2404.12872v1 [cs.DB] 19 Apr 2024

arxXiv

LLM-R?: A Large Language Model Enhanced Rule-based Rewrite
System for Boosting Query Efficiency

Zhaodonghui Li*
Nanyang Technological University,
DAMO Academy Alibaba Group,
Singapore
G220002@e.ntu.edu.sg

Gao Cong
Nanyang Technological University,
Singapore
gaocong@ntu.edu.sg

ABSTRACT

Query rewrite, which aims to generate more efficient queries by
altering a SQL query’s structure without changing the query result,
has been an important research problem. In order to maintain equiv-
alence between the rewritten query and the original one during
rewriting, traditional query rewrite methods always rewrite the
queries following certain rewrite rules. However, some problems
still remain. Firstly, existing methods of finding the optimal choice
or sequence of rewrite rules are still limited and the process always
costs a lot of resources. Methods involving discovering new rewrite
rules typically require complicated proofs of structural logic or
extensive user interactions. Secondly, current query rewrite meth-
ods usually rely highly on DBMS cost estimators which are often
not accurate. In this paper, we address these problems by propos-
ing a novel method of query rewrite named LLM-R?, adopting a
large language model (LLM) to propose possible rewrite rules for
a database rewrite system. To further improve the inference abil-
ity of LLM in recommending rewrite rules, we train a contrastive
model by curriculum to learn query representations and select effec-
tive query demonstrations for the LLM. Experimental results have
shown that our method can significantly improve the query execu-
tion efficiency and outperform the baseline methods. In addition,
our method enjoys high robustness across different datasets.
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1 INTRODUCTION

With the rapid growth of data in various fields, it is common to
take seconds or minutes, and even longer to execute an SQL query.
Therefore, efficient query processing has been a crucial task in mod-
ern database systems. One of the key topics in query optimization
that has gained significant attention is query rewrite [19, 23]. The
objective of query rewrite is to output a new query equivalent to the
original SQL query, while having a shorter execution time. Ideally,
query rewrite should fulfill three critical criteria: (1) Executability:
the rewritten query should be able to be executed without any er-
rors; (2) Equivalence: it must yield identical results as the original
query; (3) Efficiency: this encompasses two aspects—Execution Ef-
ficiency and Computational Efficiency. Execution Efficiency refers to
the requirement that the rewritten query executes more efficiently
than the original, while Computational Efficiency implies that the
overhead of the rewriting process should be justifiable by the time
savings achieved during query execution.

To enhance both Executability and Equivalence in rewritten
queries, existing studies have predominantly concentrated on rule-
based rewriting techniques. In particular, these studies are divided
into two orthogonal research directions: the discovery of novel
rewriting rules and the effective application of existing rules. For
the first direction, although some studies have discovered more
rewrite rules [6, 27, 29], there are many challenges related to the
complexity of rule validation and the specificity of their applicabil-
ity, often resulting in high computational demands and professional-
level user competence. For example, Wetune [27] only supports
discovering rewrite rules on limited types of operators and Query-
booster [6] necessitates user engagement with specialized rule
syntax, respectively. Therefore, this paper shifts focus toward the
latter direction, delving into the methodologies for the effective uti-
lization of pre-established rules. For example, Learned Rewrite [35]
utilizes existing rewrite rules from the Apache Calcite [7] platform
and learns to select rules to apply. It notably incorporates a Monte
Carlo search algorithm in collaboration with a machine-learned
query cost estimator to streamline the selection process. However,
it’s non-trivial to solve the challenges related to the computational
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demand of the Monte Carlo algorithm and the precision of the cost

estimation model, which can significantly impact the execution

efficiency.

On the other hand, with the rise of large language models (LLMs),
there also exist some “large language model for database” projects
[3, 30] that support direct query rewrite. The idea of these meth-
ods is to utilize the sequence-to-sequence generation ability of a
language model to directly output a new rewritten query given
an input query, without considering any rewrite rules or DBMS
information. Although it is possible for these methods to discover
new rewrites not following any existing rules, they easily suffer
from the hallucination problem of language models [17, 32], espe-
cially for long and complicated queries, where language models
give plausible but incorrect outputs. Either a syntax or reference
error during generation will lead to vital errors when executing
the query. Therefore, relying solely on LLM’s output query may
violate the executability and equivalence to the original query,
deviating from the basic aim for query rewrite.

To overcome the limits of the current query rewriting techniques
and benefit from their advantages, we propose an LLM-enhanced
rewrite system to use LLMs to suggest rewrite rule strategies and
apply these strategies with an existing database platform to rewrite
an input query. Inspired by the LLM-based learning framework
for using tools [25, 31], we leverage the LLM’s strong generaliza-
tion and reasoning abilities for query rewriting while avoiding
issues like hallucination. We design a novel LLM-enhanced query
rewrite system to automate the process of selecting more effective
rewrite rules, note that the executability and equivalence of the
rewritten query are guaranteed since all the candidate rules are
provided by existing DB-based rule rewrite platforms. In addition
to meeting the basic requirements of valid query rewrite, we also
develop new techniques to boost the executing efficiency of our
rewrite system. Firstly, to overcome hallucination, we collect a
pool of demonstrations consisting of effective query rewrites us-
ing existing methods and our designed baselines. We then learn a
contrastive query representation model to select the most useful
in-context demonstration for the given query to prompt the system,
optimizing the LLM’s rewrite rule selection. In addition, to address
the challenge of limited training data, we propose to utilize the
learning curriculum technique [8] to schedule the training data
from easy to hard. We apply our LLM-enhanced rewrite method
on three different datasets, namely TPC-H, IMDB, and DSB. We ob-
serve a significant query execution time decrease using our method,
taking only 52.5%, 56.0%, 39.8% of the querying time of the original
query and 94.5%, 63.1%, 40.7% of the time of the state-of-the-art
baseline method on average on the three datasets.

Our main contributions are:

e To the best of our knowledge, we are the first to propose an LLM-
enhanced query rewrite system that can automatically select
effective rules from a given set of rewrite rules to rewrite an
input SQL query.

o To enable LLMs to select better rewrite rules for a query, we con-
struct a demonstration pool that contains high-quality demon-
strations so that we can select good demonstrations to prompt
the LLM-enhanced rewrite system for few-shots learning.

Query Query Tree

select

|_orderkey,

sum(l_extendedprice * (1 - [_discount)) as revenue,

o_orderdate.
o_shippriority

from
customer, orders, lineitem
Wwhere
c_mktsegment = 'MACHINERY"
and c_custkey = o_custkey
and |_orderkey = o_orderkey
and o_orderdate < date '1995-03-07"'
and |_shipdate > date '1995-03-07" [ Scan l
group by

[ Join ]
|_orderkey,
o_orderdate, Scan Scan

o_shippriority

order by [ lineitem ][ customer] [ orders ]
revenue desc, o_orderdate;

Figure 1: A TPC-H query and its query tree

e We learn a contrastive query representation model to optimize
the demonstration selection. To overcome the challenge of lim-
ited training data, we further design a learning curriculum to
schedule the training data from easy to hard.

e We further analyze the robustness of our method. By applying
our method to unseen datasets and different dataset volumes,
we demonstrate that our method is much more flexible than
the baseline methods and shed light on generalizing to other
database problems.

2 PRELIMINARY

In this section, we first introduce some key concepts including
query, query tree and query rewrite rules in Section 2.1. Then,
we will formalize the problem of query rewrite based on rules in
Section 2.2. Finally in Section 2.3, we introduce the related work.

2.1 Query and Rewrite Rules

Query & Query tree. Each query in our study is formulated as
an executable SQL statement. Furthermore, we model each query
as a query tree using various nodes, where each node represents a
specific type of query operator (e.g., Sort, Join, and Scan). Figure 1
illustrates an example of a SQL query and its corresponding query
tree representation. It is worth noting that any given query can be
transformed into a query tree, and conversely, this query tree can
be reverted back to its original raw query form.

Query rewrite rules. Given an input query denoted as Q, a se-
quence of transformation methods, represented as rq, ro, - - -, can be
applied to the query’s query tree, yielding an equivalent query, de-
noted as Q*. These transformation methods, referred to as rewrite
rules, encompass a diverse range of functionalities. These include
the conversion of one operator to another, the alteration of execu-
tion sequences between operators, and the elimination of redundant
operators. Table 1 delineates a representative set of these query
rewrite rules. For the sake of brevity, we succinctly express the
query rewrite process as Q* = R(Q), where R = [ry,r,- -+, 5]
symbolizes the sequence of n applied rewrite rules.

2.2 Rule-based Query Rewrite

With the introduction of the rewrite rules, we now formally define
the problem of query rewrite based on rules as follows:

Definition 2.1. (Rule-based query rewrite): Consider an input
query Q and a set of candidate rewrite rules R. The objective is
to identify a sequence of rules R* = [rik, r;, --+,ry] where r;‘ € R,



Table 1: Examples of query rewrite rules. Examples of query rewrite rules of the Apache Calcite Rules [1].

Rule Name Rule Description

AGGREGATE_UNION_AGGREGATE | Rule that matches an Aggregate whose input is a Union one of whose inputs is an Aggregate

FILTER_INTO_JOIN

Rule that tries to push filter expressions into a join condition and into the inputs of the join

JOIN_EXTRACT FILTER

Rule to convert an inner join to a filter on top of a cartesian inner join

SORT_UNION_TRANSPOSE

Rule that pushes a Sort past a Union

that transforms the query Q into a more efficient version Q* =
R*(Q). The efficiency of the rewritten query Q* is quantified by its
execution latency. Such rewrite is characterized by transforming
Q into an equivalent query Q*, which exhibits a lower execution
latency compared to other possible rewritten versions of the query.
The problem can be formally represented as:

argming. - p latency (Q*)

st. 0 =R*(Q) (1)

2.3 Related Work

2.3.1 Query Rewrite. Query rewrite is a significant function in
current Database Management Systems (DBMSs), and can be sup-
ported in the query optimizers [14-16]. In particular, DBMSs, such
as Calcite [7] and PostgreSQL [4], have developed different rewrite
functions to achieve various rewrite rules. Consequently, there are
two primary research directions for the query rewriting problem:
discovering new rewrite rules and optimally leveraging existing
rewrite rules.

Discovering New Rewrite Rules. Recent advancements, exempli-
fied by Querybooster [6] and Wetune [27], have made significant
strides in discovering new rewrite rules through the application of
relational algebra proofs [29]. Querybooster enables database users
to suggest rules through a specialized rule language, facilitating
the back-end generation and application of these rules for more
adaptable rewriting. On the other hand, Wetune compiles potential
rewrite templates and pinpoints constraints that convert these tem-
plates into actionable rules. While these methodologies have proven
their worth by efficiently handling small real-world workloads, they
have their limitations. Querybooster’s effectiveness hinges on the
user’s ability to propose potent rules, whereas Wetune’s efficacy
on simple or generalized queries remains uncertain.

Selecting Rewrite Rules. The heuristic rewrite approach exe-
cutes rewrite rules contingent upon the types of operators involved.
Nonetheless, this technique is not without flaws. It might not iden-
tify the most optimal sequences for rewriting and often lacks the
mechanisms necessary for evaluating the benefits of such rewrites.
To address this issue, Learned Rewrite [35] employs a Monte Carlo
Tree search to optimize the selection of applicable rules. It concep-
tualizes each query as a query tree, with applied rules modifying
the tree’s structure. This approach utilizes a learned cost model to
predict the impact of applying specific rules, enabling the selection
of an optimal rewrite sequence through Monte Carlo Tree search.
While this method improves adaptability to varying queries and
database structures, it faces challenges in cost model accuracy and
potential local minima in the search process, highlighting areas for
future enhancement in rule-based query rewriting techniques.

2.3.2 LLM-based SQL Solvers. Large Language Models (LLMs)
have recently emerged as a hot topic in machine learning research,
captivating the interest of many in the field due to their impressive
capabilities. These models have demonstrated a surprisingly strong
ability to handle a variety of text-related tasks, excelling in areas
such as generation, decision-making, and deduction. One such task
that is highly related to DB research is text-to-SQL, in which an
LLM directly generates a SQL query given database information
and user requirements. Numerous studies [20, 26, 36] have high-
lighted the potential of LLMs in the text-to-SQL task, showcasing
their proficiency in SQL query-related tasks. While much of this ex-
isting research has focused on LLMs’ ability to generate executable
queries, there is a growing recognition of the importance of other
factors, particularly the efficiency and accuracy of these queries
when applied in real-world scenarios. In particular, [20] discussed
their attempts in an efficiency-oriented query rewrite task, where
an LLM is directly given an input query and tries to rewrite it into
a more efficient one.

However, a significant issue previous LLM-based face is the prob-
lem of hallucination, which refers to instances where the model
generates output that is not only incorrect but is done so with
a misleading level of confidence. This is particularly problematic
in the context of database applications, where accuracy is para-
mount. Therefore, we propose a different direction of utilising the
LLMs while overcoming hallucination. Instead of using LLM to
directly output an SQL query, we adopted a DB-based SQL rewriter
enhanced by an LLM.

2.3.3 In-context Learning. Due to the extensive data and resource
requirements of fine-tuning an LLM, many works choose to utilize
LLMs by the technique called in-context learning (ICL), where no
modifications to the LLMs’ model weights are made. The concept
of ICL, first introduced by Brown et al. in their seminal work on
GPT-3 [9], shows that language models like GPT-3 can leverage
in-context demonstrations at inference time to perform specific
tasks, without updating the model weights. ICL typically involves
enriching the context with select examples to steer the model’s
output. Formally, consider a model denoted as M and a contextual
input represented by P. The output o generated by applying the
ICL method to model M with input P can be succinctly expressed
as 0 = ICLp(P).

ICL has rapidly gained popularity for addressing diverse chal-
lenges in natural language processing. However, it is a sophisticated
technique requiring careful implementation. Extensive research,
including studies by [28] and [21], has explored the intricacies of
LLMs’ learning processes in this context. These studies highlight
that the success of in-context learning is closely related to the
construction of the context and the quality of the examples used.
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Figure 2: The Framework of LLM-enhanced Rewrite System

3 LLM-ENHANCED REWRITE SYSTEM

In this section, we will introduce our innovative LLM-enhanced
rule-based rewrite system (LLM-R?). In Section 3.1, we will first
illustrate the pipeline of our rewrite system. Then in Section 3.2, we
will state our motivation to optimize the demonstration selection
and introduce our novel Demonstration Manager module.

3.1 System Pipeline

As shown in Figure 2(a), the system integrates an LLM into the query
rewrite system utilizing the ICL methodology [9]. We construct the
ICL prompt with three main components:

Input query: We employ the SQL statement corresponding to the
provided input query Q for the prompt construction.

Fixed instruction: The fixed instruction consists of a system in-
struction I and a rule instruction R. While the system instruction
specifies the task requirements, the rule instruction includes a com-
prehensive list of all candidate rewrite rules available for the lan-
guage model to select. Each rule is accompanied by a concise ex-
planation, enabling informed decision-making.

One-shot demonstration: Similar to directly using LLMs to rewrite
queries, selecting rewrite rules using LLMs may also easily suffer
from the hallucination problem, like outputting non-existing rules.
To mitigate this and ensure the LLMs’ outputs are more closely

aligned with our task requirements, yielding superior rule sugges-
tions, we use the demonstration as a part of the prompt. Formally,
we define our demonstration given to the LLM-R? system as a pair
of text D = (QP, RP), where QP is the example query assembling
the input query and RP = [r{) ,- -] is the list of rules that have
been applied to rewrite the example query. Such demonstrations
can successfully instruct the LLM to follow the example and output
a list of rewrite rules to apply on the new input query. In particular,
this involves selecting a high-quality demonstration D from many
successful rewritten demonstrations (i.e., denoted as a pool D) for
each input query to guide the LLM effectively. To achieve this goal,
we design a module named Demonstration Manager, whose details
are elucidated in the subsequent section.

As specifically highlighted, Figure 3 delineates the prompt uti-
lized within the In-Context Learning (ICL) process of our system.
Upon constructing the prompt and feeding it into the LLM, we can
extract a sequence of rewrite rules from the model’s output. These
rules undergo further processing and execution by a database-based
rule executor. For instance, the original input query in Figure 2(a)
is modified by the “AGGREGATE_PROJECT_MERGE” rule, as high-
lighted in bold. This modification transforms the original query
into a more optimized output query, demonstrating the practical
application and effectiveness of the extracted rules in query opti-
mization processes. Through the synergy of the LLM’s superior
generalization capabilities and the rule executor’s precision, our
proposed system guarantees extensive applicability, alongside en-
suring the executability and equivalence of the rewritten queries.
Consequently, this rewrite process can be formalized as follows:

Definition 3.1. (LLM-enhanced Query Rewrite): Given a large
language model M, a textual instruction outlining the rewrite task
1, a set of candidate rules R, one successful rewrite demonstration
D selected from the demonstration pool D, and an input query Q,
a prompt P is constructed and provided as input to M as:

P=I®oR®D®Q
From M, a sequence of rewrite rules R* is derived:
R* = ICLp(P)

By sequentially applying these rewrite rules R*, we generate an
optimally equivalent query, represented as Q* = R*(Q).

3.2 Demonstration Manager Overview

Motivation. In the above ICL process, optimizing the prompt
P = I®R®D®Q is crucial for improving the output quality of LLMs.
Given the fixed settings of system instruction(!), rule instruction(R),
and input query(Q), our optimization efforts focus primarily on the
demonstration(D), which is chosen to enhance model performance.
Recent studies on LLMs (e.g., [9, 28]) have underscored the positive
impact of high-quality in-context demonstrations on LLM output,
reducing the tendency of LLMs to produce hallucinatory content.
As shown in Figure 4, our rewrite system exhibits similar effective-
ness variability w.r.t. the demonstrations used, further emphasizing
the necessity of optimizing demonstration selection for specific
input queries. Therefore, it is an important problem to optimize
the demonstration selected for a given input query. Particularly,



ICL Input

as follows

!ou are an online SQL rewrite agent. You will be given a

SQL query. You are required to propose rewriting rules
to rewrite the query to improve the efficiency of running
this query, using the rewriting rules below. The rules are
provided in form of ["rule name": "rule description"] and
you should answer with a list of rewriting rule names, if
applied in sequence, will best rewrite the input SQL
query into a new query, which is the most efficient.

Output Instruction

You should return only a list of rewriting rule names

IAggregate"],

names]".

~
Rule Instruction (R) Demonstration Instruction (D)

he rewriting rules you can adopt are defined Demonstration Input )
w . ["AGGREGATE_PROJECT_MERGE": "Rule

[that recognises an Aggregate on top of a
Project and if possible aggregates through the
Project or removes the Project"],
["AGGREGATE_UNION_AGGREGATE":
"Rule that matches an Aggregate whose input
is a Union one of whose inputs is an

["SORT_UNION_TRANSPOSE": "Rule that
pushes a Sort past a Union"],
["'SORT_REMOVE_CONSTANT_KEYS":
"Rule that removes keys from a Sort if those
keys are known to be constant, or removes

" he entire Sort if all keys are constant"],
provided above, in the form of "Rules selected: [rule E-SQR'LHEMOVE"; "Rule that removes a Sort| |0_orderkey and o_orderdate >= date '1993-02-01' and o_orderdate <

if its input is already sorted"],

select c_custkey, c_name, ..., c_comment from customer, orders,
lineitem, nation where c_custkey = o_custkey and |_orderkey =
o_orderkey and o_orderdate >= date '1993-03-01' and o_orderdate <
date '1993-03-01' + interval '3' month and ... order by revenue desc;

Demonstration Output

Rules selected: [FILTER_INTO_JOIN', 'PROJECT_TO_CALC/,
'JOIN_EXTRACT_FILTER'
| J

Input Query (Q)

select c_custkey, c_name, ..., c_comment from customer, orders,
lineitem, nation where c_custkey = o_custkey and |_orderkey =

date '1993-02-01' + interval '3' month and ... order by revenue desc;

J

>

Rules selected: [FILTER_INTO_JOIN', 'PROJECT_TO_CALC"', 'JOIN_EXTRACT_FILTER'] )

Figure 3: An Example of the In-Context Learning Process in LLM-R?. All the instructions are concatenated together as one
string input to the LLM. In a zero-shot setting, the “Demonstration Instruction” will be removed and an input query will be

appended directly after the “Rule Instruction”.

Good Demonstration

Good Rewrite
SELECT * FROM title SELECT * FROM title t,cast_info ci WHERE t.id=ci.movie_id| |Rules Adopted:
t,movie_companies mc AND t.kind_id<7 AND t.production_year=1968 AND [FILTER_INTO_JOIN]

'WHERE t.id=mc.movie_id ci.person_id<1275251 AND ci.role_id<8; New Cost: 0.692219734
/AND mc.company_id>11145

Bad Rewrite

mc.company_type_id=1;
SELECT * FROM movie_keyword mk WHERE keyword_i [Rules Adopted: []
Original Cost: 0.994251331 | (43462; No Rewrite

Figure 4: Example of good and bad demonstration selections

we address this problem by designing the Demonstration Manager
module.

Overview. Figure 2(b) illustrates the basic structure of our proposed
Demonstration Manager module, comprising two parts: Demonstra-
tion Preparation and Demonstration Selection.

(1) The primary objective of the Demonstration Preparation is to
generate a substantial number of successful rewritten demonstra-
tions for constructing a demonstration pool. Furthermore, this part
also serves to supply training data essential for model learning in
the second part. Specifically, we design two modules: the Benefit
Estimator and the Pool Generator, to achieve our objectives. The
Benefit Estimator is capable of assessing the potential benefits of
a given query rewrite strategy, thereby generating corresponding
rewrite tuple recording the performance of this rewrite strategy on
the input query. Subsequently, the Pool Generator is employed to
extract demonstrations for constructing a pool. Moreover, we utilize
the rewrite tuples to derive training triplets, which are essential for
model learning in subsequent parts.

(2) The second part involves the Demonstration Selection module,
tasked with identifying the optimal demonstration from the pool
for each input query. This process is enhanced by incorporating a
query representation model within the selector, designed to evalu-
ate the similarity between input queries and demonstrations in the
pool. This representation model undergoes offline training using
the training data. In addition, to obtain an effective model, we en-
hance the model’s training through the integration of a curriculum
learning approach. Afterwards, the trained model is integrated into
Demonstration Selector for online inference. In other words, upon
receiving an input query for rewriting, the selector discerns and

\
. "
T < ZeroshotLLMR [ Query Candidate
Que 2 ' Rewrite |EValuator| cofect Demonstrations

Select

Training|
Queries'

Training Triplets (S) Rewrite Tuple (T)

s ]3]
0
o] -

{
m{-

One-shot LLM-Rs

Tree Selection

SentTrans Selection

Figure 5: Our demonstration preparation module generates
a set of training triplets and a demonstration pool.

selects the most appropriate demonstration from the pool based
on the trained model. More detailed elaboration on the above two
parts will be provided in the following sections.

4 DEMONSTRATION PREPARATION

In this section, we aim to generate sufficient high-quality data to
build the demonstration pool. As shown in Figure 5, we first design
the Benefit Estimator module to generate the ground truth, where
each ground truth data point indicates the efficiency gain obtained
by rewriting an input query using generated rules in the context of
a demonstration. With sufficient ground truth, including both good
and bad samples, we further design the Pool Generator module to
select all good samples to build the demonstration pool. In addition,
we can deduce contrastive training triplets from the ground truth,
which can help train our selection model.

4.1 Benefit Estimator

Since we are only able to start with solely training queries without
demonstrations, the triplet generation pipeline is segmented into



two distinct phases: the first stage involves initializing high quality
candidate demonstrations utilizing baseline method and a zero-shot
LLM-R? system where no demonstration is selected, followed by
the demonstration adoption stage employing a one-shot LLM-R?2
system. Subsequently, each stage is elucidated in detail.
Stage-1: We start with a diverse set of input queries collected from
our dataset as the training set. To obtain a rich set of effective
rewrites as candidate demonstrations, we first apply our zero-shot
LLM-enhanced rewrite system (LLM-R?) to rewrite the training set
queries. After getting the rewrite rules adopted and the resulted
rewrite queries, we directly execute the rewritten queries on the cor-
responding databases. The execution time of the rewritten queries
as well as the original queries is evaluated to collect the initial
candidate demonstration set consisting of the improvable queries,
together with their rules adopted.
Stage-2: With the candidate demonstrations collected from the
previous step, we can then estimate the benefits of these demonstra-
tions when they are selected for a given input query. Motivated by
[28], such improvable demonstrations are supposed to be more use-
ful for the LLM to output improving rewrite suggestions, compared
to using any degraded rewrite queries as demonstrations. In addi-
tion, the more “similar” the improving demonstration query is to
the input query, the better output the LLM will generate. However,
different from natural language inputs’ simple textual similarity, the
similarity between SQL queries is indeed more complicated. To iden-
tify if the pool we collected truly contains high-quality and “similar”
demonstrations for new input queries and refine the demonstration
pool, we designed three heuristic demonstration-selection methods
based on different levels of similarity as follows.

e Random Selection: A random demonstration query is selected
from the candidate demonstrations for a given input query,
where the similarity level lies on the same input category.

e Tree Selection: Query tree is an important structural feature
for the queries, therefore, it is natural to align similarity with
the query tree structure. We first compute the query trees of all
the candidate demonstration queries, with operators as the tree
nodes. Given an input query, we select the demonstration with
the minimum tree edit distance from the input query tree within
the candidate demonstrations.

e SentTrans Selection: At the textual level, we observe that
queries are always considered as sentences for the language
models to process. Based on the observation, we treat input
queries as sentences and select the candidate demonstration
query whose embedding is the most similar to the input query.
Most of the effective LLMs are closed-sourced, which means we
are not able to obtain the query embeddings of such LLMs. How-
ever, similar to LLMs, some small pre-trained language models
share the same sequence-to-sequence mechanism, that the input
text is first encoded by an encoder before feeding to the model.
Using such encoders, like Sentence Transformers [24], we can
obtain an embedding of a given sentence.

With the three demonstration selection methods above, we can

prompt our LLM-R? system with the one-shot demonstration to

obtain various rewrite results on the same training set. These new
rewrite queries from the one-shot LLM-R? system are then eval-
uated in the same way as in Stage-1. Specifically, when we adopt
one-shot demonstration to rewrite an input query Q?, we are able to

estimate the benefit obtained from the demonstration by construct-
ing the rewrite tuples (T) as (Qf, D, R!, a), where Q! represents a
training query, D is the demonstration (QP, RP) selected for QF,
R? denotes the adopted rules for Qf, and « represents the improved
margin obtained by the query rewrite. In particular, given the origi-
nal query cost Cy and the cost of rewritten query C,, we define the
improved margin as @ = Cy/Cy, where the larger margin the better
rewrite result and larger benefit we have.

In addition, a set of training triplets is generated using the rewrite
tuples obtained in preparation for training a contrastive representa-
tion model. For a given query Qt in the rewrite tuple (Q[, D,RE, Q),
we consider the demonstration query QP adopted as an improve
query QP* for Q, if the improved margin a > 1. In contrast, we
denote the demonstration query as a degrade query QP if & < 1.
If there are multiple improve(degrade) queries, we only select the
one with the largest(smallest) improved margin. Since we have
adopted multiple one-shot selection methods, now we are able to
construct a training triplet for a given query as (Qf, 0P, 0P~). A
set of training triplets can be further constructed if we enumerate
the whole training query set.

4.2 Pool Generator

Apart from the training triplets, we also hope to prepare an effective
demonstration pool so that our learned demonstration selection
model can select demonstrations from it during online inference.
The rewrite tuple generated by the Benefit Estimator module, record-
ing the effectiveness of a sequence of rewrite rules R? on an input
query QF, naturally fits our need for a high-quality rewrite demon-
stration.

In particular, given the set of rewrite tuples generated by n input
queries, we first separate them into n groups {T;}1<i<n based on
their corresponding input queries. Therefore, each group T; can be
represented as the tuple set T; = {(Ql.’, Di, Ri, ai), (Qit, Dé, Ré, aé), e
Since we have adopted various methods, multiple tuples have the
same input query, and we only need the optimal rewrite rule se-
quence to form a demonstration for the query. Therefore, for each
training query Qit and its corresponding tuple group T;, we only
select the tuple with the largest improved margin, and the order is
denoted as *, which can be formulated as follows:

* = argmaxje(y,|1;|19%;
s.t.Ti = {(Q}, D}, R}, a}), (Q}, D}, Ry, ), -+ }
Next, we construct the demonstration containing the input query

and rules as the pair (Qf ,RL), and then add the demonstration to the
pool. As shown in Figure 5, when the largest improved margins a%

@

and (xé are identified for input querigs Q{ and Qlt , the corresponding
demonstrations (Qi, R%) and (Qit , Ry) are selected with the rewrite
rules R% and R; adopted.

5 DEMONSTRATION SELECTION

Motivation. Addressing the challenge of enhancing system per-
formance, the selection of an optimal rewrite demonstration to
guide the LLM for any given input query is required and remains
uncertain. Intuitively, the greater the “similarity” between the input
and demonstration queries, the more applicable the rewrite rule,
thereby enhancing the LLM’s output efficacy. Therefore, to capture
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Figure 6: Our representation model and its contrastive train-
ing structure. Each node of the query tree is encoded into
a fixed length vector, while the final representation of the
query is obtained by applying a tree-biased attention over
the tree nodes. Such model E is then trained with contrastive
query tuples generated.

such “similarity”, we design a contrastive model to learn the repre-
sentations of queries in this Demonstration Selection module, where
better demonstration queries are to have more similar representa-
tions to the input query. Consequently, the demonstration query
that exhibits the highest resemblance to the input query is selected
for the LLM, optimizing the generation of more effective outputs.

Overview. In order to learn a contrastive representation model
efficiently and effectively, the selection module consists of two
main components: our contrastive model and a curriculum learn-
ing pipeline to improve the model training. We will first outline
the representation model and its contrastive learning structure in
Section 5.1, followed by a detailed discussion of the whole model
learning pipeline in Section 5.2.

5.1 Contrastive Representation Model

As shown in Figure 6, our representation model E is constructed as
a query encoder to encode the information describing a query, and
a contrastive training structure to further train the encoder given
training data. In particular, the information of a query tree is first
encoded by nodes into node embeddings. A tree-biased attention
layer will then compute the final representation of the query given
the node embeddings. Such an encoder E is then trained using the
contrastive learning structure drawn below it.

Query encoder. The representation of a query should focus on
various key attributes, like the query tree structure and columns
selected. Therefore, we design an encoder following [33] to take
the query trees generated by DBMS’ query analyzer as inputs. It
is notable that the original encoding in [33] utilizes the physical
query plan which contains richer information, so that the objective
of estimating query cost can be successfully achieved. Since we aim
to capture the similarity between queries, we separately encode

the following information for each query tree node instead in our

encoder, as shown in the top half of Figure 6:

e Operator type: We use one-hot encoding to encode the opera-
tor types into one vector, with value one for the current node
operator type and zero for the rest positions.

e Operator conditions: Within each node, the details for the
operator are explained in parentheses, including sort order for
“Sort” operator, selected column for “Scan” operator etc. Different
from the physical plans used in [33], such information has no
unified form for encoding. We consider the conditions as text and
encode using a pre-trained Sentence Transformers encoder [24].
Such an encoder can capture the textual differences between
conditions effectively and have unified embedding dimensions
to simplify further analysis.

e Cardinality and cost: From [34] we observe that the estimated
cardinality and cost are important in describing a query. We
collect the row count and estimated cumulative cost values and
normalise them through an MLP layer.

We simply concatenate the three information vectors together to
be the encoded embedding for a node in the given query tree. We
use the same tree Transformer model in [33] to get the final rep-
resentation of a query given its tree nodes’ embeddings. The final
representation of the whole query will be computed by the tree-
biased attention module.

Contrastive learning structure.

Due to the necessity of executing queries, the volume of train-
ing triplets produced by our demonstration preparation module is
limited. Unlike the query representation model in [33], which is
trained directly on abundant labeled data, our approach requires a
more sophisticated training framework to effectively capture query
representation with the generated training data. Inspired by Sim-
CSE [13], we design a contrastive learning structure to train our
query representation model on the limited training data. In a train-
ing batch containing N tuples, we consider each original query’s
improved query as its “positive” query, its degraded query as its
“hard negative” query, and the remaining improved and degraded
queries within the same batch as “negative” queries. This allows us
to pull close distances between original queries and their improved
versions while pushing apart those with degraded queries. Follow-
ing such setting, the loss [; for the i, tuple (Q;, Qf, Q;") can be
computed as

esim(hi,h;')/r

®)

li = —log - " - =
i Z?IZI(ESIm(hi’hj)/T +es1m(h,-,hj)/f)

where 7 is a temperature hyper-parameter, h;, h} and h; stand for
the representation of Q;, Qf and Q; respectively, and the function

. . . . hT h,
sim(hj, hy) is the cosine similarity Wﬂzhzﬂ

As an example in a training batch of size 2, for the first original
query Q1 shown in the bottom part of Figure 6, the positive query
will be its corresponding improve query Q7, and other in-batch
improve or degrade queries Q;, Q3 and Q, are all regarded as
negative queries. The final loss for the batch will be the sum of the
losses for the two tuples.
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Figure 7: The overall curriculum learning pipeline to train
the contrastive selector using generated training triplets.

5.2 Curriculum Learning Pipeline

Motivation. Although we have developed a representation-based
demonstration selector, training the contrastive model presents
several challenges. First, unlike the original SimCSE approach used
in natural language inference tasks, which benefits from abundant
data [10], our model’s training is constrained by data scarcity. Our
contrastive query tuples, derived from a limited variety of training
triplets, face scalability issues due to the high computational cost
of query execution. Furthermore, the complexity of query represen-
tations in our model surpasses the simplicity of word embeddings
used in SimCSE. Given these constraints—limited data and a com-
plex training target—we propose adopting a curriculum learning
pipeline. This approach is designed to enhance the learning effi-
ciency and effectiveness of our contrastive representation model.
As depicted in Figure 7, the essence of this pipeline is to strategi-
cally implement an effective curriculum. Starting with the provided
training triplets, we initially train our contrastive representation
model on a smaller, simpler subset, progressively incorporating

Algorithm 1 Contrastive Training under Curriculum Scheduler

Require: Total training data Sp, Number of iterations I
Require: Initialized model Ey

1: No = len(So) > Total number of training data

22 N =[(No/D] > Each iteration incremental data size
3 Tro=10 > Initial training data
4 i=1 > Initial iteration
5. while i < Ido

6: if len(N) > len(S;-1) then > If less than N data left
7: Tri « Si—1 > Select all the data left
8: Tri =Tri—1 +Tr; > Append to training data
9: Train E;_1 on Tr; and get E; > Continue train the

model
10: else
11 Ci < Topn(Si-1) based on confg, ,(-) » Select N easy

data following curriculum from the unvisited dataset

12: Si=Si—1-C; > Deduct them from unvisited data

13: Tri=Tri-1+C; > Append them to training data
14: Train E;_1 on Tr; and get E; > Train the model
15: i=i+1 > Move to next iteration
16: end if

17: end while
18: Use the final E; for inference

easier subsets from the remaining dataset and retraining the model
until all training data is utilized. The methodology for generating
our curriculum is detailed in Algorithm 1. This algorithm begins
with an empty model; each iteration involves selecting a subset of
training data on which the current model performs with the highest
confidence, followed by model retraining to incorporate this new
subset (lines 5-17). This iterative retraining process continues until
the entire training dataset has been incorporated.

In particular, we sample the easier subset of remaining training
data by the confidence of the model to the data. Suppose we get the
embeddings of two queries using our contrastive model to be x and
y, we can compute their similarity scores using the cosine similarity
to keep consistency with the training objective in Equation 3. For
each contrastive query tuple (Q, 0%, Q7), since we expect to have
the sim(E(Q), E(Q™)) = 1 and sim(E(Q), E(Q7)) = 0, we define a
confidence score of the contrastive model E to a given tuple as:

confg(Q) = sim(E(Q), E(Q")) — sim(E(Q), E(Q7)) +1  (4)

Therefore, at each iteration i, given our trained model E;_1, previ-
ous training dataset T;—; and the unvisited dataset D;_1, we can
generate the current tuples (denoted as S;) with the highest con-
fidence score in D;_j. They are then moved into the training set,
resulting in the new training set T; = T;j—1+S; and the new unvisited
dataset D; = Dj_1 — S;.

6 EXPERIMENT

In this section, we evaluate our proposed system’s effectiveness,
efficiency, and generalization capabilities.

6.1 Experimental Setup

6.1.1 Dataset. We use three datasets from different domains for
our evaluations:

IMDB (JOB workload) [18]: The IMDB [22] dataset consists of
data on movies, TV shows, and actors. It’s utilized in conjunction
with the Join Order Benchmark (JOB) to test a database manage-
ment system’s efficiency in executing complex join queries, and it
comprises 5,000 queries.

TPC-H [5]: A benchmark dataset for evaluating database man-
agement systems, generated using the official toolkit to include
approximately 10 GB of data and 5,000 queries.

Decision Support Benchmark (DSB) [11]: This benchmark is
developed to evaluate traditional database systems for modern
decision support workloads. It is modified from the TPC-DS to
include complex data distributions and challenging query templates,
and it contains a total of 2,000 queries.

6.1.2  Rewrite Rules. To enhance the efficiency of the rule proposal
and rewriting process for subsequent experiments, we integrate
Apache Calcite [7] as our rewrite platform, alongside its comprehen-
sive set of rewrite rules by following previous work [35]. Examples
of utilized rewrite rules and their functions are illustrated in Table
1, with a complete enumeration available on the official website
[1]. Specifically, we introduce a rule termed “EMPTY” to signify
instances where the query remains unchanged, thereby standardiz-
ing LLM outputs with an indicator for scenarios that do not require
query rewrite.



Execution time(sec) TPC-H IMDB DSB

Method Mean Median 75th  95th Mean Median 75th 95th Mean Median 75th  95th

Original 70.90 22.00 37.01 300.00 6.99 1.86 512 3249 60.55 6.64 26.55 300.00

LR 39.40 22.00 32.21 159.95 6.20 1.62 4.74 32.45 59.21 5.14 53.78 300.00

LLM only 70.67 22.00 37.01 300.00 6.96 1.86 5.10 32.49 61.60 6.53 26.40 300.00

LLM-R? (Ours) 37.23 17.40 29.80 164.12 3.91 1.33 3.52 18.16 24.11 2.16 12.61 196.61

% of Original 52.5% 79.1% 80.5% 54.7% 56.0% 713% 68.7% 55.9% 39.8% 32.5% 47.5% 65.5%

% of LR 94.5% 79.1% 92.5% 102.6% 63.1% 82.0% 74.3% 56.0% 40.7% 42.0% 23.4% 65.5%

% of LLM only 52.7% 79.1% 80.5% 54.7% 56.2% 71.3% 69.0% 55.9% 39.1% 33.1% 47.8% 65.5%

Table 2: Execution time v.s. different query rewrite methods
Counts ‘ TPC-H/IMDB/DSB Total (Latency) l TPC-H l IMDB l DSB
Method ‘ Rewrite # ‘ Improve # ‘ Improve % LR 40.98(1.58) | 7.24(1.04) | 60.99(1.78)
— LLM only 75.37(4.70) | 7.58(1.38) | 64.21(6.00)
258/203/456 | 192/197/193 | 74.42/97.04/42.32 LIVLR? 20.63(3.40) | 6.81(2.90) | 27.40(3.29)

LLM only | 197/102/210 68/67/8 34.5/65.68/3.81 Table 4: Th it 3 in total it
LLM-R? |323/302/341 | 305/292/222 | 94.43/96.69/65.10 able &: The rewrite pertormance in total average rewrite

Table 3: The rewritten queries’ number v.s. different methods

6.1.3 LLM Setting. We leverage the ChatGPT API [2], which is
built upon the GPT-3.5-turbo architecture [9]. Furthermore, we
assess our system’s generalizability across other Large Language
Models (e.g., GPT-4), as detailed in Section 6.5.

6.1.4 Baseline Methods. We compare our system with two baseline
methods:

Learned Rewrite (LR) [35]: This approach, recognized as the state-
of-the-art query rewrite method, incorporates a cost estimation
model for predicting the performance of rewritten queries. It further
employs a Monte Carlo Tree-based search algorithm to identify the
optimal query.

LLM only [20]: This method straightforwardly generates a rewrit-
ten query from the input, incorporating task instructions, schema,
and a fixed demonstration as prompts to the LLM. when the rewrit-
ten queries are not executable or equivalent to the original queries,
we substitute them with the original queries. This ensures a fair
comparison with rule-based methods.

6.1.5 Training Setting. In the demonstration preparation phase,
we exclude any training queries already present in the demonstra-
tion pool from being selected as demonstrations to mitigate poten-
tial bias. For the development of our query representation-based
demonstration selector, we adopt a curriculum learning strategy
encompassing four iterations (I = 4). Each iteration involves further
training our contrastive representation model with a learning rate
of 1073, a batch size of 8, over three epochs, utilizing a Tesla-V100-
16GB GPU.

6.1.6  Evaluation Metrics. For the evaluation of rewrite methods,
two key metrics are employed: query execution time and rewrite
latency, which are respectively employed to evaluate the executing
efficiency and the computational efficiency. To mitigate variability,
each query is executed five times on a 16GB CPU device, with the
average execution time calculated after excluding the highest and
lowest values. To address the challenge posed by overly complex
queries that exceed practical execution times, a maximum time limit
of 300 seconds is imposed, with any query exceeding this duration

query execution time including the rewrite latency

Execution time(sec) [ Mean [ Median [ 75th [ 95th

Original 6.99 1.86 | 5.12 [ 32.49
LLM-R?2 441 135 | 3.57 | 17.84
LR - - - -

LLM only 6.99 1.86 | 5.12 | 32.49

Table 5: Training on TPC-H and Testing on IMDB

assigned a default execution time of 300 seconds. This approach
facilitates a broader range of experimental conditions. For assessing
rewrite latency—the time required to complete a query rewrite—a
custom Python script is utilized to invoke both rewrite methods,
capturing the average rewrite latency across all test queries on the
same hardware platform.

6.2 Executing Efficiency Evaluation

As presented in Table 2, our study conducts a comparative analysis
between our proposed method LLM-R? and two baseline meth-
ods. We meticulously document the mean, median, 75th percentile,
and 95th percentile values of execution times to provide a com-
prehensive performance evaluation. The mean and median offer
insights into the general efficacy of the methods across the datasets,
whereas the 75th and 95th percentiles facilitate an understanding
of the methods’ behavior for long tail cases. Our analysis yields
several key observations:

(1) LLM-R? demonstrates superior reduction of query execution
time, outshining all baseline methods across the three datasets.
Specifically on the TPC-H, IMDB and DSB datasets, LLM-R? re-
duces the execution time of the queries on average to 94.5%, 63.1%
and 40.7% of the queries rewritten by baseline method LR, 52.7%,
56.0% and 33.1% relative to LLM only, and even further 52.5%,
56.0% and 39.8% compared to the original query. This performance
enhancement is attributed to the optimization of demonstration se-
lection for prompting the LLM-enhanced rewrite system, enabling
LLM-R? to suggest superior rewrite rules. Furthermore, leverag-
ing an LLM-enhanced system, LLM-R? offers more adaptable rule
suggestions and better tailors these to the input query than does
the LR baseline.



Execution time(sec) TPC-H 1G TPC-H 5G TPC-H 10G

Method Mean Median 75th 95th Mean Median 75th 95th Mean Median 75th  95th
Original 52.02 0.57 1.39 300.00 53.90 3.27 11.53 300.00 70.90 22.00 37.01 300.00
LLM-R? 15.19 0.56 1.14 55.20 19.34 3.20 7.97 3470 37.23 17.40 29.80 164.12
LR 2540 057 1.14 213.81 20.10 4.02 9.02 32.14 39.40 22.00 37.21 159.95
LLM only 52.73 2.14 449 300.00 54.13 3.62 11.56 300.00 70.67 22.00 37.01 300.00

Table 6: Execution time v.s. different data scales.

(2) The margin of improvement over LR is notably greater in the
IMDB and DSB datasets than in the TPC-H dataset. This discrepancy
stems from two factors. First, TPC-H is also the mainly analysed
dataset in [35] for LR. Most of the effective rewrite rules for TPC-H
queries can already be applied by LR, leaving LLM-R? with limited
scope for further enhancements. Second, the TPC-H dataset’s re-
liance on only 22 query templates results in a lack of query diversity,
thus constraining the full demonstration of LLM-R?’s superiority
utilizing LLM generalisation and reasoning abilities.

(3) LR’s under-performance in the DSB dataset can be attributed to
its design limitations adopting a greedy search algorithm. The DSB
dataset, being entirely new and unmet for LR, poses unique chal-
lenges. Moreover, the Monte Carlo tree search algorithm employed
by LR, with its greedy search strategy that retains only a select
few best options at each step, struggles with the dataset’s complex
and expensive query trees. This limitation makes it difficult for the
algorithm to select the most effective rules, to which explains its
poor performance in handling the DSB dataset’s demands.

(4) LLM only has the worst performance. We observe that LLMs
struggle to effectively address the query rewrite challenge, and
has only marginal reductions in mean cost on the TPC-H dataset
and median cost on the DSB dataset. Given that non-executable
or non-equivalent rewrite attempts are categorized as 'no rewrite,
many rewritten queries are the same as the original queries across
the datasets.

Furthermore, we evaluate the performance by collecting statistics
on the number of successful rewrites performed by each method
across three datasets. As shown in Table 3, we observe that:

(1) LLM-R? excels by having the most efficiency-enhancing rewrites,
achieving the largest improvement percentage upon rewriting.
Compared to the baseline, LLM-R? has both a higher number

of rewrites and a significant improvement in query execution effi-
ciency across all the evaluated datasets.

(2) LLM only fails in most of its rewrite attempts. We look into the

rewrites which do not return the same results as the original queries

in the TPC-H dataset, 119 of the total 129 queries are either not

consistent with the original one or have errors to execute. Similarly,

193 of the 202 attempts to rewrite failed in the DSB dataset, since

the DSB queries and schema would be too complicated for the

LLM. This observation aligns with the results in [20], in which the

text-to-SQL task only achieved around 40% accuracy with carefully

designed prompts. Although the IMDB dataset is simpler compared

to TPC-H and DSB datasets, where LLM only only fails 31 of the

total 102 attempts, the LLM makes limited effective rewrites due to

lack of database and query structure knowledge. In contrast, our

LLM-R?, which benefits from both the reasoning ability of LLM

and the rewrite ability of database platforms, is able to rewrite more

queries successfully and have as higher rewrite improvement rate
across all the datasets.

6.3 Computational Efficiency Evaluation

To evaluate the computational efficiency, we rigorously assess the
average rewrite latency for input queries across all datasets for the
LLM-R? framework as well as the LR and LLM only baselines.
Moreover, to ascertain if query time reduction adequately compen-
sates for the rewriting latency, we combine the execution cost and
rewrite latency to formulate a comprehensive metric. As delineated
in Table 4, our analysis yields significant insights:

(1) LLM-R? incurs additional latency compared to LR, specifically
requiring an average of 1.82, 1.86, and 1.51 seconds more to rewrite
queries from the TPC-H, IMDB, and DSB datasets, respectively.
This heightened latency is due to our system’s complexity. Notably,
LLM-R? employs a demonstration selection model and leverages
the online LLM API, which together account for the increased
rewrite latency.

(2) However, the increased rewrite latency in our system LLM-R2
is justifiable given that the sum of rewrite latency and execution
time is lower than that of baseline methods, especially for the most
complicated DSB queries. This indicates that the complex queries
benefit more from our method.

(3) The LLM only approach exhibits considerable latency as the
LLM endeavors to directly generate a rewritten query, underscoring
the complexity of direct SQL query generation for LLMs. This la-
tency becomes more pronounced with the complexity of the query
and database, notably in the TPC-H and DSB datasets. The compar-
ison between our LLM-R? framework and the LLM only approach
demonstrates that our methodology, which focuses on generating
rewrite rules, is more effectively processed by LLMs.

6.4 Robustness Evaluation

We next evaluate the robustness of our LLM-R? framework, fo-
cusing on two critical dimensions: transferability and flexibility.
Transferability evaluates the system’s ability to generalize across
diverse datasets, while flexibility examines whether LLM-R? main-
tains its high performance as the volume of data increases. These
aspects are crucial for understanding the adaptability and efficiency
of LLM-R? in varied environments.

6.4.1 Transferability across different datasets. In order to evaluate
our method’s transferability, we used the demonstration selection
model trained on the TPC-H dataset to rewrite queries in the IMDB
dataset. As shown in Table 5, the results reveal our method’s trans-
ferred performance is comparable with the in-distribution trained
method and highly superior over LLM only when applied to a dif-
ferent dataset. LLM only fails to make effective rewrites given the



Execution time(sec) TPC-H IMDB DSB

Method Mean Median 75th  95th Mean Median 75th 95th Mean Median 75th  95th
Original 70.90 22.00 37.01 300.00 6.99 1.86 5.12 32.49 60.55 6.64 26.55 300.00
Zero-shot 46.15 21.95 33.26 300.00 6.98 1.85 5.12 32.49 34,53 3.35 11.52 300.00
Random 40.50 21.63 32.22 165.63 5.45 1.70  4.50 25.03 45.88 543 17.41 300.00
Tree 39.21 1897 30.89 164.10 4.40 1.24 3.40 18.89 26.10 3.86 13.54 240.74
SentTrans 40.19 19.21 32.21 164.99 6.05 1.70 449 30.01 24.68 3.95 13.18 197.23
LLM-R? 37.23 17.40 29.80 164.12 3.91 1.33 352 18.16 24.11 2.16 12.61 196.61

Table 7: Execution time v.s. different selection approaches.

fixed demonstration from the TPC-H dataset, where most rewrites
lead to meaningless changes like removing table alias. Since LR’s
cost model lacks cross-dataset transfer capability, its results are
not available. These findings suggest the potential to develop a
robust model by combining multiple datasets, enhancing its ability
to address a wide array of unseen queries and datasets.

6.4.2  Flexibility across different data scales. To further analyse the
flexibility of our method, we regenerate the TPC-H dataset using dif-
ferent scale factors. We additionally generate TPC-H dataset using
scale factor 1 (around 1GB data) and 5 (around 5GB data) apart from
10 in the main results to simulate a change of database size. From
scale factor 1 to 10, we can see in Table 6 the efficiency of queries
rewritten by our method increases consistently and surpasses the
baseline methods.

6.5 Ablation Studies

We conduct an ablation study to evaluate our method’s performance
along two distinct dimensions: different selection approaches and
specific settings in the selection model. At first, we explore alternative
selection approaches by substituting the learned selection model
with different approaches to gauge their impact. Subsequently, we
delve into the intricacies of the selection model by replacing indi-
vidual components of the model.

6.5.1 Different selection approaches. We design the following ap-
proaches to replace the contrastive selection model in our system:

- Zero-shot: This method employs the LLM-R? to rewrite input
queries without any preliminary demonstrations.

- Few-shots: Building on insights from Section 4, we refine
the demonstration pool with three intuitive methods for one-shot
demonstration selection: Random, Tree, and SentTrans.

Table 7 shows the results and we make the following observa-
tions:

(1) Effectiveness of the LLM-enhanced system: The Zero-shot
approach outperforms the original queries significantly, which in-
dicates that the LLM-R? component within our rewrite system is
capable of enhancing original queries, showcasing the underlying
potential of the LLM to offer viable query rewrite suggestions. This
observation suggests that even though the recommendations pro-
vided may not always be optimal—owing to constraints such as
incomplete information and occasional inaccuracies—the LLM’s
contributions are valuable in improving query performance.

(2) Effectiveness of introducing demonstrations: We observe
that approaches incorporating demonstrations into the rewrite sys-
tem consistently surpass the Zero-shot setting across all datasets.

Execution time(sec) [ Mean [ Median [ 75th [ 95th

Original 70.90 22.00 37.01 300.00
LLM-R?2 (1-shot) 37.23 | 17.40 | 29.80 | 164.12

w/o Curriculum | 38.73 19.70 32.17 | 164.98
LLM-RZ? (3-shots) | 54.08 | 19.67 | 37.01 | 300.00
LLM-RZ? (GPT-4) 38.58 | 2032 | 32.27 | 167.26

Table 8: Performance comparison of LLM-R? with and with-
out the curriculum learning pipeline on TPC-H

The sole exception is observed with the Random method, which
falls short of the Zero-shot rewrite performance on the DSB dataset.
This observation underscores the significance of leveraging demon-
strations to enhance the rewrite system, significantly boosting the
quality of rewrites. Furthermore, the improvement across diverse
datasets highlights the universal applicability and effectiveness of
demonstration-based prompting in refining rewrite outcomes.

(3) Effectiveness of the contrastive selection model: Our com-
parative analysis underscores the significance of selecting high-
quality demonstrations for query rewriting. The findings reveal
that superior demonstrations directly contribute to the generation
of more effective rewritten queries.

6.5.2 Effectiveness of specific settings in the selection model. In
this experiment, we concentrate on assessing three critical aspects
within the contrastive selection model:

- The Curriculum Learning pipeline: We investigate the cur-
riculum learning pipeline’s efficacy by comparing it with a baseline
model. Specifically, this baseline involves training a selection model
on the TPC-H dataset using all training triplets simultaneously,
rather than employing a curriculum learning-based approach.

- Demonstration Quantity: We evaluate the impact of varying
the number of demonstrations by focusing on the most prevalent
configurations—namely, 1-shot and 3-shot demonstrations. This
experiment aims to elucidate the demonstration quantity’s effect
on the model’s performance.

- Different LLMs: We explore the implications of integrating
GPT-4, a more advanced LLM recognized for its superior capabilities
in natural language processing, into our rewriting system. Given the
financial implications of utilizing the GPT-4 API, our experimental
setup restricts the use of GPT-4 to the enhancement of the test
dataset rewrite process, with demonstrations and models derived
from GPT-3.5-turbo.

Table 8 shows the evaluation results and we obtain the following
key insights:

(1) Our query representation model demonstrates superior perfor-
mance in selecting optimal demonstrations compared to baseline



Original Query Original Query

Original Query

Original query: select |_shipmode, sum(case when o_orderpriority = '1-
URGENT or o_orderpriority = 2-HIGH then 1 else 0 end) as high_line_count,
sum(case when o_orderpriority <> '1-URGENT' and o_orderpriority <> 2-
HIGH then 1 else 0 end) as low_line_count from orders, lineitem where
o_orderkey = |_orderkey and ... group by |_shipmode order by |_shipmode;
Query cost: 21.63845666

"AMERICA' ) order by s_acctbal desc, ..., p_partkey;
Query cost: 0.789705753

Original query: select s_acctbal, ..., s_comment from part, supplier, ..., region where
p_partkey = ps_partkey and ... and ps_supplycost = ( select min(ps_supplycost) from
partsupp, supplier, nation, region where p_partkey = ps_partkey and ... and r_name =

Original query: select |_orderkey, sum(_extendedprice * (1 - |_discount)) as revenue, o_orderdate,
o_shippriority from customer, orders, lineitem where c_mktsegment = ‘AUTOMOBILE' and ... group
by I_orderkey, o_orderdate, o_shippriority order by revenue desc, o_orderdate;

Query cost: 33.2621007

LR Result

I LR Result

Rules applied: [FILTER_INTO_JOIN', 'PROJECT_TO_CALC', 'JOIN_EXTRACT_FILTER

LR Result

| Rules applied: [|

New query cost: 17.40275009

Rules applied: [AGGREGATE_JOIN_TRANSPOSE',
'SORT_PROJECT_TRANSPOSE', 'JOIN_EXTRACT_FILTER]

New query cost: 33.1077284

QueryCL Result

QueryCL Result

QueryCL Result

Rules applied: [FILTER_INTO_JOIN', 'JOIN_EXTRACT_FILTER', 'PROJECT_TO_CALC',

Rules applied: [FILTER_INTO_JOIN] |
New query cost: 17.65797496 | Rules applied: [

FILTER_INTO_JOIN]
New query cost: 26.90622425

Figure 8: Examples of the rewrite results of baseline Learned Rewrite method and out LLM-R? method.

approaches, and the incorporation of a curriculum-based training
methodology significantly amplifies this advantage. For instance,
direct training on the complete dataset results in a notable reduc-
tion in execution cost, averaging a decrease of 32.17 seconds and a
median of 2.3 seconds, respectively. Utilizing the curriculum learn-
ing approach for training the demonstration selector further con-
tributes to cost efficiency, achieving an average reduction of 1.5
seconds and a median decrease of 2.3 seconds. These findings un-
derscore the efficacy of our proposed query representation model
and the curriculum learning framework.

(2) Employing a 3-shot approach, as opposed to a 1-shot strategy, ad-
versely affects performance. A detailed examination of the rewritten
queries reveals that, the 3-shot method generated only 255 rewrite
proposals, and 235 of these rewrites yielded improvements in query
execution efficiency. Despite a high success rate of 92.16% for these
rewrites, the primary limitation lies in the significantly reduced
number of rewrite suggestions. This reduction is largely attributed
to the inconsistent guidance provided by the three demonstrations.
Additionally, the increased cost of rewrites and the challenges posed
by longer in-context texts for LLM analysis emerge as critical yet
unresolved issues when employing 3-shot prompting. Based on
these findings, we deduce that 1-shot prompting presents a more
efficient and effective approach under the current experimental
conditions.

(3) Despite GPT-4’s enhanced capabilities, transitioning to a dif-
ferent model for inference adversely impacts the efficacy of our
method. This observation underscores the complexity of optimizing
performance within our proposed framework and suggests that
consistency in model usage throughout the process may be pivotal
for achieving optimal selection.

6.6 Qualitative Analysis

we proceed to present examples to illustrate the rewrite quality
between various methods, focusing particularly on comparisons
between our approach and baseline methods. Notably, due to the
high incidence of erroneous rewrites generated by the LLM-only
method, our analysis primarily compares our method against the
LR baseline. Figure 8 demonstrates our findings demonstrate the
superior robustness and flexibility of our model compared to LR.
For instance, in the first case study, our LLM-R2 method uncov-
ers rewrite rules that remain undetected by LR. This discrepancy
can be attributed to LR’s potentially ineffective cost model, which
might erroneously consider the original query as already optimized.
Conversely, our LLM-enhanced system suggests a rewrite that evi-
dences significant potential for cost reduction. In the second case,
LR is observed to occasionally transform an efficient query into
a less efficient one. In the third scenario, LLM-R? outperforms
by modifying the rule sequence and incorporating an additional

Counts TPC-H IMDB DSB

Method Unique Total Unique Total Unique Total
LR 5 405 1 192 9 707
LLM-R? 56 1824 6 361 37 920

Table 9: The variety of rules applied by the methods in terms
of unique rules and total applications.

“FILTER_INTO_JOIN” operation, transforming a “WHERE” clause
into an “INNER JOIN”, thereby achieving a more efficient query
rewrite than that offered by LR.

Furthermore, we delve into the diversity of rewrite rules sug-
gested by the different methods. Here, the term Unique refers to
the distinct categories of rewrite rules recommended by a method,
whereas Total denotes the aggregate count of all rewrite rule in-
stances proposed. As illustrated in Table 9, it is evident that LLM-R?
not only recommends a higher quantity of rewrite rules but also
exhibits a broader spectrum of rewrite strategies by employing a
diverse range of rules. This observation underscores LLM-R?’s
enhanced flexibility and robustness, showcasing its capability to
generate more varied and effective rewrite plans.

7 CONCLUSION

Despite the analysis above, we would like to point out the current
limitation for further work. The main limitation for our LLM-R?
lies in the higher rewrite latency compared to DB only methods.
Compared to traditional DB methods, calling LLM API and selecting
demonstrations indeed consume more time. However, as shown
in the experiment results, such higher latency can be alleviated
by the larger execution time LLM-R? decreases, and there is no
doubt that our LLM-R? is a successful example of exploring the
LLMs’ application in database problems. We believe that the strong
generalisation and reasoning ability of the LLMs can also be applied
to other important database problems as well. In addition, further
work can also be made to improve our current LLM enhanced
query rewrite system, for example, utilising efficient demonstration
selection algorithms like Faiss [12], or even specially fine-tune a
LLM on query rewrite with more dataset.

To conclude, we propose a LLM-enhanced query rewrite pipeline
to perform efficient query rewrite. By collecting useful demonstra-
tions and learning a contrastive demonstration selector to modify
the rewrite system inputs, we are able to successfully improve the
input queries’ efficiency across popular datasets. In addition, we
further prove the effectiveness of our learning pipeline and the
transferability of our method over different scales, model back-
bones and datasets, showing that LLM-enhanced methods could be
an effective solution for efficiency-oriented query rewrite.
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