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FAILURES OF INTEGRAL SPRINGER’S THEOREM

NICOLAS DAANS, VÍTĚZSLAV KALA, JAKUB KRÁSENSKÝ, AND PAVLO YATSYNA

Abstract. We discuss the phenomenon where an element in a number field is not integrally
represented by a given positive definite quadratic form, but becomes integrally represented
by this form over a totally real extension of odd degree. We prove that this phenomenon
happens infinitely often, and, conversely, establish finiteness results about the situation when
the quadratic form is fixed.

1. Introduction

A famous theorem of Springer says that, given a quadratic form defined over a field K
and a field extension L/K of odd degree, the form is isotropic over K if and only if it is
so over L, see, for example, [EKM08, Corollary 18.5] for a modern proof. By standard
(de)homogenisation arguments, this theorem can be rephrased alternatively as a statement
about representation by quadratic forms:

Theorem (Springer, 1952 [Spr52]). Let K be a field, Q ∈ K[X1, . . . , Xn] a quadratic form
over K, L/K a field extension of odd degree, a ∈ K.

If a ∈ Q(L), then a ∈ Q(K).

For a commutative ring R and a quadratic form Q ∈ R[X1, . . . , Xn], we say that a ∈ R
is represented by Q over R if a = Q(x1, . . . , xn) for some x1, . . . , xn ∈ R, and we denote by
Q(R) the subset of R of all represented elements.

In number theory, one is often concerned with integral representations of quadratic forms,
and it is natural to ask whether the analogue of the above theorem holds in this context.
More precisely, let K be a number field (respectively a local field of characteristic 0), and
denote by OK its ring of integers (respectively its discrete valuation ring). We ask:

Question (“Integral Springer’s Theorem for representations”, ISTR). Let K be a number
field or a local field of characteristic 0. Let Q ∈ OK [X1, . . . , Xn] be a quadratic form over
OK , L/K a field extension of odd degree, a ∈ OK .

If a ∈ Q(OL), does it necessarily follow that also a ∈ Q(OK)?

A positive answer has been obtained in the case where K is a local field, or K is a number
field and Q is an indefinite quadratic form; see Theorem 2.1 and Theorem 2.2 below and the
discussion that follows. In particular, this applies whenever K is not totally real.

This leaves just one case to consider: when K is a totally real number field and Q is a
definite form. We shall consider in particular the case where Q is positive definite, i.e. rep-
resents only totally positive elements of K. Although some of the existing literature on this
topic has correctly insinuated that the ISTR should in this case fail (i.e. the above Question
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has a negative answer), to the best of the authors’ knowledge, no concrete examples thereof
have so far been provided or discussed in the literature, at least not when also the extension
L is assumed to be totally real. This is the goal of the present note.

After introducing some basic concepts and notations, we start in Section 2 by briefly dis-
cussing the cases where a positive answer to ISTR is known for number fields and local fields.
These provide sufficient (local) conditions for ISTR to hold or fail in certain contexts, also
for positive definite quadratic forms. In Section 3, we use these conditions and established
facts from the theory of integral quadratic forms, to derive general finiteness results which
bound the potential failure of ISTR for positive definite quadratic forms. In particular, we
show:

Theorem (see Corollary 3.3 and Proposition 3.2). Let K be a totally real number field, d
a positive integer, n ≥ 5, and Q ∈ OK [X1, . . . , Xn] be a positive definite quadratic form.
There exist only finitely many a ∈ OK \ Q(OK) (up to multiplication by squares of units)
and finitely many minimal totally real extensions L/K of degree 2d+1 such that a ∈ Q(OL).

Similar statements exist for positive quadratic forms in 3 or 4 variables under more tech-
nical assumptions, see Remark 3.4. Moreover, a version of this statement for fixed element
a actually holds without the assumption that the degree of L/K is odd, see Theorem 3.1.

In Section 4 we provide several classes of examples: we show that ISTR fails for quadratic
forms over Z of all ranks ≥ 2, even when restricting to totally real cubic Galois extensions,
and for ranks ≥ 4 we provide an infinite parametrised family of examples:

Theorem (see Theorem 4.2). Let k ∈ Z+, k ≥ 4 and let K = Q(ω) where ω is a root of the
irreducible polynomial T 3+T 2−2T−1. Let Q(X1, X2, X3, X4) = X2

1+X2
2+X2

3+(8k+5)X2
4 .

Then there exists a natural number n such that n ∈ Q(OK), but n 6∈ Q(Z).

On the other hand, we give an example showing that the local conditions which guarantee
that ISTR holds, as established in Section 2, are not necessary, see Theorem 4.8.

Acknowledgements. We would like to thank Zilong He for a friendly email exchange when
we were exploring the topic of this paper.

2. Background

For a number field K, we denote by O+

K the subset of OK of totally positive elements
(i.e. of those that are positive in all real embeddings; however, we impose no restrictions in
complex embeddings), by O×

K the set of units of OK , and by O×2

K the set of squares of units.
Note that 0 6∈ O+

K . In particular, we denote by Z+ the set of (non-zero) natural numbers.
For subsets S1, S2 ⊆ K we write S1S2 = {xy | x ∈ S1, y ∈ S2}. For x, y ∈ K, we write x ≻ y
or y ≺ x if x− y is totally positive.

Given an integral domain R with field of fractions K, by a quadratic R-lattice we shall
mean a pair (Λ, Q) where Λ is a finitely generated R-submodule of a finite-dimensional K-
vector space, and Q : Λ → R is a quadratic map, i.e. a map satisfying Q(av) = a2Q(v) for
a ∈ R and v ∈ Λ, and such that the associated map

bQ : Λ× Λ → R : (v, w) 7→ Q(v + w)−Q(v)−Q(w)

is bilinear.
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Given a quadratic lattice (Λ, Q), the K-dimension of KΛ is called the rank of (Λ, Q). We
call a quadratic lattice (Λ, Q) degenerate if there exists v ∈ Λ such that Q(v + w) = Q(w)
for all w ∈ Λ, nondegenerate otherwise.

When (Λ, Q) is a quadratic lattice and Λ is a free R-module, then we may identify Λ with
Rn for some n ∈ Z+, and there exists a homogeneous quadratic polynomial f ∈ R[X1, . . . , Xn]
such that Q

(

(x1, . . . , xn)
)

= f(x1, . . . , xn) for all (x1, . . . , xn) ∈ Rn. In this case, we also call
Q a quadratic form. Note that all quadratic lattices over a field are free, so in this case, the
study of quadratic lattices reduces to that of quadratic forms.

Given a quadratic lattice (Λ, Q) and a ∈ R, we say that Q represents a if a = Q(v) for
some v ∈ Λ. We denote by Q(R) the set of elements of R represented by Q. (It is more
common to denote this by Q(Λ), but we chose a more convenient notation for the purposes
of this paper, as we are interested in extensions of scalars.)

Given an extension S/R of integral domains, and a quadratic lattice (Λ, Q) over R, there
exists a unique quadratic map QS : Λ ⊗R S → S that extends Q; we call (Λ ⊗R S,QS)
the extension of scalars of (Λ, Q) from R to S, and also denote ΛS = Λ ⊗R S. We might
simply write Q(S) instead of QS(S). Clearly, we have Q(R) ⊆ Q(S) ∩ R, and in general,
the inclusion might be strict. Springer’s Theorem implies that, if L/K is a field extension of
odd degree and Q a quadratic form over K, then Q(K) = Q(L) ∩K.

Given a number field K, we call a quadratic lattice (Λ, Q) over OK indefinite if K is
not totally real or there is an embedding σ : K → R such that σ(Q(OK)) ⊂ R contains
both positive and negative elements. If K is totally real, we call Λ positive definite if Q(v)
is totally positive for all v ∈ Λ \ {0}. Note that a positive definite quadratic lattice is in
particular nondegenerate.

For a discrete prime p of K, denote by Op the completion of OK with respect to p. When
p is archimedean, then Op is the completion of K with respect to p, i.e. it is R or C. If
(Λ, Q) is a quadratic OK-lattice and a ∈ OK , we say that a is locally represented by Q over
OK if a ∈ Q(Op) for all primes p of K (both discrete and archimedean). In general, this is
not sufficient to conclude that a ∈ Q(OK), but in some cases it is; a quadratic OK-lattice
(Λ, Q) such that every element of OK which is locally represented by Q lies in Q(OK), is
called regular.

We now discuss briefly the known results regarding ISTR which are relevant to our setup,
without attempting to give a complete account of the history or of related results in the
literature.

Theorem 2.1 (Local Integral Springer’s Theorem for representations, [Xu99, He23]). Let
K be a local field of characteristic 0 and L/K be a field extension of odd degree. Let (Λ, Q)
be a quadratic OK-lattice. Then Q(OK) = Q(OL) ∩OK .

The above was first observed in the case where K is either non-dyadic or 2 is unramified
in K in [Xu99], using the local integral quadratic form theory developed by Riehm and
O’Meara. The missing case where K is dyadic and 2 is ramified was very recently solved in
[He23].

The following globalisation of Theorem 2.1 was proven for the case K = Q in [Xu99]
and also conjectured there to hold in general; the general case was then proven recently in
[He23] using the theory of base of norm generators (“BONGs”) as developed by Beli in among
others [Bel03, Bel06, Bel10, Bel22]. The proofs rely on a combination of local Theorem 2.1
with delicate computations of integral spinor norms.
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Theorem 2.2 (Integral Springer’s Theorem for representations by indefinite forms, [Xu99,
He23]). Let K be a number field and L/K a field extension of odd degree. Let (Λ, Q) be an
indefinite quadratic OK-lattice. Then Q(OK) = Q(OL) ∩ OK .

We note that the results of [Xu99, He23] are actually more general than what we address in
the above two theorems, since they consider not just representation of elements by quadratic
lattices, but also representations of quadratic lattices by other quadratic lattices. In fact, for
quadratic lattices of rank at least 4, Theorem 2.2 can be deduced directly from Theorem 2.1
via the following well-known local-global principle; see, for example, [Hsi76] for an algebraic
proof.

Theorem 2.3 (Local-global principle for integral representation by indefinite forms). Let
K be a number field, (Λ, Q) a nondegenerate indefinite quadratic OK-lattice of rank at least
4, a ∈ OK . Then a ∈ Q(OK) if and only if a is locally represented by Q over OK .

We now turn our attention to the positive definite case. We shall provide evidence in
Section 4 via several examples that no obvious version of Theorem 2.2 (ISTR) can hold
when replacing indefinite quadratic lattices by positive definite quadratic lattices, and in
fact we suspect that failure of ISTR for positive definite quadratic forms happens often.

These results on ISTR should be viewed alongside the lifting problem for universal qua-
dratic forms. Briefly, for a number field K, a quadratic OK-lattice is universal if it represents
all elements of O+

K ; the existence and properties of universal lattices have been widely stud-
ied, see e.g. the surveys [Kal23b, Kim04]. The lifting problem then asks if it is possible for
an OK-lattice to be universal over a larger field L ⊃ K. Analogously to our expectations
concerning ISTR, when the lattice is indefinite, then a version of local-global principle holds
and the extension of scalars is universal quite often [HHX23, XZ22]. However, in the positive
definite case, this seems to happen very rarely [KL24, KY21, KY23, KY24].

We conclude this section by pointing out that ISTR can only fail for elements which are
locally represented over the base field.

Proposition 2.4. Let L/K be an odd-degree extension of number fields, (Λ, Q) a quadratic
OK-lattice. If a ∈ Q(OL) ∩ OK, then a is locally represented by Q over OK .

In particular, if (Λ, Q) is a regular OK-lattice (e.g. if its class number is 1), then ISTR
holds for all odd-degree extensions of K.

Proof. Assume that, on the contrary, there exists a prime p of K with a 6∈ Q(Op). There
exists a prime q of L of odd degree over p (as the global degree is the sum of the local degrees,
see e.g. [O’M00, 15:3(1)]); note that this argument works both for archimedean and discrete
primes p. Thus, by Theorem 2.1, we get a 6∈ Q(Oq). Hence, in particular, a 6∈ Q(OL), which
is a contradiction.

The second part of the statement is clear. �

3. Finiteness results

Theorem 3.1. Let d ∈ Z+, K a totally real number field, (Λ, Q) a positive definite quadratic
OK-lattice, a ∈ OK . There exist only finitely many totally real number fields L of degree d
over K such that a ∈ Q(OL) but a 6∈ Q(OL′) for every proper subfield L′ of L containing K.

In the proof we shall use the concept of the house of a totally real algebraic integer α,
denoted by α and defined as maxti=1|αi|, where α1, . . . , αt are all the conjugates of α.
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Proof. Let n be the rank of Λ. There is a basis (v1, . . . , vn) of KΛ such that Λ ⊆ OKv1 +
· · ·+OKvn. It follows that, for any number field extension L/K, ΛOL

⊆ OLv1 + · · ·+OLvn.
By [KY23, Lemma 4] there exists a fixed constant C such that, for every totally real number

field extension L/K and for every β1, . . . , βn ∈ OL, one has C · Q(β1v1 + · · ·+ βnvn) >

maxni=1 βi
2
.

If now L is a totally real number field containing K such that a ∈ Q(OL), then there
exist β1, . . . , βn ∈ OL such that a = Q(β1v1 + · · ·+ βnvn); and if additionally a 6∈ Q(OL′) for
every proper subfield L′, then L must be generated by β1, . . . , βn over K. By the previous

paragraph, β1, . . . , βn satisfy βi
2
< C a . As there are only finitely many totally real algebraic

integers β of degree at most d · [K : Q] and with β
2
< C a (see, for example, Northcott’s

Theorem [Nor49, Theorem 1]), we conclude that only finitely many such fields L may exist.
�

In Proposition 2.4, we have seen that the only elements for which ISTR can fail are those
which are represented locally but not globally. The following proposition combines this with
the almost local-global principle of Hsia, Kitaoka and Kneser to get a finiteness result:

Proposition 3.2. Let K be a totally real number field, (Λ, Q) a positive definite quadratic
OK-lattice of rank at least 5. There exists a finite set S ⊆ O+

K \ Q(OK) with the property
that, for every field extension L/K of odd degree, we have Q(OL) ∩ O+

K ⊆ Q(OK) ∪ SO×2

K ,
and if L is not totally real, then we additionally have (Q(OL)∩O+

K)∪{0} = Q(OK)∪SO×2

K .

Proof. Let S be a set which consists of exactly one representative from each set of the
form αO×2

K where α ∈ O+

K \ Q(OK) is locally represented by Q over OK . The local-global
principle established in [HKK78, Theorem 3] implies that S is finite. We check that such
S satisfies the statement: First, clearly S ⊆ O+

K \ Q(OK). Further, by Proposition 2.4,
every element of Q(OL) ∩ O+

K is locally represented by Q over K; thus it either belongs
to Q(OK), or it is not globally represented and hence it lies in SO×2

K . This shows that
Q(OL) ∩O+

K ⊆ Q(OK) ∪ SO×2

K .
Now assume additionally that L is not totally real, and pick a ∈ S. By the choice of

S, we have a ∈ Q(Op) for every prime p of K, and thus also for every prime of L. Since
Q is indefinite over OL, Theorem 2.3 implies that a ∈ Q(OL). From this, it follows that
SO×2

K ⊆ Q(OL). �

Corollary 3.3. Let K be a totally real number field, (Λ, Q) a positive definite quadratic OK-
lattice of rank at least 5, d ∈ Z+. There exist only finitely many totally real field extensions
L/K of degree 2d+1 such that Q(OL)∩OK 6= Q(OK), but Q(OL′)∩OK = Q(OK) for every
proper subfield L′ of L containing K.

Proof. This follows by combining Proposition 3.2 and Theorem 3.1: Proposition 3.2 gives
the finite set S of elements for which ISTR may fail and Theorem 3.1 states that the desired
finiteness result holds for each of them separately. �

Remark 3.4. If K is a totally real number field, then for positive definite quadratic lattices
over OK of rank 3 or 4, a similar local-global principle as the one used in the proof of
Proposition 3.2 exists for the representation of square-free totally positive elements, see, for
example, Section 5 in [SP04]. Using this, one can state a variation of Proposition 3.2 and
Corollary 3.3 also for lattices of rank 3 or 4.
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4. Failures of ISTR

We shall first construct an infinite family of quadratic forms over Z which represent a
certain natural number over the ring of integers in a totally real cubic field, but not over Z.

For an integral domain R, n ∈ Z+, and a1, . . . , an ∈ R, we shall denote by 〈a1, . . . , an〉
the diagonal quadratic form given by Rn → R : (x1, . . . , xn) 7→

∑n
i=1

aix
2
i . In particular,

〈a1, . . . , an〉(R) denotes the set Q(R) when Q = 〈a1, . . . , an〉. We denote by ⊥ the orthogonal
sum of quadratic lattices.

Let us denote by K49 the number field of discriminant 49. This is a cyclic cubic extension
of Q, in particular, it is totally real. It can be defined alternatively as the splitting field
of the polynomial T 3 + T 2 − 2T − 1 over Q, or as the maximal totally real subfield of the
seventh cyclotomic field, i.e. the field generated over the rationals by ω = ζ7 + ζ−1

7 , where ζ7
is a primitive 7th root of 1.

Proposition 4.1. Let n,m ∈ Z+ such that n ≡ 28 mod 32, m ≡ 5 mod 8, and 3.25m < n <
4m. Then

(1) n 6∈ 〈1, 1, 1, m〉(Z), but
(2) n−mω2 ∈ 〈1, 1, 1〉(OK49

); in particular n ∈ 〈1, 1, 1, m〉(OK49
).

Proof. First, assume that n ∈ 〈1, 1, 1, m〉(Z), i.e. n = w2+x2+y2+mz2 for certain w, x, y, z ∈
Z. By the assumption that n < 4m, this is possible only if z2 ∈ {0, 1}, since otherwise n−mz2

would be negative. But this means either n = w2 + x2 + y2 or n−m = w2 + x2 + y2, and by
reducing modulo 32 (respectively, 8) one sees that neither option is possible. We conclude
that n 6∈ 〈1, 1, 1, m〉(Z).

We now show that n − mω2 ∈ 〈1, 1, 1〉(OK49
). Note that ω2 ≺ 3.25, which implies that

n−mω2 is totally positive. By [Krá22, Proposition 3.1] it now suffices to show that −(n−
mω2) is not a square in Z2[ω]. One can see that indeed mω2 − n is not a square modulo
8: if it were, it would modulo 8 be of the form (ω + 2b)2 = ω2 + 4(b2 + ωb) for some
b ∈ {0, 1, ω, ω2, 1 + ω, 1 + ω2, ω + ω2, 1 + ω + ω2}, which yields b2 + ωb ≡ 1 + ω2 mod 2, and
one verifies exhaustively that such b cannot exist. �

Theorem 4.2. Let k ∈ Z+, k ≥ 4. Then there exists n ∈ Z+ such that 〈1, 1, 1, 8k + 5〉
represents n over OK49

but not over Z. In particular, there exist infinitely many quadratic
forms of rank 4 over Z which are pairwise non-isometric over Q and for which ISTR fails.

Proof. For the first part, observe that, for k = 4 and thus m = 8k + 5 = 37, one can choose
n = 124 and conclude with Proposition 4.1. For k > 4, there are more than 32 natural
numbers between 3.25m and 4m, hence in particular some element n ≡ 28 mod 32; as such
one can again apply Proposition 4.1.

For the second part, observe, by comparing determinants, that the forms 〈1, 1, 1, 8k + 5〉
and 〈1, 1, 1, 8l+5〉 are not isometric over Q if (8k+5)(8l+5) is not a square, i.e. there cannot
be a linear change of variables over Q transforming one form into the other. And clearly, one
can find infinitely many positive integers k1, k2, k3, . . . such that (8ki +5)(8kj +5) is never a
square for i 6= j. �

Remark 4.3. Theorem 4.2 implies that, for every D ∈ Z+ with D ≥ 4, there exist infinitely
many quadratic forms over Z of rank D which are pairwise non-isometric over Q and for
which ISTR fails. It suffices to observe that, if Q is a positive definite form over Z and
a ∈ Q(OK) \Q(Z), then also for Q′ = Q ⊥ 〈a+ 1〉 we have a ∈ Q′(OK) \Q′(Z).
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Example 4.4. Consider the setup of Proposition 4.1 but replace the form 〈1, 1, 1, m〉 by
〈1, 1, m〉. Numerical data suggests that a similar result should hold: for many m ≥ 7, there
seems to be some n slightly larger than 3.25m such that n 6∈ 〈1, 1, m〉(Z) but n − mω2 ∈
〈1, 1〉(OK49

). For m = 2p and m = 4k + 2, we verified this numerically for the first 200
primes p greater than three and natural numbers k ≤ 200.

Presumably analytical techniques could be used to show that this happens infinitely often.

Example 4.5. We note that ISTR can even fail for binary quadratic forms: the form 〈1, 71〉
does not represent 232 over Z, but in OK49

we have (4ω2 − ω − 16)2 + 71ω2 = 232 for
ω = ζ7 + ζ−1

7 .
Furthermore, observe that, when α, β are any totally real algebraic integers with α2 +

71β2 = 232, then 232

71
≻ β2. As 232

71
< 4, it follows from Kronecker’s Theorem [Kro57] that,

up to conjugation, β2 = 2+ 2 cos(2π
n
) for some n ∈ Z+. Since 2+ 2 cos(2π

n
) < 232

71
if and only

if n ≤ 7, one obtains that this forces β2 ∈ {0, 1, 2, 3+
√
5

2
, 3, ω2}. Thus, up to conjugation and

switching signs, the only possibilities for the pair (α, β) are (
√
232, 0), (

√
161, 1), (

√
90,

√
2),

(

√

1

2
(251−71

√
5), 1+

√
5

2

)

, (
√
19,

√
3), and (4ω2 − ω − 16, ω). In particular, K49 is the unique

minimal totally real number field of odd degree in which the equation x2 + 71y2 = 232 has
an integral solution.

Further, we show that ISTR fails fairly often: For a (quite arbitrarily chosen) quadratic
form over Q, it fails for the majority of cubic fields with small discriminant.

Example 4.6. Consider the form Q = 〈1, 1, 14〉 over Z and the first 100 totally real cu-
bic fields, ordered by discriminant. One can compute that if K is one of these fields and
disc(K) 6= 432, then ISTR fails for Q over the extension K/Q. For K with discriminant 432,
we do not know whether ISTR fails for Q.

More precisely: There are 54 natural numbers under 1500 which are locally but not globally
represented by Q over Z; the smallest is 3, the largest is 1428. These are all represented
by 〈1, 2, 7〉, which is everywhere locally isometric to 〈1, 1, 14〉. One verifies numerically that,
for every totally real cubic extension K/Q where disc(K) ≤ 3132 and disc(K) 6= 432, there
is at least one of these 54 exceptional numbers which becomes represented by Q over OK .
(For the field with disc(K) = 432, there is no natural number under 3500 which becomes
represented over OK .) In particular, ISTR fails for Q in these 99 cubic extensions.

The following is an illustration for a failure of ISTR over a base field other than Q.

Example 4.7. Let K = Q(
√
21) and let L = Q(ϑ), where ϑ = ζ21+ζ−1

21 , i.e. L is the maximal
totally real subfield of the 21st cyclotomic field. It is of degree 6 as ϑ has minimal polynomial
T 6−T 5−6T 4+6T 3+8T 2−8T +1 over Q. Then

√
21 = 2ϑ5+2ϑ4−10ϑ3−8ϑ2+12ϑ+3 ∈ L,

and L/K is an extension of degree 3.

One verifies that the element 7 + (1+
√
21

2
)2 is not a sum of 4 squares in OK = Z[1+

√
21

2
],

but it is a sum of 4 squares in OL = Z[ϑ], since it is equal to

12 + (ϑ− 1)2 + (ϑ2 + ϑ− 2)2 + (ϑ5 − ϑ4 − 7ϑ3 + 5ϑ2 + 12ϑ− 5)2.

Many other examples could be produced. For example, one can check that for α = 12 +

2
√
13 and the degree 3 field extension Q(ζ13+ζ−1

13 )/Q(
√
13), one gets α /∈ 〈1, 1, 1, 1〉

(

Z
[

1+
√
13

2

])

but α ∈ 〈1, 1, 1, 1〉
(

Z[ζ13 + ζ−1

13 ]).
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We conclude with an example illustrating that the fact that a positive definite quadratic
form over Z is not regular (i.e. there exist elements in Z+ represented by the form everywhere
locally but not over Z) does not imply a failure of ISTR for this form. In other words, the
second part of Proposition 2.4 cannot be turned in an equivalence.

Consider the form Q = 〈1, 2, 5, 5〉. It is well known that Q(Z) = Z≥0\{15}, see e.g. [Bha99],
in particular, Q represents all natural numbers everwhere locally and thus over Q.

Theorem 4.8. Let K be a number field such that [K : Q] is odd. Then 15 ∈ 〈1, 2, 5, 5〉(OK)
if and only if K is not totally real.

Proof. First assume that K is totally real, and assume that 15 = w2 + 2x2 + 5y2 + 5z2 for
w, x, y, z ∈ OK . We first argue why, in this case, one must have y, z 6∈ Z. Suppose on the
contrary that z ∈ Z. We must then have z2 ∈ {0, 1}, otherwise 15− 5z2 would be negative.
In other words, either 15 = w2 + 2x2 + 5y2 or 10 = w2 + 2x2 + 5y2. However, neither 10 nor
15 is represented by 〈1, 2, 5〉 over the field Q5, hence in particular they are not represented
by 〈1, 2, 5〉 over Q. By the classical Springer’s Theorem, they cannot be represented over K
either. We obtain a contradiction and conclude that z 6∈ Z; by symmetry, also y 6∈ Z.

Now set d = [K : Q] and recall Siegel’s result that, for any α ∈ O+

K different from 1 or
3±

√
5

2
we have that TrK/Q(α) > 3d

2
[Sie45, Theorem III], where TrK/Q denotes the trace in

the extension K/Q. Since we excluded the possibility that y2, z2 ∈ {0, 1} in the previous

paragraph, and 3±
√
5

2
does not lie in K since d is odd, we must have TrK/Q(y

2),TrK/Q(z
2) > 3d

2
.

We compute that

15d = TrK/Q(w
2 + 2x2 + 5y2 + 5z2) = TrK/Q(w

2) + 2TrK/Q(x
2) + 5TrK/Q(y

2) + 5TrK/Q(z
2)

< 0 + 0 + 5d
3

2
+ 5d

3

2
= 15d,

which is impossible.
Now, assume that K is not totally real. Since 15 is everywhere locally represented by

〈1, 2, 5, 5〉, and QOK
is indefinite, by Theorem 2.3 we have 15 ∈ 〈1, 2, 5, 5〉(OK). �

The following example is in similar spirit: We show that sometimes the failure of ISTR
for a given element and a given quadratic form is rare. Note that the exceptional cubic field
in this case is not K49 which served us in many of our previous examples; it is not even a
Galois extension of Q:

Example 4.9. Consider the form Q(W,X, Y, Z) = 29W 2 +X2 + 2Y 2 + 4Z2 +XZ + Y Z.
One has 145 /∈ Q(Z); in fact, it is one of the “escalator lattices” occurring in the proof of the
290-Theorem of Bhargava and Hanke [BH11]. For a totally real cubic field K, we show that
145 ∈ Q(OK) if and only if K is the field with discriminant 229.

First of all, let β be a root of T 3 − 4T − 1. Then Q(β) has discriminant 229 and one can
check that 145 ∈ Q(Z[β]) by plugging in

W = β, X = β2 + 2β − 5, Y = 2β2 − 8, Z = −β + 1.

On the other hand, assume now that K is a totally real cubic field and 145 = 29w2+x2+
2y2 + 4z2 + xz + yz. This immediately yields TrK/Q(w

2) ≤ 3 · 145

29
= 15. First, just as in the

previous theorem, we show that w2 /∈ Z: If it were, then w2 ∈ {0, 1, 4}, so the ternary form
X2 + 2Y 2 + 4Z2 +XZ + Y Z would represent one of the numbers 145, 145− 29 = 4 · 29 and
145 − 4 · 29 = 29 over K and thus, by the classical Springer’s theorem, over Q. However,
this is impossible as none of them is represented over Q29.
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Thus, w /∈ Q, so we have K = Q(w). This in particular means that for the discriminant
∆(w) of Z[w] we have disc(K) ≤ ∆(w). On the other hand, the inequality [Kal23a, Prop. 2],

which is a corollary of Schur’s bound, yields for cubic fields ∆(w) ≤ 1

2

(

TrK/Q(w
2)
)3

. Putting
all the inequalities together, we get

disc(K) ≤ ∆(w) ≤ 1

2

(

TrK/Q(w
2)
)3 ≤ 153

2
= 1687.5.

There are only 50 totally real cubic fields that satisfy this bound, and for them we checked
the representation numerically.

We leave open several questions for further investigation.

Questions 4.10.

(1) Do there exist a number field K, a quadratic form Q over OK , a ∈ OK, and an infinite
collection of totally real number field extensions L/K of odd degree such that a ∈ Q(OL),
but a 6∈ Q(OL′) for every proper subfield L′ of L containing K?

(2) Given an odd-degree extension L/K of totally real fields, does there always exist a qua-
dratic form Q over OK and a ∈ OK ∩Q(OL) \Q(OK)?
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