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Orbital Stability of Optical Solitons in 2d

S. Moroni

Abstract

We present a stability result for ground states of a Schrodinger-Poisson

system in (2 + 1) dimension, modelling the propagation of a light beam

through a liquid crystal with nonlocal nonlinear response. A new estimate

for perturbations of the medium configuration allows to explicitly prove strict

positivity of the second derivative of the action on a ground state. In addition

we prove existence of a ground state with frequency σ for any σ ∈ (0, 1) by

a continuity method.

Introduction

Optical properties of nematic liquid crystals have received great attention in

the last years, as they can support stationary optical waves, of large interest both in

theory and in applications. Heuristically, when a light wave propagates through

a nematic liquid crystal, its electric field induces a dipolar polarization in the

anisotropic medium. The electromagnetic action of the dipoles cause a reorien-

tation of the molecules in the liquid crystal, and hence a modification of the light

refractive index of the material. Due to high susceptibility of nematic liquid crys-

tals, the response is nonlocal, meaning that has effects far beyond the region occu-

pied by the light wave, and nonlinear. This response has a self-focusing effect on

the light beam, supporting waveguides that counterbalance the diffraction spread-

ing nature of light beam, and, in optimal shapes, allows the existence of stationary

waves.

The interested reader is referred to [11] or [1], for a physical overview of the topic

and a presentation of the main experiments in the field, or to [9], Chapters 2 and 6,

for a wider mathematical introduction.

In this paper we study the ground states, proving orbital stabilty, existence for any
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frequency 0 < σ < 1 and a decay estimate, of the Schrodinger-Poisson system

i∂zu +
1

2
∆u + u sin(2θ) = 0 (1)

− ν∆θ + q sin(2θ) = 2|u|2 cos(2θ) (2)

in dimension (2+1). The axis z, referred to as the optical axis, is the direction of the

propagation of a light beam, while ∆ is the Laplacian in the transverse coordinates

(x, y).

The system models the propagation of a laser beam through a planar cell filled

with a nematic liquid crystal, oriented by an external electric field E. Equation (1)

represents the evolution of the light beam, with u : R2 → C the complex amplitude

of the electric field, , while (2) is the nonlocal response of the medium, with θ :

R2 → R the director field angle of the light-induced reorientation. The values q, ν

are positive constants depending, respectively, on the intensity of the pre-tilting

electric field and on the elastic response of the medium, that is on its property

of nonlocality. In [4] a heuristic derivation of the equations is presented in the

Appendix, while [11], [1] and the references therein give a deeper understanding

of the system and of the related observed phenomena.

The system was rigorously studied in [4], where the authors proved global

existence and regularity for the Cauchy problem, and existence of stationary waves

as minimizers, over couples (u, θ) with L2 norm of u fixed, of the Hamiltonian:

E(u, θ) :=
1

4

∫

R2

|∇u|2 + ν|∇θ|2 − 2|u|2 sin(2θ) + q(1 − cos(2θ)) dx (3)

The minimal configurations (v, φ) satisfy the equations

−∆v + 2σv − 2v sin(2φ) = 0 (4)

−ν∆φ + q sin(2φ) − 2|v|2 cos(2φ) = 0 (5)

where σ ∈ R is the Lagrange multiplier associated to the constraint. The couple

(eiσv(x, y), φ(x, y)) is then a stationary wave for the system (1)-(2) as it evolves

along the optic axis changing only by a phase shift of frequency σ.

We will present a first stability result for those stationary waves. This provides a

strong justification of the relevance of the mathematical model to applications, as

only locally stable solutions are expected to be seen in experiments and numerical

simulations. The main result of the paper is
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Theorem 1. Let (v, φ) be the configuration of minimal energy E over the constraint

S a :=
{

(u, θ) ∈ H1 × H1 | ‖u‖2
L2 = a

}

Then (v, φ) is orbitally stable.

The definition of orbital stability will be given in the first section; loosely

speaking, we ask that the evolution through equations (1)-(2) of an initial datum

close to (v, φ) remains close up to symmetries to the ground state for all times.

We recall that the previous paper [10] studied a linearization of system (1)-(2),

obtained by a Taylor approximation for small values of θ. Existence of stationary

waves as minimizers of the Hamiltonian over the constraint S a was proved, simi-

larly to the non linear setting. In that case the problem is reduced to the study of

only the variable u, as the linear equation allows for an explicit expression of θ in

terms of u. It is then proved, using a concentration-compactness argument, for a

above a threshold, that all the minimizing sequences converge to a minimizer up

to translation. At this point it is straightforward to deduce stability of the ground

states of the Schrodinger-Poisson equation; see Corollary [2.3] in [10], or [2].

In the non linear case, that we focus on, it is not possible to decouple the system, as

equation (2) has no explicit solution, and the concentration compactness argument

is harder. In [4] existence of ground states was recovered through rearrangements

techniques, noticing that all the radial minimizing sequence converge to a ground

state. Since compactness holds only for this family of minimizing sequence, sta-

bility of ground states is not a direct consequence of the variational method that

proves existence.

In our proof, we adapt to the coupled system the arguments of [7] and [6], who

obtained the result from the positivity of the second derivative of the action S . In

our framework the action is defiened as

S (u, θ) := E(u, θ) +
σ

2

∫

R2

|u|2 dx

We provide at first a refined estimate for the H1 norm of small perturbations of the

angle variable φ around a ground state, that can be controlled by the norm of the

associated perturbation of the amplitude. This allows us to simplify the stabilty

problem to the evolution of variable u only.

Using minimality over S a, we can bound from below the second derivative of the

energy E evaluated in (v, φ) with a small negative constant. By multiplication

method for equation (4) and simple energy consideration, we prove that the value

σ for a ground state is strictly positive. Finally, convexity of the charge functional
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‖u‖2
L2 implies strong positivity for the second derivative of S .

In the second result of our paper, we prove the existence of a stable stationary wave

for the system for any frequency value σ ∈ (0, 1):

Theorem 2. For any 0 < σ < 1 there exists a > 0 and a minimizer (v, φ) for the

energy E over the constraints S a that satisfies (4)-(5) with the fixed value of σ.

Theorem 2 suggests the existence of a physical stable soliton of frequency σ

for any σ positive and sufficiently small, namely for any σ ∈ (0, σ∗) with σ∗ < 1.

Physical relevance of the result is lost as the values of σ approach 1: in the proof

will be evident that the corresponding norm constraints a tend to infinity, but the

model (1)-(2) is a physical approximation for θ, and hence u, small.

We prove the result starting from equation (4), which relates the value σ with

E−(u, θ) :=
1

4

∫

R2

|∇u|2 − 2|u|2 sin(2θ) dx

that is quadratic homogeneous in u.

We can prove that E− evaluated on a ground state over S a is a continuous mono-

tone function of a. The main obstacle is non uniqueness of the minimizer for the

constrained problem, which could lead to different values of E−, and hence of σ

for a fixed norm a. We can overcome it proving that all the minimizers over S a

share the same values of E−.

As there exists a ground state for every a above a certain threshold, we can con-

clude the proof showing that all the values σ ∈ (0, 1) can be reached. Getting

existence for σ up to 1 follows from simple energy asymptotic for ‖u‖ → ∞, while

for the values close to 0 the argument is more delicate. We modify the variational

arguments in [4] to show a relation between the values of E− over some radial

minimizing sequence in S a and the existence of a ground state over S a. By a conti-

nuity method, this obtains existence of a ground state for smaller norm constraint,

as long as E−, and hence σ, is far from 0.

The matter of the paper is organised as follows. In the first section we prove The-

orem 1, recalling the main steps of the argument of [7] and proving explicitly the

positivity for the derivative of the action. In the second we prove Theorem 2, refin-

ing the ideas for the existence of minimizers in [4]. Finally, in the last section we

prove a result on the regularity, and in particular the decay, of the ground states.

1 Stability of ground states

We start recalling the precise results from [4] that will be used in our paper,

and giving the definition of orbital stability:
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Theorem 3. Let Ja := infS a
E. For a above a certain threshold a0, Ja < 0 and is

decreasing, while Ja ≡ 0 for a ≤ a0.

For a > a0 there exists a minimizer (v, φ) for Ja and it satisfies the system (4)-(5) for

a real σ. Moreover we have (v, φ) ∈ H1
rad
× H1

rad
decreasing, v ≥ 0, 0 ≤ φ ≤ π/4.

Finally, there exists a 0 < ã ≤ a0 such that there is no (v, φ) solution to equations

(4)-(5) with ‖v‖2
L2 ≤ ã.

Theorem 4. Given u ∈ L∞(R2)∩L4(R2), there exists a unique θ ∈ H2(R2) solution

of

−ν∆θ + q sin(2θ) = 2|u|2 cos(2θ) (6)

satisfying 0 ≤ θ ≤ π/4 and ‖θ‖H2 ≤ C‖u‖L4 .

Furthermore, defining Θ(u) the map associated to u ∈ L∞ ∩ H1in the previous

result, we have the following estimate

‖Θ(u1) − Θ(u2)‖H2
≤ Cq,ν(‖u1‖H1 , ‖u2‖H1)(1 + ‖u1‖L∞ + ‖u2‖L∞)‖u1 − u2‖H1 (7)

Theorem 5. Given u0 ∈ H1(R2), there exists a unique (u, θ) ∈ C(R,H1(R2)) ×
L∞(R,H2(R2)) solution of the evolution problem (1)-(2) with initial datum u0, such

that 0 ≤ θ ≤ π/4, ∇u ∈ L4
loc

(R, L4(R2)). Moreover, the quantities

E(u, θ); Q(u) :=

∫

R2 |u|2

2

are preserved for all times.

Theorem 3 recaps the results from Chapter 5 of [4], Theorem 4 resumes Propo-

sition [3.1] and [4.1], Theorem 5 comes from Theorem [4.1] and [4.2].

Definition 6. Let (v, φ) be a stationary solution. We say that the orbit of v is

orbitally stable if for every ε > 0 there exists a δ > 0 s. t.

‖u0 − v‖H1(R2) ≤ δ −→ sup
t

inf
y∈R2,α∈R

‖u(·, t) − eiαv(· − y)‖H1 < ε (8)

where u(t) is the solution of (1)-(2) with initial condition u0.

Remark 1. Even though we have an evolution both for the orientation angle θ and

the amplitude u, in the previous definition we have considered only the latter. At

the end there is no consistent difference, as in the implication of (8) we can equally

write

sup
t

inf
α∈R,y∈R2

‖(u(·, t),Θ(u(·, t)) − (eiαv(· − y),Θ(eiαv(· − y))‖H1×H1 < Cε (9)
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In fact we will show that if the amplitude configuration u is close in H1 to v,

amplitude of a ground state, then the corresponding angle variables are still close

in H1.

We turn now to present an improvement of the estimate (7), before proving

Theorem 1 following the ideas of [6] and [7].

1.1 Control of the angle deviation

In Theorem 4, the authors have already shown that the H2-norm of the differ-

ence between two angles orientations is bounded by the difference in H1 of the

respective amplitudes. This is the type of control we need, but the previous result

cannot be satisfying for our purposes. The constant on the right hand side of (7) de-

pends on the L∞ norm of both the amplitudes u1, u2. Looking for a stability result,

we consider small perturbations in H1 of the orbit of (v, φ); for such perturbations

we have no information for the L∞ norm, and hence we cannot rely on (7). We can

actually recover the belonging of the perturbation to L∞, since by Theorem 5 we

have that ∇u(t) ∈ L4 for a. e. t, but yet we lack any uniform bound for ‖u(t)‖L∞ .

We want to loose the dependence on ‖u2‖L∞ on the right hand side of estimate (7).

It will be enough for our aim to get a bound on H1 norm of the difference θ1 − θ2.

We will follow closely the proof of Theorem 4, with the due modifications: we will

unbalance the inequality at the expense of u1 to avoid the undesired dependence on

‖u2‖L∞ .

This asymmetry will require a technical hypothesis on u1, θ1, that we assume in the

following Lemma, and that later we will prove to be true for the minimizer (v, φ).

We will comment later that this procedure makes the dependence of the constant

C on u1 much worse, but this will not be a problem as in the application we will

consider u1 a fixed ground state and u2 a small perturbation of u1 in H1.

Lemma 1. Let u1, u2 ∈ L∞ ∩ H1(R2), and θ1, θ2 the respective angles given by

Theorem 4. Assume also there exist ε > 0, α < ‖θ1‖L∞ such that the following

implication holds:

for a.e. x ∈ R
2, if θ1(x) > α then |u1(x)| ≥ ε (10)

Then exist C = C(‖u1‖L∞ , ‖u1‖H1 , ‖u2‖H1 , ε, α, q, ν) such that

‖θ1 − θ2‖H1
≤ C‖u1 − u2‖H1 (11)

Remark 2. The hypothesis (10) requires that a control from below θ1(x) > α im-

plies a control from below for the modulus of u1, i.e. |u1(x)| ≥ ε.
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Proof. From (6), the difference θ1 − θ2 satisfies:

−ν∆(θ1−θ2) = −q(sin(2θ1)−sin(2θ2))+2|u1|2(cos(2θ1)−cos(2θ2))+2(|u1 |2−|u2|2) cos(2θ2)

We multiply by θ1− θ2 and integrate in R2; we can integrate by parts neglecting the

boundary terms the left hand side, as θi ∈ H2(R2) . It follows

∫

R2

|∇(θ1 − θ2)|2 = −
q

ν

∫

R2

(sin(2θ1) − sin(2θ2)(θ1 − θ2)+ (12)

+
2

ν

∫

R2

2|u1 |2(cos(2θ1) − cos(2θ2))(θ1 − θ2) +
2

ν

∫

R2

(|u1 |2 − |u2|2) cos(2θ2)(θ1 − θ2)

As in [4], we want to use the inequality, for 0 ≤ x < y ≤ π/4

sin 2y − sin 2x ≥ 2 cos(2y)(y − x) (13)

to reconstruct, from the first integral on the right hand side of (12), the L2 norm of

θ1 − θ2. We have to pay attention to the areas where cos(2y) is too close to 0, that

is when 2y is close to π/2, as in these areas the smallness of cos(2y) is worsening

the constant that will control ‖θ1 − θ2‖H1 .

We recall that it was proved in [4] that θ1 ≤ β, with β = 1
2

arctan(2R2/q) ∈ [0, π/4),

R = ‖u1‖L∞ . We consider at first the set

A := {θ2 ≤ β} ∪ {θ1 ≤ α}

where both the angles are bounded by a constant depending on ‖u1‖L∞ but indepen-

dent from u2. The need of the request θ1 ≤ α will be clarified in the consideration

of the set AC .

We notice that if θ2 ≤ β, from (13) and the equality cos(arctan(z)) = 1/
√

1 + z2 the

following inequality holds:

| sin(2θ1) − sin(2θ2)| ≥
2q

√

4R4 + q2
|θ1 − θ2| (14)

A similar inequality holds, with a different constant depending on α,R, on the

remaining part of the set A: if π/4 ≥ θ2 ≥ β and 0 ≤ θ1 ≤ α, we have

sin(2θ2) − sin(2θ1) ≥ sin(2β) − sin(2α) ≥ C(β − α) ≥ C(θ2 − θ1) (15)

Moreover, as the function sin is increasing in [0, π/2], the integrand in the first

addend of the right hand side of (12) is positive and hence

−
∫

R2

(sin(2θ1)−sin(2θ2)(θ1−θ2) ≤ −
∫

A

(sin(2θ1)−sin(2θ2)(θ1−θ2) ≤ −C1

∫

A

(θ1−θ2)2 dx

(16)
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C1 a positive constant depending only on R, α, q.

We want to prove a similar estimate for the second integral in (12) to obtain the

L2 norm of θ1 − θ2 on the set AC . The function cos is decreasing in (0, π/2), and

therefore the integrand is negative. Similarly to (13) we can use

cos y − cos x ≤ sin(x)(x − y) ≤ sin(α)(x − y) for y > x ≥ α

Since in AC θ1 ≥ α and θ2 ≥ β > α, we have from the previous inequality

(cos(2θ1) − cos(2θ2))(θ1 − θ2) ≤ −2 sin(α)(θ1 − θ2)2 in AC

Hence we can estimate the second integral

∫

R2

2|u1 |2(cos(2θ1) − cos(2θ2))(θ1 − θ2) ≤
∫

AC

2|u1|2(cos(2θ1) − cos(2θ2))(θ1 − θ2) ≤ −C

∫

AC

|u1|2(θ1 − θ2)2 ≤ −C2

∫

AC

|θ1 − θ2|2

(17)

with C2 depending on ε, α. Notice how in the last inequality we have used the

condition (10), to control from below |u1| on the set AC. Combining (16), (17) and

(12), we have with C1,C2 new constants depending on α, ε,R, q, ν:

‖∇(θ1 − θ2)‖2
L2(R2)

+C1‖θ1 − θ2‖2L2(R2)
≤

2

ν

∫

(|u1 |2 − |u2|2) cos(2θ2)(θ1 − θ2)

≤ C2(‖u1‖L4(R2) + ‖u2‖L4(R2))
2‖u1 − u2‖2L4(R2)

+
C1

2
‖θ1 − θ2‖2L2(R2)

We have applied Holder and weighted Cauchy Schwartz inequalities. At this point

the proof follows as in [4] applying the Gagliardo-Niremberg inequality for v ∈
H1(R2)

‖v‖2
L4(R2)

≤ C‖∇v‖L2(R2)‖v‖L2(R2)

�

We turn now to prove that the minimizers of the energy satisfy the condition

(10), but first we make the following remark:

Remark 3. We emphasize that (10) is a very weak condition if u, θ are positive,

radial decreasing and nonzero, because of the weak request on ε and α. Just notice

that if θ is strictly decreasing, we can immediately conclude: for an r0 > 0 with

v(r0) > 0, (10) holds true for ε = v(r0), α = φ(r0). In fact by the decreasing

condition, φ(r) > α if and only if r < r0, and for such r we have v(r) ≥ ε; if r > r0

the hypothesis in the implication (10) never happens, so the affirmation is trivially

8



true.

It turns out that (10) can be false for any α, ε with v, φ radial decreasing positive

and nonzero if and only if v has compact support, and φ ≡ ‖φ‖L∞ on all the support

of v. The argument of the following Lemma shows at first this affirmation formally;

then it proves that a minimal configuration cannot have this characteristic.

Lemma 2. Let (v, φ) be a minimizing point for Ja, (v, φ) ∈ H1
rad
×H1

rad
. Then there

exists α < ‖φ‖L∞ , ε > 0 depending on (v, φ) such that the condition (10) holds.

Proof. As v, φ are both in H1
rad

, they are continuous in R2 \ {0}. In the rest of the

proof, we will identify the functions with their continuous representatives, and we

will write v, φ both for the functions in R2 and their radial restriction. Moreover,

for the result of Theorem 3, we have that they are positive and decreasing w. r. t.

the radius.

By the previous Remark, it is enough to prove there exist α, ε as in the Lemma 1,

and a r0 > 0 such that φ(r0) = α and v(r0) ≥ ε.

Let assume that the thesis is false, i. e.

∀ α < ‖φ‖L∞ , ∀ ε > 0 ∃ r = rα,ε > 0 s.t. φ(r) = α; v(r) < ε (18)

We firstly send ε → 0. The increasing succesion rα,ε must converge to a finite rα,

as otherwise we would have φ ≥ α in R2, but in this case the term
∫

(1 − cos(2φ))

would be infinite.

After the limit operation, thanks to the continuity of v, φ we can reformulate (18)

as

∀ α < ‖φ‖L∞ ∃ r = rα > 0 s.t.φ(r) = α; v(r) = 0 (19)

Since v(r) = 0, we have that rα ≥ ρ > 0, with spt(v) = Bρ(0).

We repeat the operation sending α → ‖φ‖L∞ ; the decreasing rα must converge to a

R ≥ ρ > 0. As a result we get that spt(v) ⊆ BR(0) and φ ≡ ‖φ‖L∞ on BR(0).

We will reach the contradiction by showing that we are able to lower the energy by

using a different angle.

Fix a 0 < τ < R and construct the competitor angle function, still radial, continuous

and decreasing

ψ(r) :=















φ(r) if r < R − τ
φ(r + τ) if r ≥ R − τ

(20)

We want now to confront the energy of the minimum (v, φ) with the new configu-

ration (v, ψ).

The part of the energy with the gradient of v has remained unchanged. We can look

9



at the difference between the gradients in polar coordinates:

∫

R2

|∇φ|2−
∫

R2

|∇ψ|2 = 2π

∫ ∞

R

r|φ′(r)|2 dr−2π

∫ ∞

R−τ
r|φ′(r+τ)|2 dr = 2πτ

∫ ∞

R

|φ′(r)|2 dr

(21)

We have a similar result looking at the integral of 1 − cos(2φ):

∫

R2

(1 − cos(2φ)) −
∫

R2

(1 − cos(2ψ))

= 2π

(∫ R

R−τ
r(1 − cos(2‖φ‖L∞ )) +

∫ ∞

R

r(1 − cos(2φ(r))) −
∫ ∞

R−τ
r(1 − cos(2φ(r + τ)))

)

= 2π

(

(τR −
1

2
τ2)(1 − cos(2‖φ‖L∞ ) + τ

∫ ∞

R

(1 − cos(2φ(r))) dr

)

(22)

We come to the last estimate, recalling v ≡ 0 on BC
R

:

−
∫

BR

|v|2 sin(2φ) +

∫

BR

|v|2 sin(2ψ) = 2π

(

−
∫ R

R−τ
r|v(r)|2 sin(2‖φ‖L∞ ) +

∫ R

R−τ
r|v(r)|2 sin(2φ(r + τ))

)

≥ −2πτR|v(R − τ)|2 (23)

Combining (21), (22), (23) we get to

E(v, φ) − E(v, ψ) ≥ C1τ −C2τ|v(R − τ)|2 + o(|τ|) (24)

with C1,C2 positive and depending on R, q, ν, φ but not on τ. Since v is continuous

and v(R) = 0, we can choose τ sufficiently small so that the right hand side of (24)

is strictly positive. This leads to a contradiction as (v, ψ) ∈ S a. �

Remark 4. Summing up the Lemmas in this section, we have for the minimizer

(v, φ) the estimate

‖Θ(u) − φ‖H1
≤ C‖u − v‖H1 (25)

for any u ∈ H1. The constant C is now depending on u only through its H1-norm.

However it has a strong dependence on v: not only on ‖v‖H1 , ‖v‖L∞ but on the shape

of the minimizers itself through Lemma 2. The result is sufficient to deduce that,

for a sequence un converging to v in H1, we have

Θ(un)→ φ in H1; lim
n

E(un,Θ(un)) = E(v, φ)

For both the results, the estimate (7) was not strong enough.
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1.2 Stability proof

The stability result in [6] relies on the sign of the second derivative of the action

functional. We recall the main steps of his line of reasoning, adapting them to our

situation.

We begin defining the action

S (u, θ) := E(u, θ) +
σ

2

∫

R2

|u|2 dx = E(u, θ) + σQ(u) (26)

with σ given by equation (4). Moreover in the following we will use the notation,

for u ∈ H1 and y ∈ R2

uy(x) := u(x + y)

Proposition 1. Let (v, φ) be a minimizer for E over the constraint S a, satisfying

the system (4)-(5). Suppose there exists a τ > 0 s. t.

〈S ′′(v, φ)(η, θ), (η, θ)〉 ≥ τ‖η‖H1 (27)

for any (η, θ) ∈ H1 × H1 with ‖η‖H1 sufficiently small and

‖η + v‖L2 = ‖v‖L2 ; ‖θ‖H1 ≤ C‖η‖H1 0 = (η, iv)H1 = (η, ∂lv)H1 (28)

for a constant C > 0. Then there exist constants D > 0, δ > 0 depending on τ such

that for any u ∈ H1 and for any ψ ∈ H1 with

‖u‖L2 = ‖v‖L2 ; inf
θ,y
‖u−eiθvy‖H1 = ‖u−eiαvx‖H1 ≤ δ ‖ψ−φx‖H1 ≤ C‖u−eiαvx‖H1

(29)

it holds

E(u, ψ) − E(v, φ) ≥ D inf
θ,y
‖u − eiθvy‖2H1 (30)

Remark 5. Heuristically, the request for the angle norm in (28) is motivated by the

results of Lemmas 1, 2 if we consider θ = Θ(η + v) − φ. Restricting angles of this

form would be intuitively correct, because while looking to the perturbed amplitude

v+ηwe are interested only in perturbation in the angle variable as above. However,

in the proof of Theorem 1 below we will have to use a normalization procedure and

this expression of the hypothesis will turn out to be more convenient.

Remark 6. The last condition in (28) is due to invariance by translations and mul-

tiplication by a complex exponential of the action. As was noted in [6], [7], the

invariance implies that the inequality (27) cannot hold along those directions. For

example differentiating with respect to α the identity S ′(eiαv, φ) ≡ 0, consequence

of (4)-(5) and invariance, we infer S ′′(v, φ)(iv, 0) ≡ 0.

11



Remark 7. The normalization process will allow us to use the conservation of the

charge hypothesis in (28), which is not true for a generic perturbation, for the

stability argument. The identity of the L2-norm plays an important role in the

proof of the Proposition. Moreover, it implies (v + η, φ + θ) ∈ S a and this allows a

comparison with the energy of (v, φ) which will be used later.

Proof. We follow closely the proof in [6]. As in the hypothesis, we have for α ∈ R,

x ∈ R2

‖e−iαu−x − v‖H1 = inf
θ,y
‖e−iθuy − v‖H1 ≤ δ (31)

with δ to be fixed. Setting η := e−iαu−x−v and θ := ψ−x−φ the conditions in (28) are

satisfied: the first two because of hypothesis (29), while the orthogonality condition

is a consequence of x, α minimizing the distance over the symmetry group. By a

Taylor expansion we have

S (u, ψ) = S (e−iαu−x, φ + θ)

= S (v, φ) + S ′(v, φ)(η, θ) +
1

2
〈S ′′(v, φ)(η, θ), (η, θ)〉 + o(‖(η, θ)‖2

H1×H1 )

≥ S (v, φ) + τ‖η‖2
H1 + o(‖η‖2

H1 ) (32)

The first order term vanishes: (v, φ) is a solution of the system (4)-(5), hence

S ′(v, φ) ≡ 0. Moreover, we have used the condition (28) to get o(‖η‖2
H1 ) = o(‖(η, θ)‖2

H1×H1).

The L2 norm of v and u is equal, so the conclusion follows directly from the previ-

ous inequality for δ sufficiently small. �

We have to prove that the hypothesis (27) holds for (v, φ). A first estimate from

below of S ′′ is a consequence of minimality of (v, φ) over S a; we can prove strict

positivity thank to the positivity of the Lagrange multiplier σ.

Proposition 2. Let (v, φ) be a minimizer of E over the constraint S a. Then there

exists a τ > 0 such that, for any couple (η, θ) verifying condition (28) with ‖η‖H1

sufficiently small, the inequality (27) in the hypothesis of Proposition 1 holds.

Proof. We decompose the perturbation η as

η = tv + z; t ∈ R; z ∈ H1(R2); (z, v)L2 = 0

We look hence to the Taylor expansion for the charge Q(u) :=
‖u‖2

L2

2

Q(v + η) = Q(v) + Q′(v)(η) + O(‖η‖2
L2) = Q(v) + tQ′(v)(v) + O(‖η‖2

L2 )

Since Q(v + η) = Q(v) by hypothesis, and Q′(v)(v) is a fixed positive quantity,

independent on η, we get t = O(‖η‖2
L2 ).

12



Hence, for such perturbations η, the contribution of the orthogonal component z is

the leading term for the norm of the perturbation. Both in L2 and in H1, we have

‖z‖2
L2 = ‖η‖2L2 + t2‖v‖2

L2 − 2t(η, v)L2 = ‖η‖2
L2 + o(‖η‖2

L2 )

‖z‖2
H1 = ‖η‖2H1 + t2‖v‖2

H1 − 2t(η, v)H1 = ‖η‖2
H1 + o(‖η‖2

H1 )

In the first line we have directly used the relation on t obtained above, while in the

second we have exploited the relation o(‖η‖2
L2 )/‖η‖2

H1 → 0 as η→ 0 in H1. We can

then easily compute

lim
η→0

‖z‖2
L2

‖η‖2
L2

= 1; lim
η→0

‖z‖2
H1

‖η‖2
H1

= 1; (33)

where the limits are respectively in L2 and in H1. Therefore we have

t = O(‖η‖2
L2) = O(‖z‖2

L2 ); o(‖η‖2
L2 ) = o(‖z‖2

L2 ); o(‖η‖2
H1 ) = o(‖z‖2

H1 ) (34)

We want to use the minimality of (v, φ) to deduce a sign on E′′, but for this we need

to ensure E′ = 0. By equations (4)-(5) we have

E′(v, φ)(w, θ) = −σQ′(v)(w)

Defined α = φ+ θ, we look at the Taylor expansion with respect to the H1-norm of

the energy

E(v + z, α) = E(v, φ) + E′(v, φ)(z, θ) + 〈E′′(v, φ)(z, θ)(z, θ)〉 + o(‖θ‖2
H1 + ‖z‖2H1 )

= E(v, φ) + 〈E′′(v, φ)(z, θ)(z, θ)〉 + o(‖z‖2
H1 ) (35)

We have used the hypothesis (28) to write o(‖η‖2
H1 ) in place of o(‖θ‖2

H1 ), and then

the condition (34) to absorb it in o(‖z‖2
H1 ).

To complete the energy comparison, the left hand side must be reduced to an ele-

ment in S a. We define hence

ũ :=
‖v‖L2

√

‖v‖2
L2 + ‖z‖2L2

(v + z) = k(v + z)

For the ortogonality condition, one immediately checks ũ ∈ S a. It will be useful to

look at the decomposition of the energy E := E+ + E− with

E−(u, θ) :=
1

4

∫

R2

|∇u|2−2|u|2 sin(2θ) dx; E+(u, θ) :=
1

4

∫

R2

ν|∇θ|2+q(1−cos(2θ) dx

(36)
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Since E+ is strictly positive for any non zero θ, and the minimal energy is always

negative, we have that the minimizer satisfies E−(v, φ) < E(v, φ) ≤ 0.

It easily follows from the quadratic homogeneity of E−

E+(v+ z, α)+ E−(v+ z, α) = E(ũ, α)+

(

1

k2
− 1

)

E−(ũ, α) ≥ E(v, φ)+
‖z‖2

L2

‖v‖2
L2

E−(ũ, α)

(37)

where in the last inequality we have taken advantage of the minimality of (v, φ).

Combining (35) and (37) we have

〈E′′(v, φ)(z, θ), (z, θ)〉 ≥
E−(ũ, α)

‖v‖2
L2

‖z‖2
L2 + o(‖z‖2

H1 ) (38)

We can infer a positive condition on σ: in particular multiplying (4) by v and

integrating we get

2σ =

∫

R2 −|∇v|2 + 2|v|2 sin(2θ) dx

‖v‖2
L2

=
−4E−(v, φ)

‖v‖2
L2

>
−4Ja

‖v‖2
L2

≥ 0 (39)

σ <

∫

R2 |v|2 sin(2θ) dx

‖v‖2
L2

≤ 1

For η small, as in Remark 4 E−(ũ, α) is converging to E−(v, φ), which is strictly

negative for the inequality above. Hence combining (38), (39) and the definition of

S we deduce for η small enough

〈S ′′(v, φ)(z, θ), (z, θ)〉 = 〈E′′(v, φ)(z, θ), (z, θ)〉 + σ‖z‖2
L2 ≥

≥
−2E−(v, φ) + E−(ũ, α)

‖v‖2
L2

‖z‖2
L2 + o(‖z‖2

H1 ) ≥ C
−E−(v, φ)

‖v‖2
L2

‖z‖2
L2 + o(‖z‖2

H1 )

for a positive C. S ′′(v, φ) is bilinear and bounded, and from (34) and the definition

of the decomposition we have ‖η − z‖2
H1 = o(‖y‖2

H1 ). We can hence infer from the

previous inequality a similar one for the whole perturbation: for η small enough

and a positive C′ independent on η it holds

〈S ′′(v, φ)(η, θ), (η, θ)〉 = 〈S ′′(v, φ)(z, θ), (z, θ)〉 + o(‖z‖2
H1 ) ≥ C‖z‖2

L2 + o(‖z‖2
H1 )

≥ C′‖η‖2
L2 + o(‖η‖2

H1 ) (40)

where in the last inequality we have used (34) and the first limit in (33).

We want to extend the previous result with the H1- norm on the right hand side for
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some constant τ > 0. Let us assume this is not true: then we can pick sequences

τk → 0, (ηk, θk) ∈ H1 × H1 verifying (28) s. t.

1

‖ηk‖2H1

〈S ′′(v, φ)(ηk, θk), (ηk, θk)〉 < τk (41)

Such a sequence must verify in addition

‖ηk‖L2

‖ηk‖H1

→ 0 (42)

If this were not true, up to subsequences we would have the limit ‖ηk‖L2/‖ηk‖H1 →
c ∈ (0,∞]. But if this is the case then definitively in k

τk >
1

‖ηk‖2H1

〈S ′′(v, φ)(ηk, θk), (ηk, θk)〉 ≥ C′
‖ηk‖2L2 + o(‖ηk‖2H1 )

‖ηk‖2H1

≥ c′ > 0

which cannot be as τk is going to 0.

We want to show that (41) is impossible, as the left hand side remains bigger than

1/2. To this end we rewrite the second derivative of the action as

〈S ′′(v, φ)(η, θ), (η, θ)〉 = 1

2

∫

|∇η|2 − 2|η|2 sin(2φ) + 2σ|η|2+

1

2

∫

|∇θ|2 + 2|v|2 sin(2φ)θ2
+ 2q cos(2φ)θ2 − 4

∫

Re(vη̄) cos(φ)θ =: I + II + III

(43)

We see that II ≥ 0, so we can ignore it.

It is easy to show that along the sequence ηk we have that I/‖ηk‖2H1 → 1/2 : by

(42) we have

∫

R2 2σ|ηk |2 − sin(2φ)|ηk |2

‖ηk‖2H1

→ 0;

∫

R2 |∇ηk |2

‖ηk‖2H1

→ 1

Finally, we can show that III/‖ηk‖2H1 goes to 0:

∣

∣

∣

∣

∣

∣

∣

∫

R2 Re(vη̄k) cos(φ)θk dx

‖ηk‖2H1

∣

∣

∣

∣

∣

∣

∣

≤ 4‖v‖L∞
‖ηk‖L2

‖ηk‖H1

‖θk‖L2

‖ηk‖H1

≤ C
‖ηk‖L2

‖ηk‖H1

→ 0

The first passage is just an Holder inequality, for the second we have applied the

condition (28) where the constant C depends on (v, φ) but not on ηk, and in the last

one the condition (42). So we have reached the contradiction.

�
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We finally prove the stability result, mimicking the proof of Theorem 3.5 in [7]

Proof of Theorem 1. We assume for contradiction that the thesis is false. We have,

for δ given by Proposition 1, a value 0 < ε < δ, sequence of initial datum u0
n and a

sequence of times tn such that

inf
α,y
‖un(tn) − eiαv(· − y)‖H1 ≥ ε; u0

n → v in H1 (44)

For Theorem 5, the heat flow is continuous in time; we can pick, definitely in n,

the sequence of times tn such that

inf
α,y
‖un(tn) − eiαvy‖H1 = ε

Moreover, recalling Remark 4 and conservation of energy along the evolution of

the flow, we have

E(v, φ) = lim
n

E
(

u0
n,Θ(u0

n)
)

= lim
n

E (un(tn),Θ(un(tn)))

We look at the sequences

an :=
‖v‖L2

‖u0
n‖L2

; vn := anun(tn)

an is converging to 1; therefore the following holds trivially

lim
n

E (vn,Θ(un(tn))) = lim
n

E (un(tn),Θ(un(tn))) ; lim
n

inf
α
‖vn − eiαv‖H1 = ε

On the grounds that the L2-norm is preserved, ‖vn‖L2 = ‖v‖L2 . Moreover, eventually

for n

‖Θ(un(tn))−φ‖H1 ≤ C‖un(tn)− v‖H1 ≤ Cαn‖vn− v‖H1 + |1−αn|‖v‖H1 ≤ C′‖vn− v‖H1

Thus the couple (vn,Θ(un(tn)) satisfies the hypothesis (29) of Proposition 1. We

have reached the contradiction as we would have

0 = lim
n

E(vn,Θ(un(tn))) − E(v, φ) ≥ D lim
n

inf
θ,y
‖vn − eiθv(· − y)‖H1 = Dε > 0 (45)

�
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2 Existence for any 0 < σ < 1

In this section we prove Theorem 2; in particular we will prove that the the

values σ associated to the family of ground states, presented in Theorem 3 as the

minimizers of the energy over the constraint S a for a above a certain threshold,

span, as the parameter a is varying, all the values σ ∈ (0, 1).

We present a sketch of the main elements of the proof. Recalling the decomposition

(36) we prove at first that E−, evaluated over a minimizer in S a, is a continuous

and decreasing function of a. As the variational problem is not convex, the key step

is showing that all the minimizers over S a share the same energy decomposition.

Continuity and monotonicity are deduced for σ using the relation (39). Finally we

show that all the values σ ∈ (0, 1) have a corresponding ground state. The technical

part is showing that, as long as σa > 0, existence of a ground state can be inferred

for smaller norm costraints b < a, and hence for smaller values of σ.

We emphasize that we will not necessarily find new solution with respect to the

ones of Theorem 3, but we are rather presenting some new information and a deeper

understanding of the minimal configurations. Moreover, since for every σ ∈ (0, 1)

the solution is found as a minimizer over a certain S a, by Theorem 1 it is orbitally

stable.

Remark 8. In [4] it was proved (see Corollary [5.1]) that, for a < b, it holds

Jb ≤
b

a
Ja ≤ Ja (46)

This was actually proved assuming Ja < 0, but as the minimum energy Ja is de-

creasing and Ja ≤ 0 for any a, it is true even without the aforementioned hypothe-

sis. Let us consider now (va, φa) a minimizer in S a. Then for any b it holds

Jb ≤ E















√

b

a
va, φa















=
b

a
E−(va, φa) + E+(va, φa) = Ja +

(

1 − b

a

)

E−(va, φa) (47)

In Theorem 3 in [4], the authors proved the existence of a minimizer over

S a assuming that the energy Ja were negative, i. e. for a > a0. This hypothesis

played a crucial role in the proof, as it prevents a minimizing sequence from weakly

converging to 0.

In treating the case σ close to 0, we will need a slightly refined assertion, which

express a direct relation between the values of E− and the existence of a minimizer.

As will be evident later, it allows the possibility for minimizers for certain values

a ≤ a0, that is to say with total energy Ja = 0. For this reason, we will use in
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next Lemmas the expression: "Let c > 0 such that for any a ∈ (c,∞) there exists a

minimum point for E in S a", postponing a deeper explanation of the characteristic

of c ≤ a0 to the last results of the section.

Lemma 3. Let a > 0, and (vn, φn) ∈ H1
rad
× H1

rad
a sequence such that

lim
n
‖vn‖2L2 = a; lim

n
E(vn, φn) ≤ Ja; lim

n
E−(vn, φn) = −d ∈ (−∞, 0)

Then there exists a subsequence not relabeled (vn, φn) weakly converging in H1×H1

to (va, φa), minimizer of the energy in S a with E−(va, φa) = −d; the convergence is

strong for the amplitude variable vn.

Proof. As the energy and the L2 norm are bounded, the sequence is bounded in

H1 × H1. By the compact embedding H1
rad

(R2) ֒→ Lp(R2) for any 2 < p < ∞, we

can extract a subsequence (vn, φn) converging to (v, φ) weakly in H1 ×H1, strongly

in L3×L3 and pointwise almost a.e. that satisfies (see the proof of Proposition [5.3]

in [4] for details):

‖∇v‖2
L2 ≤ lim inf

n
‖∇vn‖2L2 ; ‖∇φ‖2

L2 ≤ lim inf
n
‖∇φn‖2L2 ; (48)

∫

(1 − cos(2φ)) ≤ lim inf
n

∫

(1 − cos(2φn));

∫

|v|2 sin(2φ) = lim
n

∫

|vn|2 sin(2φn)

Hence the following hold

λ := ‖v‖2
L2 ≤ a; E(v, φ) ≤ lim

n
E(vn, φn) ≤ Ja; E−(v, φ) ≤ lim inf

n
E−(vn, φn) (49)

The value λ cannot be zero, as we have by hypothesis and the last inequality in

(49) that
∫

|v|2 sin(2φ) ≥ d/2 > 0. It cannot either be λ < a: we would have

(
√

a/λv, φ) ∈ S a and

E

(
√

a

λ
v, φ

)

=
a

λ
E−(v, φ) + E+(v, φ) < E(v, φ) ≤ Ja

We have (v, φ) ∈ S a and it is a minimizer. Therefore, all the inequalities in (48),

and hence the last one in (49), must actually be equalities, or we would have once

again E(v, φ) < Ja. Recalling λ = a, we have convergence of the H1 norm and

hence vn → v strongly in H1. �

Lemma 4. Let c > 0 be such that for any a ∈ (c,∞) there exists a minimum point

for the energy E in S a. Then for any c < a < b, for any (va, φa) and (vb, φb)

minimizer in S a, S b respectively, the following hold

E−(va, φa)b ≥ E−(vb, φb)a; σa ≤ σb (50)

Here σa, σb are the values of σ for which (va, φa) and (vb, φb) solve the system

(4)-(5)
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Proof. Fix the couples (va, φa), (vb, φb); we write for brevity E−(b) := E−(vb, φb).

Applying relation 47 twice we get

Ja ≤ Jb +

(

a

b
− 1

)

E−(b) ≤ Ja +

(

a

b
− 1

)

E−(b) +

(

b

a
− 1

)

E−(a)

Rearranging we have

b − a

b
E−(b) =

(

1 − a

b

)

E−(b) ≤
(

b

a
− 1

)

E−(a) =
b − a

a
E−(a)

and consequently the first inequality dividing by b−a > 0. The second one follows

from the first and the relation (39) between σ and E− for a minimizer. �

Remark 9. We have that the possibly multivalued function

E−(b) :=
{

E−(v, φ) | (v, φ) is a minimizer over S b

}

is monotone by the previous Lemma: since E− is negative for every minimizer, for

c < a < b it holds

ã ≥ b̃ ∀ b̃ ∈ E−(b); ã ∈ E−(a) (51)

For b > c, we say that E−(b) is well defined if the set E−(b) contains only one

element; in this case with abuse of notation we will write E−(b) also for the unique

value contained in the set. From the monotonicity relation, it is not difficult to see

that this happens whenever E−(b) is continuous with respect to b; again because of

the monotonicity this is true a.e. in (c,∞).

Corollary 1. The minimal energy Ja := infS a
E is continuous with respect to a.

Proof. For a < a0, a0 as in Theorem 3, we have Ja ≡ 0; for a > a0, for b close to a

we have by (47)

Jb ≤ Ja +

(

1 −
b

a

)

E−(va, φa); Ja ≤ Jb +

(

1 −
a

b

)

E−(vb, φb)

Sending b → a, we deduce limb→a Jb = Ja. For a ↓ a0, if we would not have

lima Ja = 0, we could find a configuration with negative energy in S a0
repeating

the proof of Lemma 3. �

Lemma 5. Let c > 0 be as in Lemma 4, and b > c be such that the quantity E−(b)

is well defined in the sense of Remark 9. Then, for every ε > 0 and for every

constant C ∈ (0, 1) exists δ = δ(b, ε,C),such that the following implication holds

for any (u, θ) ∈ S b ∩ H1
rad
× H1

rad
:

if E(u, θ) − Jb ≤ δ and |E−(u, θ)| ≥ C|E−(b)|, then |E−(u, θ) − E−(b)| ≤ ε (52)
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Remark 10. Notice how, as Jb is the minimum of the energy, E(u, θ)−Jb is positive.

The hypothesis |E−(u, θ)| ≥ C|E−(u, θ)| is added to rule out, for b ∈ (c, a0), the

minimizing sequences weakly converging to 0, that exist whenever Jb = 0.

Proof. If it were not true we could find a minimizing sequence (un, θn) in H1
rad
×

H1
rad
∩ S b such that

0 , lim E−(un, θn) = α , E−(b)

As the sequence is miniminzing in S b, by Lemma 3 there exists a subsequence that

converges in H1 × H1 to a minimizer (v, φ) ∈ S b with E−(v, φ) = α, contraddicting

the well-definition of E−(b). �

For b < c such that there exist no minimizer over S b, we can prove a similar

property for the almost minimizing configuration:

Lemma 6. Let c > 0 as in Lemma 4, and b ≤ c be such there exists no minimizer

over S b. Then, for every ε > 0 exists δ = δ(b, ε),such that the following implication

holds for any (u, θ) ∈ S b ∩ H1
rad
× H1

rad
:

if E(u, θ) ≤ δ then |E−(u, θ)| ≤ ε (53)

Moreover, any minimizing sequence (vn, φn) in S b ∩ H1
rad
× H1

rad
verifies vn → 0

weakly in H1.

Proof. The proof of the first statement follows the steps of the previous Lemma: if

it were false, we could find a ε > 0 and a minimizing sequence (un, θn) in H1
rad
×

H1
rad
∩ S b such that

lim
n

E−(un, θn) ≤ −ε < 0

and by Lemma 3 we would deduce the existence of a minimizer.

For the second statement, if it were not true, we would have a minimizing radial

sequence (vn, φn) weakly converging to (v, φ), with v , 0, satisfying as in (49)

E(v, φ) ≤ Jb = 0.

The latter inequalities implies in particular E−(v, φ) < 0. It follows by the same

argument of Lemma 3 that λ := ‖v‖2
L2 has to be equal to b, and hence we have

reached the contraddiction as (v, φ) would be a minimizer for the energy over S b.

�

The previous results can be stated uniformly along converging sequences.

Lemma 7. Let c > 0 be as in Lemma 4, and a > c. Let bn ↑ a such that, for

any n the quantity E−(bn) is well defined in the sense of Remark 9, and consider a

sequence (un, θn) ∈ S bn
∩ H1

rad
× H1

rad
verifying

lim
n→∞

E(un, θn) = Ja; C1 ≥ |E−(un, θn)| ≥ C2|E−(bn)| (54)
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with C1,C2 fixed positive constants. Then it holds

lim
n→∞

E−(un, θn) = lim
n→∞

E−(bn) (55)

Proof. We define through this Lemma E−(a) := limn E−(bn), the limit existing

because of monotonicity of E− in (51).

For every ε > 0, we fix n̄ = n̄(ε) to be chosen later, and δ = δ(ε, bn̄,C2/2) > 0 such

that (52) holds for b = bn̄. For n > n̄ we can estimate

|E−(un, θn) − E−(bn)| (56)

≤
∣

∣

∣

∣

∣

∣

E−(un, θn) − E−












√

bn̄

bn

un, θn













∣

∣

∣

∣

∣

∣

+

∣

∣

∣E−(bn̄) − E−(bn)
∣

∣

∣ +

∣

∣

∣

∣

∣

∣

E−












√

bn̄

bn

un, θn













− E−(bn̄)

∣

∣

∣

∣

∣

∣

≤ C1

(

bn − bn̄

bn

)

+

∣

∣

∣E−(bn̄) − E−(a)
∣

∣

∣ +

∣

∣

∣

∣

∣

∣

E−












√

bn̄

bn

un, θn













− E−(bn̄)

∣

∣

∣

∣

∣

∣

≤ ε +
∣

∣

∣

∣

∣

∣

E−












√

bn̄

bn

un, θn













− E−(bn̄)

∣

∣

∣

∣

∣

∣

The last inequality is obtained by fixing n̄ large enough, depending on ε. To esti-

mate the remaining part, we can use Lemma 5 at b = bn̄: we have
∣

∣

∣

∣

∣

∣

E−












√

bn̄

bn

un, θn













∣

∣

∣

∣

∣

∣

≥ C2

2
|E−(bn̄)|

E













√

bn̄

bn

un, θn













− Jbn̄
≤

bn̄

bn

E−(un, θn) + E+(un, θn) −
bn̄

bn

Jbn
≤

bn̄

bn

(E(un, θn) − Jbn
)

where we have used the inequality (46). If E(un, θn) − Jbn
≤ δ we can conclude

|E−(un, θn) − E−(bn)| ≤ 2ε

�

Mutatis mutandis, a similar uniformity holds along a sequence bn ↑ a such that

Ja = 0 and there exists no minimizer over S bn
:

Lemma 8. Let c > 0 be as in Lemma 4, and a ≤ c. Let bn ↑ a such that, for any n

there exists no minimizer over S bn
, and consider a sequence (un, θn) ∈ S bn

∩H1
rad
×

H1
rad

verifying

lim
n→∞

E(un, θn) = Ja = 0; |E−(un, θn)| ≤ C (57)

with C fixed positive constant. Then it holds

lim
n→∞

E−(un, θn) = 0 (58)

Moreover un is weakly converging to 0.
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Proof. Instead of estimate (56), we have

|E−(un, θn)| ≤
∣

∣

∣

∣

∣

∣

E−(un, θn) − E−












√

bn̄

bn

un, θn













∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

E−












√

bn̄

bn

un, θn













∣

∣

∣

∣

∣

∣

≤ ε +
∣

∣

∣

∣

∣

∣

E−












√

bn̄

bn

un, θn













∣

∣

∣

∣

∣

∣

In the remaining of the proof the same steps can be followed, referring to Lemma

6 in place of Lemma 5.

For the last statement, it is enough to notice that

E













√

b1

bn

un, θn













= E(un, θn) +

(

1 −
b1

bn

)

E−(un, θn)→ 0

and every miniminizing sequence over S b1
weakly converges to 0 by Lemma 6. �

Proposition 3. Let c be as in Lemma 4, and a > c. If there exist two minimizers

(v1, φ1) and (v2, φ2) for E in S a, then

lim
d↓a

E−(d) = E−(v1, φ1) = E−(v2, φ2) = lim
b↑a

E−(b)

Proof. By the monotonicity relation (51) for E− of the minimizers we have that the

limits limb↑a E−(b) and limd↓a E−(a) exist and, for any (va, φa) minimizer in S a for

the energy it holds

lim
b↑a

E−(vb, φb) ≥ E−(va, φa) ≥ lim
d↓a

E−(vd, φd) (59)

We consider a sequence dn ↓ a with the respective minimizing configurations

(vn, φn), and a sequence bn ↑ a such that for every n is well defined the value

E−(bn).

We can define the sequence of almost minimizers in S bn

(un, θn) :=

(

bn

dn

vn, φn

)

∈ S bn

that satisfies, for some fixed C1,C2 > 0

lim
n

E(un, θn) = Ja = lim
n

Jbn
; C1 ≥ |E−(un, θn)| ≥ C2|E−(bn)|

By Lemma 7:

lim
n→∞

E−(un, θn) = lim
n→∞

E−(bn) = lim
b↑a

E−(vb, φb)

On the other hand, by explicit computation we have

lim
n→∞

E−(un, θn) = lim
n→∞

E−(vn, φn) = lim
d↓a

E−(vd, φd)

The two limits in equation (59) coincide; that is to say the value of E−(va, φa) is

the same for any (va, φa) minimizer in S a. �

22



Corollary 2. Let c > 0 as in Lemma 4. Then the map f : (c,∞) → (0, 1] defined

by f (a) = σa the value σ for which a minimizer (va, φa) ∈ S a satisfies the system

(4)-(5) is well defined, continuous and increasing.

Proof. The function is well defined and continuous because of Proposition 3 and

the relation between σ and E− expressed in equation (39); by Lemma 4 the mono-

tonicity is easily inferred. �

Proposition 4. Let c > 0 as in Lemma 4; the following holds

lim
a→c

σa = 0; lim
a→∞

σa = 1

Proof. By contradiction, we assume σa → σ∗ < 1 for a→ ∞. For any σ ∈ (σ∗, 1)

we can find a function uσ ∈ H1
rad

with compact support BR such that

‖uσ‖2L2 = 1; ‖∇uσ‖2L2 − 2‖uσ‖2L2 = −2σ

Fix φ ∈ H1
rad

such that 0 ≤ φ ≤ π/2, and φ ≡ π/2 over BR. We have then that for

any a

−2σ∗a ≤ 4Ja ≤ 4E(
√

auσ, φ) = −2σa + 4E+(
√

auσ, φ)

Letting a → ∞ we reach the contradiction, as the quantity E+ is independent of a

and finite.

For a0 as in Theorem 3, we have Ja → 0 = Ja0
for a ↓ a0. For (va, φa) minimizers,

either one of the following is happening

• lima↓a0
E−(va, φa) = lima↓a0

E+(va, φa) = 0

• 0 > d = lima↓a0
E−(va, φa) = − lima↓a0

E+(va, φa)

In the first case, we have concluded: c = a0 and 0 = lima→c E−(va, φa) = lima→a0
−aσa.

In the second case, we have by Lemma 3 (va, φa) converges up to subsequence to

(va0
, φa0

) minimizer of E in S a0
. We can show that the set

I :=
{

b ≤ a0 | exists a minimizer for the energy over S b

}

(60)

is left open. If it were not, there would exist a b ≤ a0 and (vb, φb) minimizer over

S b; and a sequence bn ↑ b that does not allow for the existence of a minimizer over

S bn
. We can then look at the sequence

(un, θn) :=

(

bn

b
vb, φb

)

∈ S bn
∩ H1

rad × H1
rad; lim

n
E(un, θn) = Jb = 0
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By Lemma 8 we would have un → 0 weakly, which is clearly impossible.

The set I is also left closed upon a sequence bn ↓ b, as long as

lim
n

E−(bn) = c , 0

by Lemma 3. Defining c := inf I takes to the thesis: we have c ≥ ã > 0 for ã

as in Theorem 3, and the condition for the limit of σa comes from c being the

infimum. �

At this point Theorem 2 is a direct consequence of Corollary 2 and Proposition

4.

3 Decaying rate

The main result of this section will be the following

Proposition 5. A radial decreasing solution (v, φ) of system (4)-(5) has a polyno-

mial decay at infinity at any rate: for any α > 0 exist C = C(α) and R = R(α) such

that for any r > Rα it holds

|v(r)| ≤
C

rα
; |θ(r)| ≤

C

rα

The proof is based on the representation of v and φ as a convolution of the non-

linear terms in equations (4)-(5) with a rapidly decaying kernel. We recall some

basic properties for the modified Bessel function K0, that will play the role of the

kernel. It is a positive, integrable decreasing function K0 : R+ → R, that decays at

infinity as

K0(r) =
1

2π

√

π

2r
e−r

(

1 + O(r−1)
)

for r → ∞

It is of interest for our result because of the following (see [8])

Theorem 7. For any f ∈ L1(R2) ∩ L2(R2) positive, for any σ > 0, there exists a

unique solution u ∈ H2(R2) of the equation

−∆u + σu = f

which is given by the convolution

u(x) =

∫

R2

K0(
√
σ|x − y|) f (y) dy
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The idea of the proof for Proposition 5 is the following. We can infer a polyno-

mial decaying estimates for v and φ, and hence a polynomial decay of higher order

for the nonlinear terms; if we can represent the solutions as a convolution between

the non linear term and the rapidly decaying K0, we can deduce that the solution

decays as the nonlinear term and iterate the reasoning. In the following Lemmas

we prove those two statements.

Lemma 9. Let f ∈ L2(R2) be a radial decreasing function. Then there exist C > 0

such that for any r

| f (r)| ≤
C

r
1
2

‖ f ‖L2

For the proof see [3], Lemma [1.7.3].

Lemma 10. Let K0 be the modified Bessel functional, and f ∈ L1(R2) ∩ L∞(R2) a

function satisfying, for constants C,R, α > 0

f (y) ≤ C

|y|α
∀ |y| ≥ R

Then the convolution

u(x) :=

∫

R2

K0(|y|) f (x − y) dy

has the same decaying rate as f , with constants C1,R1 depending on C,R, α,K0, ‖ f ‖L1∩L∞

Proof. Fix RK such that K0(r) ≤ Ce−r for any r ≥ Rk; let x ∈ R2 with |x| ≥
2 max {R,RK}. We have

|u(x)| ≤
∫

B |x|
2

K(|y|)| f (x − y)| dy +

∫

BC
|x|
2

K(|y|)| f (x − y)| dy ≤

≤ C

|x|α

∫

B |x|
2

K(|y|) dy +
C‖ f ‖L∞
|x|α

∫

BC
|x|
2

|x|α e−|y|
√

|y|
dy ≤

≤ C‖K‖L1

|x|α
+

C‖ f ‖L∞
|x|α

∫

BC
|x|
2

|y|α e−|y|
√

|y|
dy ≤ C

|x|α

In the first inequality we have used the decay rate of f and K, multiplying and

dividing the second integral by |x|α. In the second we have simply controlled |x| ≤
C|y| for y ∈ BC

|x|
2

, and finally we have simply used the integrability of the product of

a polynomial and a negative exponential. �
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Proof of Proposition 5. By hypothesis, (v, φ) satisfies the equation

−∆v + 2σv = 2v sin(2φ) (61)

The right hand side is in L1(R2) ∩ L2(R2), as sin(2φ), v ∈ L2(R2) ∩ L4(R2); by

Theorem 7 there exists u ∈ H2 solution of the equation

−∆u + σu = 2v sin(2φ)

written as

u(x) =

∫

K0(
√
σ|x − y| (2v(y) sin(2φ(y))) dy

Both v and φ are radial decreasing functions in L2, and for y small sin(y) ≤ 2y;

from Lemma 9 and Lemma 10 u decays as C
r

. The difference u − v satisfies

−∆(u − v) + σ(u − v) = 0

Since σ > 0, the weak maximum principle for H1 functions applies to the previous

equation in BR for any R > 0; since both u, v vanish at infinity we deduce u ≡ v.

We look at equality (61), with v decaying as C
r

. A bootstrap argument leads to

the decaying claim for v: using the previous result we improve the decay rate of

2v sin(2φ) to Cr−
3
2 , deduce the same rate for v, and iterate the process.

The same strategy applies to prove the result on φ, which is in H2 for Theorem 4:

we can rewrite (5) as

−ν∆φ + 2qφ = 2|v|2 cos(2φ) + q(2φ − sin(2φ))

For r large enough, by Taylor expansion |2φ − sin(2φ)| ≤ C|φ|3. Hence the right

hand side is in L1; moreover the result about the decay of v and the previous control

over φ allow for the bootstrap argument as above. �
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