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In nonequilibrium statistical physics, quantifying the nearest (and higher-order) neighbors and free volumes
of particles in many-body systems is crucial to elucidating the origin of macroscopic collective phenomena,
such as glass/granular jamming transitions and various aspects of the behavior of active matter. However,
conventional techniques (based on a fixed-distance cutoff or the Voronoi construction) have mainly been
applied to equilibrated, homogeneous, and monodisperse particle systems. In this paper, we implement simple
and efficient methods for local structure analysis in nonequilibrium, inhomogeneous, and polydisperse hard
disk systems. We show how these novel methods can overcome the difficulties encountered by conventional
techniques, as well as demonstrating some applications.
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I. INTRODUCTION

In many-particle (molecular) systems, the use of a local
configuration of neighbors and the free volume around
a tagged particle constructed from the excluded vol-
ume due to the presence of neighbors has made a cru-
cial contribution to descriptions of macroscopic proper-
ties, elucidating their microscopic origin, and predict-
ing dynamical behavior in many areas of physical sci-
ence, such as in the theory of the liquid state.1–4 In re-
cent years, much research activity has been focused on
the properties of nonequilibrium, inhomogeneous, and
polydisperse systems, such as granular (jamming) sys-
tems, systems undergoing glass transitions, and active
matter,2,5–14 the understanding of which requires precise
knowledge of microscopic dynamics and the local config-
urations of neighbors, including higher-order neighbors.
In the study of supercooled glass-forming liquids, the ex-
ploration of slow microscopic relaxation mechanisms has
been a longstanding focus of research, yet it remains an
unresolved challenge.11–15 Theoretical perspectives have
highlighted the significance of the free volume in under-
standing the dynamics of glasses, particularly with regard
to voids that represent empty space on the scale of par-
ticle sizes.16 A recent critical advance has been the iden-
tification of quasi-voids17 that drive string-like hopping
motions in colloid experiments.18 Although this finding
holds promise as a key to unraveling various phenomena
associated with glasses, current analyses are limited to
the immediate vicinity of a few neighbors’ shells. There
is a pressing need for a suitable methodology to under-
stand the cooperative dynamic facilitation8,11,19 observed
among a multitude of different particles at the molecular
level, a topic that has received limited research attention
to date.

a)Electronic mail: isobe@nitech.ac.jp

Finding a suitable definition for identifying nearest
neighbors (NNs) around a tagged particle in a many-
particle system is one of the crucial tasks in the quantita-
tive characterization of phase behavior. Phases are often
evaluated in terms of local order parameters (such as the
bond orientational order parameter20,21). The conven-
tional schemes for determining NNs include that based
on a fixed-distance cutoff and the Voronoi construction.22

Many extensions and other definitions have also been
used, as, for instance, in Refs. 23–25. The order param-
eters depend on the number of NNs and their local con-
figuration; however, there are ambiguities in the defini-
tions that are used to determine NNs.26 Furthermore, the
conventional schemes encounter difficulties when applied
to systems containing particles with different radii. The
introduction of multiple parameters for the cutoff length
and the use of a radical plane construction in an extension
of the Voronoi construction (with no regions of volume
left unallocated) have been proposed, and the latter ap-
proach has been successfully used5,6,24 to deal with some
problems in polydisperse systems. In addition, a simple
algorithm to identify NNs, the solid-angle-based nearest-
neighbor (SANN) algorithm,26 has been proposed and
has a number of advantages over conventional methods.
The determination of higher-order neighbors (e.g., second
and third neighbors) in monodisperse dense liquid sys-
tems using extended methods based on a fixed-distance
cutoff faces similar difficulties,23 and to overcome these
an extended definition of higher-order neighbors based
on SANN has been proposed in Ref. 26. However, it is
noted that this extension does not work well.

Model systems using hard spheres or disks are often
used owing to their simplicity and the fact that they ex-
hibit a well-defined excluded volume effect.1,2 The ex-
cluded volume is defined as the region inaccessible to the
center of a tagged particle because of the presence of a
solid core of other particles. In theoretical descriptions
of the liquid state,3,4 the radial distribution function and
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the free volume of a tagged particle play very impor-
tant roles, and they are usually constructed under the
assumption that the system is an equilibrated homoge-
neous, monodisperse particle system. In a dense glassy
system, the excluded volume effect becomes dominant.
In particular, in the glass-forming bidisperse hard disk
systems that are often used as models of the glass transi-
tion,8 it is important to be able to identify the precursors
of the particle-sized voids that drive hopping motions.18

It is therefore crucial to be able to quantify the free
volume efficiently and rigorously. In conventional schemes
for the estimation of the free volume, simple Monte Carlo
sampling is adopted as an approximation method, but
this suffers from technical difficulties and also requires ex-
cessive computational resources to achieve convergence.
An essential task when estimating the free volume is to
identify the neighboring particles that define its surface
or curve by considering excluded volume circles. Some
rigorous estimation methods for the free volume have
been proposed.27–30 Since the strategy of using the space-
filled Voronoi (polyhedron) construction30,31 cannot be
applied straightforwardly to polydisperse (glassy) sys-
tems, it has been extended by incorporating the radical
plane construction.24 The associated algorithm is akin to
the original Voronoi construction algorithm, and does not
incur any substantial increase in computational cost com-
pared with the latter.32 However, it is important to note
that the Voronoi construction algorithm itself is already
computationally expensive. Recently, cavity averages for
hard spheres in the case of polydispersity and incomplete
data have also been implemented.7

However, for the analysis of local structures in in non-
equilibrium, inhomogeneous, and polydisperse systems,
conventional methods encounter severe difficulties and
their applicability is limited. Our main purpose in the
present work is to propose simple and efficient method-
ologies for local molecular analyses in such systems. We
focus on the aforementioned SANN algorithm2,26 and
clarify the difference between the results obtained us-
ing different methods, including quantitative results from
higher-order neighbor estimators in two dimensions and
for mono- and bidisperse hard disk systems. As a rigorous
algorithm for estimating the free volume in a polydisperse
hard disk system, we propose a simple, efficient, and pre-
cise method of categorizing neighbors for enclosing the
local free area (NELF-A), which focuses solely on the ge-
ometry of intersections between excluded volume circles,
extends the pioneering concept described in Ref. 27.

The remainder of the paper is organized as follows: In
Sec. II, we revisit the conventional schemes for detecting
NNs (including higher-order neighbors) and estimating
the free volume using the excluded volume. We summa-
rize the difficulties encountered by conventional schemes
in the case of a bidisperse hard disk system (as a represen-
tative of polydisperse systems) and describe the details of
our novel implementation. In Sec. III, the efficiency, va-
lidity, and advantages of the new approach are comparing
with those of conventional approaches. Additionally, as

an application of the novel free volume estimator, we dis-
cuss the characteristics of pressure calculation using free
volume. Concluding remarks are given in Sec. IV.

II. NUMERICAL SCHEMES FOR LOCAL

CONFIGURATION ANALYSIS

The methodology for analyzing the local structure of a
molecular system is summarized, in particular, the meth-
ods for detecting NNs and estimating the free volume.

A. Nearest neighbor estimators

In many-body systems, to evaluate the local struc-
ture for universal assessment purposes, such as quanti-
tatively estimation of bond-order parameters, it would
be helpful to be able to identify the NNs of a tagged
particle via a unified and clear definition. However, such
an exact definition does not exist.26 Instead, NNs are
most commonly identified using the fixed-distance cut-
off and Voronoi construction algorithms. In polydisperse
and heterogeneous distributed particle systems, the use
of a cutoff becomes more complicated, because dozens of
parameters are required to define the cutoff radius. With
the Voronoi construction, there is a problem of ambiguity
in detecting NNs even in the case of particles located a
long distance apart when they share a very short edge of
the Voronoi construction, which often causes instability
of NNs. To solve these problems arising in conventional
schemes, a modern, efficient parameter-free algorithm has
been proposed.26 In this SANN algorithm, a solid angle
is assigned to each possible neighbor in three dimensions,
and the cutoff radius is then determined by imposing the
requirement that the sum of the solid angles is 4π. In
this section, we briefly revisit neighbor estimators, focus-
ing on 2D systems.

1. Fixed-distance cutoff method

Suppose particles interact via a short-range repulsive
potential (e.g., a hard potential) in a monodisperse sys-
tem. In that case, a fixed-distance cutoff might be a bet-
ter choice owing to its simplicity, since each NN and its
neighbor are determined by a single parameter, namely,
the cutoff distance rc. The cutoff distance is fixed for a
whole system as a global parameter to characterize neigh-
bors. Under the assumption that each particle has the
same ensemble in a homogeneous equilibrated system,
the cutoff distance is well described by the first minimum
of the sole radial distribution function (RDF), which is
related to the neighbors in the first and second coordi-
nation shells.3 The RDF g(r) is given by the following
equation in two dimensions:

g(r) =
〈ns(r)〉
2πrρ dr

. (1)
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FIG. 1. Schematic of the fixed-distance cutoff in a hard disk
system. Disks inside the dotted black circle of radius rc drawn
around the center of the tagged disk are categorized as NNs
(gray-shaded circles).

Here, 〈ns(r)〉 denotes the system-wide average of ns(r),
where ns(r) is the number of particles within a shell of
infinitesimal thickness dr at a relative distance r from
a tagged particle. ρ is the number density for the entire
system.

Figure 1 shows a typical example of the fixed-distance
cutoff in a dense monodisperse hard disk system, with
a radius σ at a packing fraction ν = Nπσ2/A = 0.720,
where N and A are the number of disks and the area
of the system, respectively. Disks whose centers are lo-
cated within a length equal to the cutoff distance from
the tagged disk, i.e., with r ≤ rc, are detected as NNs
(shown as gray-filled circles).

Difficulty Although this method is simple, a reason-
able choice of rc requires a preliminary calculation to
estimate the first minimum of the RDF g(r), which de-
pends on the density and other details of the system. Fur-
thermore, since rc is a global parameter defined for the
entire system, it becomes complex and indeed sometimes
impossible to evaluate a well-defined rc if the system has
large density gradients or is polydisperse. This situation
often occurs naturally in the study of nucleation and in
glassy/jamming systems. The first minimum of g(r) is
then split into several peaks due to the occurrence of
different radii in such systems. In addition, the first min-
imum of g(r) is often not clearly defined when there is
a density gradient induced by an external field such as
gravity or the presence of an interface between two coex-
isting phases.

A modified cutoff can be considered for polydisperse
systems such as the bidisperse hard disks often used in
modeling glassy systems. Figure 2 shows the RDF of
a bidisperse hard disk system (the parameters are de-
scribed in Sec. III A). We find that the first peak of this
system is split into three different peaks, since there are
three pairs of disk sizes, namely, large and large, large and
small, and small and small. It is clearly difficult to iden-
tify the first minimum of the RDF and thereby evaluate a

FIG. 2. RDFs in a bidisperse system, where r∗ = r/(2σe).
The effective radius σe is explained in Sec. IIIC 1. The inset
indicates that the RDF can be decomposed into three parts,
each corresponding to different pairings of disk size: large and
large, large and small, and small and small.

FIG. 3. NN distribution identified by the modified cutoff.

single global cutoff distance. The inset of Fig. 2 indicates
that the whole RDF can be decomposed into three con-
tributions of pairs. Thus, the fixed-distance cutoff can be
refined by incorporating specific cutoff parameters corre-
sponding to each pair. By establishing three total cutoff
distances, derived from the RDF for each pair, it be-
comes possible to identify the NNs that encapsulate the
local particle information surrounding a tagged disk.

Figure 3 illustrates the NN distribution around a
tagged disk in a bidisperse hard disk system, determined
using the modified cutoff. For a tagged disk, two dis-
tinct cutoff radii, rc1 and rc2 , can be independently set
for small and large neighboring disks, respectively. Three
small disks are inside the circle of radius rc1 , and three
large disks are inside the circle of radius rc2 . Conse-
quently, six disks in total are recognized as NNs. In poly-
disperse systems, as the variety of radius pairs increases,
so does the number of configurations required for accu-



Simple and efficient methods for local structural analysis in polydisperse hard disk systems 4

(a) (b)

FIG. 4. Schematic of Voronoi construction in (a) monodis-
perse and (b) bidisperse hard disk systems.

rate computation of each g(r), significantly complicating
the estimation of neighbors.

2. Voronoi construction

A Voronoi construction for analyzing the local molec-
ular structure is often used, simply constructed from
geometric configurations with no adjustable parameter.
Those disks in the polygons in the Voronoi construction
that share the edges (polyhedral faces in 3D systems) of
the polygons constructed from the perpendicular bisec-
tors are defined as NNs. This method not only identifies
the NN disks, but also provides other geometric charac-
teristics, such as the edges, vertices, and faces between
the Voronoi cells of the NNs. Such information can be
useful for local structure analysis, such as that of defects,
and for phase classification.
Figures 4(a) and 4(b) show schematics of the configu-

rations around a tagged disk and its neighbors detected
by the Voronoi construction (shared edges between poly-
gons) in monodisperse and bidisperse hard disk systems,
respectively. Six NNs are detected around the tagged disk
in both cases. Since the Voronoi cells are constructed only
on the local environment around a tagged disk, it is more
applicable than the cutoff, even for inhomogeneous sys-
tems with large density gradients.
Difficulty The computational cost of the Voronoi con-

struction is relatively high, and the construction is sen-
sitive to thermal fluctuations of particle configurations.
If the particles are in a crystal structure, i.e., rattling on
a lattice within a cage, they fluctuate around their equi-
librium positions. This rattling motion often causes the
sharing of tiny edges (or faces in 3D systems) with distant
neighboring particles in second-coordinate shells, result-
ing in fluctuations and an increase in the number of NNs.
To avoid this instability, one solution is to consider the
inherent structure33 at a given configuration for which
the local free energy is a minimum before making the
Voronoi construction. However, such an implementation,
while providing robustness against thermal fluctuations,
introduces specific parameters for each system and thus
loses one advantage of the parameter-free Voronoi con-
struction. Polydisperse systems present a challenge for

precise analysis, since merely generating Voronoi poly-
gons based on bisectors with particle centers acting as
generators proves to be insufficient. For a detailed anal-
ysis in the case of polydisperse systems, it becomes nec-
essary to incorporate an additional step that involves
weighting each particle.

Weighted Voronoi tessellations extended by using the
radical plane construction24 and Voronoi S regions25 are
among the solutions proposed to generate polygons for
particles of different sizes. The algorithm incorporating
Voronoi S regions is more complex and computationally
more expensive compared with the original Voronoi con-
struction. By contrast, the radical plane construction re-
quires only minor modifications to the original Voronoi
algorithm and incurs almost no additional computational
cost.32 For the purpose of identifying the index number
of NNs, it is not necessary to quantify geometric charac-
teristics such as the edges and vertices of each Voronoi
cell.

3. SANN method

The SANN algorithm26 has the following advantages
compared with conventional schemes: (i) it can be ap-
plied to systems with inhomogeneous density; (ii) it is
stable against thermal fluctuations; (iii) it is parameter-
free; (iv) it is computationally inexpensive. A 2D ver-
sion of SANN can be applied following the same proce-
dure, except that it is then necessary to solve a nonlinear
equation.2 The strategy adopted by SANN for detecting
NNs is to be simple and well-defined, and it is parameter-
free even for systems with polydispersity and/or density
inhomogeneities. Additionally, SANN exhibits asymme-
try in the sense that a given particle pair may not neces-
sarily be identified as mutual NNs. This characteristic be-
comes pronounced in polydisperse and heterogeneous sys-
tems, making SANN unique compared with other meth-
ods. Further investigation of this property is anticipated
as a topic of future research. In Sec. III, we perform cal-
culations for bidisperse hard disk systems (using in par-
ticular the simple glassy model for molecular systems8)
to clarify the differences between the various methods.

A summary of the original concept of the SANN algo-
rithm as presented in Ref. 26 is given here. The relative
distances ri,j = |rj − ri| between a tagged particle i and
its neighbors {j} are sorted as ri,j < ri,j+1. For each

particle i, an individual cutoff radius R
(m)
i , called the

shell radius, is introduced, which includes the m NNs of

particle i, with ri,m ≤ R
(m)
i < ri,m+1. With each of the

particles {j} surrounding i is associated an angle θij de-
termined by its distance from the tagged particle and the

shell radius: θij = cos−1(ri,j/R
(m)
i ). Then, according to

SANN, the NNs consist of the closest m particles {j} for
which the sum of their solid angles associated with θij



Simple and efficient methods for local structural analysis in polydisperse hard disk systems 5

equals 4π, i.e.,

4π =
m
∑

j=1

2π(1− cos θi,j) =
m
∑

j=1

2π

(

1− ri,j

R
(m)
i

)

. (2)

The number of NNs, m, is determined from the following
inequality:

R
(m)
i =

1

m− 2

m
∑

j=1

ri,j < ri,m+1. (3)

To solve this inequality numerically, we start from the
smallest number of NNs (i.e., m = 3). Then, we increase
m and check the inequality iteratively. During the itera-
tions, if the inequality (3) is satisfied at a certain m, we
then identify that m as the number of NNs {j} that are

within the shell radius R
(m)
i .

For 2D systems, the original SANN algorithm can be
applied following the same procedure as for 3D systems.
The basic equation corresponding to Eq. (2) can be de-
rived as follows:

2π =

m
∑

j=1

2 cos−1

(

ri,j

R
(m)
i

)

. (4)

However, there is now no explicit inequality in 2D sys-
tems corresponding to (3) in a 3D system, and so it is
necessary to solve the nonlinear equation (4) numeri-

cally to evaluate the radius R
(m)
i . A numerical calculation

can be performed using the simple bisection or Newton–
Raphson method, which incurs additional computational

costs. An explicit formula to obtain R
(m)
i in 2D-SANN

and a couple of examples are given in Ref. 2. The 2D-
SANN algorithm proceeds as follows:

1. Estimate the distances ri,j to all potential neigh-
bors {j} from a tagged particle i.

2. Sort potential candidates from the neighbors {j}
by their distance ri,j in increasing order.

3. Start with m = 3 (i.e., the minimum number of
NNs).

4. Compute 2π =
∑m

j=1 2 cos
−1(ri,j/R

(m)
i ) =

∑m

j=1 2θij , and obtain the R
(m)
i numerically by the

bisection or Newton–Raphson method.

5. If R
(m)
i > ri,m+1, then, increment m by 1 and go

back to step 4.

6. Otherwise, m is the number of neighbors for i, and

R
(m)
i is the corresponding radius for the (first) NN.

For the purpose of identifying the index number(s) of
NNs, it is only necessary to quantify the sign of the func-

tion of R
(m)
i defined by the following equation to avoid

FIG. 5. Schematic of 2D-SANN algorithm for a bidisperse

system. The radius R
(m)
i

is increased up to m = 5, at which
Eq. (4) holds. The potential NNs {j} inside the circle of radius

R
(5)
i

from the center of the tagged particle i are recognized as
NNs (gray shaded circles).

unnecessary computational costs incurred by evaluating

explicit values of R
(m)
i :

f(R
(m)
i ) =

m
∑

j=1

2 cos−1

(

ri,j

R
(m)
i

)

− 2π. (5)

The version of the 2D-SANN algorithm incorporating
this function, the 2D-SANNex algorithm, proceeds as fol-
lows:

1′–3′. Same as steps 1–3 of 2D-SANN.

4′. Evaluate f(R
(m)
i ) by substituting ri,m+1 for m into

R
(m)
i in short distance order of the potential can-

didates for neighbors {j}.

5′. In the case of f < 0, increment m by 1 and go back
to step 4′.

6′. Otherwise, m is the number of neighbors for i.

The computational costs of 2D-SANNex are much
lower than those of 2D-SANN (see Sec. III B). The details
of the 2D version of the SANN algorithm, as described
above, along with methods to avoid direct solution of the
nonlinear equation (4), are presented for the first time in
this paper.
Figure 5 shows a typical example of 2D-SANN as ap-

plied to a bidisperse hard disk system. Starting from

m = 3 up to m = 5, the corresponding shell radius R
(m)
i

is increased such that the right-hand side of Eq. (4) ex-
ceeds 2π. The NNs for i can be identified as those lying

within the radius R
(5)
i .
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FIG. 6. Higher-order (up to second) neighbors according to
the extended cutoff in a bidisperse system. The numbers of
first (yellow-green) and second (light blue) neighbors are 6
and 12, respectively.

4. Higher-order neighbor estimators

In the colloid glass experiment reported in Ref. 18, the
quasi-voids distributed around second and third neigh-
bors caused facilitation to induce large particle displace-
ments and initiate successive hopping motions. It is there-
fore crucial to categorize particles beyond the NN shell
in polydisperse systems such as glassy systems. However,
there are no precise criteria and few algorithms to detect
higher-order neighbors.

The conventional cutoff can easily be extended to a
higher-order method using RDFs.23 To systematically
consider neighbors farther than nearest neighbors, we de-
fine neighbor shells based on the minimum of the RDF
for each packing fraction ν, which can be obtained by
independent calculations via event-driven molecular dy-
namics (EDMD).34 The second neighbors (next-nearest
neighbors) of a tagged particle i can be categorized as the
centers of neighbor particles located at distances from i

between rc and r
(2)
c , which are estimated by the first and

second minima of the RDF. We can further detect nth
neighbors of i between r

(n−1)
c and r

(n)
c , which are the

cutoff lengths from the nth minimum of RDF. Figure 6
shows a schematic of the higher-order neighbors around a
tagged particle i according to the extended cutoff. How-
ever, in general, the second and further minima of the
RDF will be broad, and the presence of some split peaks,
even in dense simple liquids, will, by definition, cause
profound ambiguity. Furthermore, it becomes more com-
plicated to consider such minima in bi-/polydisperse and
heterogeneous systems.

Since the SANN algorithm can be applied to hetero-
geneous systems without parameters, we extend the 2D-
SANN algorithm to detect higher-order neighbors. In the

original paper on SANN,26 an algorithm for the next
(second) neighbors based on SANN is described. As a
first step, the (first) NNs are computed using the original
SANN; then, those neighbors are discarded, and SANN
is performed again. However, as shown by the results in
Ref. 26, this extension could identify the next-nearest
neighbor only partially and did not work well.
Here, we revise the extended SANN algorithm for

higher-order neighbors. The 2D-SANN equation (4) is
slightly modified as follows:

2nπ =

m
∑

j=1

2 cos−1

(

ri,j

R
(m)
i

)

. (6)

where n on the left-hand side corresponds to the nth
neighbors, and thus Eq. (6) reduces to Eq. (4) in the case
of n = 1. Before Eq. (6) is adopted to identify nth neigh-
bors, particles categorized as first to (n− 1)th neighbors
must be extracted from the candidates for nth neigh-
bors, otherwise the contribution of the accumulated an-
gles of neighbors located within (n−1)th neighbors would
become dominant and prevent correct detection of nth
neighbors. The extended 2D-SANN algorithm proceeds
as follows:

1. The (first) NNs around a tagged particle i are iden-
tified by 2D-SANN, and these are then removed
from the list of candidate neighbors.

2. The extended 2D-SANN in the case n = 2 de-
scribed by Eq. (6) is adopted by increasing the ra-

dius R
(m)
i .

3. The resulting m and R
(m)
i are the number of sec-

ond neighbors and the cutoff radius R
(m)
i at which

Eq. (6) holds.

4. The second neighbors are removed, and the same
procedure is performed with the extended 2D-
SANN in the case n = 3. Further nth neighbors
can be obtained without ambiguity by repeating
these procedures.

Note that to identify the index number(s) of the nth
neighbors, it is only necessary to quantify the sign of a
function given by a suitably modified Eq. (5), just as in
2D-SANNex.
In bidisperse systems, the results for second neighbors

from the extended cutoff and extended 2D-SANN algo-
rithms agree reasonably well, as shown in Figs. 6 and 7.
Extended 2D-SANN has the same advantages as 2D-
SANN. Unlike the extended cutoff based on the RDF,
the definition of higher-order neighbors by extended 2D-
SANN is well-defined. On the contrary, the cutoff radius

of higher-order r
(n)
c from the global RDF in the extended

cutoff method is a single parameter for the whole system,
and thus this method cannot be used to analyze local
information (e.g., in inhomogeneous systems) precisely.
Higher-order nth neighbors can be defined in principle
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FIG. 7. Higher-order (up to third) neighbors obtained by ex-
tended 2D-SANN for a bidisperse system. The numbers of
first (yellow-green), second (light blue), and third (purple)
neighbors are 6, 11, and 17, respectively.

FIG. 8. Schematic of the free volume of disk i (shown in red)

by extended 2D-SANN even in polydisperse and hetero-
geneous systems just from the information about the lo-
cal configurations surrounding each particle.

B. Free volume estimators

1. Definitions of free volume and cavity

The free volume in a 2D system is the region where
the center of a tagged disk can move freely if the config-
uration of the surroundings is fixed, as shown by the red
shaded area in Fig. 8. There are regions that are inaccessi-
ble to the center of the tagged disk i, corresponding to the

FIG. 9. Schematic of cavities in a hard disk system (shown in
yellow).

excluded volume due to the presence of the other seven
surrounding disks and shown as dotted darker green cir-
cles in Fig. 8. Note that the free area in a 2D system
is also referred to as the “free volume” throughout this
paper. In Fig. 9, the yellow regions are cavities. The re-
gions bounded by the red curves containing the center of
each disk (including the yellow region if adjacent to it)
are also described as free volumes (or free areas) for each
disk. The shape of a free volume vf can be characterized
by the surface area of its bounding planes (i.e., the area
of the free surface) sf . Correspondingly, the shape of a
free area is characterized by the lengths of its bounding
edges. The ratio sf/vf is closely related to pressure, as
discussed in Sec. III D.

2. Free volume calculation: conventional schemes

In numerical simulations, detecting the set of surround-
ing particles from which inaccessible regions are con-
structed is not trivial, owing to the complex geometry
of the free volume created by the excluded volume. Sev-
eral numerical algorithms for calculating the void space in
dense particle systems or the free volume of a tagged disk
have been proposed.27,29–31,35 The conventional Monte
Carlo method with random number generators is simple;
however, it is an approximate calculation and has poor
convergence with regard to accuracy, especially in highly
packed dense systems. In technical implementations, it is
difficult to cover the correct sampling regions, especially
in the case of sparse systems or of anisotropic free volume
in inhomogeneous systems.

Hoover et al.27 presented a rigorous numerical calcula-
tion of the free volume in hard disk systems using the cir-
culation to find the intersection point of excluded volume
circles. Rintoul and Torquato29 developed a method for
void space calculation as an extension of the method of
Speedy and Reiss,35 which is similar to that of Hoover et
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al.27 in the case where particles can overlap at high den-
sity. Void regions are determined by identifying the edges
of a disk that are not inside another disk. An isolated
polygonal area organized by the coordinates of intersec-
tions between edges of disks sorted in a clockwise direc-
tion is estimated and segments of the disks are subtracted
from this area. They also discussed NN distribution func-
tions. Voronoi tessellation can also be used for accurate
numerical estimation of the void space and free volume.
In the late 1990s, Sastry and colleagues30,31 implemented
an exact calculation method based on Voronoi polygons
and Delaunay triangles in both 2D and 3D systems. They
also generalized their method to the case of polydisperse
sphere packing5,6,30 by radical plane construction,24 as
well as deriving an equation of state for mono- and poly-
disperse hard sphere systems. However, the computa-
tional cost of constructing Voronoi polyhedra is relatively
high, and in the case of polydisperse systems, the com-
putations become complex.

3. Free volume by NELF-A

As an alternative algorithm for dense, polydisperse,
and larger systems, we implement a simple, efficient,
and precise method for categorizing neighbors for enclos-
ing the local free area (called NELF-A), which is easy
to implement and can be applied to the dense poly-
disperse hard disk systems often used as glassy model
systems.8 NELF-A focuses on the geometry of intersec-
tions of exclusion disks based on a similar strategy to
that in Refs. 27, 29, and 35. Two adjacent intersections
of the excluded volume circles from which the free volume
is constructed (called confirmed intersections) are always
angularly adjacent to the set of intersections possessed
by each confirmed disk.
The method consists of two stages: the first identifies

the set of confirmed neighbor disks used to construct the
free volume; the second calculates the free area using the
set of confirmed disks obtained in the first stage. This
method can be applied rigorously not only to monodis-
perse systems, but to polydisperse systems also. The first
stage is akin to the algorithm presented in Ref. 27, which
employs the intersections of excluded volume circles or-
dered by angles. However, NELF-A diverges from that
method in more nuanced details, such as the way in which
initial confirmed intersections are identified, rendering
NELF-A a more straightforward algorithm. Furthermore,
the first stage involves various strategies for determin-
ing the appropriate timing to identify confirmed disks
(and intersections). The present paper represents the first
proposal of such multiple options, and their subsequent
benchmarking in polydisperse large-scale systems.
As illustrated in Fig. 2 of Ref. 29, the presence of iso-

lated excluded volume circles in empty space results in
failure of the first stage. Consequently, NELF-A is sub-
ject to a lower limit on the achievable packing fraction. In
the context of the bidisperse system with 642 disks dis-

cussed in Sec. III, NELF-A proves to be practically viable
up to a packing fraction of approximately ν ∼ 0.450.

4. Detecting confirmed disks for constructing free volume

The initial step of NELF-A involves identifying the
first intersection that forms the free volume. Subse-
quently, the particles and intersections that contribute to
the free volume are identified in an anticlockwise direc-
tion starting from this initial intersection. In this context,
the initial intersection can be determined as the nearest
intersection. Although there are several algorithms avail-
able for such calculations, we introduce three specific al-
gorithms in this paper.

NELF-A by 2D-SANNex

1. Employ extended 2D-SANN to detect neighboring
disks within the nth shells (e.g., n = 2) for tagged
disk i. Include a sufficient number of candidate
disks {j} to consider the free volume of i.

2. Identify the set of all intersections Xi
{k} repre-

senting excluded volume circles between candidate
disks {j} for i. Calculate these intersections using
the positions ri and r{j}, and their radii σi and
σ{j}.

3. Focus on the closest intersection from ri, denoted
by Xi

1 in Xi
{k}. X

i
1 is the first confirmed intersec-

tion at which the excluded volume circle of the two
candidate disks is shared. These two disks become
the first and second confirmed disks, labeled as j1
and j2 in angular order from i.

4. Focus on the second confirmed disk j2 and inter-
sections Xi

1. The second confirmed intersection Xi
2

is located on the excluded volume circle of j2 in an
adjacent anticlockwise order.

5. The lth confirmed disk jl can be identified by the
intersection Xi

l−1, and the lth confirmed intersec-

tion Xi
l can be determined in the same manner as

in step 4.

6. Repeat step 5 until the next confirmed disk jl is
equal to j1.

NELF-A by cutoff (see Fig. 10)

1. Find the closest particle j from ri and calculate its
intersections using the fixed-distance cutoff with a
radius rNc = 2σi + σj + σj′ , where j′ is one of the
neighbors of j. Particles {j′} inside such a cutoff
radius rNc definitely have intersections with j.

2. Obtain the closest intersection from ri as the first
confirmed intersection Xi

1.

3. Determine that the two particles sharing Xi
1 are j1

and j2 in angular order from i.
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FIG. 10. Schematic of NELF-A by cutoff. The particle in the
center represents the tagged particle i, and the blue parti-
cles and red intersections denote confirmed disks and inter-
sections, respectively. The red shaded area represents the free
volume of particle i.

4. Find the intersections of j2 by the fixed-distance
cutoff, and define Xi

2 as the intersection next to
Xi

1 in an anticlockwise direction.

5. Determine the particle that shares Xi
2 and is not

j2 as j3.

6. Repeat steps 4 and 5 until the next confirmed disk
is equal to j1.

NELF-A by first finding all intersections

1. Obtain the intersections X
{i}
{k} for all particles {i}

in the system.

2. Follow the same procedures as in steps 3–6 of
NELF-A by 2D-SANNex.

In Fig. 10, each procedure of NELF-A by cutoff is
shown. The efficiency of an algorithm depends on var-
ious factors, such as system size, packing fraction, par-
ticle dispersions, etc., and the algorithm should be used
accordingly. In Sec. III B, we discuss actual calculated
efficiencies.

5. Calculation of free area using confirmed disks

For simplicity, we explain how to estimate the free vol-
ume constructed by three confirmed disks, labeled 1, 2,

FIG. 11. The area of the triangle constructed from the centers
of three confirmed disks can be divided into three triangles
(purple areas), three sectors (pink areas), and the free volume
for disk i (outlined by the red curves).

and 3. Let c1, c2, and c3 be the intersection points of
the exclusion circles of these confirmed disks, as shown
in Fig. 11. The free volume of disk i is the area enclosed
by the red curves. Since the triangular area constructed
from the centers of the three confirmed disks 1–2–3 (la-
beled as vT) includes the free volume vif for disk i, the free
volume can be calculated by subtracting the small purple
triangles 1–2–c1 (v1t ), 2–3–c2 (v2t ), and 3–1–c3 (v3t ), and
the pink sectors 1-c1-c3 (v1s ), 2–c2–c1 (v2s ), and 3–c3–c2
(v3s ); that is, v

i
f = vT −∑3

k=1(v
k
t + vks ). Once the coordi-

nates of the triangle’s vertices Xck are known, the area
can be easily estimated. The areas of the sectors are also
easy to estimate by considering the ratio of the central
angle to 2π.

III. RESULTS AND APPLICATIONS

A. Numerical settings

We demonstrate the differences between the methods
with a typical equilibrated configuration in systems of
both mono- and bidisperse elastic hard disks in two di-
mensions. In the investigation of hard sphere/disk mod-
els, the development of computer simulation methods,
namely, Monte Carlo (MC)36 and molecular dynamics
(MD),37 represented a milestone, enabling researchers to
unveil the mysteries of the phase transitions deriving
from the entropic force38,39(the so-called Alder transi-
tion). In hard disk systems,40 the controversy regarding
the type of phase transitions has now been settled by
massive calculations using three modern methods.41,42

Hard disk systems are subject to two phase transitions,
between fluid, hexatic, and solid phases, at around ν ∼
0.700 and 0.716, respectively. The free volume of a hard
sphere is an essential quantity for understanding phenom-
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ena such as phase transitions and the coarsening process
of phase separation (entropic force) in binary mixtures
approaching the glass transition.2,8

The equilibrated configurations used in the present
study were generated by sufficiently long EDMD runs34

at a packing fraction ν = Nπσ2/A. The basic units of the
systems are the mass of a single disk µ, the disk diameter
d (= 2σ), and the energy 1/β, from which we derive the
unit of time as d

√
βµ, with β = 1/(kBT ), where kB the

Boltzmann constant and T is the temperature.
For the monodisperse hard disk system, disks of ra-

dius σ were placed in an Lx ×Ly (= A) rectangular box

(Ly/Lx =
√
3/2) with periodic boundary conditions.

For the bidisperse hard disk system (like those often
used as simple glassy models2,8), N = (x0 + x1)N addi-
tive binary hard disks were considered, with mole frac-
tions x0 = 2/3 (small) and x1 = 1/3 (large), respec-
tively. The disks were placed in an Lx×Ly (= A) square
box (Ly/Lx = 1) with periodic boundaries, with the sys-
tem prepared for each packing fraction ν = Nπ(x0σ

2
0 +

x1σ
2
1)/A. The size ratio was set at α = σ1/σ0 = 1.4,

where σ0 and σ1 are the radii of the small and large
disks, respectively.
To optimize the codes of the cutoff and 2D-SANN al-

gorithms, we have introduced a grid mapping technique
(the exclusive grid particle method)34 for the neighbor
list for each particle.

B. Efficiency of NN and free volume estimators

To clarify the typical computational costs (or effi-
ciency) of each NN estimator, we measured the run time
as a benchmark in a monodisperse hard disk system with
parameters (N, ν) = (2562, 0.720) and in a bidisperse sys-
tem with parameters (N, ν, x1, α) = (642, 0.720, 1/3, 1.4).
Both simulations were performed on one core of an In-
tel Xeon E5-1660, 3.3 GHz. We compared the elapsed
CPU time required to complete the categorization of NNs
for one configuration using the fixed-distance cutoff, 2D-
SANN, and 2D-SANNex algorithms, as shown in Table I.
We employed the bisection method for 2D-SANN.
In Ref. 26, for simple Lennard–Jones liquid and fcc

crystal systems, the Voronoi construction took 24.4 and
37.7 times longer to compute, respectively, in comparison
with the fixed-distance cutoff. By contrast, the computa-
tional cost of SANN was only 1.8 and 2.4 times longer,
respectively, demonstrating a significant advantage over
the Voronoi construction by an order of magnitude.
For our 2D monodisperse systems, both 2D-SANN and

2D-SANNex took 145.8 and 13.7 times longer to com-
pute compared with the fixed-distance cutoff, and this
trend was the same for bidisperse systems. The longer
computation time of 2D-SANN and 2D-SANNex for our
systems compared with Ref. 26 may be attributed to the
presence of nonlinear terms in 2D systems [see Eq. (4)].
Nonetheless, we consider 2D-SANNex to be more efficient
than the Voronoi construction, since the latter took more

than 20 times longer than the fixed-distance cutoff for all
systems computed in Ref. 26.
In addition to NN calculations, we also examined the

efficiencies of the various NELF-A methods described
in Sec. II B 4, as presented in Table I. In NELF-A by
2D-SANNex was used, and NNs were calculated up to
the second shells. For monodisperse systems, NELF-A by
first finding all intersections was the fastest, completing
the calculation in about half the time taken by the other
two methods. Conversely, for bidisperse systems, NELF-
A by cutoff demonstrated the best efficiency. NELF-A by
first finding all intersections was approximately two or-
ders of magnitude slower than the other two methods for
bidisperse systems, and it was slower than for monodis-
perse systems. We attribute this to the strong influence
of particle dispersions on NELF-A and the consequent
need to calculate and memorize the intersections of all
particles in the system for every dispersion. As discussed
in Sec. II B 4, considering factors such as particle disper-
sions and the computer’s memory capacity, different al-
gorithms are necessary for efficient computing, depending
on the situation. In Sec. III D, NELF-A by first finding
all intersections is used for monodisperse systems, while
NELF-A by cutoff is used for bidisperse systems.

C. NN estimators

1. Local distributions of the number of NNs

Snapshots of local structures obtained by NN estima-
tors using a typical configuration of a bidisperse hard
disk system reveal the differences between three meth-
ods, namely, the fixed-distance cutoff, Voronoi construc-
tion, and 2D-SANN algorithms. Figure 12 shows typical
configurations of a bidisperse system at ν = 0.720 and
the number of NNs obtained using (from left) the fixed-
distance cutoff, Voronoi construction, and 2D-SANN.
The disks are filled by colors corresponding to the number
of NNs, namely, 4NNs (pink), 5NNs (red), 6NNs (green),
7NNs (yellow), and 8NNs (blue). Note that these visu-
alizations are constructed with a width of 31.1σe along
both axes of the entire system, and their enlarged views
are depicted with a width of 3.7σe, where the effec-
tive radius σe is numerically estimated by averaging σij

[= (σi + σj)/2] for collision partners (i, j) via EDMD.8

In the fixed-distance cutoff result, 6NNs dominate. As
the packing fraction increases to ν = 0.760, we observe
an increase in the numbers of 6NNs and 7NNs, while the
numbers of 4NNs and 5NNs decrease, owing to the closer
proximity of disks in the denser system. At ν = 0.780,
the numbers of 5NNs and 6NNs decrease compared with
the case of ν = 0.760; conversely, the number of 7NNs in-
creases. For all these packing fractions, 6NNs consistently
remains dominant. With the Voronoi construction, it is
observed that the number of 7NNs is higher compared
with the fixed-distance cutoff. Additionally, the number
of 8NNs is also elevated, indicating that the Voronoi con-
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TABLE I. Comparison of NN calculations between the fixed-distance cutoff, 2D-SANN, and 2D-SANNex algorithms and of
free volume calculations between (a) NELF-A by 2D-SANNex, (b) NELF-A by cutoff, and (c) NELF-A by first finding all
intersections for mono- and bidisperse systems.

CPU time per configuration (ms)
NNs Free volume

Cutoff 2D-SANN 2D-SANNex (a) (b) (c)
Monodisperse 0.332 48.4 4.55 22.0 26.0 9.60
Bidisperse 0.823 49.7 9.04 31.8 30.5 2.27× 103

FIG. 12. Typical configurations of a bidisperse system at ν = 0.720 and number of NNs: from left, the fixed-distance cutoff,
Voronoi construction, and 2D-SANN.

struction tends to estimate a greater number of NNs com-
pared with other methods. When ν is increased to 0.780,
the number of 6NNs decreases slightly, while the numbers
of 5NNs and 7NNs increase. In 2D-SANN, the majority
consist of 5NNs and 6NNs at ν = 0.720. At ν = 0.760,
the numbers of 5NNs and 6NNs are almost the same as
at ν = 0.720, and at ν = 0.780, the numbers of 5NNs
and 6NNs remain dominant.

We then focused on the differences in the more local-
ized spatial distributions of NNs between methods. Fo-
cusing on the large disk located at the center of each en-
larged view in Fig. 12, 7NNs are identified by the Voronoi
construction, while the other two methods identify 5NNs.
A small part of the edge of a polygon, between the large
and small disks (located on the upper right of the large
disk), is shared and recognized as an NN, i.e., as topo-

logically connected. However, these disks are located rel-
atively far from the other NNs; i.e., the metric distance
is large. The instability in the number of neighbors is
expected to be caused by thermal fluctuations, which
results in the detection of a relatively large number of
NNs. This is identified as one of the disadvantages of the
Voronoi construction.

2. Probability distribution of the number of NNs

The probability distribution functions (PDFs) of the
number of NNs in bidisperse hard disk systems at ν =
0.720 were calculated using 300 frame-equilibrated con-
figurations at (N, ν) = (642, 0.720), as shown in Fig. 13.
Here, the number of NNs is estimated by the fixed-
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FIG. 13. PDFs of the number of NNs by the fixed-distance
cutoff (C), the modified cutoff (mC), the Voronoi construction
(V) and 2D-SANN (S) at ν = 0.720 for a bidisperse system.

distance cutoff (C), the modified cutoff (mC), Voronoi
construction (V), and 2D-SANN (S), respectively. A
notable difference with 2D-SANN compared with the
other methods is that 5NNs has the highest probability,
whereas 6NNs is most probable according to the other
methods. This trend remains consistent at ν = 0.760
and 0.780. Additionally, with the modified cutoff method,
where multiple cutoff distances corresponding to each
particle pair are introduced, it is observed that the num-
bers of 5NNs and 7NNs are higher compared with the
fixed-distance cutoff. Furthermore, the Voronoi construc-
tion identifies more 7NNs and fewer 5NNs than the fixed-
distance cutoff. This observation that a relatively large
number of NNs are detected is expected, since disks lo-
cated at large metric distances are topologically shared
with the short edges.

Figure 14 shows a comparison of the PDFs of the
number of second neighbors according to the extended
cutoff method23 (eC) and extended 2D-SANN (eS) (see
Sec. II A 4 and Figs. 7 and 6). With the extended cut-
off, from Fig. 2, the cutoff radii for the first and sec-
ond shells are set as r∗c = rc/(2σe) = 1.49 and 2.52, re-
spectively. Extended 2D-SANN is found to give a smaller
value for the most frequent number of second neighbors
compared with the extended cutoff, and this trend is sim-
ilar to the results for the (first) NNs. Additionally, as the
particle packing fraction increases to ν = 0.780, in the ex-
tended cutoff method, 12NNs becomes more dominant,
whereas, with extended 2D-SANN, the probabilities of
11NNs and 12NNs become almost the same, indicating
that both 11NNs and 12NNs become dominant as the
packing fraction increases.

FIG. 14. PDFs of the number of second neighbors according
to the extended cutoff method (eC) and extended 2D-SANN
(eS) at ν = 0.720 for a bidisperse system.

3. Discussion of NN estimators

In experiments such as those on colloidal and granular
systems, it is impossible to prepare a perfect monodis-
perse system, owing to the small fluctuations in the size
of colloids. Bidisperse systems are often used to model
glassy systems to avoid crystallization. In those systems,
the conventional methods, i.e., cutoff and Voronoi con-
struction, have difficulties in identifying NNs, summa-
rized below.

With the fixed-distance cutoff, a suitable metric cut-
off distance rc must be independently estimated for each
system with a different packing fraction, following a long
calculation for generating the RDF and determining the
precise location of its first minimum. However, in a bidis-
perse system, the first peak of the RDF is split into three.
Furthermore, in a polydisperse system, not only will the
first peak of the RDF be split, but the second peak will
be diffuse even in the case of a dense liquid. The use
of a modified cutoff by independently considering RDFs
with different kinds of pairs would be more suitable for
bidisperse systems, but this requires three cutoff radii.
The ambiguity in the positions of peaks when determin-
ing the cutoff length imposes substantial limitations on
this method in the case of polydisperse/inhomogeneous
systems.

In bidisperse systems, since the pairs of large and small
disks do not have the same radii, the line of the perpen-
dicular bisector between them in the Voronoi construc-
tion often intersects with the edge of a circle of the larger
disk (see Figs. 4 and 12). This causes errors in the con-
struction of polygonal cells for a large disk. Therefore,
a radical plane construction24 for polydisperse systems
has been proposed and applied.5,6,30 Another difficulty is
that if two Voronoi polygons share a small side, a pair
of disks will be detected as NNs even when they are sep-
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arated by a large metric distance, and this can be the
cause of the instability under thermal fluctuations men-
tioned in Ref. 26. Furthermore, computational costs are
relatively high, and a special numerical treatment is re-
quired to construct space-filled tessellations in the case
of an open boundary.

In SANN, each disk has its individual (local) cutoff dis-
tance, which is determined by the topological geometry
of the configuration of neighbors around a tagged disk.
In the 2D version, the sum of all solid angles associated
with the neighbors adds up to 2π. The SANN algorithm
is both parameter-free and scale-free and is robustness
to thermal fluctuations. These features make it suitable
for application to polydisperse or inhomogeneous systems
without the need for any adjustable parameters. Individ-
ual SANN cutoff lengths can be used to define the local
density (void structures or softness). The computational
cost of 2D-SANNex is found to be low, which allows on-
the-fly simulations.

D. Pressure estimators

One practical application of the free volume is in pres-
sure calculations. In this subsection, we validate NELF-A
by comparing pressure values obtained through the free
volume approach with thhose obtained using an alter-
native method in a hard disk system. By showing the
merit of pressure calculations based on the free volume,
we aim to confirm the practicality of NELF-A, including
its efficiency.

The conventional pressure calculation method in a
hard disk system is based on a dynamical expression de-
rived via the virial theorem.42–46 The dimensionless pres-
sure P ∗ in two dimensions is given by

P ∗ = βP (2σ)2 =
4ν

π

(

1− βµ

2Nt

∑

Nc

bij

)

, (7)

where t is time in the units of the simulation and Nc is
the collision number. The collision force bij = rij · vij is
given by the scalar product between the relative positions
rij and the relative velocities vij of the collision partners
(i, j). In a monodisperse hard disk system at equilibrium,
Eq. (7) can be rewritten as

P ∗ =
4ν

π

(

1 +
σ
√
πβµ

2
Λ

)

, (8)

where Λ is the collision rate.42,44,46

Alternatively, pressure can be expressed in terms of the
ratio of free surface area to free volume for each tagged
particle i, sif/v

i
f . Such expressions have been proposed

and applied to various equilibrated monodisperse hard
sphere systems.5–7,47–51 Hoover et al.47 derived the fol-
lowing expression for the pressure under the assumption

that Λ in Eq. (8) must be proportional to the ratio sif/v
i
f :

P ∗ =
4ν

π

(

1 +
σ

2N

N
∑

i=1

〈

sif
vif

〉

)

=
4ν

π

(

1 +
σ

2Ns

Ns
∑

i=1

sif
vif

)

, (9)

where 〈sif/vif 〉 = (1/Ω)
∑

Ω sif/v
i
f is the ensemble aver-

age of the ratio, with Ω being the configuration number
and Ns(= Ω × N) the total number of sample particles.
Subsequently, Speedy48,49 independently derived an ex-
pression for the pressure expression that was the same as
Eq. (9) by noting that the pair distribution function is
equal to the configuration average of the ratio, 〈sif/vif 〉.
Speedy50,51 also rederived this expression on the basis
of the statistical properties of cavities in the thermody-
namic limit. In polydisperse systems, the radius σ in the
pressure expression (9) can be simply replaced by the ra-
dius of the independent particle σi. Based on Speedy’s
argument, Corti and Bowles52 presented an explicit ex-
pression for the pressure in the polydisperse case:

P ∗ =
4ν

π

(

1 +
1

2Ns

Ns
∑

i=1

σi

sif
vif

)

=
1

Ns

Ns
∑

i=1

p∗i , (10)

where p∗i is the dimensionless partial pressure:

p∗i =
4ν

π

(

1 +
1

2

sif
vif
σi

)

. (11)

Note that the partial pressure expression given by
Eq. (11) is defined solely on the basis of the local envi-
ronment of a single particle at a specific time. This char-
acteristic renders this expression valuable for application
to nonequilibrium systems, such as relaxation processes
and time-dependent phenomena, as well as to inhomo-
geneous systems. On the one hand, in dynamic pressure
expressions, it is necessary to accumulate collision forces
over the duration in an equilibrium system. On the other
hand, a static pressure expression using the pair distribu-
tion function requires estimation based on the positions
of all particles within the system. The ability to estimate
pressure is limited to homogeneous equilibrium systems
that do not depend on time in either of these cases. Re-
cently, Eq. (10) has been applied to protein structure
analysis,5 jammed hard sphere packings,6 and specific
treatments of data sets of colloidal diameter that are in-
complete owing to experimental limitations.7

1. Efficiency and precision of pressure estimators

In this subsection, we compare the two pressure ex-
pressions given by Eqs. (7) and (10) from the practical
aspect of numerical simulation by the EDMD and NELF-
A methods, respectively. We label the method based on
Eq. (7) and using EDMD as A and the method based on
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Eq. (10) and using NELF-A as B. Note that in B, con-
figuration samples are prepared for collection from the
EDMD trajectories every 100 mean free times.
The accuracy of pressure estimation is improved by

accumulation up to a sampling number Nc in Eq. (7)
and Ns in Eq. (10). Figure 15(a) compares the evolv-
ing pressure and the corresponding standard error with
sampling number for methods A and B in terms of
CPU time for a monodisperse hard disk system with
(N, ν) = (2562, 0.700). All simulations were performed
using an Intel Xeno E5-1660 with a clock speed of 3.3
GHz. The evolving pressures obtained by methods A and
B, respectively, converge to the same value within an er-
ror bar after 200 CPU hours. Method B appears to be
much more efficient than A; however, it requires inde-
pendent configurations in the equilibrium, which must be
prepared by EDMD or some other efficient Monte Carlo
method.53 To provide a fair comparison, we also con-
sidered the additional computational cost for the prepa-
ration of independent configurations and show the total
cost as B′ in Fig. 15(a). We found that the computational
bottleneck in obtaining accurate pressures for these dense
systems lies in sampling the independent configurations,
rather than in the pressure calculation itself by NELF-A.
A comparison of the pressures for each packing frac-

tion ν (i.e., the equation of state) for a monodisperse
system obtained by methods A and B is shown in
Fig. 15(b). The pressure from method A here is de-
picted using the data from Fig. 3 of Ref. 2. In the
case of method B, the pressure was calculated for two
parameter sets: (N,Ns/N,Nconf) = (2562, 105, 5) and
(5122, 104, 10), where Nconf is the number of indepen-
dent initial configurations used in executing the EDMD
simulation. We observe that the pressures from meth-
ods A and B show reasonably good agreement within an
error bar, confirming the validity of NELF-A. Further-
more, even in a bidisperse system, the pressures from
both methods almost coincide for various packing frac-
tions.
We have also compared the efficiency of the two pres-

sure calculation methods for different system sizes and
particle dispersions by considering the accumulated sam-
pling numbers Nc and Ns, as shown in Table II. Sim-
ulations were again performed for a bidisperse system
[(ν, x1, α) = (0.700, 1/3, 1.4)] as a representative of poly-
disperse systems. In all situations, the calculation effi-
ciency with method A is better than that with B. It is
important to note, however, that this result is only for
the efficiency of accumulatingNc andNs; therefore, when
the factor of convergence speed as shown in Fig. 15(a) is
taken into account, it cannot simply be claimed that cal-
culation with method B is inefficient.

IV. CONCLUDING REMARKS

In this paper, we have discussed different the meth-
ods for nearest neighbor and free volume estimation, in-

TABLE II. Comparison of pressure calculations between
methods A and B for different system sizes and particle dis-
persions. The accumulated sampling numbers Nc and Ns per
millisecond of CPU time are shown.

Nc or Ns/CPU time (ms−1)
Monodisperse Bidisperse

Method N = 2562 N = 5122 N = 642 N = 1282

A 751 460 782 701
B 275 223 139 136

cluding the higher-order treatments of polydisperse hard
disk systems. We have clarified the difficulties that arise
with conventional methods using cutoffs and Voronoi
constructions in local microscopic environment analyses
of molecular configurations. We have confirmed that the
solid-angle-based nearest-neighbor (SANN) algorithm is
able to overcome the difficulties encountered by conven-
tional methods, even for polydisperse hard disk systems.
We have also presented an explicit definition for evalu-
ating higher-order neighbors. The approaches proposed
here for the determination of nearest neighbors and the
free volume provide crucial information to elucidate the
dynamics of slow relaxation and hopping motion, espe-
cially in densely packed systems. We have proposed a sim-
ple, efficient, and precise method for categorizing neigh-
bors for enclosing the local free area (NELF-A) in the
case of dense polydisperse hard disk systems.

In future extensions of this work, we aim to investigate
its applicability to (i) finding inherent structure in dense
polydisperse hard disk systems, (ii) systems with various
boundary conditions and (iii) systems in three and more
dimensions, which remain an open problem.
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FIG. 15. (a) Comparison of evolving pressure between methods A, B, and B′ in terms of CPU time for a monodisperse hard
disk system at (N, ν) = (2562, 0.700). Calculations were performed up to Nc/N = 8.0× 106 for A and Ns/N(= Ω) = 1.6× 105

for B. The inset shows the time evolution of the corresponding standard errors. (b) Equation of state of a monodisperse system
according to methods A and B for N = 2562 and 5122, where close agreement of the pressures can be observed.
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