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A B S T R A C T

Bilayers (soft substrates coated with stiff films) are commonly found in nature with examples including
skin tissue, vesicles, or organ membranes. They exhibit various types of instabilities when subjected
to compression, depending on the contrast in material properties between the two components. We
present wrinkling instabilities for 3D hyperelastic bilayer systems, including auxetics (materials with
negative Poisson’s ratio), under uni-axial tension. In tension, a soft bilayer can experience large lateral
contraction, and we find that with an adequate contrast in the Poisson ratios, compressive stresses may
develop and generate wrinkles aligned with the tensile direction. We rely on an analytic modelling of
the phenomenon, and validate it with a user-defined Python script with periodic boundary conditions
and constitutive relation implementation in advanced Finite Element simulations. Our findings reveal
that wrinkles are observed when the Poisson ratio of the substrate is greater than that of the film. As
the two Poisson ratios converge to a common value, the critical stretch of instability shoots up rapidly,
and the wrinkling disappears. We also confirm these results by asymptotic analysis. This wrinkling
analysis has significant potential in controlling surface patterns of auxetic skin grafts and hydrogel
organ patches under mechanical loads. Moreover, the asymptotic expressions in this work can be used
under finite strain for buckling-based metrology applications.

1. Introduction
Auxetics, materials with negative Poisson’s ratio, expand

in all directions under uni-axial tension. For 3D isotropic
materials with auxetic behavior, the theoretical value of
Poisson’s ratio ranges between -1 and 0.5 [1]. Thanks to
rapid advancement in additive and subtractive manufactur-
ing techniques [2, 3], along with extensive research on neg-
ative Poisson ratio materials, auxetics have shown promising
applications in various fields [4–9].

Compliant substrates coated with thin-layered stiff films
(bilayers) are commonly found in nature; for example, skin
tissue consists of a thin, stiff epidermal layer attached to a
thick, soft dermis. When subject to mechanical loads, bilayer
systems can exhibit surface patterns through wrinkles. This
instability phenomenon has found a broad range of applica-
tions, in optical sensors [10], novel flexible electronics [11–
13], tunable phase gratings [14], buckling-based metrology
[15, 16], surface wetting [17], and for buckling-related ap-
plications in soft matter [18].

The formation of these surface patterns is controlled by
different parameters, such as the contrast in material prop-
erties [19, 20], differential growth [21], film-to-substrate
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thickness ratio [22, 23], initial imperfections [24], substrate
nonlinearity [25, 26], interfacial mechanics [27, 28], etc.

A survey of the literature shows that wrinkles appear-
ing in tension are seldom studied beyond the linear-elastic
framework [29], although they have been established exper-
imentally under large strains [15, 30], see Fig. 1. In this work,
we perform a linear buckling analysis of 3D hyperelastic thin
stiff films on semi-infinite compliant substrates (including
auxetics) in tension and large strains, in contrast to the
numerous existing studies concerned with compression.

We first use the buckling analysis available in ABAQUS
[31], which works up to a point, beyond which we have to
rely on a semi-analytical approach with Mathematica [32].
We find that wrinkles may be generated in bilayers subjected
to uni-axial tension. Main and original findings include (i)
Deriving asymptotic expressions for critical stretch ratios
and critical wavenumbers, valid in finite strains and useful
for buckling-based metrology applications; (ii) Showing that
the Poisson ratio of the substrate must be greater than that
of the film for wrinkles to appear; (iii) Establishing that
wrinkles disappear when the Poisson ratios of film and
substrate converge to a common value, and that (iv) The
wrinkling wavelength is high (low) when the Poisson ratios
of film and substrate are close (far).

2. Results
2.1. 3D bilayer system in tension

We consider 3D bilayer systems with a thin stiff film
perfectly bonded to a semi-infinite compliant substrate,
see Fig. 1. Under a uniaxial tension applied along the
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Buckling analysis in 3D auxetic bilayer systems

Figure 1: (a) Undeformed and (b) deformed configurations of a 3D bilayer system with periodic boundary conditions in the
lateral directions. The system is infinite in the X- and Z-directions and is under uni-axial tension along the X-direction. The
analysis shows that eventually, (b) wrinkles develop parallel to the X-direction, provided there is enough contrast between the
constitutive parameters of the materials. (c) Image obtained using Scanning Electron Microscope (SEM) on a natural rubber
substrate coated with a gold film, when elongated to 50% strain at room temperature [30]. An inset with an arrow shows the
direction of elongation. Bright and dark bands represent the buckled gold film layer and the rubber showing through cracks in the
stretched film, respectively. (d) Optical micrograph of a Polystyrene (PS) film layer on a silicon wafer with decreasing thickness
from top to bottom is shown on the left panel. The corresponding wrinkles exhibit decreasing wavelengths on the right panel,
when the PS films are attached to a Polydimethylsiloxane (PDMS) substrate and elongated to induced buckling [15].

X-direction, the bilayer is expected to eventually develop
wrinkles aligned with that direction, as shown in Fig. 1(b),
provided compressive stresses develop along the Y-direction
because of a sufficient Poisson ratio contrast.

Here we use the Blatz-Ko strain energy function [34] for
both materials:

𝑊 = 𝑐1

(

𝐼1 − 3 + 1
𝛽

(

𝐼−𝛽3 − 1
)

)

+ 𝑐2

(

𝐼2
𝐼3

− 3 + 1
𝛽

(

𝐼𝛽3 − 1
)

)

, (1)

where 𝑐1 = 𝛼 𝜇
2 , 𝑐2 = (1 − 𝛼)𝜇2 , 𝛽 = 𝜈

1−2𝜈 , 𝐅 is the defor-
mation gradient, and 𝐼1 = tr(𝐅𝐅𝑇 ), 𝐼2 = 𝐼3tr[(𝐅𝐅𝑇 )−1],
𝐼3 = det

(

𝐅𝐅𝑇 ) are three strain invariants. Also, the material
constants are the non-dimensional parameter 0 < 𝛼 < 1,
the initial shear modulus 𝜇 > 0, and the Poisson ratio

−1 < 𝜈 ≤ 1∕2. We use the letters f and s for film and
substrate, respectively. For the simulations, 𝛼𝑓 = 𝛼𝑠 = 0.4
and 𝜇𝑓∕𝜇𝑠 = 30 (similar observations to those detailed in
this study can be made for other values).

Auxetic materials are highly compressible due to their
negative Poisson ratio (thus far away from the incompress-
ibility limit of a Poisson ratio equal to 1/2). Blatz-Ko strain
energy functions with a negative Poisson ratio can thus be
used to model auxetics, although with certain limitations
[35]. For example, Ciambella and Saccomandi [36] use the
Blatz-Ko strain energy to capture the experiments of Choi
and Lakes [37] on auxetic materials. The model is also ad-
equate to capture the experimental behaviors of membranes
(no substrate) under tension, from auxetic to conventional
Poisson ratios, see Fig. 2.

Now, using the Blatz-Ko model for 3D bilayer systems
under large uni-axial elongation, we find that wrinkles are
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Buckling analysis in 3D auxetic bilayer systems

Figure 2: Comparison of wrinkling profiles in thin conventional and auxetic sheets. Top row: Thin acetate sheets under uni-axial
tension, with (a) non-auxetic micro-structural patterns and (b) auxetic micro-structural patterns [33]. For conventional sheets,
wrinkles develop at the center of the sheet. For auxetic sheets, they appear near the clamped edges. Bottom row: Buckling profiles
(according to the magnitude of the displacement field) obtained with ABAQUS and the Blatz-Ko model Eq. (1). Here 𝛼 = 0.4,
𝜇 = 0.53 GPa, and 𝜈 = 0.38,−0.2 in (c) and (d), respectively.

observed only when the Poisson ratio of the film (𝜈𝑓 ) is
smaller than that of the substrate (𝜈𝑠), as summarised in
Fig. 3. This result recovers the work by Nikravesh et al. [38]
conducted for linear-elastic bilayer systems.

Figure 3: Wrinkling condition according to the contrast be-
tween the Poisson ratios of film and substrate.

2.2. Incompressible substrate
First, we assume that the substrate is quasi-incompressible

(𝜈𝑠 = 0.495) while for the film, 𝜈𝑓 ∈ (−0.95, 0.495).
Here the Poisson ratio of the substrate is greater than

that of film, and under uniaxial tension, the film expands
more than the substrate along the Z-direction, resulting in
compressive stresses and the formation of wrinkles parallel
to the X-direction.

In Fig. 4(a-b), the values of the critical stretch of wrin-
kling 𝜆𝑐 and of the corresponding critical wavenumber 𝑘𝑐 are
plotted against 𝜈𝑓 . From Fig. 4a, we observe that the critical
stretch ratio values predicted from the semi-analytical anal-
ysis (Mathematica) and the FE buckling analysis ABAQUS
match well, as long as 𝜈𝑓 ≤ 0.35. Beyond this value,
ABAQUS ceases to predict wrinkles in the desired direction
and gives negative eigenvalues, suggesting the load direction
has to be reversed to obtain wrinkles, which is unphysical.

An auxetic film (𝜈𝑓 < 0) expands in all directions under
tension while the incompressible substrate contracts along
the Z direction, leading to compressive stress in the film.
Hence only low values of the critical stretch are required
for the wrinkles to occur. As the Poisson ratio of the film
increases and moves closer to that of the substrate, the
values of the critical stretch shoot up sharply, supporting our
findings in Fig. 3.

2.3. Highly auxetic film
Now we take the film to be highly auxetic, with Pois-

son ratio 𝜈𝑓 = −0.95, while for the substrate, 𝜈𝑠 ∈
(−0.95, 0.495].

Fig. 4(c-d) show the variations of 𝜆𝑐 and 𝑘𝑐 with 𝜈𝑠.
Again, we find good agreement between analysis and simula-
tions for a certain range, when −0.7 ≤ 𝜈𝑠 ≤ 0.495. For 𝜈s <
−0.8, ABAQUS stops providing meaningful predictions. In
general, the buckling occurs early, except as 𝜈𝑠 → 𝜈𝑓 when
it increases dramatically because in that limit, both film
and substrate experience the same transverse contraction so
that no compressive stress nor wrinkles develop. Similarly
to Fig. 4b, Fig. 4d shows that the higher the Poisson ratio
contrast is, the larger the wavelength of the wrinkles is.

In summary, we found that to ensure early wrinkling in
tension, a large contrast in Poisson’s ratio is required, for
example by taking one material to be auxetic and the other
non-auxetic.

2.4. Asymptotic solution: Compressible
neo–Hookean bilayer system

The following critical strain and wavenumber expres-
sions:

𝜀𝑐 =
1

4(𝜈𝑠 − 𝜈𝑓 )

(

3
𝜇𝑠
𝜇𝑓

1 − 𝜈𝑓
1 − 𝜈𝑠

)2∕3

,

𝑘𝑐ℎ =
(

3
𝜇𝑠
𝜇𝑓

1 − 𝜈𝑓
1 − 𝜈𝑠

)1∕3

, (2)
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Figure 4: Numerical simulations using Blatz-Ko material model (Eq. (1)). Variations of the critical stretch of wrinkling 𝜆𝑐 and
corresponding critical wavenumber measure 𝑘𝑐𝐻 with the Poisson ratio of one layer (𝑘𝑐 is the critical wavenumber and 𝐻 is the
film initial thickness). (a-b): The substrate is quasi-incompressible (𝜈𝑠 = 0.495). (c-d): The film is highly auxetic (𝜈𝑓 = −0.95).
Results from ABAQUS: black dots, results from Mathematica: solid line with square markers.

Figure 5: Numerical simulations for a bilayer made of compressible neo-Hookean materials (𝛼𝑠 = 𝛼𝑓 = 1 in Eq. (1)). The substrate
is quasi-incompressible (𝜈𝑠 = 0.495). (a-b): Variations of the critical stretch of wrinkling 𝜆𝑐 and corresponding critical wavenumber
measure 𝑘𝑐ℎ (𝑘𝑐 : critical wavenumber, ℎ: current film thickness) with the Poisson ratio of film layer 𝜈𝑓 . ABAQUS: black dots,
Mathematica: solid line with square markers, Asymptotic expressions (Eqs. (3) to (4)): star markers, Linear-elastic expressions
(Eq. (2)): dash-dotted line.

have been derived by [30, 38, 39] for linearly elastic bilayers
under uniaxial tension. These expressions are valid under the
plane-strain approximation. Here, ℎ is the current thickness
of the film, 𝜀𝑐 is the critical strain, and 𝑘𝑐 is the critical
wavenumber.

However, we note that the plane-strain assumption is
not valid for a bilayer system under uni-axial tension. Here,
we follow Cai and Fu [40, 41] and assume that the shear
modulus ratio 𝑟 = 𝜇𝑠∕𝜇𝑓 is of order (𝑘𝑐ℎ)3 to derive asymp-
totic expansions for the critical strain and wavenumber (for

Sairam Pamulaparthi Venkata et al.: Preprint submitted to Elsevier Page 4 of 9



Buckling analysis in 3D auxetic bilayer systems

Figure 6: Using the asymptotic expressions Eq. (3)-Eq. (4) for compressible neo-Hookean materials (𝛼𝑠 = 𝛼𝑓 = 1 in Eq. (1)). The
substrate is quasi-incompressible (𝜈𝑠 = 0.495). (a-b): Variations of the critical stretch of wrinkling 𝜆𝑐 and corresponding critical
wavenumber measure 𝑘𝑐ℎ with the Poisson ratio of film layer (𝑘𝑐 is the critical wavenumber and ℎ is the deformed film thickness)
and for contrast in shear moduli between the layers (𝜇𝑓∕𝜇𝑠 = {50, 100, 500, 1000}).

simplicity, we take 𝛼𝑠 = 𝛼𝑓 = 1 in Eq. (1)). We find

𝜆𝑐 = 1 +

[

(1 − 𝜈𝑓 )(1 − 𝜈𝑠)
]2∕3

(𝜈𝑠 − 𝜈𝑓 )
(

8𝜈𝑠∕3 − 2
)2∕3

𝑟2∕3

+
(1 − 𝜈𝑓 )(2𝜈𝑠 − 1)
(𝜈𝑠 − 𝜈𝑓 )(4𝜈𝑠 − 3)

𝑟

+ 𝑐4𝑟
4∕3 + 𝑐5𝑟

5∕3 + 𝑐6𝑟
2 +O(𝑟7∕3), (3)

and

𝑘𝑐ℎ =
[4(1 − 𝜈𝑓 )(1 − 𝜈𝑠)

1 − 4𝜈𝑠∕3

]1∕3

𝑟1∕3

+ 𝑑3𝑟 + 𝑑4𝑟
4∕3 + 𝑑5𝑟

5∕3 +O(𝑟2), (4)

where the coefficients 𝑐4,⋯ , 𝑐6, 𝑑3,⋯ , 𝑑5 are shown in Ap-
pendix B.

Eq. (2) is used for buckling-based metrology applica-
tions to calculate the Young modulus of the film, but is
only valid for low strains (≪ 10%) under the assumption
of plane strain [15]. However, uni-axial tension does not
lead to plane strain and Eq. (3) is more appropriate, and is
valid for finite strains. Numerically, we find little difference
between the predictions of the two expressions, provided the
strains are small. However, as 𝜈𝑓 → 𝜈𝑠, the critical strain
becomes large and the linear-elastic results from Eq. (2)
greatly underestimate the numerical results from Abaqus and
Mathematica, while Eq. (3) gives good agreement, see the
example in Fig. 5(a-b) which shows the variations of 𝜆𝑐
and 𝑘𝑐ℎ with 𝜈𝑓 when 𝜈𝑠 = 0.495 (quasi-incompressible
substrate)

In Fig. 6(a-b), we plot the variations of 𝜆𝑐 and 𝑘𝑐ℎ with
the Poisson ratio of the film (0 < 𝜈𝑓 < 0.45) for different
values of shear moduli contrast 𝜇𝑓∕𝜇𝑠 using Eq. (3)-Eq. (4),
because they give curves instantly compared to long compu-
tations.

3. Methods
3.1. Semi-analytical treatment

We use Eq. (1) to determine the principal components of
the Cauchy stress 𝐓 = 𝐽−1𝐅 (𝜕𝑊 ∕𝜕𝐅) as

𝑇𝑖 = 𝐸
𝐽−(2𝛼+1) (−𝛼𝜆2𝑖 + (𝛼 − 1 + 𝛼𝜆4𝑖 )𝐽

2𝛼 − (𝛼 − 1)𝜆2𝑖 𝐽
4𝛼)

2𝜆2𝑖 (1 + 𝜈)
,

(5)

where the 𝜆𝑖 are the principal stretch ratios and 𝐽 = det 𝐅.
The substrate is under uniaxial tension along X, so that

𝑇 𝑠
22 = 𝑇 𝑠

33 = 0, which gives the following deformation
gradient,

𝐅𝑠 = diag
(

𝜆1, 𝜆
−𝜈𝑠
1 , 𝜆−𝜈𝑠1

)

. (6)

The film and substrate are perfectly bonded, so that 𝜆𝑓1 = 𝜆𝑠1,
𝜆𝑓3 = 𝜆𝑠3, and 𝑇 𝑓

22 = 𝑇 𝑠
22 = 0. We then find that

𝐅𝑓 = diag
⎛

⎜

⎜

⎝

𝜆1, 𝜆
𝜈𝑓 (𝜈𝑠−1)
(1−𝜈𝑓 )

1 , 𝜆−𝜈𝑠1

⎞

⎟

⎟

⎠

. (7)

To find the critical state of buckling, a small-amplitude
mechanical displacement 𝐮 is superimposed on the finite de-
formations. The incremental equations of equilibrium read

A𝑠
0𝑗𝑖𝑙𝑚𝑢

𝑠
𝑚,𝑙𝑗 = 0, −∞ < 𝑦 < 0,

A𝑓
0𝑗𝑖𝑙𝑚𝑢

𝑓
𝑚,𝑙𝑗 = 0, 0 < 𝑦 < ℎ, (8)

where the commas denote differentiation with respect to the
coordinates, ℎ is the current thickness of the film, and A0 is
the fourth-order tensor of the instantaneous elastic moduli,
with components

A0𝑗𝑖𝑙𝑚 = 𝐽−1𝐹𝑗𝛼
𝜕2𝑊

𝜕𝐹𝑖𝛼𝜕𝐹𝑚𝛽
𝐹𝑙𝛽 . (9)
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Figure 7: (a) Undeformed and (b) deformed configurations of auxetic stiff film with orthogonal-oval shaped patterns bonded to
a compliant substrate. The base materials for film and substrate are incompressible. Periodic boundary conditions are applied on
the extreme faces of the domain along X and Z and the system is subjected to uni-axial tension along X. In (b), we observe that
the wrinkles are generated parallel to the direction of tension. The critical strain for buckling is 𝜀𝑐 ≃ 0.274.

We look for solutions of the forms:

𝑢𝑧 = 𝑒𝑠𝑦 sin(𝑘𝑧), 𝑢𝑦 = 𝑒𝑠𝑦 cos(𝑘𝑧), (10)

where 𝑠 is the attenuation coefficient and 𝑘 is the wavenum-
ber of the sinusoidal wrinkles. Substitution into Eq. (8) leads
to an eigenproblem, with characteristic equation a bicubic in
𝑠. In the film, the general solution is of the form

𝑢𝑓𝑧 =
(

4
∑

𝑖=1
V𝑖𝑒

𝑠𝑖𝑦
)

sin(𝑘𝑧), 𝑢𝑓𝑦 =
(

4
∑

𝑖=1
V𝑖𝑒

𝑠𝑖𝑦
)

cos(𝑘𝑧),

(11)

where 𝑠1,⋯ , 𝑠4 are the eigenvalues, and V1,⋯ ,V4 are con-
stants. In the substrate, the stretch ratios along the Y- and Z-
directions are equal, and 𝑠 = 1 is a repeated eigenvalue. The
other repeated root, 𝑠 = −1 is discarded to enforce decay.
There, the solution is thus of the form

𝑢𝑠𝑧 = (U1 + U2𝑦)𝑒𝑦 sin(𝑘𝑧), 𝑢𝑠𝑦 = (U1 + U2𝑦)𝑒𝑦 cos(𝑘𝑧),
(12)

where U1,U2 are constants.

By applying the traction-free boundary conditions

A𝑓
02𝑖𝑙𝑚𝑢

𝑓
𝑚,𝑙 = 0, 𝑦 = ℎ, (13a)

and the continuity conditions

A𝑓
02𝑖𝑙𝑚𝑢

𝑓
𝑚,𝑙 = A𝑠

02𝑖𝑙𝑚𝑢
𝑠
𝑚,𝑙, 𝑢𝑓𝑖 = 𝑢𝑠𝑖 , 𝑦 = 0, (13b)

we obtain six homogeneous equations for {U1,U2,V1,⋯ ,V4}.
The bifurcation condition is then given by equating the
determinant of a 6 × 6 coefficient matrix to 0.

3.2. Finite Element simulations: 3D models
We first checked the accuracy of our periodic boundary

conditions (PBCs) code (Python script) to reproduce known
results for wrinkling under plane-strain compression. Hence,
we performed a linear buckling analysis in ABAQUS on an
incompressible neo-Hookean bilayer periodic along the X-
direction, see Appendix A, and recovered the results of [42].

We then perform a series of finite-element simulations
for 3D Blatz-Ko model bilayers under uni-axial tension.
The dimensions (X, Y, Z) of the bilayer structure are 15 ×
45 × 5.684 units with ℎ𝑠∕ℎ𝑓 = 299 when the substrate is
incompressible, and 15×80×4.504 units with ℎ𝑠∕ℎ𝑓 = 399
when the film is highly auxetic.

The dimensions along the Z-direction are integer mul-
tiples of the wavelength (calculated using semi-analytical
results from Mathematica) when (𝜈𝑓 , 𝜈𝑠) = {0.3, 0.495}
and {−0.95,−0.8}. For the other (𝜈𝑓 , 𝜈𝑠) pairs, we noticed
that small variations in the depth of the structure did not
notably alter the values of critical stretch (changes in the
third decimal point). To save computational time (without
compromising the efficiency of the solutions), we kept the
dimensions 15 × 45 × 5.684 units and 15 × 80 × 4.504 units
when the substrate is incompressible (Section 2.2) and when
the film is highly auxetic (Section 2.3).

For the neo-Hookean bilayers (𝛼𝑓 = 𝛼𝑠 = 1), the
dimensions are 6 × 45 × 1.85 units with ℎ𝑠∕ℎ𝑓 = 299.

We apply PBCs on the extreme faces in the X- and Z-
directions of the domain using a user-defined Python script
file. Both the film and substrate are modelled using a UHY-
PER subroutine with the Blatz-Ko strain energy function.
We use a 20-node brick (hexahedral) element with quadratic
interpolation and reduced integration (C3D20R) for both
film and substrate; for the limiting case of incompressibility,
we used a C3D20RH element. For the Blatz-Ko bilayers,
34,200 and 17,130 mesh elements are used for the cases
of an incompressible substrate and a highly auxetic film,
respectively. For the neo-Hookean bilayer system, 3,240
mesh elements are used.

We find that the numerical results obtained using dif-
ferent approaches in ABAQUS and Mathematica software
match well for a wide range of material parameters, see
Fig. 4. When 𝛼𝑓 = 𝛼𝑠 = 1 (compressible neo-Hookean
bilayers), the results using asymptotic expressions agree well
with the numerical simulations, see Fig. 5.

4. Conclusions
We investigated the possibility of harnessing wrinkles

parallel to the direction of applied tension in 3D isotropic
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compressible bilayers subject to large elongations. We paid
particular attention to the cases when the substrate is quasi-
incompressible and when the film is highly auxetic.

We used a semi-analytical approach with Mathematica
to predict the onset of wrinkling, and user-defined Python
scripts to apply periodic boundary conditions and UHY-
PER subroutine for Blatz-Ko material models to perform
linear buckling analysis in Finite Element simulations with
ABAQUS.

For compressible neo–Hookean bilayer systems, we
derived asymptotic expressions for critical stretch ratio
and critical wavenumber, which can be used under finite
strains to determine the Young modulus of the film layer
for buckling-based metrology applications.

We found that wrinkles can be obtained only when the
Poisson ratio of the substrate is greater than that of the film.
When the Poisson ratios of film and substrate converge to a
common value, the critical stretch ratio shoots up sharply
and the wavelength of wrinkles is high. In the limit, the
wrinkles are not present because there are no compressive
stresses developing when the lateral expansions are the same
for the film and substrate. Through multiple simulations
we showed that by varying the material properties, we can
harness or delay the onset of wrinkles.

Some of the limitations of our work include the con-
sideration of isotropic strain energy function for auxetic
materials, and deformation-independent material properties.
Functional-grading of auxetics could also be explored with
the methods presented in this study, see some preliminary
works on harnessing instabilities in functionally-graded aux-
etic materials using tension-field theory [43, 44] and their
applications [45–47].

Another area of interest concerns instabilities in materi-
als with auxetic patterns. Indeed, auxetic properties can be
obtained at a continuum level with a careful design of holes
or voids at the micro-scale [6, 48]. For example, in Fig. 7
we performed linear buckling analysis when the substrate is
covered with an initially incompressible film made auxetic
by orthogonal oval-shaped voids, leading to an effective
Poisson ratio ranging between -0.2 and 0 [9]. We see that
the critical stretch ratio 𝜆𝑐 ≃ 1.274 matches well (within
5%) with the results in Fig. 4.

This paper’s analysis could play a critical role in man-
ufacturing and testing the applicability of auxetic hydrogel
organ patches [9] and skin grafts [49].

Appendix A: Validation of PBCs code – 2D
incompressible neo-Hookean bilayer model

Under uni-axial, plane-strain compression, the theoreti-
cal critical strain is 𝜀𝑐 = 1∕4

(

3𝜇𝑠∕𝜇𝑓
)2∕3 [42].

In Fig. A.1, we applied PBCs on the left and right edges
of the domain, roller support on the bottom edge of the sub-
strate, perfect bonding between film and substrate layers, and
traction-free condition on the top surface of the film in the
two cases 𝜇𝑓∕𝜇𝑠 = 30, 1000. We find 𝜀𝑐 = 0.053, 0.0052,
respectively, matching well with the theoretical solutions.

Having validated our 1D PBCs script along the X-
direction on a 2D model, we then extended the PBCs to
two dimensions, along the X- and Z-directions, to perform
a linear buckling analysis on 3D bilayer systems under
uniaxial tension.

The height ratio of substrate to film layers was taken as
ℎ𝑠∕ℎ𝑓 = 163, with the width of layers being 30.457 units.
We modelled both film and substrate with the incompress-
ible neo-Hookean model.

We used a hybrid 8-node plane strain quadrilateral el-
ement with quadratic interpolation and reduced integration
(CPE8RH) for both film and substrate layers. We also ap-
plied periodic boundary conditions on the left and right
edges of the domain. The minimum size of the mesh element
is lower than the height of the film. We took 12,800 elements,
and the numerical results converged and were consistent
with the theoretical solutions.

Appendix B: Coefficients in asymptotic
expressions

𝑐4 =
C
(

45 + 𝜈𝑠𝑐4𝑎 + 𝜈𝑓 𝑐4𝑏 + 𝜈2𝑓 𝑐4𝑐
)

20 × 21∕3 × 32∕3(𝜈𝑓 − 𝜈𝑠)2(−1 + 𝜈𝑠)(−3 + 4𝜈𝑠)4∕3
,

𝑐5 =
C2(−1 + 𝜈𝑓 )(−1 + 2𝜈𝑠)(−3 − 4𝜈𝑓 + 4𝜈𝑠)

22∕3 × 31∕3(𝜈𝑓 − 𝜈𝑠)2(−3 + 4𝜈𝑠)5∕3
,

𝑐6 =
4725 − 2𝜈4𝑓 𝑐6𝑎 − 𝜈𝑠𝑐6𝑏 + 𝜈3𝑓 𝑐6𝑐 + 𝜈2𝑓 𝑐6𝑑 + 2𝜈𝑓 𝑐6𝑒

12600(3 − 4𝜈𝑠)2(−1 + 𝜈𝑠)2(−𝜈𝑓 + 𝜈𝑠)3
,

C =
(

(1 − 𝜈𝑓 )(𝜈𝑠 − 1)
)1∕3 ,

(B.1a)

Figure A.1: (a) Schematic representation of an incompressible
neo-Hookean stiff film/soft substrate bilayer system under uni-
axial compression. On the left edge of the domain, displace-
ment and shear traction are set at zero. On the bottom edge
of the domain, roller support restricts vertical displacement
and shear traction, and the top surface of the film is traction-
free. (b) Linear buckling solutions with critical strains 𝜀𝑐 when
𝜇𝑓∕𝜇𝑠 = 30, 1000, in line with the predictions of Cao and
Hutchinson [42].
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and

𝑐4𝑎 = −64 + (13 − 4𝜈𝑠)𝜈𝑠,
𝑐4𝑏 = −71 + 𝜈𝑠(66 + (51 − 26𝜈𝑠)𝜈𝑠),

𝑐4𝑐 = 56 − 92𝜈𝑠 + 26𝜈2𝑠 ,
𝑐6𝑎 = 33727 + 2𝜈𝑠(−73474 + 𝜈𝑠(122601

+ 𝜈𝑠(−92584 + 26681𝜈𝑠))),
𝑐6𝑏 = 4410 + 𝜈𝑠(82574 + 𝜈𝑠(−288226

+ 𝜈𝑠(399999 − 260716𝜈𝑠 + 67034𝜈2𝑠 ))),
𝑐6𝑐 = 95848 + 2𝜈𝑠(−138872 + 𝜈𝑠(46253

+ 𝜈𝑠(235988 + 𝜈𝑠(−297317 + 106724𝜈𝑠)))),
𝑐6𝑑 = −3509 + 𝜈𝑠(−202720 + 𝜈𝑠(841376 + 𝜈𝑠(−1218634

+ 𝜈𝑠(643241 + 2(22435 − 53362𝜈𝑠)𝜈𝑠)))),
𝑐6𝑒 = −11970 + 𝜈𝑠(78479 + 𝜈𝑠(−137927 + 𝜈𝑠(−12652

+ 𝜈𝑠(271583 + 𝜈𝑠(−276527 + 89714𝜈𝑠))))).
(B.1b)

Similarly, the coefficients of higher-order terms in the asymp-
totic expression for critical wavenumber (Eq. (4)) are

𝑑3 =
4 + 2𝜈𝑠 − 11𝜈2𝑠 + 𝜈𝑓

(

11 − 32𝜈𝑠 + 26𝜈2𝑠
)

15
(

3 − 7𝜈𝑠 + 4𝜈2𝑠
) ,

𝑑4 =

(

2
3

)2∕3
C(1 + 2𝜈𝑓 )(−1 + 2𝜈𝑠)

(−3 + 4𝜈𝑠)4∕3
,

𝑑5 =
C2

(

−6761 + 𝜈𝑠𝑑5𝑎 + 4𝜈2𝑓𝑑5𝑏 − 2𝜈𝑓𝑑5𝑐
)

3150 × 22∕3 × 31∕3(−1 + 𝜈𝑓 )(−1 + 𝜈𝑠)3(−3 + 4𝜈𝑠)5∕3
,

(B.2a)

and

𝑑5𝑎 = 21724 + 𝜈𝑠(−19146 + 𝜈𝑠(−2636 + 7519𝜈𝑠)),
𝑑5𝑏 = 646 + 𝜈𝑠(−4964 + 𝜈𝑠(12906

+ 𝜈𝑠(−14204 + 5791𝜈𝑠))),
𝑑5𝑐 = −3821 + 𝜈𝑠(7864 + 𝜈𝑠(5844

+ 𝜈𝑠(−22796 + 13609𝜈𝑠))).

(B.2b)
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