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Saverio Francini, Costanza Borghi, Paolo Costa, and Bianca Galmarini
University of Florence, Florence Italy

Fondazione Futuro delle città, Florence, Italy
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Green areas are a crucial element in evolution of a city, contributing to improve citizens’ life, to
reduce effects of climate change, and to make possible the survival of other species in urban areas.
Unfortunately, the above effects are difficult to assess quantitatively for regulators, stakeholders
and experts, making troublesome the planning of city development. Here we present a method to
estimate the impact of these areas in the city life based on the network topology of the city itself
and on a simple model of dynamics on this structure. Movements between various areas of the city
are simulated by means of an agent-based biased-diffusion process where citizens try to reach the
nearest Public Green Area (PGA) from their position and the model is fed with real data about the
density of populations in the cases of study. Firstly, we define a centrality measure of PGA’s based
on average farness measured on the city network; this approach outperforms information based on
the simple topology. We then improve this quantity by taking into account the occupation of PGA’s,
thereby providing a quantitative measure of PGA usage for regulators.

INTRODUCTION

Urban green spaces, which encompass parks, gardens,
urban forests, and other forms of vegetation, provide
cities with a diverse array of environmental, climate, eco-
nomic, social, and health benefits. From an ecological
point of view, the extension of urban green infrastruc-
tures, improves biodiversity and ensures the proper func-
tioning of ecological systems, fostering the prosperity of
various animal species [1]. Green areas also provide a se-
ries of ecosystem services (such as air purification, carbon
sequestration, urban cooling, runoff control, noise reduc-
tion, and habitat maintenance [2]) essential for city life.
Finally. green spaces improve city resilience, particularly
against the adverse effects of climate change, and en-
hance the overall quality of the urban environment. The
economic significance of green spaces is evident as well,
as greening is frequently linked to higher home prices
and increased property values, and serves as an effective
strategy for branding and attracting international capi-
tal investments [3]. However, beyond the ecological and
the economic realm, the value of green spaces and par-
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ticularly the Public Green Areas (PGA) becomes even
more important when viewed from the citizens’ perspec-
tive. A robust and ecologically healthy natural compo-
nent is crucial for health and well-being. Enhancing envi-
ronmental conditions positively impacts life, particularly
in cities where pollution, noise, and heat pose signifi-
cant challenges. Furthermore, it is now clear how direct
contact with nature is a vital condition to achieve an
healthy urban life reducing stress, anxiety, and depres-
sion, as well as reduced risks of obesity, cardiovascular
diseases, and respiratory illnesses [4–8]. Among less im-
mediate benefits, exposure to nature facilitates personal
growth and learning, favours prosocial behaviours and
cooperation [9], enhances social cohesion [10] and envi-
ronmental awareness. The structure, size, connectivity,
and biodiversity of green spaces are determinants for the
provision of benefits [5]. However, health and social ben-
efits also hinge on the dose of nature experience [11],
thus its frequency, duration, and recurrence. The vari-
ation in these factors raises equity concerns, as differ-
ences in access among different segments of the popula-
tion can compromise the fair distribution of health ben-
efits. Consequently, distributive and accessibility consid-
erations regarding green spaces in cities emerge as indis-
pensable components for informing a just green planning.
We present here a metric based on statistical physics
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framework to assess the relevance of PGAs in city life.
The metric takes into account position and shape of ar-
eas with respect to the rest of the city and the facility
to access these areas by the population. A way to as-
sess quantitatively the accessibility of these areas is to
measure their centrality in the city structure. The ap-
proach of Statistical Physics is particularly suitable in
this case, given the large sizes and the strong heterogene-
ity of the urban systems [12]. More particularly complex-
ity science [13, 14] and concepts developed in network
theory[15], as the centrality mentioned above, are the
most effective ways to achieve a green area metric. In-
deed, by reducing the complexity of cities[16] to a web of
city blocks in the form of a network we can identify even
social patterns of urban city life that, when quantified,
appear to follow clear mathematical laws[17, 18]. Re-
cent research on human interactions in cities embraced
all these ideas, trying to produce models that, start-
ing from different data, create comprehensive multilevel
networks[19] that can help understand the phenomenon
better than a digital twin[16]. Indeed, with such a macro-
scopic level of description, it is possible to detect a series
of “universal” patterns emerging in cities worldwide[20],
indicating that the size of a city – measured by its pop-
ulation – is a primary determinant of its characteristics.
Through this quantity, it is possible to assess the impor-
tance of the various zones of the city and the other rel-
ative properties as the connectivity, the clustering, the
assortativity effects[21], etc. In detail, we consider the
network structures obtained by Voronoi tessellation for
three Italian cities of different sizes and different popu-
lations (high, medium, medium/small): Milan, Florence
and Mestre, respectively. On these structures, we eval-
uate the accessibility of PGAs at the city block level by
utilizing both a traditional network centrality measure
and modified versions that account for spatial interaction
and population density. On these areas, we first perform
a centrality analysis, and then, with the help of a simple
dynamical model, we obtain a computational measure of
the usability of such areas.

METHODS

A. Voronoi Tassellation and Networks

We base our analysis on weighted spatial networks
created through the tessellation [22] of three Italian
cities: Mestre (Venice), Florence, and Milan. The
weighted spatial network, denoted as G(V,E), comprises
nodes (V ) representing centroids, and weighted edges
(E) capturing their interactions. Nodes are defined as
V = v1, v2, ..., vN , and edges are represented as E =
(vi, vj , wij), with wij representing the Euclidean distance
between adjacent nodes vi and vj . In our network rep-
resentation, we have two types of nodes: city blocks (de-
noted as b) with associated population data from the
census[23], and Public Green Areas (PGA, denoted as

p). We take this data from “OpenStreetMap”[24]. Each
city displays distinct features in population density and
urban layout. City of Mestre has a concentrated, recent
development, while Florence shows an uneven distribu-
tion of population and city blocks some of which with
hundreds of years of story. Milan, a densely populated
metropolis, exhibits a more regular urban structure with
ancient and new buildings and with varying population
densities. To evaluate the importance of block nodes rel-
ative to the set of PGAs nodes, we employed various
measure of network centrality. In particular, we shall
focus on the idea that the probability of performing a
walk between a block and a PGA follows a well-defined
probability distribution that depends on both network
topology and edge length as cost. In the following, we
shall look for the ensemble of “low cost” paths, from any
city block to the PGA’s. Furthermore, PGA nodes that
are the target of these walks will be modeled in the first
instance as ’sink’ of infinite capacity and in the second
instance with a finite capacity given by their walkable
area.

B. Taking into account the social network

Cities, in general, are characterized by different pop-
ulation densities per block, which inevitably play a de-
termining factor in characterizing the use of and acces-
sibility to certain services. This is well known even be-
fore the advent of complex networks, from the princi-
ple of human behaviours[25], to models explicitly point-
ing out the role of distance in social interactions[26], to
the advantageous concentration of diverse businesses and
individuals in urban areas promoting economic vitality
through closeness [27] over time. All the possible so-
cial contacts and relationships with transportation and
supply networks, concur in creating a series of different
co-evolving structures describing the evolution of life in
cities. The usability of PGA’s is inherently tied to their
physical proximity to the population, a factor that, in
turn, significantly influences their potential use. In other
terms, the quantity of population physically served by
each green space is a determinant for rating its role in
service providing and its likelihood to use. According to
the least effort hypothesis [25], proximity has a pivotal
role in shaping behaviours and choices, and consequently,
social interactions. In the present study, we advance a
dynamic network-based model that posits people density
and proximity as primary determinants of agency. At
the same time, we acknowledge the intricate interplay
of numerous other variables, here unexplored and more
difficult to model, influencing the use of public green
areas, including design, governance mode, maintenance
level, biodiversity, quality, dimension, but also the non-
normativity and functional indeterminacy[28].
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C. Probability of paths to PGAs nodes

The accessibility to Public Green Areas (PGAs) is de-
fined as the probability of a block resident’s access to
PGAs, primarily based on the distance between the block
and PGAs. To derive a probability distribution for each
block, we employed the bag-of-path approach[29], which
employs the principles of random walk theory within net-
work analysis. A random walk on a network is a stochas-
tic process that starts from a given vertex v, and then se-
lects one of its neighbors according to a probability distri-
bution. A naturally defined distribution arises by impos-
ing a uniformly likely passage on the edges. This means
to consider the degree of the node Pv→u = 1

Deg(v) , if and

only if u, v are connected. The latter relationship can be
calculated for each pair of nodes u, v and stored in a tran-
sition matrix Pref. A typical process in networks is when
specific nodes are made adsorbing, causing random walks
from node i to halt indefinitely at node jads. This proper-
ties can be modelled by placing pjads,jads

= 1, pjads,i = 0
in the transition matrix. In this case, a quantity of inter-
est is the expected number of times that a walk from any
node i reaches one of the absorbing nodes jads. This is
computed for each starting node by summing all possible
paths of length t, accounting for the adsorbing property
of selected nodes[30]:

Z =

∞∑
t=0

P t
ref = (I−Pref)

−1 (1)

The Z matrix is called the fundamental matrix and each
entry Zij contains the expected number of times that a
random walk starting in i visits one node j before being
adsorbed. Since edge weights represent Euclidean dis-
tance in our spatial networks, we aim to calculate the
probability of observing a path from a block node b to
one of the PGA nodes, treating them as absorbing, with
path cost influenced by edge weights. The objective is to
obtain a probability distribution where longer paths are
penalized in terms of cost. Assuming path costs equal
path length, a statistical ensemble minimizing the ex-
pected total cost E[c(P)] can be derived [29, 31]. This
leads to the identification of a new transition matrix, in-
corporating the natural matrix Pref and exponentially at-
tenuated edge costs (a sort of Boltzmann’s weight). This
represents a system of nodes considered to be partially
absorptive i.e. the probability is not conserved on paths:

W = Pref ◦ e−γC (2)

Here

• the symbol ◦ corresponds to the Hadamard’s ma-
trix product[32] where entries of the matrices are
multiplied cell by cell;

• γ (corresponding to an inverse temperature) is a pa-
rameter controlling the ensemble bias toward short-
est paths;

• C is the cost matrix equivalent to the network’s
weight matrix; the fundamental matrix Z is derived
from W as in Eq.(1) and it naturally defines the
partition function of this random walk system.

Leveraging this property allows defining the probabil-
ity of observing a direct path from a block b to a PGA
node p (but not vice versa) by first diagonalizing

Zh =
Z

Diag(Z)
(3)

and then row-normalizing:

ZPGA
i,j = (P(b = i, p = j)) =

Zh
i,j∑

k∈PGA Zh
i,k

(4)

P (P(b, p)) thus corresponds to the probability of reach-
ing the PGA p (made implicitly adsorbing) from block
b without being killed during the walk. The matrix
ZPGA collects the probabilities calculated above for ev-
ery blocks.

D. Network centrality

Network centrality[33] measures the “importance” of a
given vertex with respect of the others in the network.
Various centrality measures are possible, according to
what we consider important. The Farness Centrality of
a node in a graph is a measure of the total distance of a
given node to a subset of nodes in the graph. It is defined
as:

Cf (b) =
∑

p∈{PGA}

dSP (b, p) (5)

Where dSP is the weighted distance (i.e. the shortest
path) between nodes b, p. Visually, this calculated metric
is akin to computing the sum of distances within a circle
that stretches to encompass the farthest nodes, treating
each path equally as contributing to the node’s centrality.
However, in an urban context, it is not necessarily taken
for granted that the actual contribution of the shortest-
path length is proportional to its distance. Consider, for
example, the case where a block has equidistant accesses
to a set of PGAs (i.e. PGAs arranged on a circumfer-
ence); within this metric, this is the most favoured block.
In contrast, a block close to the circumference will expe-
rience a greater Farness but a larger set of short paths
toward near PGAs, which turn out to be more likely
to be crossed. This observation suggests that, given a
distance-dependent probability distribution P (dSP (b, v))
of observing a path from block b to the set of PGAs, an
Average Farness defined as follows is more informative:

⟨Cf (b)⟩ =
∑

v∈{PGA}

dSP (b, v)P (dSP (b, v)) (6)
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Where P (dSP (b, v)) is a suitable probability distribu-
tion that describes the ’importance’ of the paths b, v. In
so doing, we will obtain values of centrality that range
from 0 to the largest possible distance. For further appli-
cations, we might need a normalized version CN

f of this
class of centralities. In general, we shall transform those
quantities by using the following formula (Max-Min)

CN
f =

max(Cf )− Cf

max(Cf )−min(Cf )
(7)

1. Average farness involving low-cost paths

Here is defined the Average Farness of a block b to-
ward the whole set of PGAs, by resorting to the directed
hitting-paths probability matrix ZPGA:

⟨Cf (b)⟩ =
∑

v∈{PGA}

dSP (b, v)P (dSP (b, v)) =

∑
v∈{PGA}

dSP (b, v)Z
PGA
b,v

(8)

This measure describes how much a block is locally far
from the rest of PGAs in accordance with Eq.(6). This
is fair because a walker will experience only the situation
from his starting block. A conceptual limitation of this
metric is based on defining PGA nodes as infinitely ad-
sorbing and thus thought of as inherently having infinite
capacity. As introduced, PGAs possess a finite walka-
ble area, which gives rise to access competition among
residents. In this case, the quality of a block is best de-
scribed by an occupancy probability distribution P b

PGA
regarding the probability that residents from the block b
will access the set of PGA nodes, given the different path
probability toward these.

2. Average farness from PGAs occupancy distribution

This centrality is based on the PGA occupancy prob-
ability distribution P b

PGA per block b. This distribution
simply represents the frequency of residents of block b
who have accessed the i-th PGA. This distribution is in-
serted into the Average Farness expression:

⟨Cf (b)⟩PGA =
∑

v∈{PGA}

dSP (b, v)P
b

PGA(v) (9)

To model the distribution, we presumed a latent com-
petition among city residents for access to PGAs. The
distribution is then sampled from the collective outcomes
of independent agents seeking low-cost paths to PGAs.
Below the agent model is introduced and details onto the
calculation of PPGA are then provided.

E. Agent-based model

We simulated the behaviour of the population (agents)
with a process akin to diffusion. The diffusion is not
an ordinary random diffusion (where people would wan-
der around with no direction), rather in this agent-based
model, each agent acts as a biased random walker, aiming
to stop at a PGA capable of accommodating the agent’s
searched area, denoted as fmq. From this parameter we

then obtain MaxOcci =
Area(PGA)

fmq
, which represents the

maximum number of agents that can be hosted by the i-
th PGA in the city. Agents possess a limited amount
of energy (i.e. total length walked) expressed in meters.
During the walk, each agent incurs an energy loss ∆E
equal to the length of the crossed edge. There are three
possible final states for an agent: (i) staying in a PGA
node, (ii) reaching a PGA without staying there, or (iii)
running out of energy without reaching a PGA. As in-
troduced, agents compete for occupation of the PGAs.
When an agent reaches a PGA, the decision-making pro-
cess involves testing X > Occi, where Occ is the actual
occupancy within a PGA expressed as the ratio of the
current number of agents who stopped in the PGA to
the maximum occupancy. We decided to evaluate the
case where X follows a uniform distribution X ∼ U(0, 1).
If the outcome is positive, the agent stops its walk in the
PGA (i). Otherwise, it continues the walk from the PGA
node (ii). In the case of state (iii), the agent restarts the
walk from its original node. In this way, the agents fol-
low low-cost paths leading to PGAs, determined by the
optimization of a ’reward’ function ϕi for each block i.
The ϕ is derived directly by the matrix Z in the following
way:

ϕi = ei
TZe{v} (10)

Where ei is the vector indexing the i-th block. The re-
ward function ϕ is the sum of the expected number of
times that the i-th block can potentially visit the set of
PGA nodes. In that sense, nodes that possess a high
reward have a better quality in terms of low-cost paths
than ones with a lower one. The ϕ function increase along
paths leading to PGAs, with PGA nodes possessing the
highest ϕ across the network. Under this approach, each
node in the network is informed about its neighborhood
quality of PGAs in terms of distances. The transition
probability employs the Monte Carlo sampling strategy:

Pi→j =
e−β∆ϕij∑

k∈N(i) e
−β∆ϕki

(11)

where N(i) is the neighbors set of the node i. An agent
walk thus interpolates between a random walk and a walk
that follows low-cost paths but without a PGA chosen in
advance. In any case, as we shall see, green areas close to
a block in terms of distance are more likely to be reached
by walkers, and conversely, occupation of distant ones is
a rare event triggered by overcrowding of nearby ones.
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To account for population density disparities within the
cities, agents are further distinguished by unique starting
nodes allocated in proportion to the population distribu-
tion across the blocks. Each simulation was repeated
by varying the fmq parameter across a range of values.
This approach enables an investigation of agent dynamics
across a spectrum, transitioning from scenarios abundant
in walkable green areas to those with a scarcity. At the
end of each simulation, agents’ paths were systematically
collected to extract the occupancy probability distribu-
tion PPGA(b, fmq) per block b, which is dependent from
the parameter fmq. To recover a comprehensive distri-
bution, the marginal distribution was then recovered:

P b
PGA =

∑
fmq

PPGA(b, fmq) (12)

a. Cumulative density PGAs act as sinks that ab-
sorb a quantity of material (i.e., agents) from blocks at
different distances. To understand the relation between
population density and PGAs, a simple metric was de-
fined:

ρ>(m) =
1

Na

∑
p∈{PGA}

∑
j∈{V p

b }

1 {dSP(p, j) ≤ m} (13)

Where Na stands for the total number of agents, V i
b the

set of blocks from which the PGA j has sourced a num-
ber of occupants, and dSP the weighted shortest distance
between the PGA and the j-th block. This metric is nor-
malized between 0 and 1, so it allows us to explore the
Cumulative density of inhabitants that reached PGAs at
different distances with respect to the i-th bins m.

FIG. 1. Main elements of the method devised in this work.
From left: farness centrality calculated from shortest paths;
average farness obtained by path weighting (bag-of-path ap-
proach); reward function and agent-based simulations.

I. RESULTS AND DISCUSSION

A. Average Farness centrality

Initially, the hitting path probability matrix ZPGA was
derived for the three specified cities. The γ parameter
was thus set to γ = 8.3× 10−4, which corresponds to the
ensemble of paths given the reference 15-minutes distance
of 1200m.

(a) Mestre

(b) Firenze

(c) Milano

FIG. 2. Average Farness centrality ⟨Cf ⟩ mapped onto the
respective spatial networks. PGA nodes are are shown (red).

We show in Fig. 2 the depicted Average Farness follow-
ing the formulation in Eq. (8) weight the accessibility by
tempering the measure with the proximity of the block
to nearby PGAs. Note that the different spatial scales of
the three city clearly positively affect this measure and
reveal the spatial organization of the PGAs across the
city network. In detail, for Mestre, most of the blocks
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across the city exhibit an highly equitable accessibility
to PGAs, when considering distance as the main char-
acteristic of quality. We can explain the spatial origin
of this phenomenon from the organization of PGAs into
small clusters close together, which allows the blocks to
feel their proximity. For Florence, on the other hand, this
consideration fails when applied to its city center. Here,
most of the high-centrality blocks lay in two large clusters
on opposite banks of the river, corresponding to highly
serviced spatial zones in terms of green areas. We put in
relation this feature with the presence of environmental
constraints on the planning of these areas, which appear
naturally confined to only one part of the city. For Milan,
high quality blocks are concentrated near smaller PGA
clusters. In this case, the spatial scale of the city, which
is considerably larger than Florence and Mestre, affects
the centrality. We measure that few blocks are highly
served (⟨Cf ⟩ ∼ 0.95) while most retain a value around
⟨Cf ⟩ ∼ 0.75. In essence, these observations reveal a kind
of neighborhood planning at block-level PGAs in the city
of Mestre and a rather different arrangement in the city of
Florence, governed by morphological conditions. In the
city of Milan, they reveal a quasi-uniform arrangement of
PGAs although arge areas are missing green zones. This
modified version of the Farness Centrality metric, better
defined in Methods, improves the classical Farness Cen-
trality used in this field. Indeed instead of computing
centrality from a disk of infinite amplitude we now con-
sider the probability of observing low-cost paths heading
to the respective PGAs. In fact, the latter is constrained
by both the finite nature of the spatial network and the
unphysical idea of assigning uniform weights to all paths
to PGAs. However, this latter measure does not incor-
porate information about the area of the PGAs and con-
siders these as equally contributing to the quality assess-
ment, therefore avoiding the intrinsic scarcity that char-
acterizes PGAs. Moreover, as anticipated, urban blocks
are characterized by different population densities, and
neither of these measures account for it.

B. Average farness from occupancy distribution

In this section, we report the results of the average far-
ness from occupancy distribution obtained by the agent-
based model. Before starting computer simulations, we
extract from the ZPGA (derived in Subsection IA) the
corresponding ϕ values for each block node within every
city. The agent-based simulations have been performed
with an amount of 45000 agents for each of the three
cities, corresponding to 20% of the total population in
the case of Mestre, 4% for Milan, and 12% for Florence.
Each city was simulated by setting fmq parameter to dif-
ferent values, including the ’ground’ case in which the
total capacity of PGA nodes is much larger than the num-
ber of agents. We set every agent to the same velocity of
1.33m

s and simulations were run for 5000 steps, which is
a sufficient amount of time to allow the set of agents to

occupy their place. For agents, we set the maximum E to
5000m and the β parameter was set to 1, in order to not
further bias the sampling. In essence, this metric resolves

(a) Mestre

(b) Firenze

(c) Milano

FIG. 3. Average Farness centrality ⟨Cf ⟩PGA from agent-based
model mapped onto the respective spatial networks. PGA
nodes are shown (red).

the lack of valuable information on both Farness Central-
ity and Average Farness centrality. In Fig.3 the Average
Farness centrality calculated as in Eq.(9) is reported from
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the agent-based simulations described in Methods. Com-
pared to Fig.2 it is possible to note a partial overlap and
expansion of low-quality clusters for the three cities. For
Mestre, as for Florence, it is possible to note the appear-
ance of enlarged low-quality zones. While for Florence
it was also evident from the Average Farness ⟨Cf ⟩ the
presence of local fragility given by the low presence of
PGAs, for Mestre such fragility can be reported mainly
for the modeled competition, where it appears clear that
green areas are not sufficient to ensure equitable access
for downtown residents. For Milan, the analysis reveals
a more pronounced accessibility inequality. From Fig.3
it is possible to note a low-quality zone ⟨Cf ⟩PGA ∼ 0.25
(cyan) spanning the peripheral blocks of the city. The
peripheral belt of blocks within these centrality values
matches low-quality clusters found in spatial studies [34]
which assume population density and PGAs total area
as the driving factor of urban green quality. The differ-
ence between the quality of blocks reported for the Av-
erage Farness and for the agent-based Average Farness
can be thus understood from the non-cooperative com-
petition of agents toward the PGAs induced both by the
accessibility at different distances. To explore to which
extent agents compete for PGA access, the agent-based
Average Farness centrality ⟨Cf ⟩PGA is plotted versus the
Average Farness ⟨Cf ⟩ in Fig. 4. In particular, the fig-
ure shows a distinguishable pattern: at fmq = ground,
which corresponds to high PGA capacity, the Average
Farness shows a linear correlation with agent-based one
which is broken at increasing fmq. First, this emphasizes
that the assumption underlying the simulations method
is verified because under high-capacity conditions agents
sample paths proportional to the probability of accessing
the nearest ones, thus recovering the Average Farness
as a proportion of path probability. In the second in-
stance, it reinforces the observation that, according to
this model, the population gradient together with the in-
creasing scarcity of green areas modifies the frequency
with which agents are accepted by PGAs. Indeed, his-
tograms reported in Fig. 5 show how events considered
’rare,’ (i.e. traveling long distances to access a PGA),
become increasingly frequent as the area sought is con-
strained by the actual provision of green areas. This
results in a distribution more shifted toward higher dis-
tance values; this effect is prominent in the case of Milan.
This points out that PGAs become increasingly corre-
lated with blocks at long distances.

C. Cumulative density as diffusion analysis

We show in Fig.7 the Cumulative density calculated
onto the previous simulated systems. t is possible to ob-
serve that, at increasing fmq, the PGAs nodes source
most of the agent’s population at increasing distances.
To understand how this property scales with respects to
the 15-minutes distance, we show in Fig. 6 the fit of
the data reported by the cumulative density at increas-

(a) Mestre

(b) Firenze

(c) Milano

FIG. 4. Scatter plot of the agent-based Average Farness
centrality vs the Average farness per block at different fmq

(ground, 2.5, 5.0). Red line correspond to linear fit of the
points.

ing fmq. These plots suggest a linear relationship be-
tween the two quantities which decrease with a specific
coefficient. The linearity follows the diffusion/adsorption
mechanism, since the simulated copies of the system vary
only by the parameter fmq. The flux of agents on edges
entering PGAs is proportional to the probability of ob-
serving a given path to them, and the fraction of agents
accepted (i.e., removed from the flux) depends on the
actual occupancy of the designated PGA. A negative
change in fmq thus produces a linear decrease in the
fraction of accepted agents. The negative slope then indi-
cates globally the degree of crowdedness present on PGAs
walkable areas.
Finally, we point out that as fmq increases, it is possible
that a fraction of agents may not have reached an avail-
able PGA, thus slightly biasing the results. In this case,
though, the simulations were controlled to minimize this
problem. From our simulation we obtain a fraction less
than 2% of the total of agents still wandering at the end
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(a) Mestre

(b) Firenze

(c) Milano

FIG. 5. Histogram of unnormalized ⟨Cf ⟩PGA and ⟨Cf ⟩ per
block expressed in meters at different distance bins m (i.e.
probability density of blocks that fall in the i-th bins).

of the allowed exploration time.

II. CONCLUSION

We presented a study on the usability of Public Green
Areas (PGA) on spatial networks representation of cities.
We obtain a quantitative measure of this feature by us-
ing centrality measures taken from network theory. First,
we used the Farness Centrality from the classical point
of view. A substantial modification was then introduced

FIG. 6. Fit of cumulative density at the 15-minutes distance
vs different fmq. Fitted points correspond to the ones that
intersect the 15-minutes distance (green line).

(a) Mestre (b) Firenze (c) Milano

FIG. 7. Cumulative density for the three cities at different
fmq.

with the concept of Average Farness, by introducing op-
timal path distributions. To further characterize cen-
trality through population difference, we also introduced
a simple agent model, where agents compete in a non-
cooperative manner for access to PGAs following low-
cost paths toward these. Then we compared the central-
ities and we derived information regarding the effective
distance of PGA to city zones. As explained in the re-
sults, classical farness centrality is partially able to elu-
cidate the quality of blocks with respect to PGA nodes,
because these paths are equally probable and therefore
unrealistic since distance is obviously positively corre-
lated with an augmented energy spending in terms of
walks. Consequently, we defined a more comprehensive
measure of the likelihood of observing a given path to
PGA’s. The probability of recovering a particular path
given edge weights allows us to elucidate the spatial rela-
tion between blocks and PGA by escaping a strictly local
description. In that sense we can then give a compari-
son between the Average Farness and the agent-based
method. We can compare statistically this metric with
Average Farness ⟨Cf ⟩ . In the latter, PGAs occupancy
is dependent only on the first passage probability of ran-
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dom walks starting from a block, thus resulting in a uni-
form occupancy distribution and therefore inherently as-
sumed to have infinite capacity. In the latter, with the
introduction of a capacity constraint on PGA nodes and
the optimization of paths by agents, the sampled occu-
pancy distribution depends on the maximum occupancy
of PGAs and on those paths corresponding to the second
pass of agents in case they are rejected by a PGA. In
other words, the Average Farness itself represents an in-
trinsic advantage/disadvantage given distances as spatial
attributes, while the agent-based ones weights indepen-
dently this intrinsic characteristic and the competition as
a function of distance and green areas provision. The lat-
ter metric represents an attempt to dynamically improve
urban sustainability planning, where traditionally qual-
ity metrics are often prescribed based on static spatial
attributes, which can fail to grasp the factors that affect
PGA accessibility, actual use and perception. Nonethe-
less, the agent model can be further developed, in sev-
eral directions, such as, for example: by considering, on
one side, the socio-demographic attributes and needs that
affect actual agents’capability and propension to access
green spaces; but also, on the other, by including other
PGA dynamic attributes (beyond the static spatial ones)
that affect actual PGA agents use, such as PGA capac-
ity to provide, for example, sociality, safety, quietness,
shadow, perceived aesthetics or sense of freedom [28]; by
incorporating in the model that, as sociality is among the
strongest drives to go to PGA form for most agents, PGA
crowdedness can also be perceived as an incentive rather
than an obstacle to attendance; and, last but not least,
by addressing the fact that green spaces access does not
only occur by walking, but also by other means of trans-
port. The success of this analytical and modelling effort
can produce useful data to inform PGA design, planning,
policy making, and management, allowing a greater and
balanced exposure of citizens to the beneficial effects of
green spaces and promoting social justice and equity in
the urban environment.
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Appendix A: Farness centrality

In Fig.8 the Farness centrality is reported. As can be
seen from the Figure, Farness centrality uniquely iden-
tifies spatial zones with the minimum distances among
the PGA node set, which is easy to. For Mestre and Mi-
lan, which have a sparse PGAs disposition, the area is
identified near the city center while for Florence it iden-
tify zone near biggest PGA clusters. Farness centrality
tends to favor nodes that concentrate most network con-
nections in different shells, often aligning with spatially

(a) Mestre

(b) Firenze

(c) Milano

FIG. 8. Farness centrality Cf mapped onto the respective
spatial networks with PGA nodes (blue).

central nodes.

Appendix B: Case studies in detail

The study areas were obtained using the QGis tool
[35]. Each area, representing a city and part of its conur-
bations, was obtained by intersecting the administrative
boundaries of the cities with the census sections in the
ISTAT dataset. A summary of the main numerical
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features of interest is given in Table I.

TABLE I. City Statistics

Extension(Km2) Population(N) N◦ PGAs
Mestre 116 261.905 159
Firenze 102 382.258 396
Milano 181 1.352.000 753
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M. Kondo, and M. Nieuwenhuijsen, The Lancet Plane-
tary Health 5, e718 (2021).

[5] G. Bratman, C. Anderson, M. Berman, B. Cochran,
S. de Vries, J. Flanders, C. Folke, H. Frumkin, J. Gross,
T. Hartig, P. Kahn, M. Kuo, J. Lawler, P. Levin, T. Lin-
dahl, A. Meyer-Lindenberg, R. Mitchell, Z. Ouyang,
J. Roe, and G. Daily, Science Advances 5, eaax0903
(2019).

[6] T. Hartig, R. Mitchell, S. de Vries, and H. Frumkin, An-
nual Review of Public Health 35, 207 (2014), pMID:
24387090, https://doi.org/10.1146/annurev-publhealth-
032013-182443.

[7] M. Kuo, Frontiers in psychology 6, 1093 (2015).
[8] M. Triguero-Mas, D. Donaire-Gonzalez, E. Seto, A. Va-

lent́ın, D. Mart́ınez, G. Smith, G. Hurst, G. Carrasco-
Turigas, D. Masterson, M. van den Berg, A. Ambròs,
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