by up to 42.7% without affecting the accuracy of geometry optimization.

1 Introduction

Geometry optimization is a process to find the atomic coordinates that minimize the energy

of a target molecule. It is an important basis task in quantum chemical calculations because
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the optimized geometries are used to analyze the molecular characteristics and structures.1–3

In geometry optimization, a stationary point on a potential energy surface (PES) is explored

by iteratively calculating the energy and gradients of a molecule while changing its atomic

coordinates step by step.

With the Taylor series, the energy at a point x on a PES, E(x), is represented in a

quadratic approximation with respect to a near point x0,

E(x) = E(x0) +GT (x0)∆x+
1

2
∆xTH(x0)∆x,

where G(x0) is the gradient vector (dE/dx) at x0, ∆x = x − x0, and H(x0) is the Hessian

matrix (d2E/dx2) at x0. By differentiating the equation with respect to coordinates, the

gradients at x, G(x), is represented in a quadratic approximation as

G(x) = G(x0) +H(x0)∆x.

As G(x) becomes zero at a stationary point on a PES, the displacement to the stationary

point, ∆x, is given by

∆x = −H(x0)
−1G(x0).

Solving this equation is called the Newton-Raphson step, which is a core part of geometry

optimization. G(x0) is obtained by differentiating E(x0) with respect to the coordinates. On

the other hand, H(x0), which is hard to calculate exactly, is commonly approximated with

a quasi-Newton method such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.4

In every step of geometry optimization, energy and gradient calculations at current coor-

dinates are performed. For both of them, a wide variety of ab initio methods with different

accuracy and computational costs are available, such as Hartree-Fock method (HF),5 density

function theory (DFT),6 Møller-Plesset perturbation theory (MP),7 configuration interac-

tion theory (CI),8 and coupled cluster theory (CC).9 There is basically a trade-off between
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an accuracy and computational cost among them, which means that more accurate methods

require higher computational costs.

To improve the efficiency of geometry optimization, various approaches have been pro-

posed. Chaudhuri and Freed extended the improved virtual orbital-complete active space

configuration interaction (IVO-CASCI) method to enable geometry optimization and vibra-

tional frequency calculation.10 It achieved a comparable or higher accuracy compared to con-

figuration interaction singles (CIS) and complete active space self-consistent field (CASSCF)

with a lower computational cost. Park implemented the analytical gradient theory for the

adaptive sampling CI SCF (ASCI-SCF) method.11 It achieved a good accuracy with large

active spaces by approximating gradients depending on the sampled determinants. Warden

et al. examined several focal-point methods combining MP methods with coupled cluster

singles, doubles, and perturbative triples [CCSD(T)] to achieve a high accuracy with a lower

computational cost.12 Sahu et al. enabled geometry optimization and vibrational spectra

calculation for proteins by combining the molecular tailoring approach (MTA) with DFT

and utilizing large-scale parallelization on supercomputers.13 Khire et al. also applied MTA

to enable the PES construction of medium-sized molecules at the CCSD(T)/aug-cc-pVTZ

level.14 Ahuja et al. applied a reinforcement learning approach that produces a correction

term for the quasi-Newton step with BFGS to improve the convergence of geometry opti-

mization.15 Delgado et al. proposed a variational quantum algorithm to perform geometry

optimization using a quantum computer.16 It minimizes a general cost function in a vari-

ational scheme by simultaneously optimizing both the ansatz parameters and Hamiltonian

parameters. It achieved a good agreement to the full configuration interaction (FCI) method

in a noise-less quantum computer simulation.

The in-depth evaluation of geometry optimization has also been conducted. Cremer

et al. compared the accuracy of geometry optimization with several MP and CC methods

within large correlation consistent basis sets.17 Their evaluation showed that the CCSD(T)/cc-

pVTZ and CCSD(T)/cc-pVQZ levels achieve a very high accuracy. Bálint and Jäntschi
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compared the 39 combinations of various methods and basis sets to analyze the relation-

ship between them and to determine which to use under different circumstances.18 Shajan

et al. compared various open-source geometry optimization implementations via their open-

source interface.3 They demonstrated that internal coordinates, which represent molecular

structures with bond lengths, bond angles, and torsion angles, achieved the better conver-

gence than Cartesian coordinates, and the choice of the initial Hessian and Hessian update

method in quasi-Newton approaches also contribute to the convergence.

Recently, surrogate models that predict PESs at the DFT level have been studied inten-

sively to reduce the computational cost of geometry optimization. Río et al. 19 and Yang

et al. 20 presented active learning methods with a Gaussian process regression (GPR) model

and neural network (NN) model, respectively. In an active learning process, DFT is exe-

cuted to calculate accurate energy and gradients when the model prediction uncertainty is

high, and surrogate models are updated with the new data. Laghuvarapu et al. proposed a

NN model that predicts a molecular energy as the sum of energy contributions from bonds,

angles, non-bonds, and dihedrals.21 Born and Kästner extended a GPR model to internal

coordinates and demonstrated that the convergence of geometry optimization is improved

compared to a GPR model based on Cartesian coordinates.22

A top concern on geometry optimization is a long execution time because time-consuming

energy and gradient calculations are repeated across several to tens of steps. Even if a

surrogate model as introduced above is used for geometry optimization, ab initio calculations

are still necessary to collect training data and complement the model prediction uncertainty.

The times required for energy and gradient calculations at each step depend on methods,

basis sets, and the size of molecules. High accuracy levels (e.g., CCSD(T) with large basis

sets) are generally preferred in various calculations, such as rotational constants, vibrational

frequencies, and chemical reactions.12,14 However, geometry optimization at such a high

accuracy level cannot finish in a practical time for medium- or large-sized molecules. When

the various sizes of molecules are required to be optimized, it is too arduous to manually
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Table 1: The estimated execution times of the geometry optimization of benzene at 20
accuracy levels.

HF MP2 CCSD CCSD(T)

cc-pV5Z 1h 20h 91h 114h
cc-pVQZ 6m 2h 9h 72h
cc-pVTZ 50s 10m 34m 9h
cc-pVDZ 24s 42s 2m 55m
STO-3G 10s 5s 27s 1m

select a practical accuracy level for each of them.

In this work, we present a scheme to estimate the execution times of geometry optimiza-

tion of a target molecule at different accuracy levels. It enables to identify the accuracy

levels where the geometry optimization of a target molecule finishes in an acceptable time

and select an appropriate level from them. For instance, Table 1 showing the estimated

times for benzene tells us that geometry optimization at the CCSD/cc-pVQZ level will finish

in one night, whereas that at the CCSD(T)/cc-pV5Z level will take around five days. Our

evaluation demonstrates that the execution times at 20 accuracy levels are estimated with a

mean error of 29.5% for 16 molecules used by Puzzarini et al.,23 and an appropriate accuracy

level can be selected for each of the various sizes of 30 molecules in Baker set23 in addition

to the 16 molecules based on the estimated times and a target time.

In addition, we propose a dynamic method switching technique to reduce the execution

time of geometry optimization. It uses light-weight methods at a first few steps and then

appropriately switches to more accurate methods for the following steps, based on the norms

of gradients obtained from the pre-executed geometry optimization at the lowest accuracy

level (e.g., HF/STO-3G). Our evaluation shows that it reduces the execution time by a

geometric mean of 22.2% (up to 42.7%) across 16 molecules in the Puzzarini set without any

influence on the accuracy.
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Table 2: Four molecule sets

Molecule Set Molecules

Alkane (10) CnH2n+2 (n = 1, 2, ..., 8, 10, 12)

Small (18) LiH, O2, N2, H2O, BeH2, NH3, CO2, HCl, CH4, C2H2, C2H4, C2H6, C3H4,
C3H6, C3H8, C4H6, C4H8, C4H10

Baker 23 (30)

water, ammonia, ethane, acetylene, allene, hydroxysulfane, benzene,
methylamine, ethanol, acetone, disilyl-ether, 1,3,5-trisilacyclohexane,
benzaldehyde, 1,3-difluorobenzene, 1,3,5-trifluorobenzene, neopentane, furan,
naphthalene, 1,5-difluoronaphthalene, 2-hydroxybicyclopentane, ACHTAR10,
ACANIL01, benzidine, pterin, difuropyrazine, mesityl-oxide, histidine,
dimethylpentane, caffeine, menthone

Puzzarini 24 (16) HF, N2, CO, F2, H2O, HCN, HNC, CO2, NH3, CH4, C2H2, HOF, HNO,
N2H2, C2H4, H2CO

2 Methods

2.1 Time Estimation

The execution time of geometry optimization, Tgo, is represented as

Tgo = (Te + Tg)× S, (1)

where Te is an energy calculation time, Tg is a gradient calculation time, and S is the number

of optimization steps. Hence, the estimation of Te, Tg, and S is necessary to estimate Tgo.

2.1.1 Estimation of Te and Tg

The computational costs of ab initio methods basically depend on the number of basis func-

tions, N . For instance, the general computational costs of HF, MP2, CCSD, and CCSD(T)

are O(N3), O(N5), O(N6), and O(N7), respectively.25 However, the actual Te and Tg of

each method depend on its implementation and a machine configuration where it is exe-
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cuted. Therefore, to estimate Te and Tg, we use a linear regression model represented as

log10(Test) = m · log10(N) + c, (2)

where m is a regression coefficient corresponding to the exponent part of a computational

cost O(Nm), and c is an intercept. The same model is used to estimate both Te and Tg.

Note that the Te and Tg of CCSD and CCSD(T) also strongly depend on the number of

iterations in CCSD calculation; thus, the above model estimates the time taken per iteration

for CCSD and CCSD(T).

In this work, we target four methods (HF, MP2, CCSD, and CCSD(T)) and five basis

sets (STO-3G, cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) implemented in PySCF.26 An

energy time model and gradient time model are fitted for each of the 20 accuracy levels using

the execution times measured on our server (see Section 3.1 for our experimental setup). Te

and Tg with STO-3G are measured for ten alkane molecules listed in Table 2, while those

with cc-pV{D,T,Q,5}Z are measured for 18 small molecules. This model fitting procedure

should be available for other methods and basis sets.

Table 3 shows m, c, and the coefficient of determination, R2, of the fitted energy and

gradient time models. We can see that almost all the models are well fitted with a R2 of

over 0.75. The exceptions are the energy time models for HF/cc-pVTZ and MP2/cc-pVTZ,

and the gradient time models for CCSD(T)/cc-pV{Q,5}Z. The former two cases are due to

a sudden increase in Te for HF and MP2 with around 250 basis functions. In the latter two

cases, the Tg of CCSD(T) does not scale well to the number of basis functions due to the

non-optimized implementation in PySCF.27 Moreover, we can also see that m is basically

larger for higher accuracy levels. Since m corresponds to the exponent part of computational

cost, O(Nm), this observation is in a good agreement with the computational costs of the

four methods.

To estimate the Te and Tg of CCSD and CCSD(T), the number of iterations in CCSD
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Table 3: The coefficients and R2 of time estimation models.

(a) Energy time models
HF MP2 CCSD CCSD(T)

Basis set m c R2 m c R2 m c R2 m c R2

STO-3G 0.67 -1.19 0.91 0.60 -1.03 0.90 1.40 -2.55 0.91 1.03 -2.04 0.96
cc-pVDZ 0.84 -1.48 0.90 0.77 -1.29 0.87 1.21 -2.43 0.79 1.60 -2.99 0.96
cc-pVTZ 1.10 -2.00 0.70 1.21 -2.14 0.75 2.49 -4.95 0.95 2.54 -4.78 0.98
cc-pVQZ 2.40 -4.80 0.92 2.66 -5.28 0.93 3.60 -7.48 0.98 3.04 -5.79 0.98
cc-pV5Z 3.27 -6.88 0.97 3.60 -7.52 0.97 4.27 -9.12 0.98 3.77 -7.47 0.99

(b) Gradient time models
HF MP2 CCSD CCSD(T)

Basis set m c R2 m c R2 m c R2 m c R2

STO-3G 2.31 -3.37 0.97 2.75 -4.58 0.99 2.03 -3.74 0.96 3.54 -5.39 0.94
cc-pVDZ 2.26 -4.02 0.97 3.21 -5.68 0.90 1.98 -3.82 0.88 4.49 -7.32 0.98
cc-pVTZ 1.75 -3.32 0.97 3.63 -6.62 0.99 3.29 -6.39 0.99 4.52 -8.02 0.88
cc-pVQZ 2.03 -3.90 0.96 3.65 -6.62 1.00 3.83 -7.59 1.00 4.45 -8.24 0.75
cc-pV5Z 2.83 -5.62 0.98 3.75 -6.81 1.00 4.01 -8.06 1.00 3.29 -5.89 0.56

calculation is necessary in addition to the time taken per iteration estimated with the regres-

sion models. Under the assumption that the number of iterations does not differ significantly

with different basis sets, the number of iterations is obtained from the pre-executed energy

calculation at the CCSD/STO-3G level for a target molecule. The time overhead of this

pre-execution is negligible compared to geometry optimization with a higher accuracy level,

because the energy calculation at the CCSD/STO-3G level is performed only once. For

instance, the energy calculation at the CCSD/STO-3G level takes only three seconds for

benzene, whereas the geometry optimization at the CCSD/cc-pVDZ level takes 257 seconds.

2.1.2 Estimation of S

The number of steps at an accuracy level, Slevel, is estimated with the number of steps ob-

tained from the pre-executed geometry optimization at the HF/STO-3G level, SHF/STO−3G.

Figure 1 plots SHF/STO−3G versus Slevel at each of the 20 accuracy levels for 16 molecules

in Puzzarini set listed in Table 2. Note that the results at the CCSD(T)/cc-pV{Q,5}Z
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Figure 1: The number of steps at the HF/STO-3G level, SHF/STO−3G, versus that at each of
the 20 accuracy levels, Slevel, for 16 molecules in Puzzarini set. The dotted gray lines show
the region where the difference between SHF/STO−3G and Slevel is within three.

levels for the molecules with more than three atoms are not included, because geometry

optimization does not finish in a practical time. We can see that SHF/STO−3G is a good esti-

mator of Slevel because the difference between them is within three in almost all the results.

There are only three exceptions out of 308 results: CCSD(T)/cc-pV{D,T}Z for HOF and

CCSD(T)/cc-pVTZ for HNO. The time overhead of the pre-executed geometry optimization

at the HF/STO-3G level is negligible compared to geometry optimization at a higher ac-

curacy level. For instance, the geometry optimization of benzene at the HF/STO-3G level

takes only 13 seconds, while that at the MP2/cc-pVTZ level takes 556 seconds.

2.2 Gradient-based Method Switching (GMS)

To reduce Tgo at a selected accuracy level, we propose a novel technique that dynamically

switches multiple ab initio methods during geometry optimization. Its main concept is to

save time by using light-weight methods at a few first steps where the selected accuracy level

is unnecessary for energy and gradient calculations.

We investigate how Tgo is affected by using light-weight methods at a few first steps. With
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Figure 2: The geometry optimization time, Tgo, normalized with respect to CCSD (upper)
and the number of steps, S, (lower) when HF or MP2 is used at the x first steps before
switching to CCSD for caffeine with STO-3G.

the assumption that the CCSD/STO-3G level is selected, Figure 2 shows Tgo normalized with

respect to CCSD and the number of steps, S, when HF or MP2 is used at a few first steps

for caffeine/STO-3G. The x-axis indicates the number of first steps where HF or MP2 is

used before switching to CCSD. When HF is used before CCSD (HF->CCSD), Tgo is reduced

by using HF only at the first step. Otherwise, Tgo is increased due to the increase of S. On

the other hand, when MP2 is used before CCSD (MP2->CCSD), Tgo is minimized without the

increase of S by using MP2 at the first four steps. From these results, we obtain the following

two observations: (1) Tgo can be reduced by using light-weight methods at the appropriate

number of first steps. (2) The appropriate number of first steps is different depending on

light-weight methods.

To identify the appropriate number of first steps using light-weight methods, we focus

on the norm of gradients, ||G||, calculated at each optimization step. It is a useful metric

10



HF MP2 CCSD
10 4

10 3

10 2

10 1

||G
||

||G
|| C

CS
D

(T
)

Max:   0.2218       0.0701       0.0175

Figure 3: The error in the norm of gradients, ||G||, from that calculated with CCSD(T) for
18 small molecules with STO-3G.
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Figure 4: The norm of gradients calculated at the HF/STO-3G level, ||G||HF/STO−3G, for
caffeine.

to know the calculation accuracy required at each step for two reasons: ||G|| can be calcu-

lated from the first step, and it decreases gradually as atomic coordinates get closer to the

stationary ones. Hence, we evaluate the accuracy of ||G|| calculation with HF, MP2, and

CCSD by comparing with CCSD(T). Figure 3 plots the error in ||G|| from that calculated

with CCSD(T), ||G||CCSD(T ), for 18 small molecules listed in Table 2 with STO-3G. We can

see that more accurate methods generally achieve lower errors. Therefore, we use the maxi-

mum error of each method shown above the graph as a threshold to use it during geometry

optimization.
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||G|| at each step is obtained from the pre-executed geometry optimization of a target

molecule at the HF/STO-3G level. Figure 4 shows ||G|| calculated at each step at the

HF/STO-3G level, ||G||HF/STO−3G, for caffeine. The maximum errors in ||G|| calculation

of HF, MP2, and CCSD evaluated in Figure 3 are shown with horizontal dotted lines. We

implement the gradient-based method switching (GMS) technique that selects a method used

at each step by checking whether ||G||HF/STO−3G exceeds the corresponding maximum error.

For instance, when CCSD(T) with an arbitrary basis set is selected as an accuracy level for

caffeine, a method at each step is selected as [HF, MP2, MP2, CCSD, CCSD, CCSD(T), ...].

As discussed in Section 2.1.2, the time overhead of the pre-executed geometry optimization

at the HF/STO-3G level is negligible compared to that with a higher accuracy level.

2.3 Whole Procedure

In this section, we summarize the whole procedure to estimate Tgo for a target molecule

and perform geometry optimization at a selected accuracy level with our proposed GMS

technique.

2.3.1 Advance preparation

The following two steps are required to be performed only once in advance for an experimental

setup.

(a) Data collection: First, Te and Tg at all accuracy levels are measured for the

molecule sets listed in Table 2 as learning data for the time estimation models. The ten

alkane molecules and 18 small molecules are used for STO-3G and the other larger ba-

sis sets, respectively. The Cartesian coordinates of all the 28 molecules optimized with

composite/CBS-Q are obtained from CCCBDB.28 Second, the maximum errors in ||G|| cal-

culation of all methods are evaluated for the 18 small molecules with STO-3G, as shown in

Figure 3. The values of ||G||CCSD(T ) used as baselines are listed in the Supporting Informa-

tion. In this work using the four methods and five basis sets, the whole data collection takes
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31 hours in total.

(b) Time estimation model fitting: With Te and Tg measured in the step (a) and

the numbers of basis functions, N , of the 28 molecules, the linear regression models shown

in Equation 2 are fitted to estimate Te and Tg at all accuracy levels, as shown in Table 3.

2.3.2 Geoemetry optimization of a target molecule

(1) Pre-executions: For the Tgo estimation and GMS, two pre-executions are necessary

for a target molecule. First, the number of steps, SHF/STO−3G, and the norm of gradients at

each step, ||G||HF/STO−3G, are obtained from the geometry optimization at the HF/STO-3G

level. Second, if CCSD or CCSD(T) is included in target methods, the number of iterations

in CCSD calculation is obtained from the energy calculation at the CCSD/STO-3G level.

For benzidine which is the largest in Baker set, the geometry optimization at the HF/STO-

3G level takes 154 seconds, and the energy calculation at the CCSD/STO-3G level takes 30

seconds.

(2) Time estimation and accuracy level selection: Te and Tg at all accuracy levels

are estimated with the energy and gradient time models fitted in the step (b), the number

of basis functions, N , of the target molecule, and the number of CCSD iterations obtained

in the step (1). Then, Tgo at all accuracy levels are calculated based on Equation 1 with

SHF/STO−3G obtained in the step (1) and the estimated Te and Tg. After that, an accuracy

level where the estimated Tgo is acceptable can be selected.

(3) Geometry optimization with GMS: The geometry optimization of the target

molecule is performed with GMS at the accuracy level selected in the step (2). GMS selects

a method used in each step by comparing ||G||HF/STO−3G obtained in the step (1) and the

maximum errors evaluated in the step (a).
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3 Results and Discussion

In this section, we evaluate the estimation accuracy of Tgo, the effectiveness of selecting an

accuracy level based on the estimated Tgo, and the time reduction by GMS. We first describe

our experimental setup and then show the evaluation results.

3.1 Experimental Setup

In this work, we target 20 accuracy levels composed of four ab initio methods (HF, MP2,

CCSD, and CCSD(T)) and five basis sets (STO-3G, cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-

pV5Z) implemented in PySCF .26 PySCF is a Python-based open-source quantum chemical

calculation framework. We use the geomopt module in PySCF via an interface to geomeT-

RIC 29 with the default convergence criteria. The LinearRegression module in scikit-learn 30

is used to fit the energy and gradient time estimation models. A server containing two Xeon

Gold 6240M processors and 384 GB DRAM is used for all experiments in this work.

For evaluation, we select 16 molecules used by Puzzarini et al.24 and 30 molecules in

Baker set,23 as listed in Table 2. For the molecules in Puzzarini set, we obtain the Carte-

sian coordinates optimized with composite/CBS-Q from CCCBDB28 and initialize all the

bond distances to 1.0 Å while keeping bond angles. Moreover, the experimental Cartesian

coordinates of the molecules in Puzzarini set are also obtained from CCCBDB and used to

evaluate the accuracy of optimized coordinates. For the molecules in Baker set, we use the

initial Cartesian coordinates provided by Shajan et al.3

3.2 Time Estimation Accuracy

First, we evaluate the estimation accuracy of Tgo with Figure 5 plotting the measured versus

estimated Tgo at the 20 accuracy levels for the 16 molecules in Puzzarini set. Different

colored dots show the results of different methods, and the black line indicates the exact

match between the estimated and measured Tgo. Note that the results at the CCSD(T)/cc-

14
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Figure 5: The measured versus estimated Tgo at the 20 accuracy levels for 16 molecules in
Puzzarini set.

pV{Q,5}Z levels for the molecules with more than three atoms are not included in similar to

Figure 1. We can see that Tgo is estimated accurately in the most results. The mean absolute

percentage error (MAPE) across all the results is 29.5%, which is sufficiently low to identify

the accuracy levels where geometry optimization finishes in an acceptable time. However,

Tgo with CCSD(T) shown with red dots are under-estimated significantly in a lot of cases

due to the low R2 of the gradient time models for cc-pV{Q,5}Z as shown in Table 3. This

is because the gradient calculation time of CCSD(T) does not scale well to the number of

basis functions due to the non-optimized implementation in PySCF.27 It is our future work

to optimize it or to consider a better time estimation model for the gradient calculation with

CCSD(T).

3.3 Accuracy Level Selection and Method Switching

Next, we evaluate the effectiveness of the estimated time-based accuracy level selection

(ETALS) and gradient-based method switching (GMS) technique. We set a target Tgo and

select the highest accuracy level where the estimated Tgo is below it in the following three

15
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Figure 6: The RMSD of the optimized coordinates in Å and the execution time of geometry
optimization, Tgo, for 16 molecules in Puzzarini set with a target Tgo of 1,000 seconds.

steps. (1) Without HF and STO-3G, the highest accuracy level meeting the target Tgo is

searched with the outer loop in the order of larger basis sets and the inner loop in the order

of more accurate methods. (2) If the accuracy level is not found in the step 1, the largest

basis set with HF meeting the target Tgo is searched. (3) If the accuracy level is not found

in the step 2, the most accurate method with STO-3G meeting the target Tgo is searched.

For instance, when Tgo are estimated for benzene as shown in Table 1 and a target Tgo is set

to 300 seconds (5 minutes), CCSD/cc-pVDZ is selected.

Figure 6 shows the root mean square deviation (RMSD) of the optimized coordinates

with respect to the experimental coordinates and Tgo for the 16 molecules in Puzzarini set

with a target Tgo of 1,000 seconds. The HF/cc-pV5Z level is evaluated as a naive baseline

(blue bars), where the geometry optimization of all the molecules finishes in the target Tgo.

The orange bars show that the accuracy levels selected with ETALS achieve the much lower

coordinates RMSD than HF/cc-pV5Z in around 1,000 seconds for almost all the molecules.
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Figure 7: Hartree energy, Eh, (upper) and the norm of gradients, ||G||, (lower) calculated
during geometry optimization. The x-axis shows the elapsed time in seconds.

This result demonstrates that ETALS enables to select a high accuracy level for each molecule

based on the estimated and target Tgo. The reason why Tgo exceeds the target Tgo by 50%

for the HF molecule is because the CCSD(T)/cc-pV5Z level is selected based on the under-

estimated Tgo due to the low R2 of the gradient time model as shown in Table 3. In addition,

the green bars show that GMS reduces Tgo for almost all the molecules at the accuracy

levels selected with ETALS without any influence on the coordinates RMSD. The maximum

reduction is 42.7% for F2, where CCSD/cc-pV5Z is selected. Figure 7a compares the energy

and ||G|| calculated during the geometry optimization of F2 at the CCSD/cc-pV5Z level

between without and with GMS. The x-axis shows the elapsed time in seconds, and the

dots represent optimization steps. We can see that GMS reduces the number of steps using

CCSD, where the time per step is around 160 seconds, from eight to four by using HF at

the first two steps and MP2 at the third step. Although the energies calculated with HF

at the first two steps are significantly different from those with CCSD, the final energy and

||G|| converge to the comparable values. The geometric mean of the Tgo reduction by GMS

across the 16 molecules is 22.2%. This is not a drastic reduction, but GMS can be applied

without any concern because it does not affect the accuracy of geometry optimization. We

also conduct the same evaluation with target Tgo of 100 and 300 seconds, where the geometric
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Figure 8: The execution time of geometry optimization, Tgo, for 30 molecules in Baker set
with a target Tgo of 300 seconds.

means of the Tgo reduction are 10.3% and 15.8%, respectively.

Figure 8 plots Tgo for the 30 molecules in Baker set with a target Tgo of 300 seconds. The

evaluation of coordinates RMSD is excluded because the experimental coordinates of almost

all the molecules are not available. This graph shows that the appropriate accuracy levels are

selected with ETALS so that geometry optimization finishes in around 300 seconds for almost

all the molecules. As the various sizes of molecules are included in Baker set, the selected

accuracy levels differ significantly depending on the molecular sizes. For instance, CCSD/cc-

pVQZ is selected for water including three atoms, while HF/STO-3G is selected for menthone

including 29 atoms. For neopentane, 1_5-difluoronaphthalene, and difuropyrazine, Tgo are

relatively long because CCSD/cc-pVDZ and HF/cc-pVTZ are selected based on the under-

estimated Tgo due to the low R2 of the corresponding energy time models as shown in Table 3.

GMS reduces Tgo for several small molecules at left side, where CCSD is mainly selected with

ETALS, and the time is saved by using HF and MP2 at a few first steps. In contrast, the time
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reduction by GMS cannot be seen for large molecules at right side, because HF and MP2

are selected with ETALS. Unfortunately, GMS increases Tgo for water and acetylene because

the number of steps is increased by using HF or MP2 at a few first steps. Figure 7b shows

the behavior of the geometry optimization of acetylene, where MP2/cc-pVQZ is selected

with ETALS. While the number of steps is four without GMS, it is increased to six by

using HF at the first step with GMS. Although the time increases by GMS can be avoided

by conservatively setting higher thresholds to select light-weight methods, it would also

decrease the time reduction by GMS. With the current thresholds shown in Figure 4, the

time increases by GMS are observed only in the two cases out of 46 cases through Figure 6

and Figure 8.

4 Conclusion

In this work, we propose the scheme to estimate the geometry optimization times at different

accuracy levels for a target molecule and the GMS technique that reduces the execution time

by dynamically switching multiple methods during geometry optimization. They enable to

identify the accuracy levels where geometry optimization will finish in an acceptable time

and perform geometry optimization at a selected accuracy level in a shorter time than only

using a single method. The evaluation using 46 molecules in total demonstrates that the

geometry optimization times at 20 accuracy levels are estimated with a MAPE of 29.5%, and

GMS reduces the execution time by up to 42.7% without affecting the accuracy of geometry

optimization.
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