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John’s blow up examples and scattering
solutions for semi-linear wave equations

Louie Bernhardt, Volker Schlue, Dongxiao Yu

Abstract In light of recent work of the third author, we revisit a classic example

given by Fritz John of a semi-linear wave equation which exhibits finite in time

blow up for all compactly supported data. We present the construction of future

global solutions from asymptotic data given in [12] for this specific example, and

clarify the relation of this result of Yu to John’s theorem in [6]. Furthermore we

present a novel blow up result for finite energy solutions satisfying a sign condition

due to the first author, and invoke this result to show that the constructed backwards

in time solutions blow up in the past.

1 Introduction

At the MATRIX workshop on Hyperbolic PDEs and Nonlinear Evolution Prob-

lems, in September 2023, Dongxiao Yu presented several global existence results

from asymptotic data for a class of quasi-linear wave equations [12]. These back-

wards in time results are compelling because they apply in particular to wave equa-

tions for which forward in time global existence is not known, or worse, are known

to admit blow up solutions.

The topic of this note is the classic example
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−�u = (∂tu)
2 : on R

3+1 . (1)

This is a semi-linear wave equation for which Fritz John showed that forward in

time solutions arising from data of compact support blow up in finite time [6]. We

recall the statement of this well-known fact, and his argument briefly in Section 2;

excellent expositions of John’s results in [6] can be found in the lecture notes [1, 2].

The forward in time results use the initial value formulation for (1), and rely on

the method of spherical means. The backward in time solutions constructed by Yu

use Hörmander’s asymptotic system [3, 4, 5] to find an approximate solution, and

rely on energy estimates for the remainder.

A similar philosophy has been applied by Lindblad and Schlue [11] to obtain

global existence from scattering data, backwards in time, for semi-linear wave

equations which admit forward in time global solutions. The classic examples are

here wave equations satisfying the null condition [7],

�u = Q(∂u,∂u) (2)

which, in contrast to (1) admit global solutions which asymptote to a given linear

solution, and

u(t,x)∼ εr−1U(q,ω) (r ∼ t, t → ∞) (3)

where r = |x|, q = r − t, and ω = x/|x|. In particular, scattering solutions can be

constructed from knowledge of the radiation field U(q,ω).
The situation is very different for (1). As we will discuss in this note, the exis-

tence results for (1) that go beyond almost global existence for small data, depend

on carefully chosen data, either asymptotically or initially.

In Section 3, we demonstrate that there are solutions which approach a solution

of the asymptotic system, in the sense that

u(t,x)∼ εr−1U(s,q,ω) (r ∼ t, t → ∞) (4)

where s = ε ln(t), and U satisfies

2Usq +U2
q = 0. (5)

Following [12], we first prepare a solution to (5) which does not blow up, and then

find a corresponding solution to (1). This construction is a special case of the results

in [12] which apply more generally to quasi-linear wave equations. In contrast to

(3), these solutions do not have a radiation field.

The main result that motivates this note is Theorem 3, in Section 3: There do

exist Ck solutions of (1) for t ≥ 0. We will call these solutions future global.

In view of John’s blow up result these solutions cannot be compactly supported

at t = 0. Indeed, while Theorem 1 states that the only global Ck solution that arises

from compactly supported data is the trivial solution, it is clear from John’s argu-

ment in Section 2 that solutions of (1) arising from compactly supported data blow

up both to the future, and to the past. (They are neither future nor past global.)
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This also shows that the blow-up results of John [6] do not trivially extend from

compactly supported data to general finite energy solutions. As we have seen, there

are some finite energy solutions, namely the solutions of Theorem 3 which are future

global. However, this raises the question if these solutions are also past global.

In Section 4, we show with an argument that is due to the first author, that the

solutions of Theorem 3 are not global: While they are future global, they blow up in

the past. Theorem 11 gives a sufficient sign condition for blow up of finite energy

solutions to (1), and Corollary 12 shows that the solutions constructed in [12] satisfy

that sign condition.

The occurence of a sign condition is expected in this setting: Already for the

asympototic equation (5) the sign of the initial data for Uq at s = 0 is relevant for

existence, for s > 0.

Thus this note clarifies the relation between the global existence results of the

third author, and the blow up results of John, in the special case of the equation (1).

We leave open the question if there are any global finite energy solutions to (1).

2 John’s blow-up result for the forward solution

Fritz John’s classical paper [6] contains the result that is most relevant to this note:

Theorem 1 (John ’81) Suppose u :R3+1 →R is a solution of

∂ 2
t u−∆u = (∂tu)

2 , (6)

u(0,x) = u0 , ∂tu(0,x) = u1 (7)

with smooth data of compact support u0,u1 ∈ C∞
0 .

If u ∈ C2(R3 × [0,∞), then u = 0 identically.

Remark 2 The theorem refers to general solutions with compactly supported data.

The more frequently referred to statement, which is also easier to prove, is the fact

that there are some solutions that blow up. These are constructed from spatially

homogeneous solutions, u(t,x) = u(t), which satisfy the ODE

∂tut = (ut)
2 . (8)

This ODE should be compared to (5). In both cases the sign of the initial data is

crucial: In (8) it is chosen to ensure blow-up, and for (5) it is chosen to prevent blow-

up. In view of these simple examples it is also not surprising that a sign condition is

relevant in the general setting of Section 4.

The proof of Theorem 1 is a spherical means argument, and relies on the fact that

in 3+ 1 dimensions the spherical mean

Mt,r[u](x) =
1

4π

∫

|ξ |=1
u(t,x+ rξ )dσ(ξ ) (9)
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of any solution to (6) satisfies

∂ 2
t Mt,r [ru](x)− ∂ 2

r Mt,r[ru](x) = Mt,r[r(∂tu)
2](x) . (10)

This well-known reduction to a 1+1-dimensional wave equation in (t,r) then yields

the representation formula

Mt,r[ru](0)=
1

2

(

(r+t)Mr+t [u0](0)+(r−t)Mr−t [u0](0)
)

+
1

2

∫ r+t

r−t
ρMρ [u1](0)dρ

+
1

2

∫ t

0

∫ r+(t−s)

r−(t−s)
ρMs,ρ [(∂tu)

2](0)dρds (11)

For data of compact support, say contained in the ball |r| ≤ R, and any (t,r) with

t > R+ |r|, r > 0, it then holds

Mt,r[ru](0)≥
1

2

∫ t

0

∫ r+t−s

|t−r−s|
ρM2

s,ρ [∂tu](0)dρds . (12)

Given that the integrand is non-negative it can be suitably restricted further. Most

importantly it is an integral in space and time, over the spherical means of ∂tu; since

by the compact support assumption u vanishes for r > R+ t, the latter integral in

time can be carried out, and by the fundamental theorem of Calculus and Cauchy-

Schwarz this leads to

Mt,r [u](0)≥
1

2

∫ r

t−r

ρ
r(R+t−r)

∣

∣Mρ+(t−r),ρ [u](0)
∣

∣

2
dρ , (13)

for (t,r) ∈ ΣR = {(t,r) : R < R+ r < t < 2r}. For a detailed derivation of this in-

equality we refer the reader to [1, 2].

This now shows that along a characteristic emanating from (t,r), the quantity

β (ρ) =

∫ ρ

−q
σ
∣

∣Mσ−q,σ [u]
∣

∣

2
dσ (14)

satisfies the differential inequality

β ′(ρ) = ρ
∣

∣Mρ−q,ρ [u]
∣

∣

2
≥

1

4(R− q)2ρ
β 2(ρ) . (15)

It is then easy to show that this quantity blows up, unless Mρ−q,ρ [u] = 0 for all ρ ≥ r.

Note that the blow up here is at the level of the solution u itself. This is distinct

from the blow-up argument in Section 4, which yields blow up at the level of ∂tu.
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3 Existence of the backwards solution

Consider the scalar semilinear wave equation (1) in R
1+3:

−�u = (∂ 2
t −∆)u = (∂tu)

2.

We have seen in the previous section, that according to the result of John [6], any

nontrivial C3 solution to (1) with compactly supported initial data blows up in finite

time. In this section, however, we discuss a recent result in [12, Corollary 8.3] on

the construction of nontrivial future global solutions to (1).

Theorem 3 (Yu ’23) There exist a large family of nontrivial future global solutions

to (1) for t ≥ 0. Moreover, for each of these future global solutions, the solution and

its time derivative cannot be both compactly supported at t = 0.

Remark 4 For each constant C > 0, the function − ln(t +C) is a future global so-

lution to (1); cf. Remark 2. However, the future global solutions constructed in [12]

decay as |x| → ∞ and thus are different from these constant-in-x solutions. See, e.g.,

the estimates (23) below.

Remark 5 To be more precise, in this paper, we prove that for each nonzero func-

tion A(q,ω)∈C∞
c (R×S

2) with A≥ 0, there exists a nontrivial future global solution

u to (1). The solution u is associated to the function A in the following way. At infi-

nite time, the solution u matches a future global solution U(s,q,ω) to the asymptotic

equation (17). Meanwhile, this U is uniquely determined by the data Uq|s=0 = A and

the boundary condition limq→−∞ U(s,q,ω) = 0.

Remark 6 Note that the second half of Theorem 3 follows directly Theorem 1.

Meanwhile, we can also prove that the data of these nontrivial future global solutions

are not compactly supported without applying John’s finite time blowup result. See

Section 3.3.

Remark 7 Theorem 3 can be generalized. First, it was mentioned in Remark 5 that

we start with some function A and construct a corresponding future global solution

to (1). The assumptions of A can be relaxed. Instead of assuming A ∈ C∞
c , we only

need to assume that A along with its derivatives decays faster than certain negative

powers of 〈q〉 as |q| → ∞.

Besides, the construction used in the proof of Theorem 3 also applies to a large

family of quasilinear wave equations in R
1+3. We refer our readers to [12] for more

details.

3.1 Hörmander’s asymptotic equation

Let us discuss how the construction works. Here we make use of an asymptotic

equation for (1) which was first introduced by Hörmander [3, 4, 5]. In its derivation,
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we assume that we already have a future global solution u = u(t,x) for t ≥ 0 to (1)

and that u has a special form

u(t,x) = εr−1U(s,q,ω) (16)

where s = ε ln t, r = |x|, ω = x/|x|, and q = r− t. Assuming that t = r → ∞, we plug

u = εr−1U into (1) and compare the coefficients of terms of order ε2t−2. This gives

us the following asymptotic equation for(1):

2Usq +U2
q = 0. (17)

We can solve this equation explicitly:

Uq(s,q,ω) =
2Uq(0,q,ω)

Uq(0,q,ω)s+ 2
(18)

Remark 8 If U |s=0 ∈ C∞
c is nonzero, we have Uq(0,q,ω) < 0 for some (q,ω), so

the denominator in (18) equals 0 for some positive s. In this case, we have finite time

blowup for the asymptotic equation (17) when the data are C∞
c and nonzero.

We may compare this observation to Remark 2. Indeed the asymptotic equation

(18) is precisely of the form (8). In both cases the blow-up is sensitive to the sign of

the initial data.

3.2 Construction of nontrivial future global solution

In our construction, we want to obtain a future global solution to (17) for s ≥ 0. To

achieve this goal, we fix a function A = A(q,ω) such that A ≥ 0 everywhere. For

simplicity, in this note we also assume that A∈C∞
c . By setting Uq(0,q,ω) = A(q,ω)

in (18) and assuming limq→−∞ U(s,q,ω) = 0, we obtain a uniquely determined fu-

ture global solution U to (17) defined by

U(s,q,ω) =

∫ q

−∞

2A(ρ ,ω)

A(ρ ,ω)s+ 2
dρ , ∀(s,q,ω) ∈ [0,∞)×R×S

2. (19)

Since A ∈ C∞
c , if we choose R > 0 so that A ≡ 0 for |q| ≥ R, then we have U ≡ 0

whenever q≤−R. Using this U , we obtain an approximate solution uapp = uapp(t,x)
as follows. Fix a small constant δ ∈ (0,1) and set

uapp(t,x) = εr−1η(t)ψ(r/t)U(ε ln t − δ ,r− t,ω). (20)

Here η = η(t) and ψ = ψ(s) are two cutoff functions. We choose them so that

uapp ≡ εr−1U in the region where t & 1 and |r− t|< t/4 and that uapp ≡ 0 whenever

t . 1 or |r− t|> t/2. And since U vanishes for q ≤−R, we have uapp ≡ 0 whenever

r− t ≤−R. In [12, Section 4], it is shown that with this choice of uapp, we have for

ε ≪ 1 the pointwise estimates
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|ZIuapp|.I ε(1+ t)−1+CIε , ∀I, ∀(t,x) ∈ [0,∞)×R
3

and uapp is indeed an approximate solution to (1) in the following sense:

|ZI(�uapp +(∂tuapp)
2)|.I ε(1+ t)−3+CIε , ∀I, ∀(t,x) ∈ [0,∞)×R

3.

Here ZI denotes a product of |I| commuting vector fields: translations ∂α for α =
0,1,2,3, scaling S= t∂t +r∂r, rotations Ωi j = xi∂ j−x j∂i for i, j = 1,2,3 and Lorentz

boosts Ω0i = xi∂t + t∂i for i = 1,2,3.

Next, we fix a large time T > 1 and consider the following backward Cauchy

problem

−�v = (vt + 2∂tuapp)vt − χ(t/T)(−�uapp− (∂tuapp)
2) in [0,∞)×R

3 (21)

with v ≡ 0 for t ≥ 2T . Here χ ∈C∞
c (−2,2) is a cutoff function such that 0 ≤ χ ≤ 1

and χ |[−1,1] ≡ 1. It is not hard to see that u := v+ uapp solves (1) for t ≤ T and that

uT ≡ uapp for t ≥ 2T . In order to solve (21), we make use of a continuity argument.

Here, since the equation (1) is semilinear and since we choose A ∈C∞
c , in our proof,

we can use the unweighted energy E(v)(t) := ‖∂v(t)‖2
L2(R3) and the standard energy

estimate for �. 1 The details of the proof can be found in [12, Section 6]. Finally,

we show that the limit v∞ = limT→∞ vT exists. To achieve this goal, we show that

{vT}T>1 is a Cauchy sequence in suitable Banach spaces, which are related to the

energy estimates used in this setting. We refer to [12, Section 7] for the details of the

proof. In summary, for a fixed large integer N and for all ε ≪N 1, we obtain a future

global CN+1 solution u = u∞(t,x) := v∞(t,x) + uapp(t,x) to (1) for all t ≥ 0 such

that u|r−t≤−R ≡ 0 where R > 0 is a constant such that A ≡ for |q| ≥ R. Moreover,

we have the following estimate in energy for the remainder

∑
|I|≤N−1

∥

∥∂ZI(u− uapp)(t)
∥

∥

L2(R3)
.N ε(1+ t)−1/2+CNε , ∀t ≥ 0.

(22)

We emphasize that these estimates imply in particular that the scattering solutions

have finite energy on each time slice. This is because uapp(t) is compactly supported

for each fixed time t ≥ 0. The estimates (22) also imply using the Klainerman-

Sobolev inequality the pointwise estimates

∑
|I|≤N−1

|∂ZI(u− uapp)(t,x)|.N ε(1+ t)−1/2+CNε(1+ t + |x|)−1(1+ |t−|x||)−1/2, ∀t ≥ 0.

(23)

By integrating these pointwise estimates and noticing that u|r−t≤−R ≡ 0, we also

obtain pointwise bounds for ZI(u− uapp).

1 In Remark 7, it was mentioned that nontrivial future global solutions can also be constructed

under weaker assumptions on A or for general quasilinear wave equations. To achieve these goals,

we define new weighted energies and apply weighted energy estimates and Poincaré’s estimates.

All of these are motivated by, for example, [8, 9, 10]. We also refer [12] for more details.
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3.3 Proof that the data are not compactly supported

We finally remark that the future global solution u constructed above cannot have

compactly supported initial data at t = 0 as long as A 6≡ 0. In fact, the pointwise

bound for ∂ (u− uapp) above shows that

|u− uapp|. ε(1+ t)−3/2+Cε(1+ |t −|x||)1/2, whenever |x|< 2t. (24)

Recall that uapp = εr−1U in the region |r− t| ≤ t/4, so for each γ ∈ (0,1), we have

|u(t,x)− εr−1U(ε ln t − δ ,r− t,ω)|. εt−(3+γ)/2+Cε , ∀t ≥ 1, |t −|x|| ≤ tγ .

The power of t is less than −1 for ε ≪γ 1. Meanwhile, if A(q0,ω0) > 0 for some

(q0,ω0), we have for all q > q0,

U(s,q,ω0) =
∫ q

−∞

2A(ρ ,ω0)

A(ρ ,ω0)s+ 2
dρ ≥

∫ q0

−∞

2A(ρ ,ω0)

A(ρ ,ω0)s+ 2
dρ &q0,ω0 (1+ s)−1.

As a result, for all t & 1, r− t > q0, and |r− t| ≤ tγ with γ ∈ (0,2/3), we have

u(t,rω0)≥C−1
q0,ω0εr−1 · (1+ ε ln t)−1 −Cεt−(3+γ)/2+Cε &q0,ω0,γ

ε

t(ε ln t + 1)
.

However, if the data of u is compactly supported, we have u ≡ 0 whenever

r − t ≥ R0 for some constant R0 > 0. Note that the intersection of {r − t ≥ R0}
and {t > 1,r− t > q0, |r− t| < tγ} is not empty for all sufficiently large t, so here

is a contradiction. We conclude that the solution u constructed above cannot have

compactly supported initial data.

4 Blowup criteria for solutions with non-compactly supported

initial data

In this section we give sufficient conditions for the blow up in finite time of solutions

to the semilinear wave equation

�u =−(∂tu)
2. (25)

These conditions amount to assumptions on the sign of the solution to the linear

wave equation with the same initial data, as well as its time derivative. Unlike previ-

ous proofs of blowup for solutions to (25), including John’s original proof in [6], we

do not assume that the data is compactly supported. In fact, Theorem 11 shows that

a large class of finite-energy solutions blow up in finite time. We note that the sign

conditions that imply blowup, namely (28), (29) in Lemma 9, constitute sufficient
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conditions for solutions to (25) to blow up in finite positive time or finite negative

time respectively.

First we show that, under suitable decay assumptions on our initial data, solutions

to the linear equation satisfy one of three sign conditions. The proof of Lemma 9

(and of Theorem 11) rely heavily on taking spherical means of solutions, and so

we introduce the following notation. Given a function f ∈ C(R3), we denote the

spherical mean of radius r ≥ 0 of f about the point x0 ∈ R
3 as

Mx0
[ f ](r) =

1

4π

∫

|ξ |=1
f (x0 + rξ )dσ(ξ ). (26)

Lemma 9 Let u0,u1 ∈C2(R3) such that

lim
r→∞

∂r(ru0) = lim
r→∞

ru1 = 0, (27)

where r = |x|. Assume one of u0,u1 are nonzero. Let ulin be the unique solution to

the linear wave equation

�ulin = 0

with initial data ulin(0,x) = u0(x), ∂tulin(0,x) = u1(x). Then ulin satisfies at least

one of the following three sign conditions:

1. There exists x0 ∈ R
3, q ≥ 0, r0 ≥ q, such that

Mx0
[∂tulin(r− q)](r)> 0 (28)

for all r ≥ r0.

2. There exists x0 ∈ R
3, q ≥ 0, r0 ≥ q such that

Mx0
[∂tulin(−(r− q))](r)< 0, (29)

for all r ≥ r0.

3. For all t ∈ R,x ∈R
3, we have

ulin(t,x)≥ 0. (30)

Proof. We write explicitly

Mx0
[ulin(t)](r) =

1

2r

(

(r+ t)Mx0
[u0](r+ t)+ (r− t)Mx0

[u0](r− t)
)

+
1

2r

∫ r+t

r−t
ρMx0

[u1](ρ)dρ .

Differentiating in t, we have
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Mx0
[∂tulin(t)](r) =

1

2r

(

∂r(rMx0
[u0])(r+ t)− ∂r(rMx0

[u0])(r− t)
)

+
1

2r

(

(r+ t)Mx0
[u1](r+ t)+ (r− t)Mx0

[u1](r− t)
)

.

The right hand side can be written entirely in terms of the solution ulin as

Mx0
[∂tulin(t)](r) =

1

2r

(

ulin(r+ t,x0)− ulin(−(r− t),x0)
)

. (31)

One may see this from Kirchhoff’s formula for ulin:

ulin(t,x0) =
1

4πt2

∫

∂Bt(x0)
∂r(ru0)(t,y)+ tu1(t,y)dσ(y)

=
1

4π

∫

|ξ |=1
∂r(ru0)(t,x0 + tξ )+ tu1(t,x0 + tξ )dσ(ξ )

= ∂r(rMx0
[u0])(t)+ tMx0

[u1](t),

where the radial coordinate r is centered at x0. Letting q = r− t, we write (31) as

Mx0
[∂tulin(r− q)](r) =

1

2r

(

ulin(2r− q,x0)− ulin(−q,x0)
)

.

We now claim that the first sign condition (28) is satisfied if there exists some x0 ∈
R

3, q≥ 0 such that ulin(−q,x0)< 0. The decay condition (27) implies ulin(2r−q)→
0 as r → ∞, since

ulin(2r− q,x0) = ∂r(rMx0
[u0])(2r− q)+ (2r− q)Mx0

[u1](2r− q).

and so if ∂r(ru0),ru1 → 0 as r → ∞, so do their spherical means, therefore there

exists some r0 ≥ q such that

|ulin(2r− q,x0)|<
1

2
|ulin(−q,x0)|

for all r ≥ r0. It follows that

Mx0
[∂tulin(r− q)](r)>−

1

2
ulin(−q,x0)> 0

for all r ≥ r0, and thus (28) is satisfied. Similarly, from (31) we have

Mx0
[∂tulin(−(r− q))](r) =

1

2r

(

ulin(q,x0)− ulin(−(2r− q),x0)
)

,

and so by the same argument the second sign condition (29) is satisfied if there exists

some x0 ∈ R
3, q ≥ 0 such that ulin(q,x0) < 0. It follows that if neither of (28),(29)

hold, then the third sign condition (30) is necessarily satisfied.
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Remark 10 We point out that the decay condition (27) is satisfied by all continuous

differentiable initial data with finite energy. Moreover, for each sign condition, there

are finite-energy solutions to the homogeneous wave equation that satisfy that one

sign condition and not the other two. For example, consider the solution ulin with

initial data

ulin(0,x) = 0, ∂tulin(0,x) = χ(x),

where χ ∈ C∞
0 (R

3) is some nonnegative bump function. Then for all t ≥ 0,x ∈ R
3,

we have

ulin(−t,x) =−tMx[χ ](t),

and

∂tulin(t,x) = ∂tulin(−t,x) = Mx[χ ](t).

Therefore ∂tulin ≥ 0 everywhere and ulin ≤ 0 for all negative t, and so ulin satisfies

the first sign condition (28), and not the other two. Similarly, the solution vlin(t,x) =
−ulin(t,x) satisfies the second sign condition (29) only. For the final sign condition,

we consider the solution ulin with initial data

ulin(0,x) =
1

(1+ |x|2)1/2
, ∂tulin(0,x) = 0.

Then we have

ulin(t,x) =
1

2|x|

( |x|+ t

(1+ |x+ t|2)1/2
+

|x|− t

(1+ |x− t|2)1/2

)

.

Then ulin ≥ 0 everywhere, and one can show that for all t ≥ 0, we have

∂tulin(t,x)≤ 0 ≤ ∂tulin(−t,x).

Hence ulin satisfies only the third sign condition (30).

We now show that the first two sign conditions (28), (29) are sufficient conditions

for finite-time blowup.

Theorem 11 (Bernhardt ’24) Suppose u is a nonzero solution of the initial value

problem (6) with initial data u(0,x) = u0(x), ∂tu(0,x) = u1(x). Suppose u0,u1 ∈
C2(R3) satisfy the decay assumption (27), and let ulin be the solution to the homo-

geneous wave equation �ulin = 0 with matching initial data u0,u1. If ulin satisfies

the sign condition (28), then ∂tu → ∞ in finite positive time. Alternatively, if ulin

satisfies (29), then ∂tu →−∞ in finite negative time.

Proof. First, we assume that the first sign condition (28) holds for some x0 ∈R
3,q≥

0,r0 ≥ q. The spherical mean Mx0
[u] satisfies Darboux’s equation on R

3:

∂ 2
r Mx0

[u]+
2

r
∂rMx0

[u] = ∆xMx0
[u],

and so by (25) Mx0
[u] satisfies the R1+1 nonlinear wave equation
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−∂ 2
t (rMx0

[u])+ ∂ 2
r (rMx0

[u]) =−rMx0
[(∂tu)

2].

For all t,r ≥ 0 such that r ≥ t, the Duhamel formula for Mx0
[u] is

Mx0
[u(t)](r) = Mx0

[ulin(t)](r)+
1

2r

∫

T (t,r)
ρMx0

[(∂tu(s))
2](ρ)dρds, (32)

where ulin is the solution to the homogeneous equation �ulin = 0 with the same

initial data u0,u1, and T (t,r) is the triangle with corners (0,r − t),(t,r),(0, t + r).
We split the integral of M[(∂tφ)

2] over T (t,r) in (32) into parts ρ ≤ r, and ρ ≥ r, so

that

∫

T (t,r)
ρM[(∂tu(s))

2](ρ)dsdρ =

∫ r

r−t

∫ ρ−(r−t)

0
ρM[(∂tu(s))

2](ρ)dsdρ

+
∫ r+t

r

∫ r+t−ρ

0
ρM[(∂t u(s))

2](ρ)dsdρ . (33)

We then differentiate (32) with respect to t, which by (33) gives

Mx0
[∂tu(t)](r) = Mx0

[∂tulin(t)](r)+
1

2r

∫ r

r−t
ρM[(∂tu(ρ − (r− t)))2](ρ)dρ

+
1

2r

∫ r+t

r
ρM[(∂tu(r+ t −ρ))2](ρ)dρ . (34)

Clearly the second integral in (34) is nonnegative, moreover we have by Cauchy

Schwarz that

(Mx0
[ f ](r))2 ≤ Mx0

[ f 2](r),

and so from (34) we obtain the lower bound

Mx0
[∂tu(r− q)](r)≥ Mx0

[∂tulin(r− q)](r)+
1

2r

∫ r

q
ρ
(

M[∂tu(ρ − q)](ρ)
)2

dρ ,

where we set t = r− q. Given that the first sign condition (28) is satisfied, we have

Mx0
[∂tu(r− q)](r)≥

1

2r

∫ r

q
ρ
(

M[∂tu(ρ − q)](ρ)
)2

dρ (35)

for all r ≥ r0. Define the function

N(r) =

∫ r

q
ρ
(

M[∂t u(ρ − q)](ρ)
)2

dρ .

By (35), the following ODE inequality holds for all r ≥ r0:
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N′(r) = r
(

M[∂t u(r− q)](r)
)2

≥ r
( 1

2r

∫ r

q
ρ
(

M[∂t u(ρ − q)](ρ)
)2

dρ
)2

=
1

4r
N2(r). (36)

We then integrate this inequality on the interval [r0,r], giving

1

N(r0)
−

1

N(r)
≥

1

4
log

( r

r0

)

. (37)

Since u0,u1 ∈ C2(R3), the property (28) implies that there exists some small ε > 0

such that Mx0
[∂tulin(r− q)](r)> 0 for all r ∈ [r0 − ε,r0], and so

N(r0) =

∫ r0

q
ρ
(

M[∂t u(ρ − q)](ρ)
)2

dρ

≥
∫ r0

r0−ε
ρ
(

M[∂tulin(ρ − q)](ρ)
)2

dρ > 0.

It then follows from (36) that N(r)≥ N(r0)> 0, and so we rearrange (37) to obtain

N(r)≥
N(r0)

N(r0)−
1
4

log(r/r0)
, (38)

Therefore N(r) → +∞ for some r ≤ r∗, where r∗ is the value for which the right

hand side blows up to infinity, given by

r∗ = r0 exp
( 4

N(r0)

)

. (39)

By (34), this implies that the spherical mean Mx0
[∂tu(r−q)](r) blows up, and hence

∂tu → ∞ at some point (t,x) ∈ (0,∞)×R
3.

If alternatively (29) is satisfied, then observe that the function v(t) = u(−t) also

satisfies the semilinear wave equation (25) with initial data

v(0,x) = u0(x), ∂tv(0,x) =−u1(x).

Let vlin(t) denote the solution to the homogeneous wave equation with the same

initial data as v. By uniqueness, we have for all t ∈ R that vlin(t) = ulin(−t). As

∂tvlin(t) =−∂tulin(−t), it is clear that if ulin satisfies the second sign condition, then

vlin satisfies the first sign condition. From the previous argument, ∂tv → ∞ in finite

positive time , and so since ∂tu(t) = −∂tv(−t), it follows that ∂tu → −∞ in finite

negative time.

Finally we show that the solutions constructed in [12] do not satisfy the third sign

condition (30), and therefore blow up in finite negative time.
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Corollary 12 Let u be a C2 solution to (25) constructed in Theorem 3, and let ulin

be the solution to the homogeneous wave equation �ulin = 0 with the same initial

data as u. Then ulin does not satisfy the third sign condition (30). That is, there exists

some t ∈R,x ∈R
3 such that ulin(t,x)< 0. Moreoever, ∂tu blows up in finite negative

time.

Proof. We begin by stating that if ulin does not satisfy (30), then by Lemma 9, ulin

satisfies either of the first two sign conditions (28),(29). It follows by Theorem 11

that u blows up in finite negative time, since u is a future global solution. To show

ulin does not satisfy the third sign condition, we proceed by contradiction. Suppose

ulin(t,x) ≥ 0 for all (t,x) ∈ R
1+3. One immediate consequence is that u0 ≥ 0. For

t > 0, by Kirchhoff’s formula, we write

ulin(t,x) = ∂r(rMx[u0])(t)+ tMx[u1](t)> 0. (40)

Rearranging this we can bound

∂r(rMx[u0])(t)≥−tMx[u1](t),

Similarly,

ulin(−t,x) = ∂r(rMx[u0])(t)− tMx[u1](t),

and therefore we have

∂r(rMx[u0])(t)≥ |tMx[u1](t)|. (41)

The d’Alembert formula for the spherical means of ulin is

Mx[ulin(t)](r) =
1

2r

(

(r+ t)Mx[u0](r+ t)+ (r− t)Mx[u0](r− t)
)

+
1

2r

∫ r+t

r−t
ρMx[u1](ρ)dρ .

We bound the final integral using (41), so that

∫ r+t

r−t
ρMx[u1](ρ)dρ ≥−

∫ r+t

r−t
|ρMx[u1](ρ)|dρ

≥−
∫ r+t

r−t
∂ρ(ρMx[u0])(ρ)dρ

= (r− t)Mx0
[u0](r− t)− (r+ t)Mx[u0](r+ t).

Hence, by (41) we have

Mx[ulin(t)](r)≥
(r− t)Mx[u0](r− t)

r
.

Note that u0 must be nonzero somewhere, otherwise by the representation formula,

(40), ulin must have a point (t,x)∈R
1+3 where ulin(t,x)< 0< ulin(−t,x). Therefore,
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we may fix x0 ∈ R
3, q = r− t ≥ 0 such that Mx0

[u0](q)> 0, and so for all r ≥ q

Mx0
[ulin(r− q)](r)≥

C

r

for some constant C > 0. By the Duhamel formula for u (32), we have u ≥ ulin for

all positive time, and so

Mx0
[u(r− q)](r)≥

C

r
(42)

On the other hand, for the solutions u constructed in Theorem 3, for all q ≥ 0,

ω ∈ S
2, r sufficiently large we may bound u like

|u(r− q,rω)|. εr−1U(ε ln(r− q)− δ ,q,ω)+ (1+ r− q)−3/2+Cε

.
1

r ln(r− q)
. (43)

These upper and lower bounds cannot both be true, hence ulin(t,x) < 0 for some

(t,x) ∈ R
1+3.

Remark 13 The solutions to (25) that are constructed in Theorem 3 are a sub-

set of the more general solutions constructed in [12]. In Theorem 3 it is assumed

that for solutions U to the asymptotic system (17), the initial data Uq(0,q,ω) =
A(q,ω) is compactly supported in q. More generally one may assume decay like

A = O(〈q〉−2−) when q < 0 and A = O(〈q〉−1−) when q > 0, as was shown in [12].

In this case, we have (assuming A = O(〈q〉−γ ) with γ > 1) that

|U(q,ω)| ≤

∫ ∞

−∞

2A(p,ω)

A(p,ω)s+ 2
dp

≤
∫

|p|≤s1/γ
min{

1

s
,1} dp+

∫

|p|≥s1/γ
〈p〉−γ dp .

1

(1+ s)1−1/γ
. (44)

Then in lieu of (43) we have, for large r,

|u(r− q,rω)|.
1

r(ln(r− q))1−1/γ
.

As γ > 1, u still decays faster than O(r−1), which is incompatible with the lower

bound (42). Hence the solutions constructed in [12] also blow up in finite negative

time.
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