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Noncollinear antiferromagnets (AFMs) in the family of Mn3X (X=Ir, Sn, Ge, Pt, etc.) have
recently attracted attention in the emerging field of antiferromagnetic spintronics because of their
various interesting transport, magnetic, and optical properties. Due to the noncollinear magnetic
order, the localized electron spins on different magnetic sublattices are not conserved even when
spin-orbit coupling is neglected, making it difficult to understand the transport of spin angular
momentum. Here we study the conserved Noether current associated with spin-rotation symmetry
of the local spins in noncollinear AFMs. We found that a Hall component of the d.c. spin current
can be created by a longitudinal driving force associated with a propagating spin wave, and is
proportional to a response coefficient that we denote as the Hall (inverse) mass. Such a Hall
spin current can be generated by spin pumping in a ferromagnet (FM)-noncollinear AFM bilayer
structure as we demonstrated numerically. Finally we showed that the Hall mass is an isotropic
quantity, similar to the isotropic spin Hall conductivity, and should generally exist in noncollinear
AFMs and their polycrystals. Our results shed light on the potential of noncollinear AFMs in
manipulating the polarization and flow of spin currents in general spintronic devices.

Antiferromagnets (AFMs) with noncollinear magnetic
order have recently become a topic of interest in spintron-
ics. In spite of the usual challenge associated with vanish-
ing net magnetization pertinent to all AFMs, which has
been significantly mitigated in recent years due to the
rapid development of antiferromagnetic spintronics [1–
6], the complex magnetic ordering of noncollinear AFMs
leads to exotic transport phenomena that open up oppor-
tunities otherwise unavailable in common collinear ones.
A prominent example is the anomalous Hall effect (AHE)
in the noncollinear AFM family Mn3X (where X = Ir,
Sn, Ge, etc.)[4, 7–13] as well as other transport and op-
tical properties with the same symmetry requirements
as the AHE [10–15], such as the anomalous Nernst effect
[14] and the magneto-optical Kerr effect [16, 17]. The low
symmetry of the magnetic structure also allows the exis-
tence of the magnetic spin-Hall (MSHE) and inverse spin-
Hall (MISHE) effects [18–21], anisotropic magnetorestric-
tion and piezomagnetic effects [22, 23], and nontrivial
spin-transfer torques [24, 25], etc. Interesting features
of the electronic structure in Mn3X such as Weyl nodes
near the Fermi surface and their associated transport sig-
natures have also been extensively studied theoretically
and experimentally [9, 26–28]. In addition to Mn3X,
transport phenomena in other noncollinear AFMs such
as antiperovskite Mn3AB with A = Ga, Ni, Cu and B =
C, N [29–31], orthoferrites [32], vector spin Seebeck effect
[33], and many effective Ising magnets [34–38] have also
garnered significant interest recently.

In a magnet, spin current can be carried by itiner-
ant electrons or magnons. Both mechanisms have been
well characterized for ferromagnets (FMs) and collinear
AFMs with isotropic (exchange) interactions [39]. The
magnetic order parameter in the form of uniform or stag-
gered magnetization lowers the SO(3) symmetry of global

spin rotations to rotations about the magnetization di-
rection. As a result, only the longitudinal component
of spin current carried by quasiparticle excitations is
usually considered, with spin superfluids in easy-plane
magnets an exception, where it is carried by the mag-
netic ground state understood as magnon condensates.
In the presence of finite spin-orbit coupling, an approx-
imate diffusive picture of spin transport can usually be
established, which has historically played a powerful role
in discovering and understanding many remarkable phe-
nomena in FM-based spintronics [40–43] and more re-
cently in collinear AFM spintronics as well [6, 44, 45].
In contrast, in noncollinear AFMs, the magnetic order
parameter breaks spin rotation symmetry completely. It
is not clear whether a conserved spin current can even
be defined for AFMs with noncollinear magnetic order.
In spite of this conceptual difficulty, recent experimental
and theoretical discoveries in noncollinear AFMs, includ-
ing MSHE/MISHE [18, 19], and tunneling magnetoresis-
tance [46, 47] have been interpreted using a spin current
language. These heuristic arguments suggest that some
form of a conserved spin current might nonetheless exist
in noncollinear AFMs.
In this Letter, we study the spin current carried by

the magnetization fields in a general noncollinear AFM.
A noteworthy aspect of the spin current in a noncollinear
AFM is the relationship between the spatial gradient of
the magnetic order parameter and the direction of the
flow of the spin current. In FMs and collinear AFMs,
the spin current flows along the spatial gradient. We
find that this is generally not the case in noncollinear
AFMs. A spatial gradient of the magnetic order in the x
spatial direction may induce a spin current flowing along
the y direction.
We first derive a conserved current for global spin rota-
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tions by applying Noether’s theorem to a continuum the-
ory [48–51] of a Heisenberg antiferromagnet with 3 sub-
lattices in 2 spatial dimensions with a hexagonal lattice
symmetry exemplified by the Mn3X family [52–60]. The
conserved Noether charge is the total spin. Most inter-
estingly, the Noether spin current can have a component
transverse to the gradient of the order parameter, i.e., a
Hall spin current. The theory is verified by simulating
the spin dynamics in a lattice model consisting of an in-
terface between an FM and a noncollinear kagome AFM,
where the dynamical d.c. spin current on the AFM side
driven by spin pumping on the FM side has a component
flowing parallel to the interface. Such Hall spin currents
originate from off-diagonal components of the inverse ef-
fective mass tensor in the continuum Lagrangian, which
survives under averaging the Lagrangian over SO(3) ro-
tations. Such off-diagonal components of the inverse ef-
fective mass tensor, named as the Hall (inverse) mass
in this Letter, therefore exist in polycrystalline, or effec-
tively isotropic, noncollinear AFM systems in general.

Noether spin current of noncollinear AFMs. We first
use a prototypical two-dimensional kagome lattice model
[51, 52] to study some generic properties of Noether spin
currents in noncollinear AFMs. The model has classical
spins of length S with antiferromagnetic nearest-neighbor
exchange coupling J on a kagome lattice. We consider
two representative noncollinear antiferromagnetic ground
states in this model, direct [Fig. 1 (a) inset] and inverse
triangular order [Fig. 1 (b) inset], relevant to that in
Mn3X.

The low-energy behavior of the model is captured by
a continuum Lagrangian obtained through gradient ex-
pansion [51, 52, 55, 58–61]. The magnetization fields of
the three sublattices are coplanar and point at angles
of 120◦ to each other, thus forming a rigid body. The
orientation of this object can be encoded in terms of a
spin frame—three mutually orthogonal unit vectors nα,
where α = x, y, z, rigidly attached to the magnetic order
parameter [60, 61]. The low-energy Lagrangian is

L =
ρ

4
∂tnα · ∂tnα − 1

4
Γαβ
ab ∂anα · ∂bnβ (1)

Here the inertia density ρ = 1
2JAc

is related to the para-

magnetic susceptibility. Ac = 2
√
3a20 is the unit cell area

and a0 is the nearest-neighbor distance. Latin indices a
and b = x, y label spatial directions and Greek indices de-
note spin components. Summation over doubly repeated
Greek or Latin indices is implied. The spin-frame vec-
tors can be chosen as certain superpositions of sublattice
magnetizations in such a way that nx and ny transform
in terms of each other under point-group symmetries of
the lattice in the same way as spatial gradients ∂x and
∂y (hence the labels) [60]. The third spin-frame vector
nz = nx×ny then has the meaning of the vector spin chi-
rality. The fourth-rank tensor Γ is generally symmetric
under the simultaneous exchange of the Latin and Greek

indices [61]. For the kagome models considered above we
found,

Γαβ
ab = ±

√
3

4
JS2(δaαδbβ + δaβδbα), (2)

where +(−) corresponds to the direct (inverse) triangular
order, α and β take on values x or y; it vanishes if either
α = z or β = z. Alternatively, the spin-frame vectors
(nα)m can be understood as column vectors of a rotation
matrix Rmα [61], which leads to an equivalent form of
Eq. (1) [51, 52]:

L = −ρ

4
Tr [(R−1∂tR)2] +

1

4
Tr[Γab(R

−1∂aR)(R−1∂bR)]

(3)
where the trace is over spin indices. The latter will be
omitted below for brevity when possible.
The equation of motion for the spin frame is obtained

by minimizing the action with respect to the fields nα

while maintaining the orthonormality constraints nα ·
nβ = δαβ [60]. They read

ρ

2
nα × ∂2

t nα − 1

2
Γαβ
ab nα × ∂a∂bnβ = 0. (4)

Lagrangian (1) is invariant under global spin rotations,
δnα = θ × nα for an infinitesimal rotation angle θ. By
Noether’s theorem, the spin current flowing along spatial
direction a is

J a = nα × ∂L
∂(∂anα)

= −1

2
Γαβ
ab nα × ∂bnβ . (5)

The spin density is

J 0 = nα × ∂L
∂(∂tnα)

=
ρ

2
nα × ∂tnα = ρΩ (6)

=
1

Ac

3∑
i=1

Si,

where Ω is the rotation frequency of the spin frame. The
last equality comes from the equation of motion for the
canting field [61]. The continuity equation for the spin
current,

∂tJ 0 + ∂aJ a = 0, (7)

follows directly from the equation of motion (4).
The Noether spin current Eq. (5) generally becomes

nonzero whenever the spin configuration is nonuniform,
even if it is static, similar to the case of spin supercurrents
in collinear FMs and AFMs [58, 62–68]. By way of ex-
ample, consider a static spin configuration with the spin
frame twisting about nx as one moves along the spatial
x direction, ∂xnα = ∂xϕnx × nα, where ϕ(x) is a twist
angle. The only nonzero spin current components are:

J y = ±
√
3

8
JS2 ∂xϕny, (8)
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whose spatial direction is orthogonal to the gradient of
ϕ, and are therefore reminiscent of a Hall current. This
will be our focus below.

Hall mass and transverse Noether spin currents.—In
this section we illustrate the richness of the Hall spin
currents mentioned above by considering dynamical non-
collinear spins which are more relevant to typical spin-
tronics experiments. We consider d.c. spin currents due
to spin waves, for which nα(r, t) = n0

α + θ(r, t)× n0
α, n

0
α

being the ground state spin frame vectors and θ(r, t) =
Re[θei(k·r−ωt)]. Taking a time average on both sides of
Eq. (5) and subtracting any static contributions in equi-
librium, we obtain

⟨J α
a ⟩ = Γγβ

ab

[
−1

2
⟨nγ × ∂bnβ⟩α

]
(9)

≡ Tr (Γab⟨Pα
b ⟩)

which resembles a linear response. Indeed, we show in
[61] that Pα

b can be understood as an SO(3) gauge po-
tential [69] due to spatial translation along b projected
onto the α-th spin angular momentum component, and
can therefore be viewed as a spin current driving force
[57]. Moreover, ⟨P⟩ can be compactly expressed in terms
of time-averaged densities of energy, linear momentum,
and spin for spin waves, which are separately conserved
and can hence be controlled externally, as presented be-
low.

From Eq. (6), the time averaged spin density is

⟨J γ
0 ⟩ = −ρω

4
Im(θ × θ∗)γ (10)

Note that due to the last equality of Eq. (6), the time-
averaged canting of the noncollinear spins is equal to the
⟨J γ

0 ⟩ above and represents the other part of the angular
momentum that is carried by the spin waves, which will
be discussed in a future work. Eq. (10) suggests that
linearly polarized AFM spin waves, for which θ are all
real and θ × θ∗ = 0, cannot carry spin. However, the
kagome AFM models considered here all have degenerate
spin wave modes that can be circularly polarized [60].
More general cases will be discussed in the next section.
The time-averaged linear momentum (Tb0) and energy
(T00) densities are [61]

⟨Tb0⟩ =
ρω

2
|θ|2kb, ⟨T00⟩ =

ρω2

2
|θ|2 (11)

where |θ|2 = θ · θ∗. As a result,

⟨Pα
b ⟩βγ =

1

ρ

⟨J γ
0 ⟩⟨Tb0⟩
⟨T00⟩

δαβ ≡ P γ
b δαβ , (12)

We therefore have ⟨J α
a ⟩ = Γαγ

ab P
γ
b which even better

illustrates the meaning of Γ as a response tensor than
Eq. (9). It is then remarkable that, due to the off-
diagonal components of Γ, neither the spin nor the spa-
tial directions of the spin current have to be aligned with

that of the driving force, or equivalently with that of the
spin wave’s spin and linear momentum, suggesting the
existence of Hall spin currents.

To demonstrate the Hall spin currents explicitly, we
consider a bilayer system consisting of an FM layer in-
terfaced with a noncollinear AFM layer in 2D, both on
a kagome lattice (Fig. 1 insets). The ground state con-
figurations are calculated using an LLG solver to let the
system relax [61]. We then solve the linearized LLG equa-
tion for harmonic excitations created by an external a.c.
magnetic field applied on a few leftmost layers on the FM
side. In the FM layer, such excitations correspond to FM
spin waves propagating towards the interface, carrying a
spin angular momentum whose direction is determined
by that of the static magnetization, set to x̂. This is
clearly shown by the d.c. spin currents on the FM side in
Fig. 1. However, the spin currents on the AFM side have
several components not naively expected from that on
the FM side, and the transversely flowing J y

y component
has opposite signs for the direct and inverse triangular
noncollinear states.

(a) (b)

(c) (d)

FIG. 1. (a) and (b), Dynamical d.c. Noether spin currents in
(a) FM-Mn3Ir (direct triangular order) and (b) FM-Mn3Sn
(inverse triangular order) interfaces outside of the interface
region (gray rectangles). (c) and (d), Spin current driving
force P for (c) FM-Mn3Ir and (d) FM-Mn3Sn interfaces out-
side of the interface region. All numerical LLG calculations
were performed with the following parameters: gyromagnetic
ratio γ = 1, damping α = 0.05, ω = 1, and linear polarization
along ŷ for the external a.c. field. The interface region has a
width of approximately 10 unit cells.

To understand this nontrivial behavior, we plot in
Figs. 1 (c) and (d) the corresponding driving force P
in both systems. One can see that different from ⟨J ⟩,
both sides of the interface have the same dominant com-
ponent of P , P x

x . (P y
x and P z

x arise due to uncontrolled
scattering at the interface region.) Moreover, the nonzero
components of ⟨J ⟩ for the two noncollinear AFMs con-
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sidered here are straightforwardly obtained from P x
x and

P y
x together with the nontrivial components of Γ in

Eq. (2). (P z
x does not contribute since Γ has no z-spin

indices.) For example, the ⟨J y
y ⟩ component is due to

Γyx
yx = ±

√
3JS2

4 , whose different signs for the two types
of order leads to the opposite ⟨J y

y ⟩ in Figs. 1 (a) and
(b). Conversely, the ⟨J x

y ⟩ component has the same sign
in both systems due to P y

x and Γyx
xy = Γyx

yx both changing
sign.

The above observation suggests that it is meaningful
to associate certain components in Γ with an analogue of
the Hall effect for the Noether spin current. Since Γ has
the units of inverse mass per area or volume (times ℏ2),
we name the part of Γ responsible for the Hall spin cur-
rents the Hall (inverse) mass. However, it is not as sim-
ple as deeming the off-diagonal components such as Γxy

xy

the Hall mass since the individual components change
their values under rotations of the coordinate system,
while both the charge Hall effect and the spin Hall ef-
fect have certain invariance under coordinate transforma-
tions. More specifically, the charge Hall effect is a pseu-
dovector σa

H = 1
2ϵabcσbc [70], with σbc the conductivity

tensor, whose length is invariant under O(3) transforma-
tions; the spin Hall effect has an isotropic part 1

6ϵabcσ
s
abc,

with σs
abc the spin conductivity tensor, which is a scalar

and invariant under O(3) transformations as well. In the
next section we will propose an appropriate definition of
the Hall mass based on a general field theory of non-
collinear AFMs.

General definition of Hall mass in noncollinear
AFMs.—We start by considering an arbitrary single-
crystalline noncollinear AFM in three dimensions with
spin S and Heisenberg exchange coupling between any
two spins that depends on their spatial separation. The
Γ tensor of such an AFM can be obtained through gra-
dient expansion as [61]

Γαβ
ab = −S2

Vc

∑
j,pq

J0p,jq(r0p,jq)a(r0p,jq)bm
α
pm

β
q (13)

where Vc is the volume of the unit cell, i, j label unit cells,
p, q label sublattices, m̂p is a unit vector along the spin
direction on sublattice p, and rip,jq is the position vector
of site jq relative to site ip. Such a Γ is symmetric under
separate permutations of its spatial and spin indices and
is also independent of unit cell choices [61].

The Γ as defined in Eq. (13) generally has off-diagonal
components whose values will also change under rota-
tions of the coordinate system. Moreover, the low-energy
spin wave modes that depend on Γ are in general non-
degenerate and are linearly polarized, different from that
in ferromagnets, making them unable to carry spin ac-
cording to Eq. (10). (Spin can also be carried by large-
angle precession, or supercurrents, of the noncollinear
spins, which we do not discuss in this work.) Both of
these hurdles can be overcome if we consider a polycrystal

of the given noncollinear AFM. When the grain sizes of
the polycrystal are smaller than the typical wavelengths
of the spin wave modes, its low-energy Lagrangian should
have the same form as Eq. (3), but with ρ replaced by
an effective isotropic paramagnetic susceptibility ρ̄ and
Γ by an angular-averaged Γ̄ that depends only on two
parameters [61, 71]:

Γ̄αβ
ab = gH(δaαδbβ + δaβδbα) + g0δabδαβ (14)

We define the g0 and gH in Eq. (14) as the longitudi-
nal and the Hall mass, respectively, since they are now
invariant under rotations. (Note that δabδαβ , δaαδbβ , and
δaβδbα are the only three linearly independent isotropic
rank-4 tensors in three dimensions.) In terms of the Γ
of the corresponding single crystal, one can get gH =
1
10

(
Γab
ab − 1

3Γ
aa
bb

)
, g0 = 2

15

(
Γaa
bb − 1

2Γ
ab
ab

)
.

Using the isotropic Γ̄ and the polycrystal Lagrangian,
one can easily get the spin wave dispersions in terms of
g0, gH and ρ̄:

ωi = cik, i = I, II, III (15)

cI =
√
g0/ρ̄

cII,III =
√
(g0 + gH)/ρ̄

where the mode I has its polarization parallel to k while
II, III have transverse polarizations, similar to phonons
in isotropic elastic media [61]. The two transverse modes
can thus be circularly polarized and carry the spin that
is parallel to the propagation direction. For such spin
waves, the Hall mass gH gives rise to Hall spin cur-
rents with their spin polarization parallel to the direc-
tions of spatial flow, i.e., “axial” spin currents. Moreover,
Eq. (15) suggests another way of determining the Hall
mass from spectroscopic measurements on noncollinear
AFM polycrystals.
Discussion.—A key prediction from our spin pumping

calculation Fig. 1 is the transverse spin current ⟨J y
y ⟩.

Such an axial spin current, however, cannot be directly
detected by ordinary inverse spin Hall effect, for which
the directions of the spin current flow and of the spin po-
larization must be orthogonal to each other. A possible
workaround is to use a low-symmetry crystal that has a
spin Hall conductivity component σs

yya, so that a charge
current along a can be induced by ⟨J y

y ⟩ [18, 24, 72–74].
Alternatively, if the noncollinear AFM under considera-
tion has spin wave modes that can carry y-spin, one can
pump y-spin from the FM side to create ⟨J x

y ⟩ which is
then detectable by ISHE, since Γyx

yx = Γxy
yx. Such a phe-

nomenon is, however, more analogous to the spin swap-
ping effect [75, 76] despite the different microscopic ori-
gins.
Separately, in real 3D noncollinear AFMs the Γ tensor

can be quite different from those of our 2D kagome mod-
els. On the one hand, one can use Eq. (13) to calculate
Γ for a given system once the spin Hamiltonian is deter-
mined from, e.g., inelastic neutron diffraction and linear
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spin-wave theory. On the other hand, nonzero compo-
nents of Γ can be identified by symmetry analysis once
the symmetry of the magnetic ground state is known. For
example, we have used Eq. (13) to calculate Γ for cubic
and hexagonal Mn3X by keeping the nearest-neighbor
exchange coupling only [61]. We found that even when
the individual kagome planes in these materials have the
same orientations as that in our 2D models, the 3D ma-
terials have different Γ components.

That the Hall mass gH generally exists in isotropic non-
collinear AFMs is remarkable. It suggests that all non-
collinear AFMs can be classified by the signs of their Hall
mass, which is also reflected by whether the two degener-
ate transverse-polarization spin wave modes are below or
above the longitudinal-polarization mode as indicated by
Eq. (15). We therefore propose inelastic magnetic neu-
tron or x-ray measurements of powder samples of non-
collinear AFMs which can reveal the existence and signs
of their Hall mass.

Our work has ignored effects of conduction electrons
for metallic noncollinear AFMs. When spin-orbit cou-
pling is negligible, spin rotation symmetry is preserved
for the whole system including conduction electrons and
local moments. Therefore the Noether spin current is
carried by the conduction electrons and local magnetic
moments together, and our discussion on anisotropic spin
current response induced by spin pumping, including the
Hall mass, should qualitatively hold.
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J. Kübler, C. Felser, and S. S. P. Parkin, Large anoma-
lous Hall effect driven by a nonvanishing Berry curvature
in the noncolinear antiferromagnet Mn3Ge, Science Ad-
vances 2, e1501870 (2016).

[9] J. Liu and L. Balents, Anomalous Hall Effect and Topo-
logical Defects in Antiferromagnetic Weyl Semimetals:
Mn3Sn/Ge, Phys. Rev. Lett. 119, 087202 (2017).

[10] S. Nakatsuji, N. Kiyohara, and T. Higo, Large anomalous
Hall effect in a non-collinear antiferromagnet at room
temperature, Nature 527, 212 (2015).

[11] N. Kiyohara, T. Tomita, and S. Nakatsuji, Giant Anoma-
lous Hall Effect in the Chiral Antiferromagnet Mn3Ge,
Phys. Rev. Appl. 5, 064009 (2016).

[12] H. Iwaki, M. Kimata, T. Ikebuchi, Y. Kobayashi, K. Oda,
Y. Shiota, T. Ono, and T. Moriyama, Large anomalous
Hall effect in L1-ordered antiferromagnetic Mn3Ir thin
films, Applied Physics Letters 116, 022408 (2020).

[13] Z. Q. Liu, H. Chen, J. M. Wang, J. H. Liu, K. Wang,
Z. X. Feng, H. Yan, X. R. Wang, C. B. Jiang, J. M. D.
Coey, and A. H. MacDonald, Electrical switching of the
topological anomalous Hall effect in a non-collinear anti-
ferromagnet above room temperature, Nature Electronics
1, 172 (2018).

[14] M. Ikhlas, T. Tomita, T. Koretsune, M.-T. Suzuki,
D. Nishio-Hamane, R. Arita, Y. Otani, and S. Nakatsuji,
Large anomalous Nernst effect at room temperature in a
chiral antiferromagnet, Nature Physics 13, 1085 (2017).

[15] H. Chen, T.-C. Wang, D. Xiao, G.-Y. Guo, Q. Niu, and
A. H. MacDonald, Manipulating anomalous Hall anti-
ferromagnets with magnetic fields, Phys. Rev. B 101,
104418 (2020).

[16] W. Feng, G.-Y. Guo, J. Zhou, Y. Yao, and Q. Niu, Large
magneto-optical Kerr effect in noncollinear antiferromag-
nets Mn3X (X=Rh, Ir, Pt), Phys. Rev. B 92, 144426
(2015).

[17] T. Higo, H. Man, D. B. Gopman, L. Wu, T. Koret-
sune, O. M. J. van ’t Erve, Y. P. Kabanov, D. Rees,
Y. Li, M.-T. Suzuki, S. Patankar, M. Ikhlas, C. L. Chien,
R. Arita, R. D. Shull, J. Orenstein, and S. Nakatsuji,
Large magneto-optical Kerr effect and imaging of mag-
netic octupole domains in an antiferromagnetic metal,
Nature Photonics 12, 73 (2018).

[18] M. Kimata, H. Chen, K. Kondou, S. Sugimoto, P. K.
Muduli, M. Ikhlas, Y. Omori, T. Tomita, A. H. MacDon-
ald, S. Nakatsuji, and Y. Otani, Magnetic and magnetic-
inverse spin Hall effects in a non-collinear antiferromag-
net, Nature 565, 627 (2019).

[19] K. Kondou, H. Chen, T. Tomita, M. Ikhlas, T. Higo,
A. H. MacDonald, S. Nakatsuji, and Y. Otani, Giant
field-like torque by the out-of-plane magnetic spin Hall
effect in a topological antiferromagnet, Nature Commu-
nications 12, 6491 (2021).

[20] Y. Zhang, Y. Sun, H. Yang, J. Železný, S. P. P. Parkin,
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[21] Y. Zhang, J. Železný, Y. Sun, J. van den Brink, and
B. Yan, Spin Hall effect emerging from a noncollinear
magnetic lattice without spin–orbit coupling, New Jour-
nal of Physics 20, 073028 (2018).

[22] M. Ikhlas, S. Dasgupta, F. Theuss, T. Higo, S. Kittaka,
B. J. Ramshaw, O. Tchernyshyov, C. W. Hicks, and
S. Nakatsuji, Piezomagnetic switching of the anomalous
Hall effect in an antiferromagnet at room temperature,
Nature Physics 18, 1086 (2022).

[23] B. E. Zuniga-Cespedes, K. Manna, H. M. L. Noad, P.-
Y. Yang, M. Nicklas, C. Felser, A. P. Mackenzie, and
C. W. Hicks, Observation of an anomalous Hall effect in
single-crystal Mn3Pt, New Journal of Physics 25, 023029
(2023).
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