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1. Introduction

The equidistribution of Frobenius conjugacy classes has been a cornerstone of
number theory at least since Dirichlet’s Theorem on primes in arithmetic progres-
sions. In a geometric context, this study was successfully initiated by Deligne in
[Del80]. The central object of this theory is a compact Lie group, the so-called mon-
odromy group, in which Frobenius conjugacy classes acting on a local system on a
variety over a finite field naturally occur and then equidistribute. This provides a
formalism that produces equidistribution results in large generality. Of course, the
application of this formalism requires the determination of the monodromy group.

These monodromy groups were determined for a large class of exponential sums,
among them the so-called hypergeometric sums (see [Kat90, Ch. 8]), by Katz. For
example, consider a finite field k of odd characteristic p and a non-trivial additive
character ψ of k. Let χ2 denote the unique non-trivial multiplicative character of
order 2 of k and name the quadratic Gauss sum by

Aψ,k := −
∑

x∈k∗

χ2(x)ψ(x).

For each a ∈ k∗ and each multiplicative character χ of k define

Hyp(a, χ) := A−7
ψ,k

∑

x1···x7=x8a

ψ(x1 + . . .+ x7 − x8)χ
(
x4x5(x6x7)

−1
)
χ2(x8).

Define the complex (see [Kat90, p. 8.2.2] for the notation)

F(χ, ψ, k) := (A−7
ψ,k)

deg ⊗Hyp(!, ψ; 1, 1, 1, χ, χ, χ, χ;χ2).

This complex has the property

Tr(Frk|Hyp(χ)a) = Hyp(a, χ)

for all a ∈ k∗ and all multiplicative characters χ.
1
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Fix a multiplicative character χ of k. We define UG2 to be the compact form of

G2 and let UG♮2 be the space of conjugacy classes in UG2. In [Kat07, Thm. 9.1],

Katz constructs semisimple conjugacy classes θa,χ ∈ UG♮2 such that the trace of θa,χ
acting on the unique irreducible seven-dimensional representation of G2 is given by

Tr(θa,χ) = Hyp(a, χ).

Denote by kn a finite extension of k of degree n ≥ 1. When p ≥ 17, Deligne’s
equidistribution theorem [Kat90, Thm. 7.11.1] applied to [Kat07, Thm. 9.1] implies

lim
n→∞

1

|k∗n|

∑

a∈k∗n

f(θa,χ) =

∫

UG2

f(g)dg

for any continuous function f ∈ C(UG♮2) where dg denotes the probability Haar

measure on UG2. We say that the sets {θa,χ : a ∈ k∗n} equidistribute in UG♮2 for
the pushforward of the probability Haar measure from UG2.

The equidistribution result by Deligne is not able to describe the distribution

of the set of conjugacy classes {θa,χ : χ ∈ k̂∗n} because the multiplicative charac-
ters are not representable by a variety. In [Kat12, Ch. 4], a certain subcategory
of the category of perverse sheaves on Gm,k is equipped with the structure of a
Tannakian category which associates an arithmetic Tannakian monodromy group
to each object in this category. This formalism does produce equidistribution the-
orems for such sets. The book [Kat12, Ch. 25] (see also Theorem 2.2) explains how
to apply this formalism to the above sums and determines the generic Tannakian
monodromy group of these sums in the family defined by the variable a.

Theorem ([Kat12, Thm. 25.1]). The set of all a ∈ k∗ such that the set of conjugacy

classes {θa,χ : χ ∈ k̂∗n} equidistribute in UG♮2 as n→ ∞ has ”density” 1.

Based on a suggestion in [Kat12, Rmk. 25.8], we improve this theorem to the
following result.

Theorem (Theorem 5.2). Suppose the characteristic of k is large enough and let

a ∈ k∗. The set {θa,χ : χ ∈ k̂∗n} equidistributes in UG♮2 as n→ ∞.

The lower bound on the characteristic of k can not be evaluated by our method.
It is, however, not clear whether the result can be proven for all finite fields. For
monodromy groups of hypergeometric sums, it is a well-known phenomenon (see
[Kat07, Thm 9.1] and [Kat90, Thm. 14.10]) that the monodromy groups become
uniform only for large primes. For example, it is proven in [Kat07, Thm. 9.1] that
for p < 17 there are characters χ for which the monodromy group of F(χ, ψ, k)
is finite. However, this precise phenomenon can not occur for irreducible perverse
sheaves on Gm,k because any finite Tannakian monodromy group of a perverse sheaf

on Gm,k is cyclic by [Kat12, Thm. 8.2].
Our method should apply to more general hypergeometric families such as the

families constructed in [GL96]. To be precise, let n > 1 and consider a perverse
!-hypergeometric sheaf H on Gnm,k in the sense of [GL96, Def. 8.1.2]. In favorable
cases, a group morphism Gnm → Gm yields a hypergeometric family by restricting
H to the fibers. The example studied in this paper is of this form up to negligible
factors. In the future, we plan to exploit this method to determine the Tannakian
monodromy groups for the members of some of these families.
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Our proof relies substantially on Katz’s determination of the generic Tannkian
monodromy group. We study the sum Hyp(a, χ) in the family defined by the vari-
able a ∈ k∗. The transformation law in Lemma 3.3, which is a defining feature
of a hypergeometric family, implies that varying the base point a is equivalent
to varying the additive character ψ. The crucial step is to formulate the fourth
moment of the Tannakian monodromy group as a weighted Euler-Poincare char-
acteristic (see Lemma 3.3). Then we can prove that the Tannakian monodromy
group is independent of the character ψ by appealing to the uniformity properties
of the Fourier transform. This implies that the Tannakian monodromy group is
independent of the base point a when the characteristic of k is large enough. In
particular, the Tannakian monodromy group for any base point a has to agree with
the generic Tannakian monodromy group. Then we can deduce that the Tannakian
monodromy group is G2.

Notations:

• ℓ: a fixed prime.
• All sheaves and complexes of sheaves on a separated, noetherian scheme X
of finite type over Z[1/ℓ] are objects in the category Db

c(X,Qℓ) defined in
[Del80, p. 1.1.2].

• We fix an isomorphism Qℓ ∼= C once and for all; we apply this isomorphism
implicitly whenever needed. In particular, the notation limn→∞ always
denotes a limit of complex numbers. When we say a complex is mixed or
pure, we always mean with respect to this isomorphism.

• k: a finite field, the characteristic of k is always co-prime to ℓ and odd.
• kn: an extension kn/k of degree n.

• Lη: η is a character η : G(k) → Qℓ
∗
for some finite field k and an algebraic

group G/k, then Lη denotes the local system on G constructed from χ
using the Lang torsor construction.

• χ: a multiplicative character χ : k∗ → Qℓ
∗
; we extend any such character to

a character on any finite extension kn/k by putting χn(x) := χ(Nmkn/k(x))
for all x ∈ kn.

• ψ: an additive character ψ : k+ → Qℓ
∗
; we extend any such character to

any finite extension kn/k by putting ψn(x) := ψ(Trkn/k(x)) for all x ∈ kn.
• Hyp(−,−;−, ): a hypergeometric sheaf in the sense of [Kat90, p. 8.2.2].
• M2m(X): if X is an object in a Tannakian category thenM2m(X) is defined
to be the number of components in a decomposition series of the object
Xm ⊗ (X∧)m which are isomorphic to the tensor unit (i.e. the 2m-th
moment of X).

2. Construction by Katz

We recall certain definitions and results from [Kat12]. Let k be a finite field,
ψ a non-trivial additive character of k, and a ∈ k∗. Denote by Hψ,k,a the ℓ-adic
constructible complex on Gm,k denoted N(a, k) in [Kat12, Ch. 27, p. 165]. Let
j : Gm → P1 be the inclusion. Following [Kat12, p. 21], we call a multiplicative
character χ of kn good (or not bad) for a perverse sheaf M on Gm,k if the natural
morphism

Rj!(M ⊗ Lχ) → Rj∗(M ⊗ Lχ)
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is an isomorphism. When the character χ is good, the Leray spectral sequence
implies that the map

H•
c (Gm,k,M ⊗ Lχ) → H•(Gm,k,M ⊗ Lχ)

is an isomorphism. In this case, the cohomology groups H•
c (Gm,k,M ⊗ Lχ) are

concentrated in degree zero by Artin’s vanishing theorem [KW01, Thm. 6.1]. This
recovers [Kat12, Lem. 2.1].

Theorem 2.1. The complex Hψ,k,a is pure of weight zero, perverse, irreducible,
has no bad characters and there is a Frobenius-equivariant isomorphism

H•
c (Gm,k,Hψ,k,a ⊗ Lχ) ∼= F(χ, ψn, kn)a

for each multiplicative character χ 6= χ2 of a finite extension of k.

Proof. This complex is perverse and pure of weight zero by construction. It has
no bad characters by [Kat12, Lem. 27.5] and is irreducible by [Kat12, Lem. 27.11].
The cohomology groups are determined in [Kat12, Lem. 27.4]. �

The formalism of [Kat90, Ch. 4] equips the category of perverse sheaves on Gm,k,
which only have good characters when pulled back to Gm,k, with the structure of
a Tannakian category. Given an object M in this category then the Tannakian
formalism implies that the Tannakian category generated by M is equivalent to
the category of representations of a complex algebraic group G after applying the
isomorphism Qℓ ∼= C. This group is called the arithmetic Tannakian monodromy
group of M .

In loc. cit. the generic monodromy group of the hypergeometric family Hψ,k,a is
determined and the possibilities of the Tannakian monodromy group are strongly
restricted. This is summarized in the following theorem.

Theorem 2.2. Let ψ, k, a be as above.

(1) The geometric and the arithmetic Tannakian monodromy group of Hψ,k,a

agree. The Tannkian monodromy group of this complex is a subgroup of
GL7.

(2) The image of the Tannakian monodromy group of Hψ,k,a in GL7 is (con-
jugate to) either the image of G2 in its unique irreducible 7-dimensional
representation or SL2 in Sym6(std2).

(3) There exists n ≥ 1 and a ∈ k∗n such that the monodromy group of Hψn,kn,a

is G2.
(4) The moment satisfies M4(Hψ,k,a) = 4 if and only if the Tannakian mon-

odromy group of Hψ,k,a is G2.

Proof. The points (1) and (2) are proven in [Kat12, Lem. 25.2]. The point (3)
follows form [Kat12, Thm. 25.1]. To prove (4), note that the moment is 4 when
the Tannkian monodromy group is G2 and the moment is 7 if the Tannakian mon-
odromy group is SL2. �

3. The fourth moment

In this chapter, we apply the equidistribution result to produce formulas for the
fourth moment.
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Definition. Define the polynomial

P (xi,j , yi,j) :=
∏

j∈{1,2}

x4,jx5,jy6,jy7,j(y4,jy5,jx6,jx7,j)
−1

such that

P ∈ Z[(xi,j)(i,j)∈{1,...,8}×{1,2}, (yi,j)(i,j)∈{1,...,8}×{1,2}].

Let k be a finite field, ψ a non-trivial additive character of k, and a ∈ k∗. Define

f(ψ, k, a) := |k|−15
∑

x1,j ...x7,j=ax8,j
y1,j ...y7,j=ay8,j
P (xi,j ,yi,j)=1

(
ψ

( ∑

j∈{1,2}

(
7∑

i=1

(xi,j − yi,j)− x8,j + y8,j

))

× χ2

( ∏

j∈{1,2}

x8,jy
−1
8,j

))
.

Theorem 3.1. Let k be a finite field, ψ a non-trivial additive character of k, and
a ∈ k∗. We have

M4(Hψ,k,a) = lim
n→∞

f(ψn, kn, a).

Proof. By Theorem 2.1 all characters are good. Thus [Kat90, Thm. 7.3] and
[FFK23, Eqn. 9.2] imply

M4(Hψ,k,a) = lim
n→∞

1

|kn| − 1

∑

χ∈k̂∗n

|Tr(Frkn |H
•
c (Gm,k,Hψ,k,a ⊗ Lχ))|

4.

The complex Hψ,k,a ⊗ Lχ is pure of weight zero. Then [Del80, Var. 6.2.3] implies
that the complex H•

c (Gm,k,Hψ,k,a ⊗Lχ2
) is pure of weight zero and concentrated

in degree zero because χ2 is a good character. Thus we can write

M4(Hψ,k,a) = lim
n→∞

1

|kn| − 1

∑

χ6=χ2

|Tr(Frkn |H
•
c (Gm,k,Hψ,k,a ⊗ Lχ))|

4.

By using the evaluation of the cohomology groups in Theorem 2.1 and the formulas
from [Kat90, p. 8.2.7] we can rewrite this as

M4(Hψ,k,a) = lim
n→∞

|Aψ,kn |
−28

|kn| − 1

∑

χ6=χ2

∑

x1,j ...x7,j=ax8,j
y1,j ...y7,j=ay8,j

(
χ(P (xi,j , yi,j))

× χ2

( ∏

j∈{1,2}

x8,j(y8,j)
−1

)
ψ

( ∑

j∈{1,2}

(
7∑

i=1

(xi,j − yi,j)− x8,j + y8,j

)))

It follows from the cancellation theorem [Kat90, p. 8.4.7] (see also [Kat12, p. 163])
that we can complete this sum to

M4(Hψ,k,a) = lim
n→∞

|Aψ,kn |
−28

|kn| − 1

∑

χ∈k̂∗n

∑

x1,j ...x7,j=ax8,j
y1,j ...y7,j=ay8,j

(
χ(P (xi,j , yi,j))

× χ2

( ∏

j∈{1,2}

x8,j(y8,j)
−1

)
ψ

( ∑

j∈{1,2}

(
7∑

i=1

(xi,j − yi,j)− x8,j + y8,j

)))
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The term
|Aψ,kn |−28

|kn|−1 is asymptotically equivalent to |kn|
−15. We change the order

of summation and then the orthogonality of characters of k̂∗n implies

M4(Hψ,k,a) = lim
n→∞

f(ψn, kn, a).

This is the statement of the theorem. �

Corollary 3.2. Let k be a finite field, ψ a non-trivial additive character of k,
a ∈ k∗, and n ≥ 1. Then

M4(Hψ,k,a) =M4(Hψn,kn,a).

Proof. Theorem 3.1 implies

M4(Hψ,k,a) = lim
m→∞

f(ψm, km, a) = lim
m→∞

f(ψmn, kmn, a) =M4(Hψn,kn,a).

�

The following formula for the change of the additive character is crucial to our
analysis.

Lemma 3.3. Let k be a finite field, ψ a non-trivial additive character of k, and
a, λ ∈ k∗. Define ψλ(x) := ψ(λx) for all x ∈ k. Then

M4(Hψλ,k,a) =M4(Hψ,k,λ6a).

Proof. Just as in the proof of Theorem 3.1 we have

M4(Hψλ,k,a) = lim
n→∞

1

|kn| − 1

∑

χ6=χ2

|Tr(Frkn |H
•
c (Gm,k,Hψλ,k,a ⊗ Lχ))|

4

We define ψλ,n := (ψλ)n. Using Theorem 2.1, we can rewrite this as

M4(Hψλ,k,a) = lim
n→∞

1

|kn| − 1

∑

χ6=χ2

|Tr
(
Frkn |F(χ, ψλ,n, kn)a

)
|4

Note that Aψλ,k = χ2(λ)Aψ,k. Thus [Kat90, Lem. 8.7.2] implies

|Tr
(
Frkn |F(χ, ψλ,n, kn)a

)
|4 = |Tr

(
Frkn |F(χ, ψn, kn)λ6a

)
|4.

So we can apply the formula from before again to get

M4(Hψλ,k,a) = lim
n→∞

1

|kn| − 1

∑

χ6=χ2

|Tr
(
Frkn |F(χ, ψn, kn)λ6a

)
=M4(Hψ,k,λ6a).

�

Remark 3.4. The equality of moments could also be understood as an isomorphism
of sheaves on G2

m,k. More precisely, this equality follows form a change of characters

formula for !-hypergeometric sheaves on G2
m,k as in [GL96, Def. 8.1.2]. In the one-

dimensional case, this formula is given by [Kat90, Lem. 8.7.2].



HYPERGEOMETRIC SHEAVES WITH TANNAKIAN MONODROMY GROUP G2 7

4. Weighted Euler-Poincare characteristics and the moment

Roughly speaking, this section expresses the function f as the trace function
of an additive Fourier transform of a sheaf on A1. The equality of the geometric
and the arithmetic Tannakian monodromy group implies a formula for the moment
in terms of the weight filtration of the stalk of the Fourier transform at 1. This
expression, in turn, can be controlled by appealing to the uniformity of the Fourier
transform. For this, we would like to have some notion of representability by a
Fourier transform for certain ”unmotivated” trace functions.

Definition. Let g(ψ, k) be a complex-valued function that takes as an input a
finite field k and a character ψ of k. We say that the function g representable by a
Fourier transform if there exists a dense open U ⊂ Spec(Z) and a mixed complex
K on A1

U such that

g(ψ, k) = Tr(Frk|H
•
c (A

1
k
,K ⊗ Lψ))

for all finite fields k/Fp with p ∈ U. The complex K is said to be a representing
complex for the function f .

Theorem 4.1. The function (ψ, k) 7→ f(ψ, k, 1) is representable by a Fourier trans-
form.

Proof. The squaring map [2] : Gm,Z[1/2ℓ] → Gm,Z[1/2ℓ] defines a Z/2Z-torsor. De-
note by L the ℓ-adic local system on Gm,Z[1/2ℓ] which trivializes to the unique
non-trivial ℓ-adic character of Z/2Z after pullback along the squaring map. Con-
sider the closed subscheme Z ⊂ G32

m,Z[1/2ℓ] defined by the equations

x1,j . . . x7,j = x8,j , y1,j . . . y7,j = y8,j, P (xi,j , yi,j) = 1

for all j ∈ {1, 2}. Define the map ϕ : Z → Gm,Z[1/2ℓ] by

ϕ(xij , y
i
j) =

∑

j∈{1,2}

( 7∑

i=1

(xi,j − yi,j)− x8,j + y8,j

)
.

Put K := Rϕ!(L |Z). For each finite extension k/Fp with p co-prime to 2ℓ and each
additive character ψ, the trace formula, the proper base change theorem and the
projection formula imply

Tr(Frk|H
•
c (A

1
k
,K ⊗ Lψ)) = f(ψ, k, 1).

This implies that K is a representing complex for the function (ψ, k) 7→ f(ψ, k, 1).
�

To get the most out of Theorem 4.1, we use the following well-known Lemma.
We delay the proof of this Proposition to Section 6 because it is unrelated to the
rest of the article.

Proposition 4.2. Consider λ1, . . . , λn ∈ C and α1, . . . , αn ∈ C such that the limit
limN→∞

∑n
i=1 αiλ

N
i exists. It is given by

lim
N→∞

n∑

i=1

αiλ
N
i =

∑

|λi|=1

αi.

Recall the definition of the weighted Euler-Poincare characteristic.
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Definition. Let w ∈ R and q ∈ N a prime power. Consider a C[T ]-module V ,
which is finite-dimensional over C. Define Vw ⊂ V to be the sum of all generalized
eigenspaces of T acting on V with respect to eigenvalues λ whose absolute value
satisfies |λ| = qw/2.

LetM be a bounded complex of C[T ]-modules, whose cohomology groupsHi(M)
are finite-dimensional over C. Define the weighted Euler-Poincare characteristic of
M with weight w to be (see [Kat80, p. 92])

χw(M) :=
∑

i∈Z

(−1)idimC(H
i(M)w).

Theorem 4.3. Let k be a finite field of characteristic co-prime to 2ℓ, ψ a non-
trivial additive character of k, a ∈ k∗, and K a representing complex for the function
(ψ, k) 7→ f(ψ, k, 1). We have

M4(Hψ,k,a) = χ0(H
•
c (A

1
k
,K ⊗ Lψ)).

Proof. Theorem 4.1 says

M4(Hψ,k,a) = lim
n→∞

Tr(Frnk |H
•
c (A

1
k
,K ⊗ Lψ)).

Denote the eigenvalues of Frobenius acting on Hi
c(A

1
k
,K ⊗ Lψ) by λi,j ∈ C. We

have
Tr(Frnk |H

i
c(A

1
k
,K ⊗ Lψ)) =

∑

j

λni,j ,

so Proposition 4.2 implies

M4(Hψ,k,a) =
∑

|λi,j |=1

(−1)i = χ0

(
H•
c (A

1
k
,K ⊗ Lψ)

)
.

�5. Determination of the Tannakian monodromy group

We recall a theorem on the uniformity of the Fourier transform by Katz.

Theorem 5.1 ([Kat80, p. 92, Cor. 1]). Let R ⊂ C be a ring that is finitely generated
over Z, K a constructible complex of Qℓ-sheaves, whose cohomology sheaves are
mixed, and w ∈ Z an integer. There exists r ∈ R such that for all ring morphisms
R[1/rl] → k into a finite field k and all non-trivial additive characters ψ of k, the
integer

χw(H
•
c (A

1
k
,K ⊗ Lψ)),

where the restriction is taken along the ring morphism, is independent of the ring
morphism and the character.

We have collected all the required results to prove the main theorem.

Theorem 5.2. There exists a constant C > 2 such that for all primes p ≥ C, all
finite extensions k/Fp, all non-trivial additive characters ψ of k, and all a ∈ k∗ the
perverse sheaf Hψ,k,a has Tannakian monodromy group G2.

Proof. Let K be a representing complex for the function (ψ, k) 7→ f(ψ, k, 1). Re-
mark that Theorem 5.1 implies that there is a constant C > 0 such that for each
prime p > C, each finite extension k/Fp, and each non-trivial additive character ψ
of k the number

χ0(H
•
c (A

1
k
,K ⊗ Lψ))

does not depend on ψ nor on k.
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Let p ≥ C be a prime, k/Fp a finite extension, ψ a non-trivial additive character,
and a ∈ k∗. By Theorem 2.2, there exists a finite extension kn of k and an element
b ∈ kn such that M4(Hψn,kn,b) = 4. Define the field km := kn(a

1/6, b1/6) and the

non-trivial additive character ψ′(x) := ψm(a1/6x) of km. Corollary 3.2, Lemma 3.3
and Theorem 4.3 imply

M4(Hψ,k,a) =M4(Hψ′,km,1) = χ0(H
•
c (A

1
k
,K ⊗ Lψ′)).

Define the additive character ψ′′(x) := ψm(b1/6x) of km. Corollary 3.2, Lemma 3.3
and Theorem 4.3 imply

4 =M4(Hψm,km,b) =M4(Hψ′′,km,1) = χ0(H
•
c (A

1
k
,K ⊗ Lψ′′)).

The weighted Euler-Poincare characteristic does not depend on the additive char-
acter, so we get 4 = M4(Hψ,k,a). Hence Theorem 2.2 implies that the Tannakian
monodromy group of Hψ,k,a is G2.

�

6. The proposition

In this section, we prove the remaining Proposition 4.2. This Proposition and
the following Lemmas are well-known but we prove them here because we were not
able to find a reference. Define

T := {z ∈ C : |z| = 1}.

Lemma 6.1. Let x ∈ Tn and define A to be the smallest closed subgroup A ⊂ Tn

such that x ∈ A. Any continuous function f : A→ C, such that

lim
n→∞

f(xn)

exists, is constant.

This is a consequence of the Kronecker-Weyl theorem, see for example [Kow21,
Thm. 6.5 (i)].

Lemma 6.2. Define the functions φz : N → C

φz(n) = zn

for each z ∈ C. These functions are linearly independent in CN.

Proof. For each finite subset S ⊂ C, the Vandermonde matrix

(zm)z∈S,0≤m≤|S|−1,

is invertible. �

We now prove Proposition 4.2. Suppose |λi| ≤ 1. We have

lim
N→∞

∑

i

αiλ
N
i = lim

N→∞

∑

|λi|=1

αiλ
N
i .

Lemma 6.1 implies

lim
N→∞

∑

|λi|=1

αiλ
N
i =

∑

|λi|=1

αiλ
0
i =

∑

|λi|=1

αi.

Consider arbitrary λi ∈ C and define

βz :=
∑

λi=z

αi
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for each z ∈ C. Note that we can write∑

i

αiλ
N
i =

∑

z∈C

βzz
N

for each N ≥ 0. Let M := max{|z| : βz 6= 0} and suppose M > 1. Then

0 = lim
N→∞

∑

z∈C

βz(z/M)N .

The first step of the argument implies

0 = lim
N→∞

∑

|z|=M

βz(z/M)N .

Then Lemma 6.1 implies

0 =
∑

|z|=M

βz(z/M)N

for all N ≥ 0. Lemma 6.2 implies βz = 0 for all |z| = M . This is a contradiction
to the definition of M therefore M = 1. We can write

lim
N→∞

∑

i

αiλ
N
i = lim

N→∞

∑

z∈C

βzz
N = lim

N→∞

∑

|z|≤1

βzz
N =

∑

|z|=1

βz =
∑

|αi|=1

αi.

�
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Société Mathématique de France, Paris, 1980, p. 209.

[Kat90] Nicholas M. Katz. Exponential sums and differential equations. Vol. 124.
Annals of Mathematics Studies. Princeton University Press, Princeton,
NJ, 1990, pp. xii+430. isbn: 0-691-08598-6; 0-691-08599-4.

[Kow21] Emmanuel Kowalski. An introduction to probabilistic number theory.
Vol. 192. Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, Cambridge, 2021, pp. xiv+255. isbn: 978-1-108-84096-5.

http://www.numdam.org/item?id=PMIHES_1980__52__137_0
https://arxiv.org/abs/2109.11961


REFERENCES 11

[KW01] Reinhardt Kiehl and Rainer Weissauer.Weil conjectures, perverse sheaves
and l’adic Fourier transform. Vol. 42. Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics.
Springer-Verlag, Berlin, 2001, pp. xii+375. isbn: 3-540-41457-6.


	1. Introduction
	2. Construction by Katz
	3. The fourth moment
	4. Weighted Euler-Poincare characteristics and the moment
	5. Determination of the Tannakian monodromy group
	6. The proposition
	References

