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A SEMI-ORTHOGONAL SEQUENCE IN THE DERIVED CATEGORY

OF THE HILBERT SCHEME OF THREE POINTS

ERIK NIKOLOV

Abstract. For a smooth projective variety X of dimension d ≥ 5 over an algebraically
closed field k of characteristic zero, it is shown in this paper that the bounded derived
category Db(X [3]) of the Hilbert scheme of three points admits a semi-orthogonal se-

quence of length
(
d−3
2

)
. Each subcategory in this sequence is equivalent to Db(X) and

realized as the image of a Fourier–Mukai transform along a Grassmannian bundle G→ X
parametrizing planar subschemes in X [3]. The main ingredient in the proof is the com-
putation of the normal bundle of G in X [3]. An analogous result for generalized Kummer
varieties is deduced at the end.

1. Introduction

The Hilbert scheme of n points, denoted by X [n], parametrizes zero-dimensional sub-
schemes of length n of a given (quasi-)projective variety X of dimension d = dimX over
a field. It is smooth and connected whenever d ∈ {1, 2} or n ∈ {1, 2, 3} and X is smooth
and connected [FG05, Sect. 7.2]. It is also projective whenever X is (for d ≥ 1 arbitrary).
If d = 1 and thus X = C is a smooth curve, there is not much choice for non-reduced zero-
dimensional subschemes on C, wherefore C [n] ∼= C(n) is isomorphic to the n-th symmetric
product of the curve. For every d ≥ 1, the Hilbert scheme X [2] can be realized as the
quotient of the blow-up Bl∆X

2 by an action of the symmetric group S2 [FG05, Sect. 7.3].
Already X [3] does not admit such a handy description anymore and its geometry becomes
more complicated starting from d ≥ 2.
On the level of derived categories, there is a description of the equivariant derived category
of Cn in terms of symmetric powers of C [PvdB19, Thm. B] which for n = 3 reads

Db
S3
(C3) =

〈
Db(C(3)),Db(C2),Db(C)

〉
.(1)

Considering the derived category of the Hilbert scheme of a smooth surface S, the derived
McKay correspondence in combination with a result of Haiman ([BKR01], [Hai01]) yields
the equivalence of derived categories

Db
Sn(S

n) ∼= Db(S [n]).(2)

For n = 2 and in higher dimensions d, there is a fully faithful embedding of derived
categories Db

S2
(X2) →֒ Db(X [2]) as well as a semi-orthogonal decomposition

Db(X [2]) =
〈
(d− 2) · Db(X),Db

S2
(X2)

〉

due to Krug, Ploog and Sosna [KPS18, Thm. 4.1(ii)]. The notation indicates that there
are d−2 fully faithful functors Db(X) →֒ Db(X [2]) with semi-orthogonal essential images.
In the spirit of Fantechi and Göttsche’s description of the cohomology ring H∗(X [3],C)
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2 ERIK NIKOLOV

in [FG93], a description of Db(X [3]) in terms of Db(X),Db(X2) and an equivariant part
is desirable. A possible conjecture (generalizing (2)) is that

Db(X [3])
?
=

〈
Db

S3
(X3), (d− 2) · Db(X2),

((
d

2

)
− 1

)
·Db(X)

〉
, d ≥ 2.(3)

The expected multiplicities in (3) are consistent with [Gö94, Thm. 2.5.18]. If d = 1, moving
factors with negative sign to the other side of (3) also leads back to (1). This work studies
the presumably easiest

(
d−3
2

)
components of a potential semi-orthogonal decomposition of

Db(X [3]) like the one in (3), arising here from a correspondence of the formX ← G→ X [3].
To be more precise, the focus lies on the locus of zero-dimensional subschemes having
support at single points P ∈ X . This locus comes along with a projection to X whose
fibres are (independently of P ) precisely the Local Punctual Hilbert schemes Hilb3

d (studied
e.g. in [Be12], [Gö94], [Iar72], [Iar72]), with Hilb3

d being singular for d ≥ 2. Not all zero-
dimensional subschemes of length three supported at one point are important in what
follows: Only planar subschemes (i.e. those with two-dimensional tangent spaces) need to
be considered, whereas the so-called curvilinear subschemes are neglected.
A reason for concentrating on the planar locus is that the curvilinear locus is only locally
closed inside X [3] and has the structure of an affine fibre bundle over a projective bundle
over X . In contrast, the planar locus has the structure of a locally trivial Grassmannian
bundle G over X , being easier to handle especially from the derived category point of
view. More work by the author on derived categories of Hilbert schemes of points is in
progress, involving also the curvilinear locus and addressing missing components in (3).

Structure of the paper. Let G be the locus of planar subschemes concentrated at single
points of X . Once a closed embedding ι : G → X [3] has been constructed functorially
following [KR22], the Fourier–Mukai transform along the diagram1

G X [3]

X

p

ι

can be considered. Tensoring with Schur functors Σα applied to tautological bundles Q∨

on the relative Grassmannian G yields many more functors Φα : Db(X) → Db(X [3]) of
Fourier–Mukai type. In order to examine Φα for fully-faithfulness, the cohomology of the
normal bundle NG/X[3] , tensored with different tautological bundles and restricted to the
Grassmannian fibres of p, has to be computed. The first important result is the following.

Theorem 1.1 (Thm. 4.4 below). Let X be a smooth projective variety of dimension
d ≥ 5 over a field k = k of characteristic zero. Suppose α = (α1, α2) is a Young diagram
inscribed into a rectangle with 2 rows and d − 2 columns. If λα = α1 − α2 ≤ d − 5, then
the Fourier–Mukai transform Φα : Db(X)→ Db(X [3]) with kernel ΣαQ∨ is fully faithful.

This theorem yields
(
d−3
2

)
+ 3(d − 4) fully faithful functors and consequently admissible

subcategories of Db(X [3]). For two different Young diagrams α ≺ β, it turns out that the
necessary condition for semi-orthogonality of Φα and Φβ is α1 − β2 ≤ d − 5. Excluding
some Young diagrams in Theorem 1.1 yields the wanted semi-orthogonal sequence:

1Diagrams of this form will also be called roofs.
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Theorem 1.2 (Thm. 4.6 below). Restricting the attention to the fully faithful functors
Φα : Db(X) → Db(X [3]) in Theorem 1.1 such that α2 ≥ 3 yields a collection of

(
d−3
2

)

semi-orthogonal subcategories of Db(X [3]), all equivalent to Db(X).

The proofs of the above theorems use cohomological computations on Grassmannians
and the Borel–Weil–Bott Theorem like in Kapranov’s classical work [Ka85], as well as the
following ingredient which is also interesting in its own right from the point of view of
deforming planar zero-dimensional subschemes inside a smooth variety.

Theorem 1.3 (Thm. 3.16 & Cor. 3.17 below). Let X be a smooth projective variety
over an algebraically closed field k of any characteristic. Let d = dim(X) ≥ 2, write
G = G(2,ΩX) →֒ X [3] and let N = NG/X[3]. Then there is a short exact sequence

0 −→ Q∨ −→ Q⊗ S2Q∨ −→ N −→ 0,(4)

where Q denotes the tautological quotient bundle of rank 2 on G. If d ≥ 3 and char k = 0,
the sequence (4) splits and N ∼= S3Q∨ ⊗ detQ.

As a corollary to Theorem 1.2, the following is obtained in the end:

Theorem 1.4 (Prop. 5.6 below). Let A be an abelian variety of dimension d ≥ 5 over an
algebraically closed field of characteristic zero. Let Kn(A) be the n-th generalized Kum-
mer variety of A. Then the fully faithful functors from Theorem 1.2 yield an exceptional
sequence of length

(
d−3
2

)
· 32d in Db(K3(A)).

Notations and conventions. Unless mentioned otherwise, X denotes a smooth and
projective variety over an algebraically closed field k, with k of characteristic zero from
Section 4 on.2 Smoothness and projectivity make life easier on the level of derived cate-
gories, but are also important for other reasons like choices of local parameters.
Categories are written in bold letters and abbreviated in a self-explaining way, like e.g.
OX-Mod and Qcoh(X). Derived categories Db(X) are bounded derived categories of
coherent sheaves on X , cf. Section 2.1. Complexes of sheaves are written as F• to distin-
guish them from ordinary sheaves F ∈ Coh(X). Stalks are written as FP , whereas fibres
are written as F(P ) or ι∗PF . Here ιP is the inclusion of P ∈ X . The skyscraper sheaf at
a closed point P ∈ X is denoted by k(P ) ∈ Coh(X).
For S-schemes X and T , writeX(T ) = MorS(T,X) = hX(T ). Grassmannians parametrize
quotients, not subspaces, following Grothendieck’s convention. The k-points of moduli
spaces are usually denoted in square brackets [−]. Vector subspaces are denoted as U ≤ V ,
while ideals of a commutative ring are denoted as I E R.

Acknowledgements. This work will be part of the author’s dissertation under supervi-
sion of Andreas Krug, whom I would like to thank for his constant support, for helpful
comments and many inspirations.
Furthermore, I am thankful for enlightening discussions with (former) members of the
Institute of Algebraic Geometry at Leibniz University Hannover, especially Nebojsa Pavic,
and fruitful conversations with Leonie Kayser from MPI MiS Leipzig.

2The characteristic of k is important e.g. for representation-theoretic reasons, while the assumption k = k
allows to check many properties of schemes and morphisms between them on k-points.
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2. Preliminaries

In this section, the assumptions on X and the base field (or scheme) are relaxed a little.

2.1. Semi-orthogonal decompositions in Derived Categories. Let X be a noe-
therian scheme over a field k and let Db(X) = Db(Coh(X)) denote the bounded derived
category of complexes of coherent sheaves on X .
Many basic properties of Db(X) can be found in [Huy06]. General derived categories
and derived functors are definded e.g. in [GM03, Ch. 3]. Geometric derived functors are
discussed in [GW23, Ch. 21] or in [Huy06, Ch. 3.3]. They are defined for quasi-coherent
complexes first but restrict to bounded complexes of coherent sheaves in many cases.
Since unbounded, non-coherent or non-perfect complexes will never occur in the main text,
the derived functors primarily considered are derived pushforward Rf∗ : D

b(X)→ Db(Y )
for proper morphisms f : X → Y , derived pullback Lf ∗ : Db(Y ) → Db(X) for any mor-
phism with the convention Lif ∗(−) = H−i(Lf ∗(−)), derived tensor product ⊗L as well as
derived sheaf homomorphisms RHomOY

(−,−), where Exti(−,−) := Hi(RHom(−,−)).3

The geometric derived functors can be concatenated to obtain an important class of func-
tors, namely the Fourier–Mukai transforms ΦK• (FM transforms for short):

Definition 2.1. If pX and pY are the projections from X ×k Y to X and Y and if K• is
an object in Db(X ×k Y ), then ΦK• := RpY ∗(K• ⊗L p∗X(−)) with kernel object K•.

Any roof of S-schemes X
p
←− V

q
−→ Y (regular and (quasi-)projective over k) for a

k-scheme S with K• ∈ Db(V ) yields an FM transform ΦRi∗K• = Rq∗(K• ⊗L Lp∗(−)) via
an induced morphism i : V → X×S Y →֒ X×k Y as long as i is proper. Properness of i is
unimportant if unbounded complexes are allowed. These functors may be called relative
FM transforms [BBH09, Ch. 6] or kernel functors [Ku07, 2.5].
The criterion of Bondal and Orlov ([BO95], taken here from [Huy06, Prop. 7.1]) allows
to examine Fourier–Mukai transforms for fully-faithfulness by looking at closed points:

Theorem 2.2 ([BO95, Thm. 1.1]). Let Φ : Db(X)→ Db(Y ) be an FM transform between
smooth projective varieties. Then Φ is fully faithful if and only if for all closed x, y ∈ X,

HomDb(Y )

(
Φ(k(x)),Φ(k(y))[i]

)
=

{
k · id, x = y and i = 0,

0, x 6= y or i /∈ [0, dimX ].

Remark 2.3. Theorem 2.2 uses that the involved skyscraper sheaves {k(x)}x∈X form
a spanning class. Spanning classes are in general useful for examining FM transforms,
another example being given by powers of ample line bundles [Huy06, Sect. 3.2].

It is also possible (and much easier) to state and prove the following orthogonality result:

Lemma 2.4. Let Φ,Ψ : Db(X)→ Db(Y ) be FM transforms between derived categories of
smooth projective varieties. Let Ω ⊆ Db(X) be a spanning class and suppose that

HomDb(Y )

(
Φ(L′),Ψ(L)[i]

)
= 0 for all L′, L ∈ Ω and i ∈ Z.

3For the latter three derived functors, it is assumed that the ambient scheme Y has the resolution property
and that it is regular. The resolution property is implied for example by quasi-projectivity over k [GW23,
Prop. 22.57]. These assumptions make it possible to compute derived functors using finite locally free
resolutions instead of the more general flat resolutions.
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Then HomDb(Y )(Φ(F
•),Ψ(G•)) = 0 for all F•,G• ∈ Db(X), i.e. the essential images of Φ

and Ψ are semi-orthogonal to each other.

Proof. Note that HomDb(Y )(Φ(−),Ψ(−)) = 0 if and only if Θ := ΦR ◦ Ψ = 0, with ΦR

being the right adjoint of Φ. Note also that Θ is of FM type again and has both adjoints
[Huy06, Prop. 5.9 & 5.10]. The assumption yields that HomDb(X)(L

′,Θ(L)[i]) = 0 for all
L′, L ∈ Ω and i ∈ Z. By definition of a spanning class Ω, it follows that Θ(L) = 0 for all
L ∈ Ω. If G• ∈ Db(X) is arbitrary, then

HomDb(X)(L,Θ
R(G•)[i]) ∼= HomDb(X)(Θ(L),G•[i]) = 0 for all L ∈ Ω and i ∈ Z.

Therefore ΘR = 0 and consequently Θ = (ΘR)L = 0. �

Derived categories are triangulated categories [GM03, Ch. 4]. Note that only the existence
of adjoints was used to prove Lemma 2.4 so that its proof can be adapted to other trian-
gulated categories containing spanning classes. The following notion of a semi-orthogonal
sequence will be applied to C = Db(X):

Definition 2.5. Let C be a triangulated category with full triangulated subcategories
D1, . . . ,Dn. The sequence (D1, . . . ,Dn) is called semi-orthogonal provided that Di ⊆ D⊥

j

for i < j, i.e. there are no non-zero morphisms from objects of Dj to objects of Di in C.
The semi-orthogonal sequence (D1, . . . ,Dn) is called a semi-orthogonal decomposition (or
alternatively full) provided that 〈D1, . . . ,Dn〉 = C.4

See also the exposition in [Ku15, Sect. 1.1]. Often, it is additionally required that the
subcategories be admissible [BK89], i.e. that the inclusions Di →֒ C admit left and right
adjoints. This simplifies talking about orthogonal complements of subcategories (see e.g.
Lemma 2.6). A subcategory isomorphic to the bounded derived category of a smooth
projective variety is always admissible [BK89, Prop. 2.6 & Thm. 2.14].

Lemma 2.6 ([Ku07, Lemma 2.4], after [Bo89]). Let (D1, . . . ,Dn) be a semi-orthogonal
sequence of admissible triangulated subcategories in a triangulated category C. Then there
exists a semi-orthogonal decomposition (D1, . . . ,Dn,

⊥〈D1, . . . ,Dn〉) of C.

Proposition 2.7. Let k = k.5 Consider a roof X ← V → Y between smooth projective
varieties. Here p : V → X is a smooth proper morphism and ι : V → Y is a closed
embedding. Denote the fibres of p over k-points P ∈ X by FP = p−1(P ). Let E and G
in Coh(V ) be locally free sheaves that are kernels of the two Fourier–Mukai transforms
Φ = ΦE and Ψ = ΨG along V . Their restrictions are denoted by E = E|FP

and G = G|FP
.

(1) The Fourier–Mukai transform Φ is fully faithful provided that Hom(E,E) ∼= k on
every fibre F = FP and that Hp(F,∧q(NV/Y )|F ⊗E ⊗ E

∨) = 0 for p+ q > 0.
(2) The essential images of Φ and Ψ are semi-orthogonal ( imΨ ⊆ imΦ⊥) if on every

fibre F = FP , Hom(E,G) = 0 and Hp(F,∧q(NV/Y )|F ⊗G⊗E
∨) = 0 for p+ q > 0.

Proof. The proof idea for (1) is essentially the same as for [BFR22, Prop. 3], namely to
apply Theorem 2.2 to the functor Φ = ΦE . The idea also occurs in the proof of Orlov’s

4Since this work establishes only some semi-orthogonal subcategories of Db(X [3]) that are at best part of
a semi-orthogonal decomposition, fullness is of minor importance in what follows.
5This is only used to ensure that any closed point is k-valued.
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derived blow-up formula in [Huy06, Prop. 11.16]. For assertion (2), Lemma 2.4 will be
used. Denote the involved morphisms in the definition of Φ and Ψ as follows.

F V Y

{P} X

ι′

�

j

ι

p

Let N ′ = (NV/Y )|F and N = NF/Y be the normal bundles. Identically to [BFR22, (2.9)],
the relative short exact sequence of normal bundles for F ⊆ V ⊆ Y reads

0 −→ O⊕d
F −→ N −→ N

′ −→ 0.(5)

In both cases (1) and (2), one has to examine the Hom-spaces

HomDb(Y )

(
Φ(k(P )),Ψ(k(P ))[i]

)
∼= ExtiOY

(j∗(E|F ), j∗(G|F )) ∼= H i(F, (j!j∗G)⊗E
∨),

with Φ = Ψ and E = G in the setting of (1). There is always the following converging
hypercohomology spectral sequence (see Lemma 3.14 below):

Ep,q
2 = Hp(F,G⊗E∨ ⊗ ∧qN ) =⇒ Hp+q(F, j!j∗G⊗ E

∨).(6)

Furthermore, there exists a filtration [Ha77, Exc. II.5.16] induced from (5):

0 −→ F 1 ⊗G⊗E∨ −→ ∧qN ⊗G⊗ E∨ −→ ∧qN ′ ⊗G⊗ E∨ −→ 0,

0 −→ F 2 ⊗G⊗ E∨ −→ F 1 ⊗G⊗ E∨ −→ O⊕d
F ⊗ ∧

q−1N ′ ⊗G⊗ E∨ −→ 0,

...

0 −→ F q ⊗G⊗ E∨ −→ F q−1 ⊗G⊗E∨ −→ ∧q−1O⊕d
F ⊗N

′ ⊗G⊗ E∨ −→ 0,

0 −→ 0 −→ F q ⊗G⊗E∨ ∼
−→ ∧qO⊕d

F ⊗G⊗ E
∨ −→ 0.

What has to be shown for (1) is that (specializing to Φ = Ψ)

HomDb(Y )(ΦE(k(P )),ΦE(k(P ))[i]) =

{
k · id, i = 0,

0, i /∈ [0, d], d = dim(X).

This leads to proving Ep,q
2 = 0 for p+ q > d and E0,0

2
∼= k in (6) with E = G. Notice that

by assumption, E0,0
2 = Hom(E,E) ∼= k holds. Let p+ q > d and consider Ep,q

2 with p = 0
and q > d first. Then in the above filtration, F q ⊗ E ⊗ E∨ = F q ⊗G⊗E∨ = 0 and

H0(F,∧iO⊕d
F ⊗ ∧

q−iN ′ ⊗E ⊗ E∨) = H0(F,∧q−iN ′ ⊗ E ⊗ E∨)⊕(
d
i) = 0

by assumption for 0 ≤ i < q. Here the convention
(
d
i

)
= 0 is used if i > d. Inductively,

H0(F,∧qN ⊗E ⊗ E∨) ∼= H0(F, F 1 ⊗E ⊗E∨) ∼= . . . ∼= H0(F, F q ⊗ E ⊗E∨) = 0.

If p > 0, then first of all Hp(F, F q ⊗ E ⊗ E∨) = Hp(F,∧qO⊕d
F ⊗ E ⊗ E

∨) = 0, which is
only a nontrivial statement if 0 ≤ q ≤ d. Being zero uses the assumption that Ext∗(E,E)
is concentrated in degree zero. Next, Hp(F,∧iO⊕d

F ⊗∧
q−iN ′⊗E ⊗E∨) = 0 for 0 ≤ i < q

since then p+ (q − i) > q − i > 0. The same inductive argument as for p = 0 applied to
the filtration of ∧qNF/Y ⊗ E ⊗E∨ finishes the proof of the proposition.
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Statement (2) can be proven as an application of Lemma 2.4: For any k-point P ∈ X , it
has to be shown that H i(F, (j!j∗G) ⊗ E∨) = 0 for all i ∈ Z, which can be achieved by
showing that Ep,q

2 = Hp(F,∧qN ⊗ G ⊗ E∨) = 0 for all p, q ≥ 0, cf. (6). This is done via
the filtration from above and a similar case distinction into p = 0 or p > 0.
Alternatively (instead of skyscraper sheaves, see Remark 2.3), the spanning class of line
bundles on X may be used to show (2) by proving that (ΦR ◦Ψ)(L) = 0 for L ∈ Pic(X).
The right adjoint ΦR is Rp∗(E∨⊗ ι!(−)) and similarly to (6), there is a spectral sequence

Ei,j
2 = Rip∗(∧

jNV/Y ⊗ p
∗L ⊗ G ⊗ E∨) =⇒ Hi+j

(
(ΦR ◦Ψ)(L)

)
.

By the projection formula, Ei,j
2
∼= Rip∗(∧jNV/Y ⊗G⊗E

∨)⊗L, which is zero by assumption
using the theorem on cohomology and base change [Ha77, Thm. III.12.11]. �

2.2. Hilbert Schemes of Points. Let X be projective over a noetherian scheme S and
let F ∈ Coh(X). For every desired Hilbert polynomial P ∈ Q[x], Grothendieck showed in
[Gr95, Thm. 3.1] that the Quot scheme QuotPF/X/S parametrizing quotients of F exists. In
this work, the main focus lies on the case where F = OX , S = Spec k and P ≡ n ∈ Z≥1,
so that QuotPF/X/S = Hilbn

X/k = X [n] is the Hilbert scheme of n points and

X [n](T ) = {Z →֒ X ×k T closed subscheme, q = (pr2)|Z : Z → T flat, hZt ≡ n ∀t ∈ T}

for any T → Spec k. Note that the definition implies that all fibres Zt = q−1(t) are zero-
dimensional of length n and consequently, rk q∗OZ = n. Since X [n] represents a functor,
it comes along with a universal element (usually referred to as the universal family)

(
π : Ξn ⊆ X ×X [n] → X [n]

)
, rk π∗OΞn = n.

The family Ξn represents a functor itself [Gö94, Rem. 1.1.4] so that

X [n](k) = {Z ⊆ X closed zero-dimensional subscheme of length n},

Ξn(k) = {(x, [Z]) : [Z] ∈ X
[n](k), x ∈ Z}.

Proposition 2.8. Let X → Spec k be a projective scheme and let Y ⊆ X be a closed
subscheme, whereas U = X \Y is the complementary open subscheme. Then Y [n] and U [n]

exist as closed, respectively open subschemes of X [n].

Proof. The existence of Y [n] is clear since Y is projective, and there is a closed embedding
of Hilbert functors HilbnY/k →֒ HilbnX/k [Ni05, Lemma 5.17]. On the other hand, the
Hilbert functor HilbnU/k has to be defined first as the subfunctor of HilbnX/k parametrizing

flat families over T contained in U ×k T ⊂ X ×k T [Gr95, Rem. 4.a]. Then one may take
U [n] to be X [n] \ π

(
Ξn ∩ (Y ×X [n])

)
. In fact, this is how existence of Hilbert schemes of

quasi-projective schemes U can be proven in general. �

A special feature of the Hilbert scheme of points is its relation to the symmetric product
X(n) = Xn/Sn, the latter being a quasi-projective variety whenever X is. Namely if the
base field k is algebraically closed of characteristic zero and X is smooth, there exists

a surjective morphism ρ : X
[n]
red → X(n) [FG05, Sect. 7.1], the Hilbert–Chow morphism,

given on k-points as

[W ] 7→
∑

P∈suppW

length(OW,P ) · [P ], [W ] ∈ X [n](k).
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Recall from the introduction that X [n] is smooth and connected if dimX ∈ {1, 2} or if

n ∈ {1, 2, 3} and X is smooth and connected. Hence X [n] = X
[n]
red in those cases. As in

[Gö94], ρ induces a useful stratification of X
[n]
red by locally closed subschemes X

[n]
ν , where

X [n]
ν = ρ−1(X(n)

ν ), X(n)
ν =

{∑
νi[Pi] : all Pi ∈ X distinct

}
, ν ⊣ n a partition.

In the rest of this section, the case ν = (n) is discussed. The closed stratum X
[n]
(n) ⊆ X [n]

has zero-dimensional subschemes of X concentrated at single points as k-points.
Fixing a point P ∈ X , the question is how to describe all possible ideals that yield zero-
dimensional subschemes of length n at P . Such ideals of colength n are parametrized by

the Local Punctual Hilbert scheme, of which X
[n]
(n),red is a globalization since it can also be

defined as the relative Hilbert scheme6 of the n times thickened diagonal n∆ ⊆ X ×k X
over X after equipping both with their reduced scheme structure [Gö94, Lemma 2.1.2]:

Definition 2.9. The Local Punctual Hilbert scheme is Hilbn
d,X,P = (SpecOX,P/m

n)
[n]
red for

a closed point P ∈ X , where m = mX,P and d = dimX .

The definition depends only on the dimension d ≥ 1, up to non-canonical isomorphism: If
Z ⊆ X is a closed subscheme of length n concentrated at a single point P , then I := IX,P

has colength n, i.e. dimkOZ,P = dimkOX,P/I = n. Necessarily, I contains mn = mn
X,P , cf.

the proof of [Gö94, Lemma 1.3.2]. The specific choice of a point P ∈ X is not important
in the definition of Hilbn

d = Hilbn
d,X,P since X is smooth and hence

OX,P/m
n ∼= ÔX,P/m̂

n ∼= k[[x1, . . . , xd]]/m̂
n ∼= k[x1, . . . , xd]/m

n.(7)

This justifies the (sloppy) notation Hilbn
d , omitting the choice of local parameters. By

Proposition 2.8, Hilbn
d is a closed subscheme of X [n]. It has quite different properties

compared to the “global” X [n] and can be realized as a closed subscheme of the Grass-
mannian G(n, k[x1, . . . , xd]/m

n). The case d = 2 has been extensively studied in [Iar77],
cf. [Gö94, p. 10]. There it is also explained how distinguishing colength n ideals I by their
Hilbert function yields a stratification of Hilbn

d . The Hilbert function is invariant under
the identifications made in (7).

Example 2.10. If n = 1, then X [1] ∼= X . If n = 2, zero-dimensional subschemes Z ⊆ X
of length two can be the union of two reduced points or they are concentrated at a fixed
point P . In the latter case, Z corresponds to the choice of a tangent direction at P ∈ X ,
i.e. to a one-dimensional quotient of m/m2.
If n = 3, subschemes of length 3 are either combinations of the previous cases or they
have support at a single point P ∈ X . There are two possible types of ideals in Hilb3

d:
The curvilinear ideals define subschemes contained in the germ of a smooth curve. They
contain second order data and are of minor importance in what follows. The planar ideals
are easier to handle and are locally formally of the form

(u3, . . . , ud) +m
2, d ≥ 2, deg ui = 1,

corresponding to the choice of a plane in the tangent space TPX of X at P .

6Relative Hilbert schemes are defined over more general base schemes S. Base change [Se06, Prop. 4.4.3]
implies that a relative HilbnX/S is a family with absolute Hilbert schemes Hilbn

Xs/k(s) as fibres.



A SEMI-ORTHOGONAL SEQUENCE FOR THE HILBERT SCHEME OF THREE POINTS 9

Example 2.10 is an instance of the general stratification of Hilbn
d by locally closed sub-

schemes ZT corresponding to ideals with Hilbert function T [Iar72]. This can be globalized

to a stratification of X
[n]
(n),red ⊆ X [n] by subschemes ZT (X) [Gö94, Sect. 2.1].

3. The locus of planar subschemes in X [n]

A fully faithful functor Db(X)→ Db(X [n]) is automatically a Fourier–Mukai transform
due to results of Bondal, Orlov and van den Bergh, as explained in [Huy06, Thm. 5.14].
From a geometric point of view, such a construction might rather be related to loci of zero-
dimensional subschemes concentrated in single points, whereas subschemes concentrated
in two or more points lead to the study of products of X with itself and X [m], m < n. As
explained in the introduction, curvilinear subschemes are less important in what follows
and the focus lies on the planar zero-dimensional subschemes of X . This locus has the
structure of a Grassmannian bundle G→ X with Grassmannian fibre G(l,m/m2).7

3.1. Functorial description of G(l,ΩX) →֒ X [l+1]. Let X be a smooth projective vari-
ety over the field k of dimension d and let

0 −→ K −→ p∗ΩX/k −→ Q −→ 0(8)

be the tautological exact sequence on the Grassmannian bundle G := G(l,ΩX)
p
−→ X ,

where Q has rank l ≤ d. As in [KR22, Sect. 4.2], a morphism ι : G→ X [l+1] is constructed
by exhibiting a flat family Z of degree l+ 1 over G. Concretely, the family Z ⊆ G×X is
defined by a commutative diagram of exact sequences of sheaves on G×X of the form

0 0 0

0 (id, p)∗K (id, p)∗K 0 0

0 (id, p)∗p
∗ΩX/k (p× id)∗O2∆ (p× id)∗O∆ 0

0 (id, p)∗Q coker τ (p× id)∗O∆ 0.

0 0 0

=

τ

=

The first column is the pushforward of (8) under (id, p), while the second row uses base
change along the cartesian square

G G×X

X X ×X

p

(id,p)

� p×id

∆

7More precisely, the locus of planar subschemes is Z(1,l,0)(X) ∼= G(l,ΩX) = Grass(l, T ∗

X) in the notation
of [Gö94]. The defining ideal of a planar subscheme is determined by an l-dimensional subspace of TPX ,
see Section 2.2. Notice also that Z(1,2,0)(X) = B3 in [SV16, Sect. 5.1].
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and originates from the short exact sequence on X ×X

0 −→ ∆∗ΩX/k −→ O2∆ −→ O∆ −→ 0.(9)

Here the n-fold diagonal n∆ ⊆ X ×X is defined by the n-th power of the ideal sheaf I∆.
Observe that (p × id)∗O∆

∼= (id, p)∗OG = OΓp and that the third row of the diagram is
induced by the ones above. Now coker τ is a quotient of OX×G, hence can be written as

coker τ = OZ

for a closed subscheme Z supported on Γp. The pushdown to G is locally free of rank l+1
[KR22, Sect. 4.2], wherefore Z → G is a flat family defining a morphism ι : G → X [l+1].
By the universal property of the Hilbert scheme, there exists a cartesian diagram

Z G

Ξl+1 X [l+1].

q

� ι

π

Remark 3.1. Since X is smooth, O2∆ is flat over X by (9). Inductively, the same is true
for all On∆ because In∆/I

n+1
∆
∼= Sn(I∆/I2∆), cf. [Ha77, Thm. II.8.21A(e)].

The next result is probably well-known but the author could not find a suitable reference.

Proposition 3.2. Suppose there is a cartesian diagram between quasi-projective varieties

X ′ X

Y ′ Y.

f ′

g′ � g

f

Let Z ⊆ X be a closed subscheme and Z ′ = X ′×X Z the scheme-theoretic preimage. If Z
is flat over Y , IZ and OZ pull back to IZ′ and OZ′ via f ′. If additionally g is flat, then
on the level of derived categories, Lf ′∗IZ ∼= IZ′ and Lf ′∗OZ

∼= OZ′.

Proof. The defining short exact sequence of Z ⊆ X remains exact after pullback to X ′

since OZ is flat over Y [GW20, Prop. 7.40]. By affine base change [St18, 02KG], OZ pulls
back to OZ′ , which proves the first claim. If g is a flat morphism, then the 2-out-of-3
property [Ku06, Lemma 2.25] shows that Lf ′∗OZ

∼= OZ′. �

Corollary 3.3. Let f : X → Y be a morphism between varieties with Y smooth. Then
for n ≥ 1, n∆Y ×Y X is equal to the n times thickened graph defined by InΓf

⊆ OX×Y .

Proof. The statement for n = 1 is purely categorical. More generally, consider

n∆Y ×Y X X × Y

n∆Y Y × Y.

� f×id

By Proposition 3.2, (f × id)∗I∆ ∼= IΓf
and (f × id)∗(In∆)

∼= In∆Y ×Y X (Remark 3.1). Since

In∆ is the image (i.e. kernel of the cokernel) of the multiplication morphism I⊗n
∆ → I∆,

there is an epimorphism (f × id)∗(In∆) ։
(
(f × id)∗I∆

)n ∼= InΓf
.

https://stacks.math.columbia.edu/tag/02KG
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This has to be an isomorphism since X × Y is integral [GW20, Prop. 5.51] and since
(after going to the stalks) a non-trivial module homomorphism from a non-zero ideal of
the base ring to a torsion-free module has kernel equal to zero. �

Back to ι : G→ X [l+1], induced by the flat family Z ∼= G×X[l+1] Ξl+1 ⊆ 2Γp over G.

Lemma 3.4. In the above setting, there are short exact sequences on G×X

0 −→ I2Γp −→ IZ −→ (id, p)∗K −→ 0,(10)

0 −→ IZ −→ IΓp −→ (id, p)∗Q −→ 0.(11)

Proof. This follows from the Snake Lemma using the middle column, respectively the third
row in the defining diagram of OZ . Note that (p×id)

∗I2∆ = I2Γp and (p×id)∗I∆ = IΓp . �

Proposition 3.5. The morphism ι : G → X [n] with n = l + 1 is a closed embedding
with set-theoretical image given by planar subschemes of X. That is, ι maps a k-point
(P, I) lying inside {P} ×G(l,m/m2) ⊆ G to the unique zero-dimensional subscheme [W ]
in X [n](k) with support P ∈ X and defining ideal I (modulo m2).

Proof. (1) Let p : G→ X be the projection and consider the cartesian diagram

W Z Ξn

Spec k G X [n]

q π

fP,I ι

with fP,I denoting the inclusion of (P, I) into G and W = q−1(Spec k). Observe that W
is the image point ι(P, I) = [W ] ∈ X [n](k) and that Wred ⊆ Γp is just the reduced P ∈ X .
It remains to see that the first order part of the defining ideal IW/X is given by I.
Restricting the sequence (10) to {(P, I)} × X ∼= X via fP,I × idX yields (by flatness of
(id, p)∗K over G) the short exact sequence

0 −→
(
(p ◦ fP,I)× id

)∗
I2∆ −→ IW/X −→ (fP,I × id)∗(id, p)∗K ∼= K(P, I) −→ 0.

That IW/X = (fP,I × id)∗IZ follows from Corollary 3.3, which also implies that the sheaf
on the left is I2P/X . Going to the stalks yields IW,P/m

2
P
∼= K(P, I) ∼= I.

(2) To show that ι is a closed embedding, note that Z is even a closed subscheme of

G×X n∆ ⊆ G×X so that ι factors through X
[n]
(n),red = (Hilbn

n∆/X)red (see Section 2.2).

The X-morphism G → X
[n]
(n),red can be checked to be a closed embedding fibrewise using

[GW20, Prop. 12.93], where it coincides with the obvious inclusion of planar subschemes
Z(1,l,0) = G(l,m/m2) →֒ Hilbn

d (Section 2.2, (7)) according to the first half of this proof. �

3.2. Computation of the normal bundle. For various reasons it is important to have
a description of the normal bundle of G = G(l,ΩX) in X

[n] = X [l+1], making only sense in
the smooth situation l ∈ {1, 2}. As a first step, the restriction of ΩX[n]/k to G is computed.

Lemma 3.6. Let f : X → Y be projective. The i-th relative Ext-sheaf on Y is

Extif(F ,G) := Ri(f∗HomOX
(F ,G)) := Ri

(
f∗HomOX

(F ,−)
)
(G)

for F ,G ∈ Coh(X) and can equivalently be computed as Hi
(
Rf∗RHomOX

(F ,G)
)
.
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(1) If Y = SpecR is affine, then Extif (F ,G) is the quasi-coherent sheaf associated to

the R-module ExtiOX
(F ,G).

(2) If F and G are coherent, then so is Extif(F ,G).
(3) If F is locally free, Extif (F ,G)

∼= Rif∗(F∨ ⊗ G). Thus Extif(OX ,G) = Rif∗G.

Proof. The statements (1) - (3) can be found in [La83] and are easy to show. The identifica-
tion R(f∗HomOX

(F ,−)) ∼= Rf∗RHomOX
(F ,−) uses that HomOX

(F ,−) sends injective
sheaves to flasque sheaves, cf. the proof of [Ha66, Prop. II.5.3]. �

There is a base change theory for relative Ext’s analogous to that in [Ha77, Ch. III.12]
relating higher direct images to cohomology of the fibres, see e.g. [La83].

Corollary 3.7. Let f : X → Y be as above and additionally smooth with equidimensional
fibres of dimension d. If F and G are flat over Y , then

Extif (F ,G) = 0 for i > d.

Proof. All ExtiXy
(Fy,Gy)’s vanish for i > d by Serre-duality. Thus Extif (F ,G)⊗OY

k(y) = 0

(invoking the base change theorem [La83, Thm. 1.4]) for all y ∈ Y . �

The following proposition appears in [Le98, Rem. 3.7] for Quot schemes without proof.

Proposition 3.8. Let g : T → X [n] be the classifying morphism associated to a flat family
q : Z → T of degree n = l + 1, fitting into a commutative diagram of the following form.

Z T ×X X [n] ×X Ξn =: Ξ

T X [n]

q

g×id

q � π
π

g

Then there is a base change isomorphism g∗ΩX[n]/k
∼= Extdq(OZ , IZ ⊗ ωq).

Proof. By the main theorem of [Le98], ΩX[n]/k
∼= Extdπ(OΞ, IΞ ⊗ ωπ), see Proposition B.3.

By flatness of π, derived base change [BBH09, Prop. A.85] as well as Proposition 3.2,

Lg∗Rπ∗RHom(OΞ, IΞ ⊗ ωπ) ∼= Rq∗L(g × id)∗RHom(OΞ, IΞ ⊗ ωπ)

∼= Rq∗RHom
(
L(g × id)∗OΞ, L(g × id)∗(IΞ ⊗ ωπ)

)

∼= Rq∗RHom(OZ , IZ ⊗ ωq).

Let Er,s
2 = Hr

(
Lg∗Extsπ(OΞ, IΞ⊗ωπ)

)
. There exists a spectral sequence ([Huy06, (3.10)])

Er,s
2 ⇒H

r+s
(
Lg∗Rπ∗RHom(OΞ, IΞ ⊗ ωπ)

)
∼= Extr+s

q (OZ , IZ ⊗ ωq).

All fibres of π are isomorphic to X and thus Er,s
2 = 0 for r > 0 or s > d by Corollary 3.7.

Therefore E0,d
2 = E0,d

∞ and Extdq(OZ , IZ ⊗ ωq) ∼= E0,d
2 , which is by definition the pullback

of Extdπ(OΞ, IΞ ⊗ ωπ) ∼= ΩX[n]/k along g. �

Let q : G × X → G be the projection and let ωq = ωG×X/G. Proposition 3.8 yields an
isomorphism (ΩX[n]/k)|G

∼= Extdq(OZ , IZ ⊗ ωq) of locally free sheaves after considering

(g : T → X [n]) = (ι : G →֒ X [l+1] = X [n]).
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Recall the short exact sequence 0→ (id, p)∗Q → OZ → (id, p)∗OG → 0 on G×X , yielding
the distinguished triangle

Rq∗RHom((id, p)∗OG, IZ ⊗ ωq) −→ Rq∗RHom(OZ , IZ ⊗ ωq)

−→ Rq∗RHom((id, p)∗Q, IZ ⊗ ωq)
+1
−→ ·

that will be combined below with the result of applying Rq∗RHom((id, p)∗Q, (−)⊗ωq) to
(10) and with the result of applying Rq∗RHom((id, p)∗OG, (−)⊗ ωq) to (11). Note that

Rq∗RHom((id, p)∗E , (−)⊗ ωq) ∼= Rq∗(id, p)∗RHom
(
E , (id, p)!((−)⊗ ωq)

)

∼= RHom(E , L(id, p)∗(−)[−d]))
∼= E∨ ⊗ L(id, p)∗(−)[−d]

for any locally free sheaf E by Grothendieck–Verdier duality. Hence the long exact se-
quences in cohomology yield a diagram of exact sequences on G of the following form.

0

Q∨ ⊗ (id, p)∗(I2Γp) Q∨ ⊗ (id, p)∗IZ Q∨ ⊗K 0

Extdq(OZ , IZ ⊗ ωq)

(id, p)∗IZ (id, p)∗IΓp Q 0

Lemma 3.9. There are isomorphisms (id, p)∗InΓp = (id, p)∗(InΓp
) ∼= Snp∗ΩX/k.

Proof. Recall from Proposition 3.3 that InΓp = InΓp

∼= (p× id)∗In∆. Note also that

∆∗In∆
∼= ∆∗(In∆/I

n+1
∆ )

where ∆ is the diagonal morphism. As X is smooth, In∆/I
n+1
∆
∼= Sn(I∆/I2∆). So

(id, p)∗InΓp
∼= (id, p)∗(p× id)∗In∆

∼= p∗∆∗(In∆/I
n+1
∆ ) ∼= p∗Sn∆∗(I∆/I

2
∆)
∼= Snp∗ΩX/k,

finishing the proof of the lemma. �

Lemma 3.10 and Lemma 3.12 are similar to [KR22, Lemma 4.6] and [KR22, Lemma 4.5].

Lemma 3.10. The sheaf (id, p)∗IZ is locally free of rank d+ 1
2
(l2 − l).

Proof. On a reduced scheme, equidimensionality of the fibres of a coherent sheaf allows
to conclude that it is locally free of the expected rank [Ha77, Exc. II.5.8]. In fact, looking
at fibres of closed points is enough: The locus where a coherent sheaf has a specified
constant rank is locally closed and k-points form a very dense subset - hence the reasoning
of [GW20, Rem. 10.15] may be applied.
Let fP,I : Spec k → G be a k-point corresponding to a pair (P, I) (the notation is the
same as in Proposition 3.5). The fibre of (id, p)∗IZ at (P, I) is the same as the fibre of
IW = IW/X restricted to the k-point P . Thus it remains to compute the dimension of
IW (P ) ∼= IW,P/mPIW,P for a zero-dimensional subscheme W ⊆ X with Hilbert function
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(1, l, 0) concentrated at a point P ∈ X . The identification ÔX,P/m̂X,P
3 ∼= k[x1, . . . , xd]/m

3

preserves I/mI and P = 0 ∈ Ad can be assumed, where I corresponds to IW,P . The
computation of Lemma 3.12 below concludes the proof. �

Remark 3.11. Note that (id, p)∗IZ is the restriction of the conormal sheaf (CZ/G×X)|Γp.

Lemma 3.12. Let I = (ul+1, . . . , ud)+m2 E k[x1, . . . , xd] be an ideal with Hilbert function
(1, l, 0) and linear forms ui. Then I/Im ∼= I/m2⊕m2/Im and dimk I/Im = d+ 1

2
(l2− l).

Proof. Given the homogeneous ideal I E k[x1, . . . , xd], the linearly independent linear
forms ul+1, . . . , ud can be extended to a k-basis u1, . . . , ud of k[x1, . . . , xd]1 ∼=k m/m

2. It is
easy to reduce to the case ui = xi. There is a short exact sequence of k[x1, . . . , xd]-modules

0→ m
2/Im→ I/Im→ I/m2 → 0,

of course split as a sequence of k-vector spaces (in fact, it is even split as a sequence
of k[x1, . . . , xd]-modules). The dimension of I/m2 is d − l by definition of the prescribed
Hilbert function. The surviving monomials in m2/Im with Im = (xl+1, . . . , xd)m+m3 are
all those

(
l+1
2

)
= 1

2
(l2 + l) monomials of degree 2 that only contain x1, . . . , xl. �

To sum up, there is a diagram of exact sequences of vector bundles on G of the form

0

Q∨ ⊗ S2p∗ΩX/k Q∨ ⊗ (id, p)∗IZ Q∨ ⊗K 0

(ΩX[l+1]/k)|G

(id, p)∗IZ p∗ΩX/k Q 0.

id⊗α id⊗β

Remark 3.13. In the case l = 1 of X [2], the middle column is already exact with a zero
on the bottom. In the case l = 2 of X [3], there is a short exact sequence

0→ K → (ΩX[3]/k)|G → Q
∨ ⊗ (id, p)∗IZ → 0.

This is because counting ranks of locally free sheaves for l = 1, the middle column is
exact since d + 1 · d = 2d = dimX [2]. For l = 2, a morphism K → (ΩX[3]/k)|G has to

be constructed first using (10) in a way such that S2p∗ΩX/k → (id, p)∗IZ → (ΩX[3]/k)|G
vanishes on the fibres. Then (d − 2) + 2 · (d + 1) = 3d = dimX [3]. The proof is omitted
here since this remark is not needed later on.

The next task is to understand the kernel of the map id⊗β. Recall that the long exact
sequence of interest (forgetting Q∨ ⊗ (−) for a moment) is obtained from (10) as

K ⊗ p∗ΩX/k
∼= L1(id, p)∗(id, p)∗K

m
−→ S2p∗ΩX/k

α
−→ (id, p)∗IZ

β
−→ K −→ 0

by pullback along (id, p), where the isomorphism on the left hand side is a consequence
of the following lemma together with the identification N ∨

Γp/G×X
∼= p∗N ∨

∆/X×X
∼= p∗ΩX/k.
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Lemma 3.14 ([CKS03, Prop. A.6], [Huy06, Prop. 11.8]). Let j : Z →֒ Y be a closed
embedding of smooth varieties and let E be a locally free sheaf on Z. Then for all i ≥ 0,
there are natural isomorphisms Lij∗j∗E ∼= E ⊗ ∧iN ∨

Z/Y and Hi(j!j∗E) ∼= E ⊗ ∧iNZ/Y .

Proposition 3.15. The morphism m above is the natural multiplication map and there
is a short exact sequence of locally free sheaves of ranks

(
l+1
2

)
, d+ 1

2
(l2 − l), resp. d− l:

0 −→ S2Q −→ (id, p)∗IZ
β
−→ K −→ 0.

Proof. The second assertion follows from the first, for if m is the multiplication map with
image K · p∗ΩX/k, its cokernel (∼= ker β) is S2Q since there exists a short exact sequence

0 −→ K · p∗ΩX/k −→ S2p∗ΩX/k −→ S2Q −→ 0

resulting from (8), cf. [St18, 01CJ]. The short exact sequences (10) and (11) corresponding
to I2Γp ⊆ IZ ⊆ IΓp can be combined to a big commutative diagram using the defining
sequence of the sheaf of differentials. Considering the long exact sequences for the derived
pullback L(id, p)∗ applied to this diagram, it follows with the aid of Lemma 3.14 that there
is an even bigger commutative diagram of the following form.

0 Q⊗ p∗ΩX/k 0

K ⊗ p∗ΩX/k S2p∗ΩX/k (id, p)∗IZ K 0

p∗ΩX/k ⊗ p∗ΩX/k S2p∗ΩX/k p∗ΩX/k p∗ΩX/k 0

Q Q

0 0

m α

=

β

m′ 0 =

=

The morphisms between the tautological sheaves on G in the right column a priori con-
stitute “some” natural non-split cokernel sequence.
Using that on each fibre of p, Ext1(Q,K) is one-dimensional (cf. the methods used in
Appendix A), all morphisms between the tautological sheaves come from the tautological
sequence (8) and are thus the expected ones.
The claim reduces to m′ being the canonical projection. Since L(id, p)∗(p× id)∗ ∼= p∗L∆∗,
it is enough to show that the morphism ∂ in the long exact L∆∗-sequence

. . . −→ L1∆∗I∆ ∼= ∧
2ΩX/k

L1∆∗π
−→ Ω⊗2

X/k

∂
−→ S2ΩX/k

0
−→ ΩX/k

∼
−→ ΩX/k −→ 0

associated to 0→ I2∆ → I∆
π
→ ∆∗ΩX/k → 0 on X×X is the canonical projection. Equiv-

alently, L1∆∗π is the monomorphism corresponding to a∧ b 7→ a⊗ b− b⊗a with cokernel

https://stacks.math.columbia.edu/tag/01CJ
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S2ΩX/k.
8 This can be checked on the fibres, where the claim reduces to understanding

Tor1OX,P
(m,OX,P/m) −→ Tor1OX,P

(m/m2,OX,P/m).

More elegantly (and without the need of reducing from L(id, p)∗ to L∆∗), one applies the
global Lemma B.1 to i∗N ∨

Y/X = (id, p)∗(N ∨
Γp/G×X). �

All in all, the following diagram of exact sequences is obtained for l ∈ {1, 2} after invoking

the relative cotangent sequence for G
p
→ X → Spec k, the identity Ωp

∼= Q∨ ⊗ K (see
Proposition B.2) and the conormal sequence for G ⊆ X [l+1] = X [n] with N = NG/X[n].

0

Q 0 0

0 p∗ΩX/k ΩG/k Ωp 0

(id, p)∗IZ (ΩX[l+1]/k)|G Q∨ ⊗ (id, p)∗IZ 0

N ∨ Q∨ ⊗ S2Q

0 0

(dp)∗

(a) (b)(dι)∗

Theorem 3.16 (Thm. 1.3). The above diagram commutes. So there is an exact sequence

S2Q −→ N ∨ −→ Q∨ ⊗ S2Q −→ Q −→ 0.

Hence if l = 1, the normal bundle of G = G(l,ΩX/k) inside X [2] is isomorphic to S2Q∨,

which under the identification G = P(ΩX/k) = X
[2]
(2),red is the line bundle Op(−2) in

accordance with the already known result [KPS18, Thm. 4.1(ii)]. If l = 2, then the normal
bundle of G inside X [3] has rank 4 and is part of the short exact sequence

0 −→ Q∨ −→ Q⊗ S2Q∨ −→ N −→ 0.(12)

Proof. The only things to prove are the commutativity of (b) and of (a) since after iden-
tifying the kernel of (id, p)∗IZ → p∗ΩX/k with S2Q, the Snake Lemma can be applied:

Namely if l = 1, Q∨ ⊗ S2Q → Q is an epimorphism between locally free sheaves of the
same rank, hence an isomorphism. The same argument applies to S2Q → N ∨ → 0 and
dualizing yields the claim. If l = 2, then N ∨ is locally free of rank 4 = codim(G, X [3]).
Thus counting ranks and dualizing afterwards yields (12). Consider the square (b) now.

It is sufficient to show commutativity of a square after restricting to fibres of p because
commutativity can be checked on the fibres at closed points. The restriction of ΩG/k → Ωp

to a fibre G := G(l,m/m2) ∼= p−1(P ) is the same as the codifferential of the inclusion

8This works in any characteristic of the base field.
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G →֒ G. The chain of inclusions G →֒ G →֒ X [n] coincides with G →֒ Hilbn
d →֒ X [n],

where as usual n = l + 1. The claim for (b) is that dualizing

(ΩX[n]/k)|G
∼= Extdq(OZ , IZ ⊗ ωq) −→ Q

∨ ⊗ (id, p)∗IZ −→ Q
∨ ⊗K ∼= Ωp(13)

and restricting to [(P, I)] ∈ G(k) yields a sequence of vector spaces

Homk(I/m
2,m/I)→ HomOX

(I,m/I)→ HomOX
(I,OX/I)(14)

agreeing precisely with the composition of the differentials of p−1(P ) →֒ Hilbn
d →֒ X [n].9

Proof of the claim. The differentials are described first. There is no harm in restricting to
an open affine SpecA ⊆ X containing P = [p] where I defines a zero-dimensional sub-
scheme W of length n. Let A = Ap/(pAp)

n = O/mn and let I E A be the corresponding
ideal. The three tangent space identifications (see Prop. B.2(4) and Prop. B.3(3))

T[I/m2]G ∼= Homk(I/m
2,m/I), T[W ]X

[n] ∼= HomA(I, A/I) and

T[W ]

(
SpecOX,P/m

n
)[n] ∼= HomA(I, A/I)

can be applied to the following commutative diagram of vector spaces.

T[I/m2]G

T[W ]X
[n] T[W ]

(
SpecOX,P/m

n
)[n]

T[I]G(n,A)

Examining the proof of the tangent space description for Hilbert schemes10, it is easy to
see that the left horizontal arrow sends f : I → A/I to itself as an A-module homomor-
phism, precomposed with I → I. The right horizontal arrow just sends f to itself as a
k-linear map. The right diagonal map is the differential of an inclusion of Grassmannians
G(l,m/m2) ⊆ G(n,A/m3), readily checked to send g : I/m2 → m/I to the composition
with I → I/m2 and m/I →֒ A/I. Hence the middle vertical arrow and eventually the
whole composition T[I/m2]G → T[W ]Hilb

n
d → T[W ]X

[n] just maps any tangent vector g to
itself modulo some projections. This is now compared to (13):

Observe that Extdq(OZ , IZ ⊗ ωq)→ Q∨ ⊗ (id, p)∗IZ → Q∨ ⊗K is just

Extdq(OZ , IZ ⊗ ωq)→ Ext
d
q((id, p)∗Q, IZ ⊗ ωq)→ Ext

d
q((id, p)∗Q, (id, p)∗K ⊗ ωq),

which pulled back to the k-point Spec k → G corresponding to (P, I) = [W ] becomes

ExtdOX
(OW , IW ⊗ ωX) −→ ExtdOX

(Q(P ), IW ⊗ ωX) −→ ExtdOX
(Q(P ),K(P )⊗ ωX)

with the natural morphisms in between. Dualizing (13), applying Serre duality on X
and replacing X by an affine open afterwards therefore yields the desired sequence (14),
so that (b) commutes. Notice that implicitly, naturality of base change for relative Ext
sheaves (Lemma B.4) as well as the fact that the identifications

(ΩX[n]/k)|G
∼= ι∗Extdπ(OΞ, IΞ ⊗ ωπ)

∼= Extdq(OZ , IZ ⊗ ωq) and Ωp
∼= Q∨ ⊗K

9This is equal to the composition p−1(P ) →֒ (SpecOX,P /m
n)[n] →֒ X [n].

10See the summary in Appendix B.2 or directly [ACG11, Lemma 5.8].
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induce identity maps on tangent spaces up to scaling were used (see Prop. B.3 and the
naturality statement in [GW23, Prop. F.212]). These subtle technical statements are
postponed until Appendix B.

Commutativity of the square (a) is also shown by going to tangent spaces: It has been
implicitly used several times that for any morphism f : V → W of k-schemes such that
f(v) = w, the tangent space at a point can be described functorially in equivalent ways,
i.e. that there is a commutative diagram (setting k[ε] := k[ε]/(ε2))

ΩV/k(v)
∨ (mV,v/m

2
V,v)

∨ Mork
(
(Spec k[ε], (ε)), (V, v)

)

ΩW/k(w)
∨ (mW,w/m

2
W,w)

∨ Mork
(
(Spec k[ε], (ε)), (W,w)

)
.

df|v

∼

(f♯)∨ f◦

∼

∼ ∼

The middle description of the tangent space is a very special case of the tangent space to a
Hilbert scheme, namely toX [1] ∼= X : HomOX,P /m(m/m

2,OX,P/m) ∼= HomOX,P
(m,OX,P/m).

The pullback of (a) to a k-point fP,I : Spec k → G with image [W ] ∈ G(k)11 is the dual of

HomOX,P
(m,OX,P/m) Mork

(
(Spec k[ε], (ε)), (G, [W ])

)

HomOX,P
(I,OX,P/m) HomOX,P

(I,OX,P/I).

dp

dι

The two arrows pointing to the left bottom corner are the obvious ones, cf. Lemma B.4.
Notice that (ι, p) = (ι × id) ◦ (id, p) : G →֒ G × X →֒ X [n] × X factors through the
universal family Ξn. The involved differentials dι and dp can be understood as follows.

Let t : Spec k[ε]→ G be a morphism (a tangent vector) restricting to fP,I . Then (ι◦t, p◦t)
is a tuple of tangent vectors to [W ] ∈ G(k) ⊆ X [n](k), respectively to p([W ]) = P ∈ X [1].
By the above remark on Ξn, (dι(t), dp(t)) = (ι ◦ t, p ◦ t) ∈ T[(P,W )]Ξn, which is just a
rephrasement of the containment P ∈ W ⊆ X .

The question concerning (a) is whether the homomorphisms dι(t) : I → OX,P/I and
dp(t) : m → OX,P/m fulfill dp(t)|I = dι(t)modm. This holds true by the description of
tangent spaces of the universal family Ξn [ACG11, Lemma 8.8]. Commutativity of (a)
follows immediately, apart from the same subtleties mentioned at the end of (b).

According to Proposition 3.15 and its proof, there is a commutative diagram

K

(id, p)∗IZ p∗ΩX/k Q,

β

hence the kernel of (id, p)∗IZ → p∗ΩX/k coincides with ker β = S2Q. The snake lemma
applied to the whole diagram with squares (a) and (b) yields the exact sequence of locally
free sheaves S2Q −→ N ∨ −→ Q∨ ⊗ S2Q −→ Q −→ 0. �

11[W ] = [(P, I)] corresponds as always to P ∈ X with added scheme structure encoded in an ideal I.
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Corollary 3.17. Let d ≥ 312 and char k = 0. Then N ∼= S3Q∨ ⊗ detQ.

Proof. Consider the decomposition (here char k = 0 becomes important, see Remark A.2)
of Q⊗ S2Q∨ into Σ2,−1Q∨ and Q∨ (Example A.4) as well as the projection morphism

s : Q⊗ S2Q∨ ∼= Σ2,−1Q∨ ⊕Q∨ −→ Q∨.

See Appendix A for the definition of Schur functors applied to locally free sheaves and
how to perform computations with them. Composing the inclusion in (12) with s yields
an endomorphism of Q∨, but EndOG

(Q∨) is approximated by the Grothendieck spectral
sequence with second page

Ei,j
2 = H i

(
X,Rjp∗(Q

∨ ⊗Q)
)
.

Here p : G → X is the projection and Rjp∗(Q∨ ⊗ Q) = 0 for j > 0 by cohomology and
base change since the objects Q∨ on the Grassmannian fibres are exceptional if d ≥ 3
(Lemma A.10). Because p∗(Q∨⊗Q) ∼= OX , EndOG

(Q∨) is one-dimensional, so (12) splits.
Since G is a projective variety, Σ2,−1Q∨⊕Q∨ ∼= N ⊕Q∨ implies Σ2,−1Q∨ ∼= N according
to [At56, Thm. 3]. It remains to observe that Σ2,−1Q∨ ∼= S3Q∨ ⊗ detQ. �

Remark 3.18. Already after formulating a proof of Theorem 3.16, the author noticed
that it is easy to deduce from [Gö94, Rem. 2.5.10 & Prop. 2.5.11] that over k = C and
for d = dimX ≥ 2, the projectivization P(N ∨) is isomorphic to P(S3Q). This shows that
the normal bundle N of the planar locus is a twist of S3Q∨ by a line bundle L (over C).
It is still not clear to the author how to obtain L from this faster without more effort. An
attempt to use N ∼= S3Q∨ ⊗ L would be to compute its determinant and to apply the
adjunction formula, but this leads at most to understanding L⊗4 better.
Since the interest lies in more general algebraically closed fields k = k anyway, it makes
indeed sense to prove Theorem 3.16 first and then deduce from (12) thatN ∼= S3Q∨⊗detQ
like it is done in Corollary 3.17, i.e. that L = detQ. Then P(N ∨) ∼= P(S3Q) follows (not
only over C), generalizing the result in [Gö94].

Remark 3.19. Apparently, the normal bundle sequence (12) does not depend on the
dimension d = dimX . Intuitively, this is related to the fact that any length 3 subscheme
of X is contained in a plane (assuming the existence of local, formal coordinates).
It seems likely that (12) allows for a deeper interpretation from a deformation-theoretic
point of view in the following sense:
The sheafQ⊗S2Q∨ = Hom(S2Q,Q) locally describes deformations of a planar subscheme
to other length 3 subschemes inside a plane containing it. This deformation space contains
Q∨ ∼= Hom(Q,OG), corresponding intuitively to deformations of planar subschemes inside
a plane that only change the underlying point of X .
It is an interesting question whether the global sequence (12) above can also be obtained
the other way around, starting with the local deformation-theoretic description.

4. The functors Φα

The normal bundle computed in Theorem 3.16 and Corollary 3.17 is the key to examine

certain relative Fourier–Mukai transforms along the roof X
p
←− G

ι
−→ X [3].

12These are the only cases of interest, cf. Conjecture (3) for d ≤ 2.
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Definition 4.1. The functors Db(X) → Db(X [3]), F• 7→ ι∗(Σ
αQ∨ ⊗ p∗F•), are denoted

by Φα. Here α = (α1, α2) is a partition of an integer ≤ 2 · (d− 2), visualizable as a Young
diagram with at most two rows and at most d− 2 columns, i.e. 0 ≤ α2 ≤ α1 ≤ d− 2.

Remark 4.2. Working with Q∨ instead of K is way easier since Q∨ only has rank 2, hence
Young diagrams with less rows occur. The upcoming calculations with Schur functors and
Young diagrams all rely on Appendix A. It is important to assume char k = 0 from now
on to avoid representation-theoretic difficulties.

4.1. An auxiliary lemma. Let G = G(2, d) be the Grassmannian of 2-dimensional
quotients (occuring as fibres of p : G→ X) and let Q be the tautological quotient bundle
on G. The notation α ≺ β is used for the total order on Young diagrams explained in
Remark A.7 of the appendix, in particular |β| < |α| ⇒ α ≺ β and α ≺ β ⇒ |β| ≤ |α|.

Lemma 4.3. Let α ≺ β or α = β. Then the cohomology H∗(G,∧qN ′ ⊗Σ−βQ∨ ⊗ΣαQ∨)
vanishes in every degree for all integers q > 0 provided that α1 − β2 ≤ d − 5. Here N ′ is
the restriction of the normal bundle of ι : G →֒ X [3] to a fibre G of p : G→ X.

Let λα = α1 − α2 and λβ = β1 − β2. Lemma 4.3 will make use of the identity

H∗
(
G,∧qN ′ ⊗ Σ−βQ∨ ⊗ ΣαQ∨

)
=

min{λα,λβ}⊕

γ=0

H i
(
G,∧qN ′ ⊗ Σα1−β2−γ,α2−β1+γQ∨

)
,(15)

see the proof of Lemma A.10. The abbreviation Σa,bQ∨ = Σα1−β2−γ,α2−β1+γQ∨ is used and
Lemma A.10 also shows that α ≺ β ⇒ 1 ≤ a ≤ d − 2. By assumption, even a ≤ d − 5
holds. Observe that α ≺ β and α = β both imply that d ≥ 5, so Corollary 3.17 applies.

Proof of Lemma 4.3. Recall that on each fibre of p, there is a short exact sequence13

0 −→ Q∨ −→ Q⊗ S2Q∨ −→ N ′ −→ 0 =⇒ N ′ ∼= S3Q∨ ⊗ detQ(16)

obtained as the restriction of (12). Let q = 1. Then N ′ ⊗ Σa,bQ∨ is isomorphic to

S3Q∨ ⊗ Σ(a−b,0)Q∨ ⊗ detQ∨⊗(b−1)

∼= Σ(a+2,b−1)Q∨ ⊕ Σ(a+1,b)Q∨ ⊕ Σ(a,b+1)Q∨ ⊕ Σ(a−1,b+2)Q∨, a ≤ d− 5,

according to Pieri’s formula A.4. Here Σ(a+1,b)Q∨ only shows up if a − b ≥ 1, Σ(a,b+1)Q∨

only shows up if a− b ≥ 2 and Σ(a−1,b+2)Q∨ only shows up if a− b ≥ 3. This makes sense
for α ≺ β and also for α = β, where in the latter case the summands in the decomposition
of N ′ ⊗ Σk,−kQ∨ only show up if k > 0 (respectively k > 1). It has to be excluded that
a− 1 = 0 in the case where α1 − β2 − α2 + β1 − 2γ = a− b ≥ 3:
Note that α2 − β1 ≥ β2 − α1 because α ≺ β ⇒ |α| ≥ |β| or α = β. Therefore

a = α1 − β2 − γ ≥ 3 + α2 − β1 + γ = 3 + b

≥ 3 + β2 − α1 + γ = 3− a,

hence 2a ≥ 3, implying a > 1. Corollary A.9 yields H∗(G,N ′⊗Σa,bQ∨) = 0 if α ≺ β and
also if α = β (where a = k = −b).

13For the calculations where q ∈ {2, 4}, the short exact sequence is just as useful as Corollary 3.17.
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The next easy case is q = 4. Note that ∧4N ′ ∼= (detQ∨)⊗2 by Lemma A.11. Consequently,
∧4N ′ ⊗Σa,bQ∨ ∼= Σa+2,b+2Q∨. Since 1 ≤ a ≤ d− 5 if α ≺ β, obviously 1 ≤ a+ 2 ≤ d− 2.
Therefore H∗(G,∧4N ′ ⊗ Σa,bQ∨) = 0 by Corollary A.9. This also works if α = β and
∧4N ′ ⊗ Σk,−kQ∨ ∼= Σk+2,−k+2Q∨ for 0 ≤ a = k ≤ d− 5.
The case q = 2 is where the assumption α1 − β2 ≤ d − 5 will really be exploited. There
is a filtration of second exterior powers for (16) [Ha77, Exc. II.5.16] that reads as follows
after tensoring with Σa,bQ∨ (or Σk,−kQ∨ if α = β).

0 −→ F 1 ⊗ Σa,bQ∨ −→ ∧2(S2Q∨ ⊗Q)⊗ Σa,bQ∨ −→ ∧2N ′ ⊗ Σa,bQ∨ −→ 0

0 −→ detQ∨ ⊗ Σa,bQ∨ −→ F 1 ⊗ Σa,bQ∨ −→ Q∨ ⊗N ′ ⊗ Σa,bQ∨ −→ 0

The term ∧2(S2Q∨ ⊗Q) decomposes as

∧2(S2Q∨ ⊗Q) ∼= (Σ3,−1Q∨)⊕2 ⊕ (Σ1,1Q∨)⊕2 ⊕ S2Q∨(17)

according to Lemma A.12. Step by step, it is now shown that all cohomology of the objects
in the filtration vanishes. Consider the second short exact sequence first.

• Since detQ∨⊗Σa,bQ∨ ∼= Σa+1,b+1Q∨ and 1 ≤ a+ 1 ≤ d− 2, this locally free sheaf
has no cohomology at all on G (Corollary A.9).
• Next comes the cohomology of Q∨ ⊗ N ′ ⊗ Σa,bQ∨, which is computed using the
decomposition of N ′ ⊗ Σa,bQ∨ derived in the previous step q = 1, i.e.

Q∨ ⊗N ′ ⊗ Σa,bQ∨ ∼= Q∨ ⊗
(
Σ(a+2,b−1)Q∨ ⊕ Σ(a+1,b)Q∨ ⊕ Σ(a,b+1)Q∨ ⊕ Σ(a−1,b+2)Q∨

)
.

Tensoring with Q∨ yields Q∨ ⊗ Σm,nQ∨ ∼= Σm+1,nQ∨ ⊕ Σm,n+1Q∨ in general, so
that the only distinct summands in the decomposition of Q∨ ⊗N ′ ⊗ Σa,bQ∨ are

Σa+3,b−1Q∨, Σa+2,bQ∨, Σa+1,b+1Q∨, Σa,b+2Q∨ and Σa−1,b+3Q∨.(18)

Some summands may not show up if a − b is too small, in particular Σa−1,b+3Q∨

only occurs for a− b ≥ 4. In the special case α = β where Σa,bQ∨ = Σk,−kQ∨, this
means that the last two (one) are omitted if k = 0 (k = 1). As in the proof of
q = 1, a− b ≥ 3 leads to a > 1. Now Corollary A.9 can be applied once more to
finish the argument and to conclude that all in all, H∗(G,Q∨⊗N ′⊗Σa,bQ∨) = 0.

It follows that in the filtration above, F 1 ⊗ Σa,bQ∨ has no cohomology on G.

• What remains to show is the vanishing ofH∗(G,∧2(S2Q∨⊗Q)⊗Σa,bQ∨). According
to (17), this leads to showing

H∗(G,Σ3,−1Q∨ ⊗ Σa,bQ∨) = H∗(G, detQ∨ ⊗ Σa,bQ∨) = H∗(G,Σ2,0Q∨ ⊗ Σa,bQ∨) = 0.

The middle cohomology has been dealt with before. Observe that Σ2,0Q∨⊗Σa,bQ∨

is isomorphic to Σa+2,bQ∨ ⊕ Σa+1,b+1Q∨ ⊕ Σa,b+2Q∨, the last two summands only
showing up if a− b ≥ 1, respectively a − b ≥ 2. If α = β and Σa,bQ∨ = Σk,−kQ∨,
this means that only the first summand shows up if k = 0. These objects have no
cohomology on G by Corollary A.9. Finally, it is an easy consequence of Pieri’s
formula that the summands in the decomposition of Σ3,−1Q∨ ⊗ Σa,bQ∨ are the
same as in (18). Using α1 − β2 ≤ d − 5, their cohomologies have already been
shown to vanish with the aid of Corollary A.9.
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Finally, let q = 3. Notice that ∧3N ′ ∼= detN ′ ⊗ (N ′)∨, cf. [Ha77, Exc. II.5.16(b)]. Using
detN ′ ∼= (detQ∨)⊗2, (N ′)∨ ∼= S3Q ⊗ detQ∨ as well as the rules A.4 and A.5, it follows
that ∧3N ′ ∼= S3Q∨. What remains to show is H∗

(
G, S3Q∨ ⊗ Sa−bQ∨ ⊗ (detQ∨)⊗b

)
= 0.

This can be done by applying Pieri’s formula. Firstly, this means observing

S3Q∨ ⊗ Sa−bQ∨ ⊗ (detQ∨)⊗b ∼= Σa+3,bQ∨ ⊕ Σa+2,b+1Q∨ ⊕ Σa+1,b+2Q∨ ⊕ Σa,b+3Q∨,

with the second (third, fourth) summand occuring only if a− b ≥ 1 (≥ 2,≥ 3) and α ≺ β.
For α = β and Σa,bQ∨ = Σk,−kQ∨, only the first summand shows up if k = 0 and the last
one is missing if k = 1. Corollary A.9 applies. All cases q = 1, 2, 3, 4 are finished. �

4.2. Fully faithfulness.

Theorem 4.4 (Thm. 1.1). Let d ≥ 5 and let α be a partition inscribed into a rectangle
with at most 2 rows and d−2 columns. Suppose λα = α1−α2 ≤ d−5. Then the assumptions
of Proposition 2.7(1) are fulfilled and Φα : Db(X)→ Db(X [3]) is fully faithful.

Proof. Let N ′ be the restriction of NG/X[3] to a fibre of p : G → X . Before applying
Proposition 2.7, note that the kernel ΣαQ∨ of the Fourier–Mukai transform Φα restricts
to ΣαQ∨ on the fibres of p and that ΣαQ⊗ΣαQ∨ is naturally isomorphic to

⊕λα

k=0Σ
k,−kQ∨

(Lemma A.10). The goal is to show that on the fibres G = p−1(P ),

Hom(ΣαQ∨,ΣαQ∨) = k and Hp(G,∧qN ′ ⊗ ΣαQ⊗ ΣαQ∨) = 0 for p+ q > 0.

This leads to showing that the vector space H0(G,
⊕

Σk,−kQ∨) is one-dimensional and
that Hp(G,∧qN ′ ⊗ Σk,−kQ∨) = 0 for p+ q > 0 and 0 ≤ k ≤ λα ≤ d− 5.
The one-dimensionality as well as the case q = 0 follow from exceptionality of the bundles
ΣαQ∨ proven in Lemma A.10. The rest is a direct consequence of Lemma 4.3. �

Remark 4.5. The author suspects Theorem 4.4 to remain true in the case of a smooth
quasi -projective variety X ,14 though the above proof needs to be modified if X is not
projective since it relied implicitly on the Bondal–Orlov-criterion 2.2:
Theorem 2.2 uses that skyscraper sheaves form a spanning class in Db(X) (Remark 2.3),
which remains true in the quasi-projective regular case. But this is only useful for testing
fully-faithfulness if the functor in question has both adjoints [St18, Tag 0G25], guaranteed
for example when working with projective varieties.

4.3. Orthogonality. It is time to relate different functors Φα,Φβ : Db(X) → Db(X [3])
to each other. The usual notation α ≺ β from Remark A.7 is used for the total order on
the Young diagrams of interest.

Theorem 4.6 (Thm. 1.2). For two partitions α ≺ β of an integer ≤ 2(d − 2) such
that α1 − β2 ≤ d − 5 holds, HomDb(X[3])

(
Φβ(D

b(X)),Φα(D
b(X))

)
= 0. In particular,

considering all fully faithful functors Φα from Theorem 4.4 with the additional restriction
that α2 ≥ 3 yields a collection of

(
d−3
2

)
semi-orthogonal subcategories of Db(X [3]).

Recall in advance that on the absolute Grassmannian G = G(2, d) with tautological
quotient bundle Q, Ext∗(ΣβQ∨,ΣαQ∨) = 0 for partitions α ≺ β. This is Example A.10, a
special case of Kapranov’s famous result A.6.

14Potentially using a smooth compactification and base change arguments for FM transforms.
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Proof of Theorem 4.6. The proof is very similar to the one of Theorem 4.4. According to
Proposition 2.7(2), the first thing to check is that Hom(ΣβQ∨,ΣαQ∨) = 0 on each fibre G
of p : G→ X . This is part of Lemma A.10, i.e. exceptionality of the sequence {ΣαQ∨}α.
Let again N ′ be the restriction of NG/X[3] to G. The next thing to check is

Hp
(
G,∧qN ′ ⊗ Σ−βQ∨ ⊗ ΣαQ∨

)
=:

⊕
Hp

(
G,∧qN ′ ⊗ Σa,bQ∨

)
= 0 for p+ q > 0,

where Σa,bQ∨ = Σα1−β2−γ,α2−β1+γQ∨, cf. (15). This is proven in Lemma 4.3 for q > 0. If
q = 0, the rest of the statement follows from Ext∗(ΣβQ∨,ΣαQ∨) = 0. �

5. Application to generalized Kummer Varieties

Recall the definition of relative Fourier–Mukai transforms over a base scheme S given in
Section 2.1. With Theorem 4.4 in mind, the question arises whether restricting (or more
generally base-changing) a fully faithful FM transform yields again a fully faithful FM
transform between interesting smooth projective varieties. More precisely:

Starting with a roof X
p
←− V

q
−→ Y between projective varieties and a relative FM

transform Φ : Db(X) → Db(Y ) with kernel K• ∈ Db(V ), suppose that there exists a
target variety S with sufficiently well-behaved morphisms X → S and Y → S so that
(V → X → S) = (V → Y → S), inducing a proper morphism ι : V → X ×S Y .
If it can be shown that Φ = ΦRι∗K• being fully faithful implies the same for a base change
ΦT , it will follow that there is an embedding Db(X×S T ) →֒ Db(Y ×S T ). Optimally, this
procedure also preserves semi-orthogonality of the images of several FM transforms.

Definition 5.1 ([Ku07, Sect. 2.8]). Let Φ = Rq∗
(
K•⊗L Lp∗(−)

)
: Db(X)→ Db(Y ) with

kernel K• ∈ Db(X ×S Y ) be a relative FM transform over a base S. Fix a base change
morphism φ : T → S. The base change of Φ along φ is defined via the following cartesian
diagram as ΦT = Rq∗(Lj

∗K• ⊗L p∗(−)) : D(XT )→ D(YT ).

XT ×T YT YT

X ×S Y Y

XT T

X S

q

p

j

p

φ

Remark 5.2. The notations XT = X ×S T and YT = Y ×S T are used. If T = Spec k
corresponds to a k-point s ∈ S(k), this construction leads to the restriction of Φ to s,
denoted by Φs : D(Xs)→ D(Ys) and also defined in [KM22, Sect. 1.3]. In Definition 5.1,
it is not claimed that the base change of Φ is well-defined on the level of bounded derived
categories (unless additional restrictions on the involved morphisms are imposed).

Let char k = 0. Recall that in the setting of Section 4, Φα is the FM transform along
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X
[3]
(3) X [3]

X X(3)

�
ρ

∆123

with kernel given by the pushforward of ΣαQ∨ under the closed embedding of G(2,ΩX)

into X
[3]
(3),red ⊆ X

[3]
(3), cf. Proposition 3.5. The morphisms ∆123 and ρ are certainly not

smooth in general, e.g. the Hilbert–Chow morphism usually has non-smooth fibres iso-
morphic to Hilbn

d on the one hand as well as zero-dimensional fibres.
Nonetheless, In the case of an abelian variety X = A, there is an S3-invariant summation
morphism Σ : A3 → A, descending to Σ : A(3) → A. Together with the multiplication
µ3 = Σ ◦∆123 : A→ A by 3, this yields a commutative diagram

A
[3]
(3) A[3]

A A.

Σ◦ρ

µ3

Now G(2,ΩA) ∼= A×G(2, d) →֒ A
[3]
(3) → A×µ3,A A

[3] remains15 a closed embedding since

G(2,ΩA)→ A×µ3,A A
[3] →֒ A× A[3]

is a closed embedding as observed before. Since char k = 0 in this section, µ3 is smooth
[St18, Tag 0BFH]. The fibre of µ3 : A → A over 0 ∈ A is a collection of 32d points since
k = k as well [St18, Tag 03RP]. The fibre of Σ ◦ ρ : A[3] → A is part of Definition 5.3:

Definition 5.3. Let A be an abelian variety (not necessarily a surface) over an alge-
braically closed field of characteristic zero. The generalized Kummer variety Kn(A) is
defined by the following fibred product.

Kn(A) A
[n]
red

{0} A.

� Σ◦ρ

Remark 5.4. Defined this way, Kn(A) is smooth for n ≤ 3 since then A
[n]
red = A[n] and

Σ ◦ ρ is generically smooth. Equipping A[n] with a group action coming from addition on
A that makes Σ ◦ ρ equivariant, smoothness of Σ ◦ ρ everywhere follows.

Now that only smooth morphisms are involved, it becomes more plausible that the steps
alluded at the beginning of this section are actually feasible.

Proposition 5.5. Suppose that there is a cartesian diagram of projective k-schemes

X ×S Y Y

X S.

p

q

πY

πX

15Using e.g. the characterization [GW20, Cor. 12.92] of closed embeddings.

https://stacks.math.columbia.edu/tag/0BFH
https://stacks.math.columbia.edu/tag/03RP
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Suppose furthermore that πX and πY are smooth morphisms and that S is smooth.

(1) If Φ : Db(X)→ Db(Y ) is a fully faithful FM transform with bounded kernel K• as
above, then the restrictions

Φs : D
b(Xs)→ Db(Ys)

for all s ∈ S(k) are fully faithful, cf. Definition 5.1 and Remark 5.2.
(2) Suppose that there is a semi-orthogonal sequence arising from fully faithful functors

Φi : Db(Xi) → Db(Y ) with bounded kernels K•
i for i = 1, . . . , n, and all pairs

(Xi, Y ) and projections obey the assumptions from above. Then this induces semi-
orthogonal sequences

(
Φi(D

b(Xi,s))
)
i
of Db(Ys) for all s ∈ S(k).

The statements remain valid for the restrictions to open subsets ΦU : Db(XU)→ Db(YU).

A way to prove Proposition 5.5 is to consider adjoints of FM transforms. This has been
done in [Ku06, Prop. 2.44] and many of the results are summarized in [Ku07].

Proof of Proposition 5.5. (1) According to [Ku07, Prop. 2.39], whether a base change ΦT

along a morphism φ : T → S is fully faithful boils down to the question whether φ is
faithful for the pair (X, Y ), which can be checked as follows [Ku07, 2.35 - 2.36].
The morphism φ has to be faithful with respect to πX , πY and πX ◦p = πY ◦ q. This holds
if φ is flat, proving already the case T = U ⊆ S. For the case of the closed embedding
T = {s} →֒ S, it is enough to observe [Ku07, Lemma 2.36] that T is smooth, X, Y, S are
smooth, πX and πY are smooth by assumption, πX ◦p = πY ◦q is smooth as a composition
of smooth morphisms, and thus X ×S Y is also smooth. In particular, all involved fibre
products are of the expected dimension. The claim follows.
(2) There is a result on base change of full semi-orthogonal sequences [Ku07, Thm 2.40],
i.e. semi-orthogonal decompositions, that does not apply here (see however Lemma 2.6).
The necessary technical statement whose assumptions are fulfilled with the same argu-
ments as in (1) can be found in [Ku06, Prop. 2.44(i)]. �

Proposition 5.6 (Thm. 1.4). Let A be an abelian variety of dimension d over an alge-
braically closed field of characteristic zero. Every fully faithful Fourier–Mukai transform
Φ : Db(A)→ Db(A[3]) from Theorem 4.4 induces 32d exceptional objects in Db(K3(A)). In
particular, Theorem 4.6 yields an exceptional sequence of length

(
d−3
2

)
· 32d in Db(K3(A)).

Proof. This follows directly from Proposition 5.5 and from the considerations at the be-
ginning of this section. �

Remark 5.7. Notice that the same reasoning can be applied to the semi-orthogonal de-
composition [KPS18, Thm. 4.1(ii)] of A[2] to obtain exceptional objects inside Db(K2(A)).
A more direct approach to obtain a semi-orthogonal decomposition of Db(K2(A)) is for-
mulated in [KPS18, Cor. 6.1].

Appendix A. Cohomology on Grassmannians

Let G = G(k, V ) be the Grassmannian of k-dimensional quotients of a vector space
V . In this appendix, the necessary material needed to understand the construction of
Kapranov’s strong, full exceptional sequence [Ka85] in the derived category Db(G) is
briefly explained and summarized without proofs. This includes parts of the representation
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theory of the general linear group GLd(k), calculations with Schur functors Σα and the
application of the Borel–Weil–Bott theorem for GLd(k) to Grassmannians.

Theorem A.1 ([ABW82], [Wey03, Thm. 2.2.9-2.2.10]). Let char k = 0 and V = kd.
Then the group GLd(k) is linearly reductive, and any irreducible rational representation is
of the form ΣαV ⊗ (det V )⊗m. Here m ∈ Z and α is a partition consisting of at most d−1
non-negative integers. This becomes false if k is an infinite field of positive characteristic.

There are different ways to define the Schur functors Σα, and V = kd above can be replaced
by a finite free module over a commutative ring or even by more general modules. The
following overview includes the most common definitions. Assume first that α contains
only non-negative integers αi ≥ 0. Write |α| =

∑
αi and α

′ for the transpose partition.

• In [FH91, Ch. 4 & 6], the representation theory of the symmetric group Sm over
k = C is explained first before defining Schur functors as images of symmetrizing
operators. More precisely, Sm acts on V ⊗m from the right and the Young sym-
metrizer cα ∈ k[Sm] defines the GLd(k)-representation ΣαV := V ⊗mcα. That all
irreducible complex representations of GLd(k) arise via Schur functors and powers
of the determinant representation is proven in [FH91, Ch. 15].
• In [Ful97, Ch. 8], Schur functors are characterized via universal properties and
defined as quotients of ∧µ1V ⊗ . . .⊗∧µrV , where µ = α′ is the transpose partition.
Here V can be any module over a commutative ring k. The representation theory
of GLd(k) for k = C is summarized with reference to [FH91].
• In [Wey03], free modules over any commutative ring are treated, but the notational
conventions are different. The relationship is ΣαV = LµV , µ = α′.
The module LµV is defined similarly to [Ful97] and later shown to be free again,
as well as isomorphic to the image of a Schur map φµ. The definition of this map is
somewhat combinatorial, for details see [Wey03, p. 37]. The relationship to [FH91]
is explained in [Wey03, Sect. 2.2].
• An even more general exposition can be found in [ABW82]. Schur functors are
first defined in the free case as images of Schur maps and afterwards described
as quotient modules (more precisely: as cokernels) [ABW82, Sect. II.2]. The same
is done in [ABW82, Sect. V.2] for finitely generated modules, and the cokernel
description allows to conclude that Schur functors commute with base change.

In characteristic zero, the definition from [FH91] seems to be the most amenable one.
Note that Σ(m)V = SmV is the symmetric power whereas the transpose partition yields
Σ(1,...,1)V ∼= ∧mV . It has been mentioned several times that the formation of Σα is functo-
rial, preserves free modules and commutes with base change. Over a field of characteristic
zero, a dimension formula can be found in [FH91, Thm. 6.3]. In particular, ΣαV = 0 if α
has more than d = dimV entries.16 Let k be a commutative ring of characteristic zero.

Theorem A.2. Consider two free modules V,W over k.

(1) [Wey03, Cor. 2.3.3] There are isomorphisms Sm(V ⊗W ) ∼=
⊕

|α|=mΣαV ⊗ ΣαW

and ∧m(V ⊗W ) ∼=
⊕

|α|=mΣαV ⊗ Σα′
W , natural in V and W .

16This is true in arbitrary characteristic, cf. the definition in [Wey03, Sect. 2.1].
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(2) [Wey03, Cor. 2.3.4] The tensor product of Schur functors ΣαV ⊗ ΣβV decom-
poses into

⊕
|ν|=|α|+|β|(Σ

νV )⊕Nαβν , where Nαβν are the Littlewood–Richardson coef-

ficients (see also [FH91, App. A.1]). A special case where β = (m) or β = (1, . . . , 1)
are Pieri’s formulas [Wey03, Cor. 2.3.5], explained in Example A.4.

(3) [Wey03, Prop. 2.3.8 & 2.3.9] The inner plethysm problem is solvable in the follow-
ing easy cases: Sm(S2V ), Sm(∧2V ), ∧m(S2V ), ∧m(∧2V ). In more detail:

Sm(S2V ) ∼=
⊕

|α|=2m,
αi even

ΣαV, Sm(∧2V ) ∼=
⊕

|α|=2m,
α′
i even

ΣαV,

∧m(S2V ) ∼=
⊕

|α|=2m,
α=(u|v),
vi=ui+1

Σα′

V, ∧m(∧2V ) ∼=
⊕

|α|=2m,
α=(u|v),
ui=vi+1

Σα′

V,

using the hook notation α = (u|v) of [Wey03] in the last two identities.

Remark A.3. In positive characteristic, items (1) and (2) in Theorem A.2 only remain
true with filtrations instead of direct sums.

Example A.4 (Pieri’s formulas). Consider β = (m) and ΣαV ⊗ΣβV = ΣαV ⊗SmV first.
Pieri’s formulas state that this tensor product decomposes into GLd(k)-representations
ΣνV , where ν is obtained from α by adding m boxes with no two in the same column.
Similarly for β ′ = (1, . . . , 1), where ΣαV ⊗ Σβ′

V = ΣαV ⊗ ∧mV decomposes into ΣνV
with ν obtained by adding m boxes with no two in the same row.
In particular, tensoring with det V adds one box to α in each row. For example, let
d = dimV = 3 and α = (2, 1). Then ΣαV ⊗ S2V ∼= Σ4,1,0V ⊕ Σ3,2,0V ⊕Σ3,1,1V ⊕ Σ2,2,1V :

and similarly ΣαV ⊗ ∧2V ∼= Σ3,2,0V ⊕ Σ3,1,1V ⊕ Σ2,2,1V (notice Σ2,1,1,1V = 0), visualized
by adding the coloured boxes.

To obtain all rational representations of GLd(k), (duals of) the determinant representation
det V have to be considered. In view of Pieri’s formula, this allows to define ΣαV for any
non-increasing sequence (αi)i of integers: Σ

αV := Σα+mV ⊗ det V ⊗−m, where (α+m)i is
given by αi+m. With this definition, the ΣαV are precisely the representations of GLd(k)
with highest weight α ∈ Zd, cf. [Ful97, Ch. 8.2], [Ka85, 0.2] and [Wey03, p. 54].

Lemma A.5. Let char k = 0 and α = (α1, . . . , αr). Then (ΣαV )∨ ∼= Σα(V ∨) ∼= Σ−αV ,
where −α denotes the sequence of integers (−αr, . . . ,−α1).

Proof. This is mentioned in [Ka85]. For a proof, see [ABW82, Prop. II.4.1 & II.4.2]. �

As put in [Wey03, p. 66], “all the formulas proven [above] are functorial, so they extend
to vector bundles”. Though this is certainly true, it is worth mentioning that the concept
of Schur functors can be applied to all quasi-coherent sheaves or can (and maybe should)
be categorified. For a quasi-coherent sheaf F on a ringed space X , ΣαF can be defined
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as the sheaf associated to the presheaf U 7→ ΣαΓ(U,F), using the definition of Schur
functors over arbitrary commutative rings. If X is a scheme, ΣαF is easily seen to be
quasi-coherent again (just like for symmetric or wedge powers), essentially because of the
compatibility of Σα with base change. Theorem A.2 also extends to sheaves and restricts
to the full subcategory of finite locally free sheaves. Returning to the Grassmannian
X = G = G(k, V ) of k-dimensional quotients and the tautological short exact sequence
(8), recall first of all the following classical result of Kapranov:

Theorem A.6. The derived category Db(G) possesses a full [Ka85, Prop. 1.4] and strong
exceptional collection [Ka85, Prop. 2.2] consisting of objects ΣαK (dually: Σα′

Q∨), where
α is a Young diagram with ≤ k columns and ≤ d− k rows.

Remark A.7 (The correct ordering). As explained in [BLvdB15], many different total
orderings α ≺ β on partitions yield an exceptional sequence. The important property
when considering ΣαQ∨ is that |β| < |α| implies α ≺ β, i.e. that partitions with more
entries occur first. On the subsets of partitions of same length (|α| = |β|), any total order
(e.g. the lexicographic one) can be chosen. With this convention, α ≺ β implies |β| ≤ |α|.

Fullness of the collection relies on a resolution of the diagonal ∆ ⊆ G×G, whereas strong
exceptionality involves computing Ext∗OG

(ΣβK,ΣαK) ∼= H∗(G,ΣαK ⊗ Σ−βK).

In general, the locally free sheaf ΣαK⊗Σ−βK (similarly for ΣαQ∨⊗Σ−βQ∨) decomposes
via the Littlewood–Richardson rule into sheaves ΣγK with −k ≤ γi ≤ k. Instead of ΣγK,
consider more generally the bundles ΣγK⊗ΣδQ∨. Kapranov first relates these bundles to
invertible sheaves Lα with α = (−γ, δ) on the full flag variety F lying over G = G(k, V )
[Ka85, 2.5]. The cohomology of Lα can then be computed using the following theorem.

Theorem A.8 (Borel–Weil–Bott for GLd [Wey03, Cor. 4.1.7]). Consider the cohomology
H∗(G,ΣγK⊗ΣδQ∨) ∼= H∗(F,Lα). Let ρ = (d, d−1, . . . , 2, 1) ∈ Zd be the Weyl vector and
consider α+ ρ ∈ Zd. If this sequence has two identical entries, the cohomology H∗(F,Lα)
vanishes completely. If not, reorder the sequence using a unique permutation σ of length
l = l(σ) to obtain a non-increasing sequence β := σ(α + ρ) − ρ. Then H∗(F,Lα) is
concentrated in degree l where it equals ΣβV ∨.

The statement concerning H∗(F,Lα) holds for all reductive algebraic groups H over an
algebraically closed field of characteristic zero after replacing F by H/B (B a Borel
subgroup containing a maximal torus T ), α by a character of T and the definition of Lα

by a more general one etc. See [Wey03, Ch. 4.3] or the summary in [Ku08, Rem. 3.2].

Corollary A.9. Let k = 2 and let Q be the tautological quotient bundle of rank 2 on
G = G(2, V ). Suppose that 1 ≤ a ≤ d− 2. Then H∗(G,Σa,bQ∨) = 0 in all degrees.

Proof. According to Theorem A.8, this follows from α = (0, . . . , 0, a, b) ∈ Zd and

α + ρ = (d, . . . , 3; a+ 2, b+ 1),

which contains a double entry if a+ 2 ∈ {3, . . . , d}. �

As an application, exceptionality in Theorem A.6 can be reproven easily for k = 2:

Lemma A.10 (Kapranov’s collection, rkQ = 2). Assume that k = 2. Then the ob-
jects {ΣαQ∨}α form a strong exceptional collection in the bounded derived category of the
Grassmannian G(2, d), where α is a Young diagram with ≤ d− 2 columns and ≤ 2 rows.
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Proof. The first step for proving exceptionality of the collection is to show

ExtiOG
(ΣβQ∨,ΣαQ∨) =

min{λα,λβ}⊕

γ=0

H i
(
G,Σα1−β2−γ,α2−β1+γQ∨

)

with λα = α1−α2 and λβ = β1−β2. This also yields (15). The vector bundle ΣαQ∨⊗Σ−βQ∨

can be rewritten as Σ(α1,α2)Q∨ ⊗ Σ(λβ ,0)Q∨ ⊗ (detQ∨)−β1. The product of the first two
factors decomposes into a direct sum according to Pieri’s formula since Σ(λβ ,0)Q∨ is the
λβ’th symmetric power. Afterwards β1 blocks are subtracted in each row from the obtained
Young diagrams in the decomposition due to (detQ∨)−β1 . A case distinction is made.
Suppose first that λα ≤ λβ. Then the Young diagrams corresponding to direct summands
in the decomposition of Σ(α1,α2)Q∨⊗Σ(λβ ,0)Q∨ result from adding λβ boxes to α, with no
two in the same column. More precisely, the summands are

Σ(α1+λβ ,α2)Q∨ ⊕ Σ(α1+(λβ−1),α2+1)Q∨ ⊕ . . .⊕ Σ(α1+(λβ−λα),α2+λα)Q∨,

and not more since the newly added boxes would then overlap column-wise. If on the
other hand λβ ≤ λα, one obtains a decomposition of the first two factors into

Σ(α1+λβ ,α2)Q∨ ⊕ Σ(α1+(λβ−1),α2+1)Q∨ ⊕ . . .⊕ Σ(α1,α2+λβ)Q∨.

Subtracting β1 everywhere yields the decomposition of ExtiOG
(ΣβQ∨,ΣαQ∨).

If α = β, then ExtiOG
(ΣαQ∨,ΣαQ∨) =

⊕λα

k=0H
i(G,Σk,−kQ∨). Only for k = 0, the coho-

mology H i(G,Σk,−kQ∨) = H i(G,OG) is non-zero in degree i = 0. All other summands
vanish for all i since then 1 ≤ k ≤ λα ≤ d− 2. Thus all ΣαQ∨ are exceptional.
If α 6= β, all sheaves Σa,bQ∨ = Σα1−β2−γ,α2−β1+γQ∨ in the above sum fulfill d− 2 ≥ a ≥ 1,
proving strong exceptionality of Kapranov’s sequence in this special case:
Assume |β| < |α|. If λα ≤ λβ, then a ∈ {α1 − β2, . . . , α1 − β2 − λα = α2 − β2}, and

d− 2 ≥ α1 ≥ α1 − β2 ≥ . . . ≥ α2 − β2 ≥ 1,

where α2 − β2 ≥ 1 holds because α2 ≤ β2 would lead to |β| < |α| ≤ α1 + β2, i.e. β1 < α1.
Summing up yields α2 + β1 < α1 + β2 or equivalently λβ < λα, a contradiction. The case
λβ ≤ λα works identically.
Next, assume that |β| = |α|. There are again two cases to handle and the question in the
first case is if indeed α2 − β2 ≥ 1. Assume first that λα ≤ λβ. If λα = λβ, then together
with |α| = |β| this implies α = β, a contradiction. Hence λα < λβ automatically. Assume
α2 ≤ β2. Then together with λα < λβ, it follows that

α1 + β2 < α2 + β1 ≤ β2 + β1 =⇒ α1 < β1.

But then |α| = α1 + α2 < β1 + β2 = |β|, a contradiction to |α| = |β|. The argument is
identical if λβ ≤ λα. By Corollary A.9, none of the Σa,bQ∨’s has any cohomology. �

The following lemmata were also used in the proofs of Theorem 4.4 and 4.6.

Lemma A.11. Recall the short exact sequence 0 → Q∨ → Q ⊗ S2Q∨ → N ′ → 0 (16).
There is an isomorphism detN ′ = ∧4N ′ ∼= (detQ∨)⊗2 ∼= Σ2,2Q∨ of locally free sheaves.
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Proof. Note first that detQ∨⊗detN ′ ∼= det(Q⊗S2Q∨) [Ha77, Exc. II.5.16]. Furthermore,
there is the general identity for finite locally free sheaves E and F

det(E ⊗ F) ∼= det(E)⊗ rkF ⊗ det(F)⊗ rkE ,

being a special case of Theorem A.2 (1). This implies that

detN ′ ∼= detQ⊗ (detQ)⊗3 ⊗ det(S2Q∨)⊗2 ∼= (detQ)⊗4 ⊗ det(S2Q∨)⊗2.

Claim. There is an isomorphism detS2Q∨ = ∧3S2Q∨ ∼= (detQ∨)⊗3. This implies the
statement of the lemma since then detN ′ ∼= (detQ)⊗4 ⊗ (detQ∨)⊗3·2 ∼= (detQ∨)⊗(6−4).
Proof of the Claim. Computing a decomposition into irreducibles of ∧3S2Q∨ is an instance
of Theorem A.2 (3). The partitions α occuring in the decomposition are given in hook
notation [Wey03, pp. 8–9] by sequences (u1 > . . . > ur|v1 > . . . > vr) with ui > 0 and
vi = ui + 1. The ui (resp. vi) stand for the diagonal arm (resp. leg) lengths of the Young
diagram associated to α. In this fashion, u1 = 1 leads to α = (1|2) = (1, 1), so that
|α| = 2. Next, let u1 = 2. Only partitions with |α| = 6 are needed, and indeed the only
such partition is (2, 1|3, 2) = (2, 2, 2).17 This means ∧3S2Q∨ ∼= Σ(2,2,2)′Q∨ ∼= Σ3,3Q∨. �

Lemma A.12. There is an isomorphism of locally free sheaves between ∧2(S2Q∨ ⊗ Q)
and the direct sum (Σ3,−1Q∨)⊕2 ⊕ (Σ1,1Q∨)⊕2 ⊕ S2Q∨.

Proof. Theorem A.2 will be applied several times, first of all (1) to obtain

∧2(S2Q∨ ⊗Q) ∼=
(
S2S2Q∨ ⊗ ∧2Q

)
⊕
(
∧2S2Q∨ ⊗ S2Q

)
.

By Theorem A.2 (3), S2S2Q∨ ∼= S4Q∨ ⊕Σ2,2Q∨ and also ∧2S2Q∨ ∼= Σ(2,1,1)′Q∨ ∼= Σ3,1Q∨

like in the proof of Lemma A.11. Therefore

S2S2Q∨ ⊗ ∧2Q ∼= S2S2Q∨ ⊗ (detQ∨)⊗−1 ∼= Σ3,−1Q∨ ⊕ Σ1,1Q∨

and ∧2S2Q∨ ⊗ S2Q ∼= ∧2S2Q∨ ⊗ S2Q∨ ⊗ (detQ∨)⊗−2 decomposes into

Σ3,−1Q∨ ⊕ Σ2,0Q∨ ⊕ Σ1,1Q∨ = Σ3,−1Q∨ ⊕ S2Q∨ ⊕ Σ1,1Q∨.

Collecting all summands together yields the claim of the lemma. �

Lemma A.13 is needed in Appendix B. It states that the tangent bundle of G is simple.

Lemma A.13. The cotangent bundle of the Grassmannian fulfills EndOG
(ΩG/k) ∼= k · id.

Proof. Note that by Proposition B.2 (2), EndOG
(ΩG/k) ∼= H0(G,K⊗K∨⊗Q⊗Q∨). Using

Lemma A.5 and Pieri’s formula, there is an isomorphism

K ⊗K∨ ⊗Q⊗Q∨ ∼=
(
OG ⊕ Σ(1,0,...,0,−1)K

)
⊗

(
OG ⊕ Σ(1,0,...,0,−1)Q

)
, rkK, rkQ ≥ 2.

Thus EndOG
(ΩG/k) splits up into the direct sum of H0(G,OG), H

0(G,Σ(1,0,...,0,−1)K),

H0(G,Σ(1,0,...,0,−1)Q∨) and H0(G,Σ(1,0,...,0,−1)K ⊗ Σ(1,0,...,0,−1)Q∨) if rkK, rkQ ≥ 2.
Of course, H∗(G,OG) ∼= k[0]. The bundles Σ(1,0,...,0,−1)K and Σ(1,0,...,0,−1)Q∨ have no coho-
mology at all18 since (1, 0, . . . , 0,−1) contains the positive entry 1. It remains to compute

17Since |α| = 4 for (2|3) = (2, 1, 1) and |α| > 6 for u1 ≥ 3.
18The bundles may not even show up if K, respectively Q is a line bundle.
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H0(G,Σ(1,0,...,0,−1)K ⊗ Σ(1,0,...,0,−1)Q∨) using Theorem A.8 if rkK, rkQ ≥ 2. Note that

α = (1, 0, . . . , 0,−1; 1, 0, . . . , 0,−1) ∈ Zd−k × Zk,

α + ρ = (d+ 1, d− 1, . . . , k + 2, k; k + 1, k − 1, . . . , 2, 0).

No entries of α + ρ coincide and the σ ∈ Sd from Theorem A.8 is the transposition
permuting the entries k and k + 1 of α+ ρ. Hence H∗(G,Σ(1,0,...,0,−1)K ⊗ Σ(1,0,...,0,−1)Q∨)
lives only in degree l(σ) = 1, where it equals Σ(1,0,...,0,−1)V ∨. To sum up,

Ext∗OG
(ΩG/k,ΩG/k) ∼= k[0]⊕ Σ(1,0,...,0,−1)V ∨[−1] if rkK, rkQ ≥ 2,

and EndOG
(ΩG/k) = Ext0OG

(ΩG/k,ΩG/k) is one-dimensional in any case. Note that neither
the cotangent nor the tangent bundle on the GrassmannianG is rigid if rkK, rkQ ≥ 2. �

Appendix B. Tangent Spaces, Differentials and Relative Ext

The subsections in this Appendix can be understood independently from each other.

B.1. Derived pullbacks of short exact sequences associated to normal bundles.

Lemma B.1. Let Y be a reduced, local complete intersection inside a smooth variety X.
If J denotes the ideal sheaf of the closed immersion i : Y →֒ X, the derived pullback Li∗

applied to 0→ J 2 → J → i∗(N ∨
Y/X)→ 0 induces a long exact sequence

∧2N ∨
Y/X

κ
−→ N ∨⊗2

Y/X −→ S2N ∨
Y/X −→ N

∨
Y/X

∼
−→ N ∨

Y/X −→ 0

such that κ is the natural homomorphism κ : a ∧ b 7→ a⊗ b− b⊗ a.

Proof. Locally around each point P ∈ X , Y is the vanishing locus V (s) of a (regular,
see [Ha77, Thm. 8.21A(c)]) section s ∈ H0(E) for some locally free sheaf E on an open
neighbourhood U of P . This implies existence of a Koszul resolution on U . Shrinking U
further, it can be assumed that U is affine and also that E ∼= O⊕c

U , where c = codim(Y,X).
Let i′ be the restriction of i to U ∩ Y →֒ U . Since restriction to an open subscheme is
exact, there are functorial isomorphisms

(L1i∗J )|U∩Y
∼= L1i′

∗
J|U and (L1i∗i∗N

∨
Y/X)|U∩Y

∼= L1i′
∗
(i′∗N

∨
U∩Y/U),

so the whole question becomes affine-local. By definition, L1i′∗
(
J|U → i′∗N ∨

U∩Y/U

)
can be

calculated from free resolutions on U , even explicitly in the current situation: Resolve J|U

by the truncated Koszul complex and i′∗N ∨
U∩Y/U

∼= E∨ ⊗ OU∩Y by the standard Koszul

complex tensored with E∨ ∼= O⊕c
U after choosing a basis {ei}i for O

⊕c
U . This gives

. . . ∧3E∨ ∧2E∨ E∨ J|U 0

. . . E∨ ⊗ ∧2E∨ E∨ ⊗ E∨ E∨ i′∗N
∨
U∩Y/U 0,

=

where commutativity of the right square is tautologically fulfilled. Only the dashed arrow
has to be constructed.19 To this end, just send ei∧ej 7→ ei⊗ej−ej⊗ei, which works since
the horizontal arrows are contraction with the components of the regular section s. �

19This suffices because either the next arrows can be constructed in an identical fashion or one uses that
on the affine scheme U , projective resolutions exist (only the degree (−1)-part is of interest here).
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B.2. Different tangent space descriptions for Hilbert schemes. Since general
Hilbert and Quot schemes are constructed inside possibly very large Grassmannians, it
makes sense to talk about tangent spaces and tangent sheaves of Grassmannians first.

Proposition B.2. Let G = G(k, E)
p
−→ X be the relative Grassmannian of k-dimensional

quotients over a base scheme X, where E ∈ Coh(X).

(1) The sheaf of relative differentials associated to the projection p is Ωp
∼= Hom(Q,K),

where K and Q are the tautological bundles on G.

In the case where X = Spec k for a field k and E ∼= Ṽ , V ∼= kd, this implies:

(2) The sheaf of differentials ΩG/k on the absolute Grassmannian G = G(k, d) is locally
free and isomorphic to Hom(Q,K) ∼= Q∨ ⊗K.

(3) Restricting the sheaf of differentials and the isomorphism of (a) to a k-point [W ]
in G(k) yields the identification of tangent spaces T[W ]G ∼= Homk(W,V/W ).

(4) Without using (3), there is a natural one-to-one-correspondence between pointed
morphisms from the dual numbers Spec k[ε] = Spec k[ε]/(ε2) to G (mapping (ε) to
the k-point [W ]) and the vector space Homk(W,V/W ).

Furthermore, the two a priori different identifications of T[W ]G with Homk(W,V/W ) co-
incide, i.e. there is a commutative diagram of the following form relating (3) and (4).

ΩG/k([W ])∨ Hom(K,Q)([W ]) Homk(W,V/W )

T[W ]G Mork
(
(Spec k[ε], (ε)), (G, [W ])

)

(3)

∼

∼

∼

(4)

Proof. Claim (1) is proven in [Se06, Prop. 4.6.1] for E locally free and in [Le98] for a
general coherent sheaf E . Then (2) and (3) are clear. Claim (4) is a standard fact, the
correspondence being explained e.g. in [GW20, Ex. 8.22]. The main statement (needed in
the proof of Theorem 3.16) is that the two different approaches of computing the tangent
space to an absolute Grassmannian yield the same, which can be proven as follows.
Firstly, there is yet another way to describe the tangent bundle of G, namely by patching
trivial vector bundles, i.e. by globalizing the functorial tangent space description (4) to
an isomorphism ψ : TG/k

∼= Hom(K,Q) of vector bundles: Abstractly, this can be accom-
plished as in [GW23, Thm. 17.46], relying implicitly on the open cover of the Grassman-
nianG by affine spaces [GW20, Lemma 8.13] over which the tautological bundles trivialize.
The reader preferring a more geometric argument can also follow the construction of ψ in
[EH16, Thm. 3.5] (globalizing the functorial description of T[W ]G as wanted).20

Then one uses EndOG
(TG/k) = k · id (Lemma A.13) to conclude that ψ and the dual of the

isomorphism Ωp
∼= Hom(Q,K) from (2) are scalar multiples of each other (in particular,

this holds true on all fibres). �

In fact, the analogue to Proposition B.2 is true for Hilbert schemes, where the relative
case (1) is neglected here (but remains true according to [Le98, Thm. 3.1]).

Proposition B.3. Let X be a smooth projective variety of dimension d over a field k and
let X [n] = Hilbn

X/k be the Hilbert scheme of n points.

20The proof in [EH16] is given for classical varieties, but can easily be rephrased scheme-theoretically.
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(1) [Le98] The sheaf of differentials ΩX[n]/k on the Hilbert scheme X [n] is isomorphic

to the locally free sheaf Extdπ(OΞ, IΞ ⊗ ωπ), where π : X × X [n] → X [n] is the
projection and the relative Ext-sheaf is defined in Lemma 3.6.

(2) Restricting the isomorphism of (1) to a k-point [W ] ∈ X [n](k) yields an isomor-
phism T[W ]X

[n] ∼= HomOX
(IW ,OW ) ∼= HomOX

(IW/I2W ,OX/IW ).
(3) Without using (2) and also for X quasi-projective, there is a natural one-to-one-

correspondence between pointed morphisms from the dual numbers Spec k[ε] to X [n]

(assigning [W ] to (ε)) and the vector space HomOX
(IW ,OW ).

Furthermore, the two a priori different identifications in (2) and (3) coincide, which is
important in the proof of Theorem 3.16.

Proof. The statement (1) is [Le98, Thm. 3.1], proven by realizing the Hilbert scheme
inside a Grassmannian. This will be explained below. Claim (2) follows from (1) using
the base change argument for relative Ext from Proposition 3.8 or Lemma B.4 together
with Serre duality. The classical description (3) is explained in [ACG11, Ch. IX.5]:
First of all, it is possible to reduce to the affine case X = SpecA, where a zero-dimensional
subscheme of X corresponds to an ideal I E A such that dimk A/I = n. A tangent
vector Spec k[ε] → X [n] at the ideal I corresponds to an ideal J E A[ε] = A ⊗k k[ε]
restricting to I mod ε such that A[ε]/J is flat of degree n over k[ε]. These embedded
first-order deformations [ACG11, Lemma 5.8] can be identified with HomA(I, A/I) using
the following maps, inverse to each other. The first map is

(
J E A[ε]

)
7→ (ϕJ : I −→ A/I), ϕJ(i) = h, i− εh is a lift of i ∈ I.

Writing I = (i1, . . . , ir), the second map is defined by

(ϕ : I −→ A/I) 7→
(
Jϕ E A[ε]

)
, Jϕ = (j1, . . . , jr), jk := ik − εak, ϕ(ik) = ak.

It remains to explain why the dual of the restriction of the isomorphism in (1) and the
functorial isomorphism of (3) coincide in the same way as in Proposition B.2, i.e. why

T[W ]X
[n] = ΩX[n]/k([W ])∨ ExtdOX

(OW , IW ⊗ ωX)
∨ HomOX

(IW ,OW )
(2) ∼

is the same as the isomorphism of (3) deduced via dual numbers. To this end, Lehn’s
proof of (1) in the case of Hilbert schemes is summarized first:

(i) For a large enough integer m > 0, the Hilbert scheme X [n] = Hilbn
X/k is a closed

subscheme of the Grassmannian Gm = G
(
n,H0(X,OX(m)

)
. The closed embed-

ding HilbnX/k →֒ hGm of functors is given on T -points as follows21 for all m≫ 0.
[
q :W →֒ X × T

f
→ T

]
7→

[
f∗(OX×T (m)) = H0(X,O(m))⊗OT ։ q∗(OW (m))

]

(ii) Inside a finite product
∏

mi≫0Gmi
of such Grassmannians, X [n] can also be realized

as a connected component of the vanishing locus of a morphism between locally
free sheaves [Le98, Lemma 3.2]. The cotangent sheaves of Grassmannians and those
of vanishing loci have convenient global descriptions, and ΩX[n]/k is a cokernel of
a morphism Λ between these.

21Of course, the important thing is that the map to q∗(OW (m)) stays surjective. Trying to ensure this
for m≫ 0 leads to the concept of m-regularity.
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(iii) A further examination of Λ shows that some components of it are already epimor-
phisms, wherefore the Snake lemma yields a description of ΩX[n]/k as the cokernel

of an easier (to describe) morphism Λ [Le98, Cor. 3.6] of the following form.

Λ :

l⊕

i=1

Hom(Omi
, π∗I

′(mi)) −→ Hom(Om0 , Im0)

Here Omi
= π∗OΞ(mi), Imi

= π∗IΞ(mi) and I ′ = ker
(
π∗(Im0)(−m0) ։ IΞ

)
,

where π : X ×X [n] → X [n] is the projection and Ξn denotes the universal family.
(iv) Applying (iii), there exists a commutative square with exact rows

Extdπ(OΞ, (π
∗Im0)(−m0)⊗ ωπ) Extdπ(OΞ, IΞ ⊗ ωπ) 0

HomX[n](Om0 , Im0) coker Λ ∼= ΩX[n]/k 0.

G.V. ∼

The right vertical map is induced from the left one and yields the desired global
isomorphism (1). The abbreviation G.V. stands for Grothendieck–Verdier duality.

Going to the fibres at the k-point [W ] ∈ X [n](k) and dualizing, this diagram becomes

ExtdOX
(OW (m), Im ⊗k ωX)

∨ ExtdOX
(OW , IW ⊗ ωX)

∨ 0

Homk(Im, H
0(OW )m) T[W ]X

[n] 0,

∼ (2)

where m = m0 ≫ 0 and Im = Im([W ]) = H0(X, IW (m)) is the degree m-part of the ideal
cutting out W ⊆ X . Even more precisely, this diagram can be enlarged to

ExtdOX
(OW (m), Im ⊗k ωX)

∨ ExtdOX
(OW , IW ⊗ ωX)

∨ 0

HomOX
(IW ,OW )

Homk(Im, H
0(OW )m) T[W ]X

[n] 0,

T[H0(OW )m]Gm

j

S.D.

α

γ (2)

(3)

β(B.2)

where a priori only the rectangle and the triangle on the bottom involving β commute.
The monomorphism α is given by applying H0(X, (−)⊗OX(m)), which is the same as

HomOX
(IW ,OW ) →֒ HomOX

(Im ⊗k OX ,OW (m)) ∼= Homk(Im, H
0(OW )m).

The inclusion β is the differential of the embedding X [n] →֒ Gm. Remember that the goal
was to explain why (3) = (2)◦ (S.D.) holds. This can be checked after post-composing (3)
and (S.D.) ◦ (2) with the monomorphism γ ◦ α.
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But α ◦ (3) is the same22 as β composed with one of the equivalent (!) tangent space
identifications of the Grassmannian from Proposition B.2, thus equal to the horizontal
map T[W ]X

[n] → Homk(Im, H
0(OW )m). This implies γ ◦ α ◦ (3) = j ◦ (2).

It remains to see why γ ◦ α ◦ (S.D.) ◦ (2) = j ◦ (2) as well, which holds true if γ−1 is the
composition of Serre-duality with adjunction, i.e. if γ−1 coincides with

ExtdOX
(OW (m), Im ⊗k ωX)

∨ ∼= HomOX
(Im ⊗k OX ,OW (m)) ∼= Homk(Im, H

0(OW )m).

In other words, γ (the dual of the pullback of G.V. duality to [W ] in X [n](k) plus a natural
isomorphism of vector spaces) should be expressible via the chain of isomorphisms above.
Recall that Grothendieck–Verdier duality in the absolute case is Serre duality, see for
example [GW23, Thm. 25.127]. Thus, one only has to argue why pulling back relative
Grothendieck–Verdier duality to a k-point yields absolute Grothendieck–Verdier duality.
This follows from Lemma B.5 applied to F = OΞ(m), K = Im and p = π. �

B.3. Naturality of base change for relative Ext, Grothendieck–Verdier duality.

Lemma B.4. Let f : X → Y be a smooth and projective morphism with d-dimensional
fibres and consider the restriction of Extdf(−,−) to coherent sheaves that are flat over Y .
Then the relative Ext’s commute with base change, naturally in both arguments. In other
words, for every point ι : Spec k(y)→ Y there is an isomorphism of bifunctors

Extdf (−,−)⊗OY
k(y) ∼= ExtdOXy

((−)y, (−)y).

Proof. Identically to the proof of Proposition 3.8, the following steps can be performed in
order to obtain base change isomorphisms:

ι∗Hd(Rf∗RHom(−,−)) ∼= Hd(Lι∗Rf∗RHom(−,−)) ∼= Hd(Rf̃∗RHom(Lι̃∗(−), Lι̃∗(−)))

∼= Hd(Rf̃∗RHom(ι̃∗(−), ι̃∗(−))) ∼= ExtdOXy
((−)y, (−)y).

Here (̃−) denotes the base change of a morphism and the second-to-last identity uses the
flatness assumptions. The point of this lemma is to understand why the first isomorphism
is natural in both arguments since the spectral sequence argument used in Proposition
3.8 makes it a priori difficult to trace back all involved morphisms.
Abstractly, one can refer to the naturality statement in [GW23, Prop. F.212]. Alterna-
tively, it is not difficult to see that naturality boils down to proving the following elemen-
tary statement: For a morphism h : A• → B• in the (non-derived) category of bounded
complexes over Coh(Y ), where A• and B• are locally free and have no cohomology in
degrees ≥ d+1, there are identifications ι∗Hd(A•) ∼= Hd(ι∗A•) and ι∗Hd(B•) ∼= Hd(ι∗B•)
so that ι∗Hd(A•)→ ι∗Hd(B•) and Hd(ι∗A•)→Hd(ι∗B•) agree. �

Lemma B.5. Let p : X → Y be a smooth, proper morphism of varieties over k of relative
dimension d and consider the following cartesian diagram induced by a k-point of Y .

X ′ X

Spec k Y

p′

ι′

� p

ι

22That is, via the functorial tangent space descriptions, the differential of the inclusion X [n] →֒ Gm sends
a homomorphism IW → OW to its degree-m-part, cf. [HM98, p. 13].
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Assume that F ∈ Coh(X) is flat over Y , that K and Rp∗F are locally free sheaves on Y
concentrated in degree zero and that the natural map ι∗p∗F → p′∗ι

′∗F is an isomorphism.
Observe that by relative Grothendieck–Verdier duality for p (Gp for short),

Hd(Gp) : Ext
d
p(F , p

∗K ⊗ ωp) ∼= H
d(RHom(Rp∗F ,K)[−d]) = HomOY

(p∗F ,K).

Then the pullback of Hd(Gp) along ι combined with base change α : Lι∗Rp∗ ∼= Rp′∗Lι
′∗

agrees with Grothendieck–Verdier duality for p′. In other words, ι∗Hd(Gp) agrees with the
homomorphism Hd(G′

p) : Ext
d
OX′

(F, p′∗K⊗ωX) ∼= Homk(p
′
∗F,K), where F and K are the

pullbacks of F and K to X ′, respectively to Spec k.

Proof. Note that p∗K is flat over Y since p is flat. The isomorphism ι∗Hd(Gp) is given as

Hd(Lι∗Rp∗RHom(F , p∗K ⊗ ωp))
∼
−→ Hd(Lι∗RHom(p∗F ,K)[−d]) ∼= Homk(ι

∗p∗F , K),

where ι∗p∗F ∼= p′∗F by assumption. This uses Lemma B.4. Precomposing with α and
pulling Lι′∗ into RHom gives the following isomorphism denoted by Hd(Gp):

Hd(Rp′∗RHom(Lι′∗F , p′∗K ⊗ ωX′)) = ExtdOX′
(F, p′∗K ⊗ ωX′)

∼
−→ Homk(p

′
∗F,K).

Here Lι′∗F = ι′∗F = F by flatness of F and p. The claim is that Gp′
∼= Gp.

The existence of the functorial isomorphisms Gp and Gp′ is equivalent to having adjunc-
tions Rp∗ ⊣ p! and Rp′∗ ⊣ p

′!.23 Therefore the claim reduces to proving that the (co-)units
ε : Rp∗p

! ⇒ id and id ⇒ p!Rp∗ associated to G.V.-duality for p restrict to the (co-)units
for p′ via base change along Lι∗ and Lι′∗p! ∼= p′!Lι∗. This is precisely [St18, Tag 0AWG],
and the argument is completely formal. �
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[CKS03] A. Căldăraru, S. Katz, E. Sharpe, D-branes, B fields, and Ext groups, Adv. Theor. Math. Phys. 7 (2003),
381–404, http://projecteuclid.org/euclid.atmp/1112627372.

[EH16] D. Eisenbud, J. Harris, 3264 and all that—a second course in algebraic geometry, Cambridge University
Press, Cambridge (2016), 978-1-107-60272-4, https://doi.org/10.1017/CBO9781139062046.
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[Gr57] A. Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2), Vol. 9 (1957), 119–221,
https://doi.org/10.2748/tmj/1178244839.

[Hai01] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14
(2001), 941–1006, https://doi.org/10.1090/S0894-0347-01-00373-3.

[HM98] J. Harris, I. Morrison, Moduli of curves, Graduate Texts in Mathematics 187, Springer-Verlag, New York
(1998).

[Ha77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics No. 52 (1977), Springer-Verlag, New
York-Heidelberg.

[Ha66] R. Hartshorne, Residues and duality, Lecture Notes in Mathematics No. 20 (1966), Springer-Verlag, Berlin-
New York.

[Huy06] D. Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Mathe-
matical Monographs (2006), The Clarendon Press, Oxford University Press, Oxford,
https://doi.org/10.1093/acprof:oso/9780199296866.001.0001.

[Iar72] A. Iarrobino, Punctual Hilbert schemes, Bull. Amer. Math. Soc. 78 (1972), 819–823,
https://doi.org/10.1090/S0002-9904-1972-13049-0.



38 ERIK NIKOLOV

[Iar77] A. Iarrobino, Punctual Hilbert schemes, Mem. Amer. Math. Soc. 10 (1977),
https://doi.org/10.1090/memo/0188.

[Iar72] Iarrobino, A., Reducibility of the families of 0-dimensional schemes on a variety, Invent. Math. 15 (1972),
72–77, https://doi.org/10.1007/BF01418644.

[Ka85] M. M. Kapranov, ON THE DERIVED CATEGORY OF COHERENT SHEAVES ON

GRASSMANN MANIFOLDS, Mathematics of the USSR-Izvestiya (1985), 24(1): 183 – 192,
https://doi.org/10.1070/IM1985v024n01ABEH001221.

[KM22] A. Krug, C. Meachan, Universal functors on symmetric quotient stacks of Abelian varieties, Selecta Math.
(N.S.) 28 (2022), Paper No. 28, 37, https://doi.org/10.1007/s00029-021-00740-4.

[KR22] A. Krug, J.V. Rennemo, Some ways to reconstruct a sheaf from its tautological image on a Hilbert scheme

of points, Math. Nachr. 295 (2022), 158–174, https://doi.org/10.1002/mana.201900351.

[KPS18] A. Krug, D. Ploog, P. Sosna, Derived categories of resolutions of cyclic quotient singularities, Q. J.
Math. 69 (2018), 509–548, https://doi.org/10.1093/qmath/hax048.

[Ku15] A. G. Kuznetsov, Semiorthogonal decompositions in algebraic geometry (2015), arXiv: 1404.3143.

[Ku07] A. G. Kuznetsov, Homological projective duality, Publ. Math. Inst. Hautes Études Sci. 105 (2007), 157
–220, https://doi.org/10.1007/s10240-007-0006-8.https://doi.org/10.1007/s10240-007-0006-8

[Ku06] A. G. Kuznetsov, Hyperplane sections and derived categories, Izv. Ross. Akad. Nauk Ser. Mat. 70 (2006),
23–128, https://doi.org/10.1070/IM2006v070n03ABEH002318.

[Ku08] A. G. Kuznetsov, Exceptional collections for Grassmannians of isotropic lines, Proc. Lond. Math. Soc.
(3) 97 (2008), 155–182, https://doi.org/10.1112/plms/pdm056.

[La83] H. Lange, Universal families of extensions, J. Algebra 83 (1983), 101 – 112, https://doi.org/10.1016/0021-
8693(83)90139-4.

[Le98] M. Lehn, On the cotangent sheaf of Quot-schemes, Internat. J. Math. 9 (1998), 513–522,
https://doi.org/10.1142/S0129167X98000221.

[Ni05] N. Nitsure, Construction of Hilbert and Quot schemes, Fundamental algebraic geometry, Math. Surveys
Monogr. 123 (2005), 105–137.

[PvdB19] A. Polishchuk, M. Van den Bergh, Semiorthogonal decompositions of the categories of equivariant co-

herent sheaves for some reflection groups, Journal of the European Mathematical Society 21 (JEMS) (2019),
2653–2749, https://doi.org/10.4171/JEMS/890.

[Se06] E. Sernesi, Deformations of algebraic schemes, Grundlehren der mathematischen Wissenschaften 334
(2006), Springer-Verlag, Berlin.

[SV16] M. Shen, C. Vial, The motive of the Hilbert cube X
[3], Forum Math. Sigma 4 (2016), Paper No. e30, 55,

https://doi.org/10.1017/fms.2016.25.

[St18] The Stacks Project Authors, Stacks Project (2018), https://stacks.math.columbia.edu.

[We94] C. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38 (94),
Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781139644136.

[Wey03] J. Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics 149 (2003),
Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511546556.

Institute of Algebraic Geometry, Leibniz University Hannover, Welfengarten 1, 30167

Hannover, Germany.

Email address : nikolov@math.uni-hannover.de


	1. Introduction
	Structure of the paper
	Notations and conventions
	Acknowledgements

	2. Preliminaries
	2.1. Semi-orthogonal decompositions in Derived Categories
	2.2. Hilbert Schemes of Points

	3. The locus of planar subschemes in X[n]
	3.1. Functorial description of G -> X[l+1] 
	3.2. Computation of the normal bundle

	4. The functors Phialpha
	4.1. An auxiliary lemma
	4.2. Fully faithfulness
	4.3. Orthogonality

	5. Application to generalized Kummer Varieties
	Appendix A. Cohomology on Grassmannians
	Appendix B. Tangent Spaces, Differentials and Relative Ext
	B.1. Derived pullbacks of short exact sequences associated to normal bundles
	B.2. Different tangent space descriptions for Hilbert schemes
	B.3. Naturality of base change for relative Ext, Grothendieck–Verdier duality

	References

