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Abstract

Periodontal (gum) diseases reportedly affect 45.9% of adults 30 years of age

or older in the United States. Current diagnostic methods for clinical as-

sessment of periodontal soft tissues are visual examination, palpation which

are subjective and qualitative, and bleeding on probing (invasive) which is

the late indicator of tissue destruction. Therefore, there is a critical need

for research on noninvasive modalities for clinical assessments of periodontal

tissues. Quantitative Ultrasound (QUS) analysis has shown promising re-

sults in noninvasive characterization of various soft tissues; however, it has

not been used in periodontics. This study is among initial investigations into

the application of QUS for periodontal tissue characterization in the litera-

ture. Here, QUS analysis of oral soft tissues (alveolar mucosa and gingiva)

is performed in an in vivo animal study including 10 swine (6 females and 4
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males) in which ultrasonic scanning was performed at the first molar of all

four oral quadrants, resulting in a total of 40 scans. We investigated first

order ultrasonic speckle statistics of oral tissues by using the two-parameter

Burr model (power-law b and scale factor l) and the two-parameter Nak-

agami model (shape factor m and scale factor α; where α represents the

echo intensity). Parametric imaging of these parameters was created us-

ing a sliding kernel method sweeping regions of interest with a kernel size

of 10 wavelengths chosen from a separate phantom study. Parametric im-

ages were superimposed onto the B-mode image to incorporate additional

information to its anatomic references and grayscale echogenicity as well as

facilitating visual comparisons of the two oral tissue types. Results show

that the gingiva and alveolar mucosa are distinct from average Burr and

Nakagami parameters. The difference between the two tissue types using

model parameters are statistically significant (p − value<0.0001). Compar-

ing average parameters in swine population, the Burr power-law parameter

and Nakagami shape factor are both higher in gingiva than alveolar mu-

cosa while the Burr and Nakagami scale factors are both lower in gingiva.

Findings from QUS analyses are in agreement with observation in histology

images from the Masson’s Trichrome and hematoxylin–eosin (H&E) staining

methods. Both stains show different underlying structure in the two tissue

types with gingiva demonstrating denser underlying structure. Linear classi-

fications of these two tissue types using two-dimensional parameter spaces of

the Burr and Nakagami models result in a segmentation accuracy of 93.51%

and 90.91%, respectively. We propose that QUS holds promising potentials

to be employed for the assessment of periodontal soft tissues with the aim of
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improving diagnostic sciences of periodontology and implant dentistry. QUS

could become an objective and quantitative diagnostic tool for the quan-

tification of periodontal soft tissue pathologies and thus, improving dental

healthcare.

Keywords: Quantitative ultrasound, periodontal tissues, speckle statistics,

Burr model, Nakagami model, alveolar mucosa, gingiva, parametric

imaging, histology.
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1. Introduction

Periodontal (gum) diseases are reported to affect nearly half (45.9%) of

the adult populations aged ≥ 30 years in the United States [1]. These dis-

eases concern various oral soft tissues that support and surround teeth such

as marginal (free) gingiva, attached gingiva and, alveolar mucosa, which are

illustrated in Figure 1 for a swine model. The most prevalent periodontal

diseases affecting these tissues are periodontitis and gingivitis which are a

continuum of inflammatory diseases. Periodontitis is initiated by bacteria

infection, potentiated by inflammation, resulting in periodontal attachment

loss of soft tissues from bone as well as causing actual bone loss. As peri-

odontitis progresses, it could cause tooth loss. It is also related to systemic

diseases, such as cardiovascular diseases and diabetes. On the other hand,

gingivitis is considered reversible, involving gingival inflammation without

clinical signs of bone loss [2]. If oral diseases, affecting both soft and hard

tissues, are not addressed at early stages, those could impose immense pain

as well as excessive economic burdens on the population, (it is reported to

have caused direct and indirect burdens of as high as $154.06B in the United

States in 2018 [3].

Among diagnostic modalities in dentistry for clinical assessments of soft tis-

sue is bleeding on probing (BOP). BOP is an invasive method in which a

probe with ruler markings of 1 mm increments is inserted and gently pushed

into the pocket/sulcus between the crown and the marginal (free) gingiva

(see Figure 1). Probing depth as well as potential bleeding are frequently

recorded at office visits as a surrogate for gingival inflammation and are

a part of standard of care as BOP is a sign of periodontal inflammation.
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Normal probing depth is equal or less than 3 mm, beyond which attach-

ment/bone loss around a tooth is suspected. Apparently, BOP has several

limitations: it is invasive, often time exerting unpleasant experiences on pa-

tients. Also, BOP is subjective, as penetration force/insertion angle of the

probe and tissue texture can vary the readings significantly. Also, probing

depth is insensitive in the sense that it is only able to differentiate increments

of 1 mm and small-scale penetration depths bare reading errors. Addition-

ally, common variations in gingival thickness induced by different biotypes

in different patients could increase the complexity of obtaining an objective

assessment of inflammation by BOP [4]. This method is qualitative as it de-

scribes either no, slight, or profuse/spontaneous bleeding. BOP is a measure

of tissue destruction at a late and already irreversible stage [5]. It is notewor-

thy that although lack of BOP observation is a strong indication of negative

inflammation, BOP observations do not necessarily indicate the existence of

an underlying inflammation [6]. Another traditional diagnostic method in

dentistry is the visual observation which suffers from some of limitations as

those listed for BOP. For example, swollen and erythematous tissue is indica-

tive of periodontal inflammation. However, pigmented and thick tissue can

mask these cardinal signs. Therefore, it is crucial to investigate non-invasive

diagnostic modalities for objective and quantitative characterization of oral

soft tissues from clinical workflow aspects as well as for improving public

health and alleviating the associated financial burden.

Towards this clinical goal, an imaging modality with promising potentials

for oral soft tissue characterization is ultrasound (US) imaging. As a non-

invasive, non-ionizing, real-time, inexpensive, and well-established modality,
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US has been employed for imaging and characterization of various biological

soft tissues such as liver, thyroid, muscle, etc. at differing depths and image

resolutions [7, 8, 9]. In dentistry, US B-mode (brightness-mode) imaging has

been employed for lesion detection, measuring gingiva thickness and to de-

lineate the surface of hard tissues (bone/crown) [10, 11, 12, 13]. Moreover,

ultrasound-based elasticity estimations of oral soft tissues have been inves-

tigated in different studies [14, 15]. Ultrasound imaging offers information

beyond B-mode imaging. One important aspect to employ ultrasound imag-

ing is quantitative ultrasound (QUS). In QUS analysis of tissues, the goal is

to find quantitative parameters from uncompressed raw ultrasound scan data

that can be linked to some measure of underlying structure of tissues, which

could offer clinical potentials for tissue characterization [8, 16, 17]. While

B-mode images provide information about landmark anatomical structures

of tissues, it fails to provide information and contrast of the underlying soft

tissue structure. QUS parameters could add more information to B-mode

images, represented as a parametric image overlay. Although QUS anal-

ysis has been extensively applied to characterize various biological tissues

[18, 19, 20, 21, 22], it has never been applied in clinical periodontics for soft

tissue characterization and there are only few studies with limited analysis in-

volving QUS for periodontal soft tissues. For example, in the study reported

in [23], US B-scan echogenicity in layers of oral soft tissues were compared

using a measure of echo levels. Nevertheless, the employed method deviates

from standard techniques of analyzing US image echogenicity parameters

quantitatively.

One class of QUS analysis in medical imaging of tissues is focused on mod-
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eling first order statistics of ultrasound speckle. Speckles are granular (grey)

textures observed in B-mode tissue images. Speckles result from the interfer-

ence of backscattered waves echoed back from various tissue scatterers close

to each other during ultrasound pulse-echo imaging. Although speckles have

a negative impact on B-mode image quality and are filtered out for US image

representation, speckle patterns could incorporate information about under-

lying tissue structure and thus, could have clinical significance. Modeling

ultrasound speckle statistics may result in deriving quantitative parameters

that can be correlated to tissue pathology not visible on B-mode images. A

number of well-establish distributions for speckle modeling in QUS include

Rayleigh [24, 25], Homodyned-K [26, 27, 28], Nakagami [29, 30, 31], and

more recently the Burr model [32, 33, 34]. All these distributions have been

widely used for QUS-based tissue characterization. However, to the best

of our knowledge, characterization of periodontal soft tissues using speckle

modeling and these well-established distributions have not been reported in

the literature. Here, we aim at characterizing periodontal soft tissue by in-

vestigating US speckle statistics using the Burr and Nakagami models in an

in vivo animal study on swine oral tissues. Moreover, we present parametric

imaging of these QUS parameters as an additional information to that of

B-mode images. Additionally, histology images of swine oral tissues were ac-

quired using Masson’s Trichrome and hematoxylin–eosin (H&E) stains with

a 20x magnification microscopy imaging to compare tissue structures with

QUS analysis. Gingival and alveolar mucosal tissues were compared. QUS-

based parametric imaging may have potential to be used as an augmented

tool to current imaging modalities in dentistry such as cone beam computed
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tomography (CBCT) to further aid oral surgeons and to provide diagnostic

value to clinical assessment in oral examinations.

Before we delve into the QUS analysis, we will first present a concise overview

of oral soft tissue anatomy to introduce necessary information and terms used

within the rest of the paper.

1.1. Oral soft tissues: anatomy

Oral soft tissues are comprised of different components, such as gingiva,

alveolar mucosa, buccal mucosa, and epithelium, each with different physi-

ological properties suitable for a particular function during the mastication

(chewing) process. The gingiva (G) and alveolar mucosa (M) are located

closely in the proximity of teeth (crowns); however, the two types of tissues

are distinct and have different ultrastructure. They are considered two im-

portant components of oral soft tissues that have drawn significant clinical

studies due to the frequent occurrence of dental issues associated with qual-

itative and/or quantitative changes in gingiva and alveolar mucosa tissues

[35]. These tissues along with other structures of hard and soft tissues are

illustrated in Figure 1 in a swine model.

Gingiva

Gingiva is a dense fibrous connective tissue having load-bearing intra-

cellular layers and its primary role is to protect the root and alveolar bone

from deformation and degradation. Connective tissues within the gingiva are

mostly comprised of collagen fibers organized in different patterns: (i) thick

collagen fibers arranged densely, and (ii) short and thin collagen fibers ar-

ranged sparsely along with fine-sized network (reticular) structures of fibers
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as well as some diffuse collagen fiber patterns [36]. Gingiva comprises vari-

ous fiber arrangements as also illustrated in Figure 1, which includes: alve-

ologingival fibers (originating from bone to epithelium), dentogingival fibers

(stretched from tooth root to gingival region), circumferential fibers (encom-

passing the tooth), and dentoperiosteal fibers (from the tooth root to the

bone). In terms of vasculature, gingiva has dense capillary vessels (≥ 15 µm

in diameter) that are mostly perpendicular to the gingival surface and lack

connective vessels, with sparse large vessels at higher depth [37]. The gingiva

consists of two main parts: the free gingiva, which wraps around the tooth

and is free (not attached) from one side and, the attached gingiva which is

attached to the free gingiva from one side and is firmly connected to the

alveolar bone on the other side. Among periodontal soft tissues, the gin-

giva has relatively higher exposure to the external mechanical forces (cyclic

and non-cyclic) applied from mastication compared to other oral soft tissues

and thus, has a stiffer nature [38]. The gingiva is covered by an additional

highly keratinized layer called epithelium (E) that forms a biological seal

around the gingiva, lowering penetration of some substances into the oral

soft tissues beneath it [39, 38].

Alveolar Mucosa

Alveolar mucosa is a membrane that lines the bone. Unlike gingiva, alve-

olar mucosa is less exposed to abrasive forces and is mainly non-keratinized.

It has a higher level of elastic fibers which makes the alveolar mucosa more

elastic compared to the gingiva whereas the gingiva contains higher collagen

fiber levels cross-linked and possesses some resistance to tensile loads. These

elastic fibers tend to make alveolar mucosa return to the resting state when
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being extended. Moreover, it is distinguished by a higher blood vessel sup-

ply, ranging from capillaries to larger ones and appears pinkish compared to

the gingiva’s brighter white-pink color [40]. The interstitial fluid within the

vasculature provides cushioning when tissue is under large masticatory loads.

2. Theory

In QUS, the first order speckle statistics is the probability distribution

of the envelope of ultrasound echo amplitudes. Modeling speckle statistics

could provide information about scatterer structure within tissues. This sec-

tion provides the theoretical background for modeling first order ultrasound

speckle statistics and also QUS parametric imaging using Burr and Nakagami

models.

2.1. The Burr model for speckle statistics modeling

Recently, a new framework has been proposed to model the first order

statistics of ultrasound echo amplitude from tissue backscattering which is

based on a key assumption that scatterers within tissues are multi-scale frac-

tal and their number density follows a power-law distributions with the char-

acteristic size of scatterers (b as the key power-law parameter related to

scatterers’ density). The mathematics under this framework resulted in the

Burr distributions for describing the first order statistics of ultrasound echo

amplitude, which was the first application of the Burr model within the area

of medical imaging [32, 33, 34]. The Burr distribution was first derived in

the 1940s without any implications to the field of ultrasound medical imaging

[41]. This framework was initially employed to describe ultrasound speckle

statistics from in vivo livers in normal and abnormal conditions [42, 22] as
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well as for describing the speckle statistics from a set of simulated scattering

structures in the form of cylindrical and spherical scatterers in which num-

ber densities of multi-scale scatterers followed a power-law distribution with

radii [34, 43, 44]. The results from these studies showed that the Burr dis-

tribution successfully and efficiently described US speckle statistics. Later,

the Burr distribution was employed in optical coherence tomography (OCT)

scans and it was reported that the Burr distribution shows promising results

in modeling speckle statistics in OCT scans [45, 46]. Under this framework,

the histogram of backscattered echo amplitudes (A) can be modeled as a

probability density function (PDF), denoted as P(A) in equation 1 with two

underlying parameters: the key power-law parameter b and a scale factor l,

as following:

P (A) =
2A(b− 1)

l2[(A
l
)2 + 1)]b

(1)

The two parameters of b and l have shown potential in characterizing changes

in scattering structures of soft tissues such as normal and fibrotic livers [42,

22]. To estimate the Burr parameters from the tissue backscatter within a

selected region of interest (ROI), we can fit the echo envelope PDF of the

speckle data to equation 1 and derive the underlying parameters. Also, the

Burr parameters can be estimated locally from the local statistics of speckle

data using a sliding window approach where the ROI is swept by a small

kernel and a local estimation map of the Burr parameters is calculated. To

do so, we could utilize some relationships between one or multiple statistical

moments of the echo amplitude and the Burr parameters to find a system of

two equations with two unknown parameters [47]. One statistic to employ

is the first moment of the echo amplitude, i.e. mean: denoted as E[A] and
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reported in equation 2 . The right hand side of this equation is a function

of both b and l. Other statistics could be the ratio of the square of the

first moment of the echo amplitude, (E[A])2, to the first moment of the echo

intensity, E[A2], as shown in equation 3. The right side of this equation only

depends on b. Using these two equations, one can obtain local estimations

of the Burr parameters.

E[A] =
(b− 1)l

√
πΓ(b− 3

2
)

2Γ(b)
(2)

(E[A])2

E[A2]
=

(b− 2)π(Γ(b− 3
2
))2

4(Γ(b− 1))2
(3)

2.2. Nakagami Distribution

The probability distribution of the echo amplitude envelope from the two-

parameter Nakagami distribution is modeled according to equation 4 wherem

is the Nakagami shape parameter and α is the Nakagami scale factor. These

two parameters are estimated statistically from equation 5 and equation 6. It

is noted that the Nakagami m parameter determines the form of the speckle

statistics PDF: if m < 1, it is pre-Rayleigh and a heavy-tailed distribution, if

m = 1, it corresponds to Rayleigh behavior and for m > 1, it demonstrates a

post-Rayleigh distribution [31]. The Nakagami scale factor α represents the

total intensity of the backscattered echo within the region under analysis

f(r) =
2mmr2m−1

Γ(m)αm
e−

m
α
r2U(r) (4)

m =
(E[A2])2

E[A2 − E[A2]]2
(5)

α = E[A2] (6)

In these equations, f(r) is the Nakagami density function and U(r) is the

unit step function.
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3. Materials and Methods

3.1. Study design for intraoral US imaging of periodontal soft

tissues

For the QUS investigations of periodontal soft tissues in vivo, there are

some challenges associated with intraoral US imaging itself which require an

intricate study design and customized scanning setup to tackle them [48].

Two most important ones are dealing with the intraoral scanning of inher-

ently small-sized periodontal soft tissues and also the mixed presence of hard

and soft tissues. In addition, in intraoral scanning, the buccal (cheek) region

imposes a less accommodating condition to foreign objects such as an ultra-

sound transducer. This limits the capability of freely placing and maneuver-

ing the transducer when scanning the tissue. To address these challenges, we

benefited from using a, recently introduced, tooth brush-sized high-frequency

US transducer [49]. Its physical design and ability to provide high-resolution

images was made for the purpose of intraoral imaging [48] through a col-

laboration of clinicians and scientists (co-authors H-L.C. and O.D.K) at the

University of Michigan (Ann Arbor, MI) and the Mindray Innovation Center

(Mindray Inc., San Jose, CA). This US transducer is shown in Figure 2 (a)

and (b), with its in situ placement in Figure 2 (c). In order to acquire

high-quality gingival and mucosal scans, a standoff gel pad was placed onto

the aperture surface to shift the tissues of interest to the focal region of the

transducer, as shown in Figure 2 (d). Having in mind the anatomical struc-

ture of oral tissues shown in Figure 2 (e), a sample of US scan of periodontal

soft tissues in a swine model is presented in Figure 2 (f). Regions of the

gingiva, mucosa, epithelium, muscle as well as crown and bone are annotated
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to help distinguish regions of interest for QUS analysis. It is noted that in

the B-scan presented in (f), the transducer is located on the right edge of

the image. The B-scan sample shows that the epithelium appears as a hyper-

echoic (bright) region, indicating a higher US backscatter intensity from this

region. This higher scattering phenomenon may result from contributions of

dense keratinized tissue (higher impedance). Also, the normal orientation of

the stratified epithelium layer with respect to the transmitted pulse from the

US probe may produce the strongest reflection compared to other angles.

For an accurate QUS analysis of periodontal soft tissues, two experimen-

tal studies were designed here: the first experiment focused on scanning

and analyzing homogeneous custom-designed phantoms without any macro

inclusions (CIRC Inc., Virginia, USA), and the second part focused on in-

vestigating in vivo periodontal soft tissues of swine. The phantom study

aimed at finding the optimal window (kernel) size for accurate and robust

local QUS parameter estimations. Specifically, it was meant to minimize

variability caused by an overly small kernel size and concurrently, to avoid

excessively large kernel sizes that result in loss of spatial resolution in QUS

parameter estimations.

Swine models were selected for this study due to the resemblance of human

and swine oral soft tissues from histology and morphology aspects [50]. An-

imals (N=10) were obtained from Sinclair Bio Resources (Auxvasse, MO,

USA) under a study protocol approved by the Institutional Animal Care

and Use Committee (PRO00010333). Four males and six females were in-

vestigated. Intraoral US scanning was performed at the mid-facial location

of all four first molars (M1), which we refer to by combinations of L (left) /
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R (right) and mandible (MAND) / maxilla (MAX). It is noted that a small

notch was manually created on all teeth as a landmark visible on ultrasound

images.

3.2. US data acquisition and parametric imaging

Ultrasound imaging data for both phantom and swine studies were ac-

quired by employing a clinical Mindray ultrasound imaging system (ZS3,

Mindray Innovation Center, San Jose, CA, USA) equipped with a high-

frequency linear array transducer, now commercially available (L30-8, ZS3,

Mindray Inc., San Jose, CA) introduced earlier in Figure 2 (a) and (b).

The center frequency of the transducer is 18 MHz, the imaging depth and

the lateral field of view commonly used are approximately 15 mm and 13

mm, respectively and the transducer elevational focus is at the depth of 8

mm. The raw RF-data were demodulated, and the envelope detected using

a Hilbert transform. B-mode images were reconstructed using the logarith-

mically compressed envelope data within a dynamic range of 70 dB. The

Burr model parameters (b and l), and the Nakagami model parameters (m

and α) were locally estimated in user-defined ROIs within the gingiva and

the mucosa for each swine to provide additional information about tissue

structure using an estimation kernel approach. The sliding kernel moved

across ROIs (along horizontal and vertical directions) with an overlap ra-

tio of 70%. Parameter estimations derived from the kernel at each location

within the ROI was assigned to the center of the kernel. Linear interpo-

lations were performed between estimations for adjacent centers to obtain

a smoother parametric image. Model parameter estimations were mapped

as colored parametric images overlaid on the B-mode images. The optimal
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kernel (window) size for tissue parametric imaging was obtained from the

phantom study.

3.2.1. Optimal window size

In statistical estimations of the Burr and Nakagami parameters for para-

metric images, there is a trade-off between the spatial resolution of local

parameter estimation and statistical variability in estimated parameters. If

the window size (WS) is too small, the speckle within the kernel provides un-

robust estimations, i.e., the parameters don’t converge. On the other hand,

the size of respective tissues under study imposes limitations on the size of the

associated ROI and consequenty, how large the window can be. The gingival

and alveolar mucosal tissues are inherently small, often about 2 mm thick,

which limits the ROI size for the QUS analysis. This trade-off was investi-

gated by evaluating model parameters as a function of WS. Phantom scan

envelope data were used to create parametric images of rectangular ROIs (5

mm by 2.5 mm) located in the center of the field of view. WS ranged from 2

to 18 wavelengths with an interval of 2 wavelengths. All data processing in

this study was performed using MATLAB (R2023a, MathWorks Inc., Natick

MA, USA).

3.2.2. ROI selection criteria for outlining gingival and mucosal tissues

For ROI selection, the largest possible ROIs were selected for each tissue,

excluding regions of hard tissues such as bone, crown as well as the epithe-

lial layer and rete pegs, as those will affect the QUS parameter estimations

representing gingiva and mucosa characteristics.
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3.3. Histology images

After acquiring in vivo intraoral US scan data, animals were euthanized

and tissue block samples were collected from US scanning sites. Samples in-

corporated oral soft and hard tissues such as alveolar mucosa, gingiva, bone

and crown, allowing for transverse cross-sectional cuts of oral sites to be a

part of histology images as also observed via US imaging. Tissue samples

were collected and immersed in 10% formalin to be preserved from decay and

maintain tissue structure for further tissue staining and processing. Tissue

blocks were placed in 10% EDTA (Ethylenediaminetetraacetic acid) for dem-

ineralization for 3 to 6 months and then embedded within paraffin wax to

maintain its shape as well as to create a support frame and facilitate tissue

slicing (5 micron-thickness). Slices were stained using two separate methods:

Masson’s Thrichrom and H&E techniques.

The Masson’s Trichrome stain is a three-color staining method employed to

reveal collagen structures of hard and soft tissues with its signature blue

color for collagen. In this stain, red represents cytoplasm/red blood cell

and dark purple/black shows nuclei. For example, dentine with its domi-

nant collagen matrix is stained blue and keratin is stained as red. On the

other hand, H&E as the most common staining method, is a two-color stain

method that displays the underlying tissue morphology with a purplish color

for nuclei and varying shades of pink color for cytoplasm, extracellular ma-

trix and other structures. Stained tissue slices were imaged using an optical

microscope (E800, Nikon Instruments Inc., Melville, NY) with 4x and 20x

magnifications for overall and local imaging of slices, respectively.
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4. Results

Figure 3 shows nine pairs of parametric images for the Burr two param-

eters superimposed onto the same B-scan image for nine WSs. In each pair of

parametric images, the left-side image represents the Burr power-law param-

eter b and the right-side one shows the Burr scale factor l. Burr parameters

were estimated within a rectangular (5 mm by 2.5 mm) ROI shown as white

solid box. The dynamic range of all colorbars were set equal to provide for

an absolute comparison of results across all WSs.

It is observed that the sliding WS of 2 produces parametric images with

highly fluctuating statistical estimations, showcasing that local estimations

may vary widely over a large dynamic range (color saturations beyond the

colorbar range are observed). This is consistent with the expectation that

speckle data from small kernels highly fluctuates, i.e., statistical estimations

from excessively small kernels are not robust. By increasing WS from 2 to

10 wavelengths, we observe an improvement in homogeneity of both Burr

parameters, b and l. Comparing parametric images produced from WS of

10 to 16 show the presence of a small non-homogeneous region (visible as a

yellow patch) where local Burr b and l are persistently higher. Therefore,

these local estimations are independent of the size of sliding kernel and are

associated with local variations in underlying phantom structures from the

Burr model standpoint. It is noted that for the sliding kernel size of 16 and

18, it transitions from a local parameter estimator to a global estimator over

the whole ROI. This global estimation manifests itself as a parametric image

being too uniform in which information on local variations are lost (averaged

out).
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Figure 4 shows parametric images for the Nakagami shape parameter

m and scale factor α for different WSs, similar to what was done with the

Burr model in Figure 3. For the Nakagami model, parametric images show

that at a WS of 10 wavelengths and more, variations in local parameter es-

timations are not as intense as for smaller kernel sizes. Similar to the Burr

model, there exists a small non-uniformity (shown as color saturation beyond

the colorbar range) in parametric images, independent of the WS. A more

detailed investigation into the effect of WS on the Burr and Nakagami param-

eter estimation is presented in Figure 5 as errorbar plots using estimations

in Figure 3 and Figure 4, respectively. In this figure, black diamonds rep-

resent means and errorbar lengths represent single standard deviations. The

case of the smallest WS (2 wavelengths) was excluded from Figure 5 as it

showed an unreasonably large standard deviation exceeding the normal range

of y-axis. This figure shows that standard deviations for the Burr parame-

ters are decreasing significantly and monotonically when transitioning from

smaller to larger kernel sizes, with the estimation average becoming stable at

WS of 10 wavelengths (approximately 0.64 mm at 24 MHz) and more. This

WS provides sufficient speckle data for a reasonable and robust statistical

estimation of parameters where the average model parameters converges and

becomes stable with further increase in WS, varying within a small range less

than 5% for the two scale factors and less than 10% for the power-law and

shape parameters. This confirms the earlier finding from visual assessments

of the WS effect on the Burr parametric images above. For the standard

deviation, it decreases significantly at first for the Nakagami parameter, but

its change becomes less significant at a WS of 10 wavelengths and higher.
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This consistently higher standard deviation even at the largest WS may be

related to the underlying structure of the phantom and might not represent

a WS dependence per se. As a note on the optimal WS selection from a

practical standpoint of obtaining parametric image for relatively small-sized

periodontal soft tissues, the WS of 10 wavelengths reasonably meets crite-

ria of accuracy and tissue size limitation. Therefore, it is suggested as the

optimal kernel size for the Burr and Nakagami parametric imaging of swine

tissues.

4.1. Parametric imaging for in vivo swine scans

The parametric images of the Burr and Nakagami parameters of peri-

odontal soft tissues were obtained in ultrasound scans of 10 swine at the

baseline condition (no inflammation) using the optimal sliding WS of 10

wavelengths. The results were statistically compared in gingiva versus alve-

olar mucosa within reasonable ROIs selected for each scan. An example of

parametric image of the Burr b, Burr l, Nakagami m and Nakagami α over-

laid on corresponding B-scans are shown in Figure 6 with the reference

B-scan. The ROIs selected for these parametric images include the marginal

and attached gingiva, alveolar mucosa, epithelium as well as muscle tissues

and is meant to show the variations of estimated parameters over the whole

scanned region. However, for the quantitative characterization of gingiva and

alveolar mucosa, individual ROIs are selected for each tissue excluding any

bone, epithelium layers or other regions not associated with these tissues. An

example of the ROI selection from these two tissue types is shown in Figure

7 and Figure 8 for the Burr and Nakagami parametric imaging. In these
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two figures, top rows represent ROI for the gingiva and bottom rows show

alveolar mucosal ROI, with the reference B-scan is presented in (e). It is ob-

served that for the gingival tissue, the estimated Burr power-law parameter b

and the Nakagami shape parameter m map to a brighter (yellow) colormap,

corresponding to higher estimated values compared to mucosal tissues. On

the other hand, the Burr scale factor l and the Nakagami scale factor α

for gingival tissues are lower than mucosal tissues based on the colormap

comparison.

5. Discussion

5.1. Statistical analysis of swine populations

To characterize these two types of periodontal soft tissues adjacent to

each other at the baseline condition (no inflammation) for all swine popula-

tions, the summary of QUS analyses are presented as boxplots for the Burr

and Nakagami models in Figure 9 and Figure 10, respectively. In these

figures, p − values are reported to compare statistical significance between

the two tissue types. In each boxplot, the blue line shows statistical median

for the population and the pentagon symbols represents the statistical mean

of the estimations.

In Figure 9, (a) and (b) shows the Burr b and Burr l results. For the Burr

parameters, p − values < 0.0001, indicating that b and l could show sta-

tistically significant populations when comparing gingival tissues with alve-

olar mucosa. The Burr b for gingiva is reported to be higher than mucosa

(bGingiva = 6.6 (4.8|10.4), bMucosa = 3.6 (3.2|4.7)), while the Burr l is lower in

gingival tissues (lGingiva = 254.0(177.1|362.7), lMucosa = 851.8(571.6|1174.3)).
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It is noted that the median (and almost the mean) of the Burr power-law

parameter b for the alveolar mucosa tends to be close to the range for nor-

mal soft tissues such as liver reported in the literature [22, 33] while this is

elevated for gingival tissues.

In Figure 10 for the Nakagami model, (a) shows that Nakagami m is sta-

tistically higher for gingiva population in comparison to the alveolar mu-

cosa (mGingiva = 1.29 (1.10|1.52), mMucosa = 0.83 (0.50|1.04)) and, (b) rep-

resents a statistically elevated Nakagami α in alveolar mucosa compared

to the gingiva (αGingiva = 1.82 × 104 (0.81 × 104|3.57 × 104), αMucosa =

4.39 × 105 (2.29 × 105|8.50 × 105)). Nakagami α clearly demonstrates that

echo intensity in gingiva is significantly lower (an order of magnitude).

Therefore, these plots imply that the Burr and Nakagami parameters

show sensitivities to periodontal soft tissue types of gingivae and mucosa

and hold potentials to characterize them.

5.2. Histology insight

To cast some insight into a possible explanation for statistically distinct

QUS parameters for alveolar mucosa and gingiva, we consulted their histology

images. The results for Masson’s Trichrome and H&E stains are shown in

Figure 11 and Figure 12, respectively. In these figures, (a) represents

histology insights (4x magnification) of the stained tissue slice incorporating

both soft and hard tissues. (b) and (c) show a 20x magnified image of

gingival and alveolar mucosal tissues, respectively, marked with red dashed

box in (a). Scale bars are also to all images for references.

Looking at histology images from both staining techniques, we notice a

denser stain in gingival regions compared to alveolar mucosa, which could
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suggest denser scattering sites in gingiva. This observation from histology

images might align with statistical findings from our QUS analyses in two

aspects, as outlined below.

• First, lower B-scan echo intensity in gingiva compared to alveolar mu-

cosa (indicated by decreased Burr and Nakagami scale factors) is hy-

pothesized to arise from occurrence of multiple scattering between

densely-packed scattering sites in gingiva. This would result in a weaker

backscatter signal from this region back to the transducer. Thus, gin-

giva would appear less echogenic in US B-scans compared to alveolar

mucosa.

• Second, the histology finding may suggest the presence of higher den-

sities of small, densely-packed scatterers. This could explain elevated

estimations of Burr power-law parameter b (associated with the number

density of scatterers) obtained for the gingiva compared to the alveolar

mucosa in the QUS analysis. Additionally, the QUS analysis showed

a higher Nakagami shape parameter m in gingiva compared to alveo-

lar mucosa, indicating a transition of scattering statistics to Rayleigh

and post-Rayleigh regime for gingiva. The Rayleigh scattering regime

is characterized by the presence of many random small scatterering

sites, resulting in a diffuse scattering. Thus, the elevated Nakagami

shape parameter in gingiva could be associated with the denser stain

observed in the gingiva on histology images, corresponding to an in-

crease in scattering number density, (transitions into the Rayleigh and

post-Rayleigh regime).
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This histology findings may support our QUS results.

The PDF of the US speckle data within ROIs from alveolar mucosa and

gingiva are fitted to the Rayleigh distribution in Figure 13 as an example

of PDF comparison. It is observed that speckle statistics of the gingiva fits

relatively better to the Rayleigh (R−squared = 0.95) compared the alveolar

mucosa (R − squared = 0.82). This suggests a gradual transition towards

Rayleigh model for gingiva compared to alveolar mucosa. In these PDFs, the

Burr model is added as a reference speckle model and it is noteworthy that

it is a more accurate fit to statistics of both tissue types with its distinc-

tive heavy-tail behavior at the higher amplitudes compared to the Rayleigh

model.

5.3. QUS-based classifications of alveolar mucosa and gingiva

To further investigate the separations of alveolar mucosal and gingival

tissues from the QUS standpoint, averages of the Burr and Nakagami pa-

rameters are estimated for each swine from local statistical estimations. The

results are illustrated as two separate 2D scatterer plots of l − b and m− α

in Figure 14 (a) and (b), respectively. In (b), the Nakgami α axis is rep-

resented as log-scale to compress the large dynamic ranges of this parameter

in alveolar mucosa and gingiva.

In these figures, orange circles represent the estimations for alveolar mucosa

and blue diamond symbols show the estimations for gingiva. In each 2D

space, a linear boundary is optimized to classify the 2D parameter space by

maximizing the accuracy of tissue type prediction. These lines show a clear

separation of mucosal and gingival tissues in 2D space of QUS parameters

estimated from the US speckle statistics. For the Burr model, the linear clas-
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sification line gives an accuracy of 93.51%, a sensitivity (true positive rate)

of 97.44%, and a specificity (true negative rate) of 89.47% (gingival tissue

is assumed to be the positive class). For the Nakagami model, accuracy,

sensitivity and specificity are 90.91%, 97.44%, and 84.21%, respectively. For

both model, linear classification lines accurately classify all but one gingi-

val case, leading to obtaining similar estimations for sensitivities, however

the Burr model estimates more accurate alveolar mucosal cases, resulting in

higher specificity that the Nakagami model. By comparing these statistics,

the Burr model represents a relatively better separation of the two tissue

types, with a slightly higher accuracy and also specificity.

Further, the classification of the two tissue types is investigated by com-

bining the Burr and Nakagami parameters resulting in four features of b, l,

m, and α, to assess the multi-parametric classification accuracy. To represent

the clustering of the two classes with four parameters in a reduced dimen-

sionality (3D) space, the principal component analysis (PCA) is performed

on the parameter (feature) space to map the original parameters into a new

set of variables, a.k.a. principal components (PCs). PCs are basically direc-

tions in the feature space, composed of a linear combination of the original

features, along which the data shows the most variation (higher variance).

The maximum number of PCs in this case is four, however, we employ the

first three PCs to visualize data in 3D. These PCs are the most significant

representations of variations (dispersion) in the data. The mapped data onto

the PC space along with the mapped classification boundaries are shown in

Figure 15. The variance of data captured by the PC 1 is 55.31%, which is

the direction with the highest dispersion in the data. PC 2 and PC 3 explain
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25.37% and 12.38% of the variance in the data, respectively. Therefore, the

first three PCs used to visualize the data in 3D PC space represent 93.06% of

the variations of the data. The data are standardized before being mapped

to the PC space to be scaled. Therefore, the axes range in this figure are

different than the range of original parameters. The decision boundary using

the four parameters gives the classification accuracy of 92.21%, which is be-

tween the two classification accuracies when applying each model separately.

This accuracy is not significantly improved comparing with the 2D classifi-

cations. One potential reason behind this is the fact that multi-parametric

classification is done based on maximizing the boundary margins whereas

the 2D classification is performed by focusing on the accuracy itself directly.

It is also noted that PCs are less interpretable representation of the data,

and they mostly serve as an effective mean to represent the data in lower

dimensional space while retaining most essential information from the data.

For a classification with higher number of features, the PCA makes training

of the classification model more effective.

Conclusions

This study is among early investigations in the literature into applications

of QUS approaches for periodontal soft tissue characterizations and serves as

a crucial preliminary step with promising results towards employing QUS as

an additional diagnostic tool for disease assessment in periodontics. In this

study, characterization of periodontal soft tissues (alveolar mucosa and gin-

giva) was investigated in an in vivo swine model using a QUS approach based
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on the Burr and Nakagami models for speckle statistics. The results showed

that the Burr parameters (power-law parameter b and the scale factor l)

and also Nakagami parameters (shape parameter m and scale factor α) have

potentials to distinguish clinically significant tissue types. This study demon-

strated that the Burr power-law parameter and Nakagami shape parameter

were significantly higher in gingiva compared to alveolar mucosa while the

Burr scale factor and the Nakagami scale factor were significantly lower in

gingiva. The QUS findings were hypothesized to be aligned with qualitative

assessments of histology using Masson’s Trichrome and H&E staining tech-

niques. The two tissue types were classified in 2D parameter spaces using

the QUS parameters from the Burr and Nakagami models which yielded a

separation accuracy of 93.51% and 90.91%, respectively. The classification of

the two tissue types using parameters from the two models in 4D resulted in

a classification accuracy of 92.21%. Further studies should assess the effect

of disease conditions such as oral soft tissue inflammation on QUS parame-

ters. Our results indicate that QUS could potentially become an augmented

tool in periodontics, as an objective, quantitative and noninvasive technique

for disease diagnosis, longitudinal monitoring of healing, and feedback for

indicated interventions.
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Figure Captions

Figure 1: Anatomical structure of swine periodontal tissues. Several types

of fibers within the gingival tissues provide it with mechanical support

during mastication (chewing).

Figure 2: (a) and (b) High-frequency ultrasound transducer for the in-

traoral scan, (c) the transducer positioning for mid-facial imaging of a

molar tooth within the transverse plane in a swine, (d) zoomed-in view

of the transducer with the standoff gel pad, (e) an illustration of oral

soft tissues anatomy as a general reference for understanding B-scan

structure in (f) for a swine case. Important anatomical structures of

periodontal hard and soft tissues are annotated in both (e) and (f).

Figure 3: Burr parametric imaging for varying window size (WS in multi-

ples of wavelength) superimposed on the associated B-mode phantom

image. In each pair of parametric images, the left image shows Burr b

and the right one shows Burr l. All axes are shown in millimeters.

Figure 4: Nakagami parametric imaging for varying window size (same phan-

tom study as shown in Figure 3). In each pair, the left image shows

Nakagami m and the right one shows Nakagami α parameter local es-

timations. All axes are shown in millimeters.

Figure 5: Errorbar plots showing the effect of WS on the Burr parameters

(top row), and on the Nakagami paramaters (bottom row) as obtained

from an ROI size of 5 mm by 2.5 mm in Figure 3 and Figure 4.
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Figure 6: Parametric imaging of the Burr and Nakagami parameters in peri-

odontal soft tissues in a swine scan using the WS of 10 wavelengths, for

maxilla left first molar tooth. (a) reference B-scan, (b) Burr power-law

parameter b and (c) Burr scale factor l, (d) Nakagami shape parameter

m and (e) Nakagami scale factor α.

Figure 7: Parametric imaging of the Burr parameters in the gingiva (top

row) and the alveolar mucosa (bottom row) in a swine scan using the

WS of 10 wavelengths. (a) and (c): Burr b, (b) and (d): Burr l. The

reference B-scan in shown in (e).

Figure 8: Parametric imaging of the Nakagami parameters in the gingiva

(top row) and the alveolar mucosa (bottom row) in a swine scan using

the WS of 10 wavelengths. (a) and (c): Nakagami m, (b) and (d):

Nakagami α. The reference B-scan in shown in (e)

Figure 9: Burr parameters for classification of gingiva vs. alveolar mu-

cosa, with boxplots summarizing the average estimations within ROIs

in swine cases. (a) Burr b, (b) Burr l.

Figure 10: Nakagami parameters for classification of gingiva vs. alveolar

mu- cosa, with boxplots summarizing the average estimations within

ROIs in swine cases. (a) Nakagami m, (b) Nakagami α

Figure 11: (a) Histology image using Masson’s Trichrome stain (4x mag-

nification). (b) and (c) are enlarged views comparing gingival and

alveolar mucosal regions, respectively (20x magnification). Swine oral

site: left mandibular first molar.
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Figure 12: (a) Histology image using H&E stain (4x magnification) at the

same tissue section as shown in Figure 11. (b) and (c) are enlarged

views comparing gingival and alveolar mucosal regions, respectively

(20x magnification). Swine oral site: left mandibular first molar.

Figure 13: PProbability distribution of US speckle data fitted to the Rayleigh

(red curves) and Burr (blue curves) distributions for (a) alveolar mu-

cosa (Rayleigh fit R − squared = 0.82), and (b) gingiva (Rayleigh fit

R− squared = 0.95).

Figure 14: 2D classifications of gingiva vs. alveolar mucosa in swine cases

using (a) the Burr model (Burr b vs. Burr l), and (b) the Nakagami

model (Nakagami m vs. Nakagami α). Black lines show linear bound-

aries between two classes of tissues. Blue diamond symbols: estima-

tions for gingiva, orange circle symbols: estimations for mucosa.

Figure 15: 3D Classification of gingiva vs. alveolar mucosa using combined

parameters of the Burr and Nakagami models, represented in the prin-

cipal component space using the first three principal components of PC

1, PC 2, and PC 3.
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Figure 1: Anatomical structure of swine periodontal tissues. Several types of fibers within

the gingival tissues provide it with mechanical support during mastication (chewing).
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Figure 2: (a) and (b) High-frequency ultrasound transducer for the intraoral scan, (c)

the transducer positioning for mid-facial imaging of a molar tooth within the transverse

plane in a swine, (d) zoomed-in view of the transducer with the standoff gel pad, (e) an

illustration of oral soft tissues anatomy as a general reference for understanding B-scan

structure in (f) for a swine case. Important anatomical structures of periodontal hard

and soft tissues are annotated in both (e) and (f).
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Figure 3: Burr parametric imaging for varying window size (WS in multiples of wave-

length) superimposed on the associated B-mode phantom image. In each pair of parametric

images, the left image shows Burr b and the right one shows Burr l. All axes are shown

in millimeters.
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Figure 4: Nakagami parametric imaging for varying window size (same phantom study

as shown in Figure 3). In each pair, the left image shows Nakagami m and the right one

shows Nakagami α parameter local estimations. All axes are shown in millimeters.
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Figure 5: Errorbar plots showing the effect of WS on the Burr parameters (top row),

and on the Nakagami paramaters (bottom row) as obtained from an ROI size of 5 mm by

2.5 mm in Figure 3 and Figure 4.
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Burr Model Nakagami Model

Pig ID: 4; Tooth: MAX-LM-MID

Figure 6: Parametric imaging of the Burr and Nakagami parameters in periodontal soft

tissues in a swine scan using the WS of 10 wavelengths, for maxilla left first molar tooth.

(a) reference B-scan, (b) Burr power-law parameter b and (c) Burr scale factor l, (d)

Nakagami shape parameter m and (e) Nakagami scale factor α.
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Figure 7: Parametric imaging of the Burr parameters in the gingiva (top row) and the

alveolar mucosa (bottom row) in a swine scan using the WS of 10 wavelengths. (a) and

(c): Burr b, (b) and (d): Burr l. The reference B-scan in shown in (e).
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Figure 8: Parametric imaging of the Nakagami parameters in the gingiva (top row) and

the alveolar mucosa (bottom row) in a swine scan using the WS of 10 wavelengths. (a)

and (c): Nakagami m, (b) and (d): Nakagami α. The reference B-scan in shown in (e).
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Burr Parametric Imaging: Gingiva vs. Mucosa

Figure 9: Burr parameters for classification of gingiva vs. alveolar mucosa, with boxplots

summarizing the average estimations within ROIs in swine cases. (a) Burr b, (b) Burr l.

47



Gingiva Mucosa

(a)

0

0.5

1

1.5

2

N
ak

ag
am

i m

****
p-value = 2e-06

Gingiva Mucosa

(b)

0

0.5

1

1.5

2

2.5

3
N

ak
ag

am
i 

   
   

   
   

   
 

10
6 ****

p-value = 5e-07

Nakagami Parametric Imaging: Gingiva vs. Mucosa

Figure 10: Nakagami parameters for classification of gingiva vs. alveolar mucosa, with

boxplots summarizing the average estimations within ROIs in swine cases. (a) Nakagami

m, (b) Nakagami α.
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Figure 11: (a) Histology image using Masson’s Trichrome stain (4x magnification). (b)

and (c) are enlarged views comparing gingival and alveolar mucosal regions, respectively

(20x magnification). Swine oral site: left mandibular first molar.
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Figure 12: (a) Histology image using H&E stain (4x magnification) at the same tissue

section as shown in Figure 11. (b) and (c) are enlarged views comparing gingival and

alveolar mucosal regions, respectively (20x magnification). Swine oral site: left mandibular

first molar.
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(b)(a)

Figure 13: Probability distribution of US speckle data fitted to the Rayleigh (red curves)

and Burr (blue curves) distributions for (a) alveolar mucosa (Rayleigh fit R− squared =

0.82), and (b) gingiva (Rayleigh fit R− squared = 0.95).
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Figure 14: 2D classifications of gingiva vs. alveolar mucosa in swine cases using (a) the

Burr model (Burr b vs. Burr l), and (b) the Nakagami model (Nakagami m vs. Nakagami

α). Black lines show linear boundaries between two classes of tissues. Blue diamond

symbols: estimations for gingiva, orange circle symbols: estimations for mucosa.
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Figure 15: 3D Classification of gingiva vs. alveolar mucosa using combined parameters

of the Burr and Nakagami models, represented in the principal component space using the

first three principal components of PC 1, PC 2, and PC 3.
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