arXiv:2404.12842v1 [physics.chem-ph] 19 Apr 2024

Accurate and Fast Geometry Optimization

with Time Estimation and Method Switching

Satoshi Imamura,” Akihiko Kasagi, and Eiji Yoshida
Computing Laboratory, Fujitsu Limited

E-mail: s-imamura®©fujitsu.com

Abstract

Geometry optimization is an important task in quantum chemical calculations to
analyze the characteristics of molecules. A top concern on it is a long execution time
because time-consuming energy and gradient calculations are repeated across several
to tens of steps. In this work, we present a scheme to estimate the execution times
of geometry optimization of a target molecule at different accuracy levels (i.e., the
combinations of ab initio methods and basis sets). It enables to identify the accuracy
levels where geometry optimization will finish in an acceptable time. In addition, we
propose a gradient-based method switching (GMS) technique that reduces the execution
time by dynamically switching multiple methods during geometry optimization. Our
evaluation using 46 molecules in total shows that the geometry optimization times
at 20 accuracy levels are estimated with a mean error of 29.5%, and GMS reduces the

execution time by up to 42.7% without affecting the accuracy of geometry optimization.

1 Introduction

Geometry optimization is a process to find the atomic coordinates that minimize the energy

of a target molecule. It is an important basis task in quantum chemical calculations because
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the optimized geometries are used to analyze the molecular characteristics and structures. ~
In geometry optimization, a stationary point on a potential energy surface (PES) is explored
by iteratively calculating the energy and gradients of a molecule while changing its atomic
coordinates step by step.

With the Taylor series, the energy at a point x on a PES, F(z), is represented in a

quadratic approximation with respect to a near point x,
1
E(z) = E(x9) + G" (z9) Az + §AxTH(xO)Ax,

where G(zy) is the gradient vector (dE/dx) at xy, Az = x — xy, and H () is the Hessian
matrix (d’E/dx?) at zo. By differentiating the equation with respect to coordinates, the

gradients at x, G(z), is represented in a quadratic approximation as
G(z) = G(xp) + H(zo)Ax.

As G(z) becomes zero at a stationary point on a PES, the displacement to the stationary
point, Az, is given by
Az = —H (20) G ().

Solving this equation is called the Newton-Raphson step, which is a core part of geometry
optimization. G(zy) is obtained by differentiating E(x() with respect to the coordinates. On
the other hand, H (z), which is hard to calculate exactly, is commonly approximated with
a quasi-Newton method such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.
In every step of geometry optimization, energy and gradient calculations at current coor-
dinates are performed. For both of them, a wide variety of ab initio methods with different
accuracy and computational costs are available, such as Hartree-Fock method (HF),” density
function theory (DFT),” Mpgller-Plesset perturbation theory (MP)," configuration interac-

tion theory (CI),” and coupled cluster theory (CC).” There is basically a trade-off between



an accuracy and computational cost among them, which means that more accurate methods
require higher computational costs.

To improve the efficiency of geometry optimization, various approaches have been pro-
posed. Chaudhuri and Freed extended the improved virtual orbital-complete active space
configuration interaction (IVO-CASCI) method to enable geometry optimization and vibra-
tional frequency calculation. "’ It achieved a comparable or higher accuracy compared to con-
figuration interaction singles (CIS) and complete active space self-consistent field (CASSCF')
with a lower computational cost. Park implemented the analytical gradient theory for the
adaptive sampling CI SCF (ASCI-SCF) method.'" Tt achieved a good accuracy with large
active spaces by approximating gradients depending on the sampled determinants. Warden
et al. examined several focal-point methods combining MP methods with coupled cluster
singles, doubles, and perturbative triples [CCSD(T)] to achieve a high accuracy with a lower
computational cost.'” Sahu et al. enabled geometry optimization and vibrational spectra
calculation for proteins by combining the molecular tailoring approach (MTA) with DFT
and utilizing large-scale parallelization on supercomputers. ° Khire et al. also applied MTA
to enable the PES construction of medium-sized molecules at the CCSD(T)/aug-cc-pVTZ
level. © Ahuja et al. applied a reinforcement learning approach that produces a correction
term for the quasi-Newton step with BFGS to improve the convergence of geometry opti-
mization. ' Delgado et al. proposed a variational quantum algorithm to perform geometry
optimization using a quantum computer. It minimizes a general cost function in a vari-
ational scheme by simultaneously optimizing both the ansatz parameters and Hamiltonian
parameters. It achieved a good agreement to the full configuration interaction (FCI) method
in a noise-less quantum computer simulation.

The in-depth evaluation of geometry optimization has also been conducted. Cremer
et al. compared the accuracy of geometry optimization with several MP and CC methods
within large correlation consistent basis sets. ' Their evaluation showed that the CCSD(T) /cc-

pVTZ and CCSD(T)/cc-pVQZ levels achieve a very high accuracy. Balint and Jéntschi



compared the 39 combinations of various methods and basis sets to analyze the relation-
ship between them and to determine which to use under different circumstances. © Shajan
et al. compared various open-source geometry optimization implementations via their open-
source interface.” They demonstrated that internal coordinates, which represent molecular
structures with bond lengths, bond angles, and torsion angles, achieved the better conver-
gence than Cartesian coordinates, and the choice of the initial Hessian and Hessian update
method in quasi-Newton approaches also contribute to the convergence.

Recently, surrogate models that predict PESs at the DF'T level have been studied inten-
sively to reduce the computational cost of geometry optimization. Rio et al. "’ and Yang
et al. *" presented active learning methods with a Gaussian process regression (GPR) model
and neural network (NN) model, respectively. In an active learning process, DFT is exe-
cuted to calculate accurate energy and gradients when the model prediction uncertainty is
high, and surrogate models are updated with the new data. Laghuvarapu et al. proposed a
NN model that predicts a molecular energy as the sum of energy contributions from bonds,
angles, non-bonds, and dihedrals.”" Born and Késtner extended a GPR model to internal
coordinates and demonstrated that the convergence of geometry optimization is improved
compared to a GPR model based on Cartesian coordinates.

A top concern on geometry optimization is a long execution time because time-consuming
energy and gradient calculations are repeated across several to tens of steps. Even if a
surrogate model as introduced above is used for geometry optimization, ab initio calculations
are still necessary to collect training data and complement the model prediction uncertainty.
The times required for energy and gradient calculations at each step depend on methods,
basis sets, and the size of molecules. High accuracy levels (e.g., CCSD(T) with large basis
sets) are generally preferred in various calculations, such as rotational constants, vibrational
frequencies, and chemical reactions. =" However, geometry optimization at such a high
accuracy level cannot finish in a practical time for medium- or large-sized molecules. When

the various sizes of molecules are required to be optimized, it is too arduous to manually



Table 1: The estimated execution times of the geometry optimization of benzene at 20
accuracy levels.

| HF MP2 CCSD CCSD(T)

cc-pVHZ | 1h  20h 91h 114h
cc-pVQZ | 6m 2h 9h 72h
ce-pVTZ | 50s  10m 34m 9h
cc-pVDZ | 24s  42s 2m 5bm
STO-3G | 10s 58 27s 1lm

select a practical accuracy level for each of them.

In this work, we present a scheme to estimate the execution times of geometry optimiza-
tion of a target molecule at different accuracy levels. It enables to identify the accuracy
levels where the geometry optimization of a target molecule finishes in an acceptable time
and select an appropriate level from them. For instance, Table 1 showing the estimated
times for benzene tells us that geometry optimization at the CCSD/cc-pVQZ level will finish
in one night, whereas that at the CCSD(T)/cc-pV5Z level will take around five days. Our
evaluation demonstrates that the execution times at 20 accuracy levels are estimated with a
mean error of 29.5% for 16 molecules used by Puzzarini et al.,”’ and an appropriate accuracy
level can be selected for each of the various sizes of 30 molecules in Baker set“’ in addition
to the 16 molecules based on the estimated times and a target time.

In addition, we propose a dynamic method switching technique to reduce the execution
time of geometry optimization. It uses light-weight methods at a first few steps and then
appropriately switches to more accurate methods for the following steps, based on the norms
of gradients obtained from the pre-executed geometry optimization at the lowest accuracy
level (e.g., HF/STO-3G). Our evaluation shows that it reduces the execution time by a
geometric mean of 22.2% (up to 42.7%) across 16 molecules in the Puzzarini set without any

influence on the accuracy.



Table 2: Four molecule sets

Molecule Set ‘ Molecules

Alkane (10) | CyHapio (n=1,2,...,8,10,12)

LiH, Oq, Ny, H,O, BeH,, NHs, CO4, HCI, CHy, CoHsy, CoHy, CoHg, CsHy,

Small (18

el (18) | CyHy, CoHy, CuHg, CiHy, CiHyg
water, ammonia, ethane, acetylene, allene, hydroxysulfane, benzene,
methylamine, ethanol, acetone, disilyl-ether, 1,3,5-trisilacyclohexane,

Baker” (30) benzaldehyde, 1,3-difluorobenzene, 1,3,5-trifluorobenzene, neopentane, furan,

naphthalene, 1,5-difluoronaphthalene, 2-hydroxybicyclopentane, ACHTARI10,
ACANILO1, benzidine, pterin, difuropyrazine, mesityl-oxide, histidine,
dimethylpentane, caffeine, menthone

HF, N,, CO, Fy, H,O, HCN, HNC, CO,, NH;, CH,, C,H,, HOF, HNO,

Puzzarini®" (16) NoH,. CoH,. HyCO

2 Methods

2.1 Time Estimation

The execution time of geometry optimization, T,, is represented as

Tpo = (T.+T,) x S, 1)

where T is an energy calculation time, T}, is a gradient calculation time, and S is the number

of optimization steps. Hence, the estimation of T, T,, and S is necessary to estimate Tp,.

2.1.1 Estimation of 7, and T

The computational costs of ab initio methods basically depend on the number of basis func-
tions, N. For instance, the general computational costs of HF, MP2, CCSD, and CCSD(T)
are O(N?), O(N®), O(N®), and O(NT), respectively.”” However, the actual T, and T, of

each method depend on its implementation and a machine configuration where it is exe-



cuted. Therefore, to estimate T, and T}, we use a linear regression model represented as

logio(Test) = m - logio(N) +c, (2)

where m is a regression coefficient corresponding to the exponent part of a computational
cost O(N™), and c¢ is an intercept. The same model is used to estimate both T, and Tj,.
Note that the T, and T, of CCSD and CCSD(T) also strongly depend on the number of
iterations in CCSD calculation; thus, the above model estimates the time taken per iteration
for CCSD and CCSD(T).

In this work, we target four methods (HF, MP2, CCSD, and CCSD(T)) and five basis
sets (STO-3G, cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) implemented in PySCF.”" An
energy time model and gradient time model are fitted for each of the 20 accuracy levels using
the execution times measured on our server (see Section 3.1 for our experimental setup). 7,
and T, with STO-3G are measured for ten alkane molecules listed in Table 2, while those
with cc-pV{D,T,Q,5}7Z are measured for 18 small molecules. This model fitting procedure
should be available for other methods and basis sets.

Table 3 shows m, ¢, and the coefficient of determination, R?, of the fitted energy and
gradient time models. We can see that almost all the models are well fitted with a R? of
over 0.75. The exceptions are the energy time models for HF /cc-pVTZ and MP2/cc-pVTZ,
and the gradient time models for CCSD(T)/cc-pV{Q,5}Z. The former two cases are due to
a sudden increase in 7T, for HF and MP2 with around 250 basis functions. In the latter two
cases, the T, of CCSD(T) does not scale well to the number of basis functions due to the
non-optimized implementation in PySCF.”" Moreover, we can also see that m is basically
larger for higher accuracy levels. Since m corresponds to the exponent part of computational
cost, O(N™), this observation is in a good agreement with the computational costs of the
four methods.

To estimate the 7, and T, of CCSD and CCSD(T), the number of iterations in CCSD



Table 3: The coefficients and R? of time estimation models.

(a) Energy time models

| HF | MP2 | ccsb | CCsD(T)

Basis set‘ m c R? ‘ m ¢ R? ‘ m c R? ‘ m c R?

STO-3G | 0.67 -1.19 091 | 0.60 -1.03 0.90 | 1.40 -2.55 091 |1.03 -2.04 0.96
cc-pVDZ | 0.84 -1.48 090 | 0.77 -1.29 0.87 | 1.21 -2.43 0.79 | 1.60 -2.99 0.96
cc-pVTZ | 1.10 -2.00 0.70 | 1.21 -2.14 0.75| 249 -495 0.95|2.54 -4.78 0.98
ce-pVQZ | 240 -480 0.92 | 2.66 -5.28 0.93 | 3.60 -748 0.98|3.04 -5.79 0.98
ce-pVHZ | 3.27 -6.88 0.97 | 3.60 -7.52 0.97 | 4.27 -9.12 098 | 3.77 -7.47 0.99

(b) Gradient time models

| HF | MP2 | ccsbD | CCSD(T)

Basis set‘ m c R? ‘ m ¢ R? ‘ m c R? ‘ m c R?

STO-3G | 231 -3.37 097|275 -458 099|203 -3.74 096 | 3.54 -5.39 0.94
cc-pVDZ | 2.26 -4.02 097|321 -5.68 0.90| 198 -3.82 088|449 -7.32 0.98
ce-pVTZ | 1.75 -3.32 097 | 3.63 -6.62 099 |3.29 -6.39 099|452 -8.02 0.88
ce-pVQZ | 2.03 -3.90 0.96 | 3.65 -6.62 1.00 | 3.83 -7.59 1.00 | 445 -8.24 0.75
cc-pVdZ | 283 -5.62 098 3.75 -6.81 1.00|4.01 -8.06 1.00|3.29 -589 0.56

calculation is necessary in addition to the time taken per iteration estimated with the regres-
sion models. Under the assumption that the number of iterations does not differ significantly
with different basis sets, the number of iterations is obtained from the pre-executed energy
calculation at the CCSD/STO-3G level for a target molecule. The time overhead of this
pre-execution is negligible compared to geometry optimization with a higher accuracy level,
because the energy calculation at the CCSD/STO-3G level is performed only once. For
instance, the energy calculation at the CCSD/STO-3G level takes only three seconds for

benzene, whereas the geometry optimization at the CCSD /cc-pVDZ level takes 257 seconds.

2.1.2 Estimation of S

The number of steps at an accuracy level, Si.e, is estimated with the number of steps ob-
tained from the pre-executed geometry optimization at the HF/STO-3G level, Spr/sro—3a-
Figure 1 plots Syp/sro—sc versus Sieve at each of the 20 accuracy levels for 16 molecules

in Puzzarini set listed in Table 2. Note that the results at the CCSD(T)/cc-pV{Q,5}Z
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Figure 1: The number of steps at the HF /STO-3G level, Syp/sro-sa, versus that at each of
the 20 accuracy levels, Sieuer, for 16 molecules in Puzzarini set. The dotted gray lines show
the region where the difference between Syr/sro—3¢ and Sjepe; is within three.

levels for the molecules with more than three atoms are not included, because geometry
optimization does not finish in a practical time. We can see that Sy r/sro—sq is a good esti-
mator of Sj.,. because the difference between them is within three in almost all the results.
There are only three exceptions out of 308 results: CCSD(T)/cc-pV{D,T}Z for HOF and
CCSD(T)/cc-pVTZ for HNO. The time overhead of the pre-executed geometry optimization
at the HF /STO-3G level is negligible compared to geometry optimization at a higher ac-
curacy level. For instance, the geometry optimization of benzene at the HF /STO-3G level

takes only 13 seconds, while that at the MP2/cc-pVTZ level takes 556 seconds.

2.2 Gradient-based Method Switching (GMS)

To reduce T}, at a selected accuracy level, we propose a novel technique that dynamically
switches multiple ab initio methods during geometry optimization. Its main concept is to
save time by using light-weight methods at a few first steps where the selected accuracy level
is unnecessary for energy and gradient calculations.

We investigate how T, is affected by using light-weight methods at a few first steps. With



—&— HF->CCSD MP2->CCSD

o 12
()]

T8 10- 2% A

€0

O .
jud

5508

[

N
o

Number of steps, S
o
L

N
o

2 4 6 8 10
Number of first steps with HF or MP2

Figure 2: The geometry optimization time, Tj,, normalized with respect to CCSD (upper)
and the number of steps, S, (lower) when HF or MP2 is used at the x first steps before
switching to CCSD for caffeine with STO-3G.

the assumption that the CCSD/STO-3G level is selected, Figure 2 shows T}, normalized with
respect to CCSD and the number of steps, S, when HF or MP2 is used at a few first steps
for caffeine/STO-3G. The x-axis indicates the number of first steps where HF or MP2 is
used before switching to CCSD. When HF is used before CCSD (HF->CCSD), T, is reduced
by using HF only at the first step. Otherwise, T}, is increased due to the increase of S. On
the other hand, when MP2 is used before CCSD (MP2->CCSD), T, is minimized without the
increase of .S by using MP2 at the first four steps. From these results, we obtain the following
two observations: (1) T,, can be reduced by using light-weight methods at the appropriate
number of first steps. (2) The appropriate number of first steps is different depending on
light-weight methods.

To identify the appropriate number of first steps using light-weight methods, we focus

on the norm of gradients, ||G]|, calculated at each optimization step. It is a useful metric
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Figure 3: The error in the norm of gradients, ||G||, from that calculated with CCSD(T) for
18 small molecules with STO-3G.
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Figure 4: The norm of gradients calculated at the HF/STO-3G level, ||G||gr/sro-sa, for
caffeine.

to know the calculation accuracy required at each step for two reasons: ||G|| can be calcu-
lated from the first step, and it decreases gradually as atomic coordinates get closer to the
stationary ones. Hence, we evaluate the accuracy of ||G|| calculation with HF, MP2, and
CCSD by comparing with CCSD(T). Figure 3 plots the error in ||G|| from that calculated
with CCSD(T), ||G||cesper), for 18 small molecules listed in Table 2 with STO-3G. We can
see that more accurate methods generally achieve lower errors. Therefore, we use the maxi-

mum error of each method shown above the graph as a threshold to use it during geometry

optimization.
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||G|| at each step is obtained from the pre-executed geometry optimization of a target
molecule at the HF/STO-3G level. Figure 4 shows ||G|| calculated at each step at the
HE/STO-3G level, ||G||gr/sro-3c, for caffeine. The maximum errors in ||G|| calculation
of HF, MP2, and CCSD evaluated in Figure 3 are shown with horizontal dotted lines. We
implement the gradient-based method switching (GMS) technique that selects a method used
at each step by checking whether ||G||gr/sro—3¢ exceeds the corresponding maximum error.
For instance, when CCSD(T) with an arbitrary basis set is selected as an accuracy level for
caffeine, a method at each step is selected as [HF, MP2, MP2, CCSD, CCSD, CCSD(T), ...].
As discussed in Section 2.1.2, the time overhead of the pre-executed geometry optimization

at the HF /STO-3G level is negligible compared to that with a higher accuracy level.

2.3 Whole Procedure

In this section, we summarize the whole procedure to estimate 7}, for a target molecule
and perform geometry optimization at a selected accuracy level with our proposed GMS

technique.

2.3.1 Advance preparation

The following two steps are required to be performed only once in advance for an experimental
setup.

(a) Data collection: First, T, and 7, at all accuracy levels are measured for the
molecule sets listed in Table 2 as learning data for the time estimation models. The ten
alkane molecules and 18 small molecules are used for STO-3G and the other larger ba-
sis sets, respectively. The Cartesian coordinates of all the 28 molecules optimized with
composite/CBS-(@) are obtained from CCCBDB. " Second, the maximum errors in ||G|| cal-
culation of all methods are evaluated for the 18 small molecules with STO-3G, as shown in
Figure 3. The values of ||G||ccsper) used as baselines are listed in the Supporting Informa-

tion. In this work using the four methods and five basis sets, the whole data collection takes

12



31 hours in total.
(b) Time estimation model fitting: With 7, and 7, measured in the step (a) and
the numbers of basis functions, N, of the 28 molecules, the linear regression models shown

in Equation 2 are fitted to estimate T, and T} at all accuracy levels, as shown in Table 3.

2.3.2 Geoemetry optimization of a target molecule

(1) Pre-executions: For the T}, estimation and GMS, two pre-executions are necessary
for a target molecule. First, the number of steps, Syr/sro—3¢, and the norm of gradients at
each step, ||G||gFr/sro-3a, are obtained from the geometry optimization at the HF /STO-3G
level. Second, if CCSD or CCSD(T) is included in target methods, the number of iterations
in CCSD calculation is obtained from the energy calculation at the CCSD/STO-3G level.
For benzidine which is the largest in Baker set, the geometry optimization at the HF /STO-
3G level takes 154 seconds, and the energy calculation at the CCSD/STO-3G level takes 30
seconds.

(2) Time estimation and accuracy level selection: T, and 7, at all accuracy levels
are estimated with the energy and gradient time models fitted in the step (b), the number
of basis functions, N, of the target molecule, and the number of CCSD iterations obtained
in the step (1). Then, T}, at all accuracy levels are calculated based on Equation 1 with
SHr/sro—3c obtained in the step (1) and the estimated T, and Tj,. After that, an accuracy
level where the estimated T}, is acceptable can be selected.

(3) Geometry optimization with GMS: The geometry optimization of the target
molecule is performed with GMS at the accuracy level selected in the step (2). GMS selects
a method used in each step by comparing ||G||gr/sro—3c obtained in the step (1) and the

maximum errors evaluated in the step (a).
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3 Results and Discussion

In this section, we evaluate the estimation accuracy of T}, the effectiveness of selecting an
accuracy level based on the estimated 7T,, and the time reduction by GMS. We first describe

our experimental setup and then show the evaluation results.

3.1 Experimental Setup

In this work, we target 20 accuracy levels composed of four ab initio methods (HF, MP2,
CCSD, and CCSD(T)) and five basis sets (STO-3G, cc-pVDZ, cc-pVTZ, ce-pVQZ, and cc-
pV5Z) implemented in PySCF.”" PySCF is a Python-based open-source quantum chemical
calculation framework. We use the geomopt module in PySCF via an interface to geomeT-
RIC* with the default convergence criteria. The LinearRegression module in scikit-learn
is used to fit the energy and gradient time estimation models. A server containing two Xeon
Gold 6240M processors and 384 GB DRAM is used for all experiments in this work.

For evaluation, we select 16 molecules used by Puzzarini et al.” and 30 molecules in
Baker set,” as listed in Table 2. For the molecules in Puzzarini set, we obtain the Carte-
sian coordinates optimized with composite/CBS-@Q from CCCBDB*" and initialize all the
bond distances to 1.0 A while keeping bond angles. Moreover, the experimental Cartesian
coordinates of the molecules in Puzzarini set are also obtained from CCCBDB and used to
evaluate the accuracy of optimized coordinates. For the molecules in Baker set, we use the

initial Cartesian coordinates provided by Shajan et al.

3.2 Time Estimation Accuracy

First, we evaluate the estimation accuracy of T,, with Figure 5 plotting the measured versus
estimated T}, at the 20 accuracy levels for the 16 molecules in Puzzarini set. Different
colored dots show the results of different methods, and the black line indicates the exact

match between the estimated and measured 7},. Note that the results at the CCSD(T)/cc-
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Figure 5: The measured versus estimated Ty, at the 20 accuracy levels for 16 molecules in
Puzzarini set.

pV{Q,5}Z levels for the molecules with more than three atoms are not included in similar to
Figure 1. We can see that T}, is estimated accurately in the most results. The mean absolute
percentage error (MAPE) across all the results is 29.5%, which is sufficiently low to identify
the accuracy levels where geometry optimization finishes in an acceptable time. However,
Ty with CCSD(T) shown with red dots are under-estimated significantly in a lot of cases
due to the low R? of the gradient time models for cc-pV{Q,5}7Z as shown in Table 3. This
is because the gradient calculation time of CCSD(T) does not scale well to the number of
basis functions due to the non-optimized implementation in PySCF.”" It is our future work

to optimize it or to consider a better time estimation model for the gradient calculation with

CCSD(T).

3.3 Accuracy Level Selection and Method Switching

Next, we evaluate the effectiveness of the estimated time-based accuracy level selection
(ETALS) and gradient-based method switching (GMS) technique. We set a target T, and

select the highest accuracy level where the estimated 7}, is below it in the following three
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Figure 6: The RMSD of the optimized coordinates in A and the execution time of geometry

optimization, T,, for 16 molecules in Puzzarini set with a target T, of 1,000 seconds.

steps. (1) Without HF and STO-3G, the highest accuracy level meeting the target Ty, is
searched with the outer loop in the order of larger basis sets and the inner loop in the order
of more accurate methods. (2) If the accuracy level is not found in the step 1, the largest
basis set with HF meeting the target T,, is searched. (3) If the accuracy level is not found
in the step 2, the most accurate method with STO-3G meeting the target T}, is searched.
For instance, when T}, are estimated for benzene as shown in Table 1 and a target T}, is set
to 300 seconds (5 minutes), CCSD/cc-pVDZ is selected.

Figure 6 shows the root mean square deviation (RMSD) of the optimized coordinates
with respect to the experimental coordinates and T}, for the 16 molecules in Puzzarini set
with a target Tj, of 1,000 seconds. The HF /cc-pV5Z level is evaluated as a naive baseline
(blue bars), where the geometry optimization of all the molecules finishes in the target T,.
The orange bars show that the accuracy levels selected with ETALS achieve the much lower

coordinates RMSD than HF /cc-pV5Z in around 1,000 seconds for almost all the molecules.
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Figure 7: Hartree energy, Eh, (upper) and the norm of gradients, ||G||, (lower) calculated
during geometry optimization. The x-axis shows the elapsed time in seconds.

This result demonstrates that ETALS enables to select a high accuracy level for each molecule
based on the estimated and target T,,. The reason why 7,, exceeds the target T, by 50%
for the HF molecule is because the CCSD(T)/cc-pV5Z level is selected based on the under-
estimated Ty, due to the low R? of the gradient time model as shown in Table 3. In addition,
the green bars show that GMS reduces T,, for almost all the molecules at the accuracy
levels selected with ETALS without any influence on the coordinates RMSD. The maximum
reduction is 42.7% for F2, where CCSD /cc-pV5Z is selected. Figure 7a compares the energy
and ||G|| calculated during the geometry optimization of F2 at the CCSD/cc-pV5Z level
between without and with GMS. The x-axis shows the elapsed time in seconds, and the
dots represent optimization steps. We can see that GMS reduces the number of steps using
CCSD, where the time per step is around 160 seconds, from eight to four by using HF at
the first two steps and MP2 at the third step. Although the energies calculated with HF
at the first two steps are significantly different from those with CCSD, the final energy and
|G| converge to the comparable values. The geometric mean of the 7}, reduction by GMS
across the 16 molecules is 22.2%. This is not a drastic reduction, but GMS can be applied
without any concern because it does not affect the accuracy of geometry optimization. We

also conduct the same evaluation with target T, of 100 and 300 seconds, where the geometric
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Figure 8: The execution time of geometry optimization, T,, for 30 molecules in Baker set
with a target Ty, of 300 seconds.

means of the T}, reduction are 10.3% and 15.8%, respectively.

Figure 8 plots T}, for the 30 molecules in Baker set with a target Ty, of 300 seconds. The
evaluation of coordinates RMSD is excluded because the experimental coordinates of almost
all the molecules are not available. This graph shows that the appropriate accuracy levels are
selected with ETALS so that geometry optimization finishes in around 300 seconds for almost
all the molecules. As the various sizes of molecules are included in Baker set, the selected
accuracy levels differ significantly depending on the molecular sizes. For instance, CCSD /cc-
pVQZ is selected for water including three atoms, while HF /STO-3G is selected for menthone
including 29 atoms. For neopentane, 1_5-difluoronaphthalene, and difuropyrazine, T, are
relatively long because CCSD /cc-pVDZ and HF /cc-pVTZ are selected based on the under-
estimated Ty, due to the low R? of the corresponding energy time models as shown in Table 3.
GMS reduces T}, for several small molecules at left side, where CCSD is mainly selected with

ETALS, and the time is saved by using HF and MP2 at a few first steps. In contrast, the time
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reduction by GMS cannot be seen for large molecules at right side, because HF and MP2
are selected with ETALS. Unfortunately, GMS increases T}, for water and acetylene because
the number of steps is increased by using HF or MP2 at a few first steps. Figure 7b shows
the behavior of the geometry optimization of acetylene, where MP2/cc-pVQZ is selected
with ETALS. While the number of steps is four without GMS, it is increased to six by
using HF at the first step with GMS. Although the time increases by GMS can be avoided
by conservatively setting higher thresholds to select light-weight methods, it would also
decrease the time reduction by GMS. With the current thresholds shown in Figure 4, the
time increases by GMS are observed only in the two cases out of 46 cases through Figure 6

and Figure 8.

4 Conclusion

In this work, we propose the scheme to estimate the geometry optimization times at different
accuracy levels for a target molecule and the GMS technique that reduces the execution time
by dynamically switching multiple methods during geometry optimization. They enable to
identify the accuracy levels where geometry optimization will finish in an acceptable time
and perform geometry optimization at a selected accuracy level in a shorter time than only
using a single method. The evaluation using 46 molecules in total demonstrates that the
geometry optimization times at 20 accuracy levels are estimated with a MAPE of 29.5%, and
GMS reduces the execution time by up to 42.7% without affecting the accuracy of geometry

optimization.

References

(1) Schlegel, H. B. Exploring potential energy surfaces for chemical reactions: An overview

of some practical methods. Journal of Computational Chemistry 2003, 24, 1514-1527.

19



(2)

(3)

(4)

(5)

(6)

(7)

(10)

(11)

Schlegel, H. B. Geometry optimization. WIREs Computational Molecular Science 2011,

1, 790-809.

Shajan, A.; Manathunga, M.; Gotz, A. W.; Jr., K. M. M. Geometry Optimization:
A Comparison of Different Open-Source Geometry Optimizers. Journal of Chemical

Theory and Computation 2023, 19, 7533-7541.

Fischer, T. H.; Almlof, J. General methods for geometry and wave function optimiza-

tion. The Journal of Physical Chemistry 1992, 96, 9768-9774.

Baerends, E. J.; Ellis, D. E.; Ros, P. Self-consistent molecular Hartree—Fock—Slater

calculations I. The computational procedure. Chemical Physics 1973, 2, 41-51.

Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation
Effects. Phys. Rev. 1965, 140, A1133-A1138.

Mgller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron
Systems. Phys. Rev. 1934, 46, 618—622.

David Sherrill, C.; Schaefer, H. F. The Configuration Interaction Method: Advances
in Highly Correlated Approaches; Advances in Quantum Chemistry; Academic Press,
1999; Vol. 34; pp 143-269.

Bartlett, R. J.; Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod.
Phys. 2007, 79, 291-352.

Chaudhuri, R. K.; Freed, K. F. Geometry optimization using improved virtual orbitals:
A complete active space numerical gradient approach. The Journal of Chemical Physics

2007, 126, 114103.

Park, J. W. Second-Order Orbital Optimization with Large Active Spaces Using Adap-

tive Sampling Configuration Interaction (ASCI) and Its Application to Molecular Ge-

20



(16)

(17)

(18)

ometry Optimization. Journal of Chemical Theory and Computation 2021, 17, 1522—
1534.

Warden, C. E.; Smith, D. G. A.; Burns, L. A.; Bozkaya, U.; Sherrill, C. D. Efficient and
automated computation of accurate molecular geometries using focal-point approxima-

tions to large-basis coupled-cluster theory. The Journal of Chemical Physics 2020, 152,
124109.

Sahu, N.; Khire, S. S.; Gadre, S. R. Combining fragmentation method and high-
performance computing: Geometry optimization and vibrational spectra of proteins.

The Journal of Chemical Physics 2023, 159, 44309.

Khire, S. S.; Gurav, N. D.; Nandi, A.; Gadre, S. R. Enabling Rapid and Accurate
Construction of CCSD(T)-Level Potential Energy Surface of Large Molecules Using
Molecular Tailoring Approach. The Journal of Physical Chemistry A 2022, 126, 1458
1464.

Ahuja, K.; Green, W. H.; Li, Y.-P. Learning to Optimize Molecular Geometries Using
Reinforcement Learning. Journal of Chemical Theory and Computation 2021, 17, 818
825.

Delgado, A.; Arrazola, J. M.; Jahangiri, S.; Niu, Z.; Izaac, J.; Roberts, C.; Killoran, N.
Variational quantum algorithm for molecular geometry optimization. Physical Review

A 2021, 104, 052402.

Cremer, D.; Kraka, E.; He, Y. Exact geometries from quantum chemical calculations.

Journal of Molecular Structure 2001, 567-568, 275-293.

Balint, D.; Jéntschi, L. Comparison of Molecular Geometry Optimization Methods

Based on Molecular Descriptors. Mathematics 2021, 9, 2855.

21



(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

del Rio, E. G.; Mortensen, J. J.; Jacobsen, K. W. Local Bayesian optimizer for atomic

structures. Physical Review B 2019, 100, 104103.

Yang, Y.; Jiménez-Negron, O. A.; Kitchin, J. R. Machine-learning accelerated geometry

optimization in molecular simulation. Journal of Chemical Physics 2021, 15/.

Laghuvarapu, S.; Pathak, Y.; Priyakumar, U. D. BAND NN: A Deep Learning Frame-
work for Energy Prediction and Geometry Optimization of Organic Small Molecules.

Journal of Computational Chemistry 2020, 41, 790-799.

Born, D.; K astner, J. Geometry Optimization in Internal Coordinates Based on Gaus-
sian Process Regression: Comparison of Two Approaches. Journal of Chemical Theory

and Computation 2021, 17, 5955-5967.

Baker, J. Techniques for geometry optimization: A comparison of cartesian and natural

internal coordinates. Journal of Computational Chemistry 1993, 1.

Puzzarini, C.; Heckert, M.; Gauss, J. The accuracy of rotational constants predicted by
high-level quantum-chemical calculations. I. molecules containing first-row atoms. The

Journal of Chemical Physics 2008, 128, 194108.

Solving quasiparticle band spectra of real solids using neural-network quantum states.

Communications Physics 2021, 4, 106.

Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li, Z.; Liu, J.; Mc-
Clain, J. D.; Sayfutyarova, E. R.; Sharma, S.; Wouters, S.; Chan, G. K.-L. PySCF: the
Python-based simulations of chemistry framework. WIREs Computational Molecular

Science 2018, 8, e1340.

Sun, Q. Geometry optimization using CCSD(T)/meta-GGA. https://github.com/

pyscf/pyscf/issues/226, Last checked: February, 2024.

22


https://github.com/pyscf/pyscf/issues/226
https://github.com/pyscf/pyscf/issues/226

(28) Russell, J. D. NIST Computational Chemistry Comparison and Benchmark Database:

NIST Standard Reference Database Number 101 Release 22, May 2022. http://

cccbdb.nist.gov/.

(29) Wang, L.-P.; Song, C. Geometry optimization made simple with translation and rota-

tion coordinates. The Journal of Chemical Physics 2016, 144, 214108.

(30) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blon-
del, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Courna-
peau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research 2011, 12, 2825-2830.

23


http://cccbdb.nist.gov/
http://cccbdb.nist.gov/

TOC Graphic

cc-pVv5Z2
cc-pvQZz
cc-pVTZ
cc-pvDzZ

STO-3G

Time Estimation

92 ||| 454 |||1625] 5350|

24 66 [||293|||1113

4 7 163

@ Energy

1 1 3 14

G

HF MP2 CCSD CCSD(T)

Geometry optimization

U

GMS/cc-pvTz
Elapsed time

24




	Introduction
	Methods
	Time Estimation
	Estimation of Te and Tg
	Estimation of S

	Gradient-based Method Switching (GMS)
	Whole Procedure
	Advance preparation
	Geoemetry optimization of a target molecule


	Results and Discussion
	Experimental Setup
	Time Estimation Accuracy
	Accuracy Level Selection and Method Switching

	Conclusion
	References

