
Collective entanglement in quantum materials with competing orders

Giacomo Mazza and Costantino Budroni
Department of Physics “E. Fermi” University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy

We investigate entanglement detection in quantum materials through criteria based on the simul-
taneous suppression of collective matter excitations. Unlike other detection schemes, these criteria
can be applied to continuous and unbounded variables. By considering a system of interacting
dipoles on a lattice, we show the detection of collective entanglement arising from two different
physical mechanisms, namely, the ferroelectric ordering and the dressing of matter degrees of free-
dom by light. In the latter case, the detection shows the formation of a collective entangled phase
not directly related to spontaneous symmetry breaking. These results open a new perspective for
the entanglement characterization of competing orders in quantum materials, and have direct ap-
plication to quantum paraelectrics with large polariton splittings.

Introduction.— Entanglement plays a pivotal role in
characterizing collective behavior in quantum matter.
Collective entanglement is naturally linked to the pres-
ence of quantum critical behaviour associated with spon-
taneous symmetry breaking [1–4]. However, entangle-
ment can also become a distinctive feature of systems in
which quantum collective behavior remains elusive due
to the absence of explicit symmetry breaking. This is
evident in cases such as spin liquids, Mott insulators, or
other types of topological orders [5–8]. This becomes
even more relevant in quantum materials characterized
by multiple orders emerging from competing collective
behaviors [9, 10].

Entanglement detection is now achievable across vari-
ous quantum systems and degrees of freedom, employ-
ing a wide array of methods [11–13]. These methods
range from the exact reconstruction of the density ma-
trix for few-particle systems to entanglement witnesses
based solely on measuring a limited number of collective
variables. The latter approach is particularly pertinent
for many-body systems, especially materials, which of-
ten lack the level of tunability found in simpler systems.
In recent years, the quantum Fisher information (QFI)
[14, 15] associated with a collective variable has emerged
as a powerful technique for detecting entanglement [16–
18]. This is particularly evident in quantum materials,
where it has been linked to the measurement of dynam-
ical susceptibilities achievable through state-of-the-art
spectroscopic techniques [3, 19–24]. The QFI establishes
a connection between entanglement and large collective
quantum fluctuations, serving as an entanglement wit-
ness when it surpasses a certain threshold, namely its
maximum value across all separable states. However,
its applicability is confined to collective excitations with
bounded spectra, such as spin degrees of freedom. Yet,
collective excitations within quantum materials typically
encompass observables with unbounded spectra, such as
position and momentum. Consequently, the practical im-
plementation of QFI detection schemes is constrained by
the determination of the bound itself [25, 26]. A way
around this problem is suggested by the observation that
entanglement is also revealed by small quantum fluctu-
ations. Famous examples include spin-squeezing phe-

nomena [27–30] as well as the Einstein-Podolsky-Rosen
(EPR) argument [31] with the associated vanishing un-
certainties for the center of mass position and relative
momentum [32, 33].

Here, we apply criteria based on the simultaneous sup-
pression of collective excitations to the detection of en-
tanglement emerging from competing orders in quantum
matter. We consider a quantum paraelectric as a pro-
totype system in which collective behavior can emerge
from the interplay between ferroelectric quantum criti-
cality [34–37], and the collective dressing by strong light-
matter coupling at equilibrium [38–44]. Entanglement is
witnessed by the simultaneous suppression of the collec-
tive excitations which anti-correlate, respectively, with
the incipient ferroelectric ordering and the formation
of polaritons. These two different types of detection
schemes are intuitively related to two different physical
mechanisms of formation of entanglement. In the former
case, entanglement is a direct consequence of intrinsic
quantum critical behavior. In the latter case, entangle-
ment is transferred, in thermal equilibrium, from photons
to matter degrees of freedom. We show that the witness
associated with ferroelectricity is made entanglement-
blind by the light-matter interaction and vice versa, thus
highlighting the competing nature of the two origins of
collective entanglement. The detection scheme is com-
pletely general and can be applied to any system whose
relevant excitations are described by pairs of conjugate
variables.

Model and entanglement criteria.— We consider a sys-
tem of N one-dimensional quantum oscillators of mass
m localized on the sites of a three-dimensional cubic
lattice. On each site, the dipoles oscillate along the
x−direction and are describe by pairs of conjugate vari-
ables [xi, pj ] = iℏδij . The Hamiltonian for independent
dipoles reads

H0 =
∑
i

H0,i =
∑
i

p2i
2m

+
∑
i

Vi(xi) (1)

where Vi(xi) = V (xi − Rxi ), is the on-site potential cen-
tered at the i− the lattice site identified by the site vector
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FIG. 1. Top: Schematic representation of the model of a cu-
bic lattice of dipoles described by pairs of conjugate variables
with nearest neighbor ferroelectric coupling (−J) and collec-
tive coupling with light in the cavity parametrized by the
effective charge q = Ze, see Eq. 3. Bottom: Entanglement
phase diagram in the Z − J plane at T = 0. The coloured
regions indicates the detection regions for entanglement be-
tween the dipoles induced, respectively, by the ferroelectric
coupling (darkcyan) and the collective light-matter coupling
(orange). The dot and the dashed line indicate the quantum
phase transition between the paralectric (PE) and ferroelec-
tric (FE) phase.

Ri. We consider a quartic form of the potential

V (x) = mω2
0x

2

(
1

2
+ k2

mω0

ℏ
x2

)
(2)

where ω0 is the harmonic frequency and k parametrizes
the anharmonic part of the potential.
We supplement the model with two independent inter-
actions: (i) an intrinsic nearest neighbor dipole-dipole
interaction and (ii) the collective light-matter coupling
between dipoles and the vacuum fluctuations of the elec-
tromagnetic fields, see Fig. 1. The interactions are
parametrized, respectively, by a dimensionless ferroelec-
tric coupling J > 0, and the effective charge of the dipoles
q = Ze, being e the elementary charge. The full Hamil-
tonian becomes

H =
∑
i

(
pi + ZeÂi

)2

2m
+Vi(xi)−

J

2
mω2

0

∑
⟨ij⟩

xixj+Hem.

(3)

Here, Âi =
∑
µAµ,i

(
a†µ + aµ

)
is the vector potential

operator, with a†µ and aµ photon creation/annihilation

operators, and Hem =
∑
µ ℏΩµa†µaµ is the free photon

Hamiltonian. Ωµ is the frequency of the photon modes,
with µ running over all the modes confined between two

infinite parallel mirrors at distance L, details in App. B 3.
The index i runs over all the N dipoles. In the following,
we assume the thermodynamic limit N → ∞, with the
cubic lattice of finite thickness d and infinite dimensions
in the x, y plane.
The two interactions act as independent sources of emer-
gent collective behaviour. As a function of J , the model
describes quantum criticality associated with ferroelec-
tric order, i.e., ⟨xi⟩ − Rxi ̸= 0 [45–47]. At a finite Z ̸= 0,
the dipoles hybridize with light to form collective hy-
brid light-matter excitations dubbed as polaritons. The
interplay between polariton formation and ferroelectric-
ity has recently attracted a great deal of attention in
relation to the so-called quantum paraelectrics, such as
SrTiO3 [34, 35], for which the light-matter coupling is
particularly strong [48–52].
We define entanglement with respect to the local parti-
tioning of the Hilbert space. A generic state ρ is said to
be separable if it can be written as a convex combinations
of product states

ρ =
∑
α

λαρ
(1)
α ⊗ . . .⊗ ρ(N)

α (4)

with λα ≥ 0, and
∑
α λα = 1. We denote the associated

set as SEP. The extreme points of this set, with re-
spect to convex combinations, are pure separable states,
which take the form of product states, i.e., |ψ⟩ = ⊗

i |ψi⟩.
States that are not in SEP are said to be entangled.
To detect entanglement, we extend to the many-body
case the entanglement criterion for continuous variables
introduced by Duan et al. [53] and Simon [54] for two-
particles systems. Given a collective operator O, not nec-
essarily hermitian, and a state ρ, we define the fluctua-
tion of O on ρ as ∆O2

ρ := ⟨O†O⟩ρ − ⟨O⟩ρ⟨O†⟩ρ where
⟨·⟩ρ := Tr[·ρ] indicates the trace. If the state is the
ground or a thermal state of a given Hamiltonian, the
fluctuation can be extracted from response functions by
fluctuation-dissipation theorem [55]

∆O2
ρ = ℏ

∫ ∞

0

dω

(
− 1

π
Imχ(ω)

)
coth

(
βℏω
2

)
(5)

where χ(ω) :=
∫
dteiωtχ(t), with χ(t) :=

− i
ℏθ(t)⟨

[
O(t),O†]⟩ρ and O := O − ⟨O⟩ρ is the re-

sponse function in the frequency domain, β is the
inverse temperature, and the operators are time evolved
(Heisenberg representation). We express the entan-
glement criterion in terms of dimensionless conjugate
variables, Pi :=

pi√
ℏmω0

and Xi := xi
√

mω0

ℏ . We define

a set of collective position and momentum operators,

X :=
∑N
i=1 e

iφiXi and P :=
∑N
i=1 e

iϑiPi, where φi and
ϑi are real phase factors. By using the uncertainty
relations [56] ∆X2

i + ∆P 2
i ≥ 1, together with the

concavity of the fluctuation, and the fact that the
total fluctuation over a product state is the sum of the
single-party fluctuations, we derive the minimum of the
combined fluctuation ∆X2

ρ + ∆P2
ρ computed over all
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separable states (see App. A)

min
ρ∈SEP

∆X2
ρ +∆P2

ρ = N. (6)

Eq. (6) defines the lower bound of the entanglement cri-
terion

∆X2
ρ +∆P2

ρ < N ⇒ ρ /∈ SEP. (7)

In contrast to the QFI maximization, the criterion (7)
detects entanglement by minimizing the combined fluctu-
ations of two collective operators. To apply the criterion,
we choose phase factors such that [X,P] =

∑
i e
i(φi+ϑi) =

0. With this choice, it is always possible to define states
with ∆X2

ρ = ∆P2
ρ = 0 such that, in principle, it is possible

to fulfil the entanglement criterion by the simultaneous
minimization of the uncertainties of both momentum and
position collective variables. We interpret the criterion as
the many-body generalization of the original EPR argu-
ment of the simultaneous determination of the center of
mass and relative velocity for two entangled particles [31].
In the following, we refer to Eq. (7) as the EPR-criterion,
and to (X,P) as a EPR-set of collective variables.
In a periodic lattice, such variables can be represented
in terms of reciprocal space position and momentum
variables, defined as Xq := 1√

N

∑
j e
iqRjXj and Pq :=

1√
N

∑
j e
iqRjPj , satisfying [Xq,Pq′ ] = δq,−q′ The entan-

glement criterion reduces, for q ̸= −q′, to

∆X2
q ρ

+ ∆P2
q′
ρ
< 1 ⇒ ρ /∈ SEP. (8)

Entanglement at the ferroelectric quantum critical
point.— We first set Z = 0 and discuss entangle-
ment detection in the ferroelectric model by consider-
ing the fully isotropic case d → ∞, i.e., infinite thick-
ness; see Fig. 1. We start from the harmonic case,
k = 0 in Eq. (2). In this limit, the Hamiltonian is
exactly diagonalized as H =

∑
q ℏωqa

†
qaq with ℏωq =

ℏω0

[
1− 2J

∑
a=x,y,z cos(qaa)

]1/2
and

[
aq′ , a†q

]
= δqq′ .

q := (qx, qy, qz) is a wave vector within the first Brillouin
zone (BZ), and a is the lattice parameter. At J = 0,
the spectrum is dispersionless, ℏωq = ℏω0. At finite
J , the frequency of the modes close to the BZ bound-
ary, i.e., q = π := π/a(1, 1, 1), increases (mode harden-
ing). On the contrary, frequency of the modes close to
the BZ center, i.e., q = 0, decreases (mode softening).
For J → 1/6, the q = 0 mode completely softens, i.e.,
ω2
q=0 → 0, signalling an instability towards a spectrum

unbounded from below for J > 1/6.
The mode softening/hardening in different regions of
the BZ reflects the different energetic costs of paral-
lel/antiparallel configuration of dipoles. This observa-
tion guides the choice of the EPR-set (Xq,Pq′) for en-
tanglement detection. In Fig. 2(a), we plot the mode
squeezing parameter ζq := log

(
∆X2

q/∆P2
q

)
as a function

of J and q along the (1, 1, 1) direction of the BZ. For

k = 0, the fluctuation reads ∆X2
q = 1

2ωq
coth

(
βωq

2

)
and

PE

FE

ENT

(a) (b)

(d)(c)

FIG. 2. Entanglement detection in the purely ferroelec-
tric model. Top panels: harmonic potential, k = 0. The
hatching in panels (a)-(b) highlights the instability of the
model for J > 1/6. (a) Squeezing parameter as a function
of q = q(1, 1, 1). ζq is cut-off between −1 and 1 for illus-
tration purposes. (b) Entanglement witnesses corresponding
to the EPR-sets (Xπ,P0) (full lines) (X0,Pπ) and (dashed
lines) for increasing temperature from Tcold ≃ 5.8 K (blue)
to Thot ≃ 17.4 K (red). Horizontal dashed line indicates the
bound. Bottom panels: anharmonic potential, k2 = 0.05. (c)
Mode frequencies for q = 0 (circles) and q = π (diamonds)
at T = 0 across the ferroelectric QCP. Full lines indicates the
corresponding values for k = 0. (d) Phase diagram in the
J − T plane. The shaded region indicates the entanglement
detection.

∆P2
q =

ωq

2 coth
(
βωq

2

)
. At J = 0, ∆X2

q = ∆P2
q = 1/2

and ζq = 0 for all q. By increasing J , the softening
(hardening) of the frequency ωq leads to a q−selective
squeezing: Modes at the BZ center become momentum
squeezed, i.e., ζq > 0, with ζq=0 → ∞ for J → 1/6.
In contrast, modes at the BZ-boundary become posi-
tion squeezed, i.e., ζq < 0. Therefore, position and mo-
mentum fluctuations are simultaneously minimized, see
Eq. (8), by choosing q and q′, respectively, at the bound-
ary and the center of the BZ. In Fig. 2(b), we explicitly
show the witnesses associated to the (Xq=π,Pq′=0) set
as a function of J and temperature T . At T = 0, the
EPR-criterion is fulfilled for any J > 0. By increasing
temperature, the witness is enhanced by thermal fluc-
tuations, and the criterion is fulfilled only for a criti-
cal coupling J > J⋆(T ) which monotonically increases
with T . Eventually, after a threshold temperature no
detection is possible in the entire 0 < J < 1/6 range.
At the same time, the witness for the complementary
set (Xq=0,Pq′=π) monotonically increases with J and is
never able to detect entanglement.

Turning on a finite k ̸= 0, the soft mode instability
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(a) (b)

(d)(c)

FIG. 3. Entanglement induced by the light-matter interac-
tion Z. In all panels T = 0. (a) Position (red) and momentum
(blue) spectral functions for J = 0.05 and Z = 4.0, compared
to the Z = 0 case (thin black line). (b) Position and mo-
mentum fluctuations at q = 0 as a function of Z, J = 0.05.
(c)-(d) Entanglement witnesses for the two sets (Xq=π,Pq=0)
and (Xq=0,Pq=π) as a function of Z and fixed J = 0.05, panel
(c), and as a function of J and fixed Z = 15.

evolves into a true ferroelectric quantum phase tran-
sition. We describe the phase transition by using
a Gutzwiller variational ansatz [57, 58]. We find a
quantum critical point (QCP) for Jc ≈ 0.209 at the
end of a second-order thermal transition line which
separates the paraelectric (PE) and ferroelectric (FE)
phases. We extract the Xq and Pq response func-
tions, χXq (t) := −iℏθ(t)⟨[Xq(t),X−q]⟩ and χPq (t) :=
−iℏθ(t)⟨[Pq(t),P−q]⟩, from the non-equilibrium dynam-
ics in the linear regime; see App. B for details. Using
Eq. (5), we compute fluctuations and find a dome-like
region around the QCP in which the set (Xq=0,Pq′=π)
detects entanglement, Fig. 2(d). The dome shape of
the entanglement detections region is understood by ob-
serving that, at low temperatures, the fluctuations are
well approximated by the quasi-harmonic expressions,
∆X2

q ≃ 1/(2ωq) and ∆P2
q ≃ ωq/2 with mode frequen-

cies defined by averaging over the spectral functions
ωq :=

∫∞
0
dωAXq (ω)ω/

∫∞
0
dωAXq (ω), with AXq (ω) =

−ImχXq (ω)/π. On the PE side of the transition, the
q = 0 and q = π modes closely follow the harmonic re-
sults. By crossing the QCP, the q = 0 mode undergoes a
softening/hardening transition with a cusp-like singular-
ity for J = Jc, whereas ωπ monotonically increases with
J , see Fig. 2(c). Therefore, the considerations made for
the harmonic case on the PE side of the transition get
mirrored to the FE side.

Light-induced entanglement. — We now consider Z ̸= 0,
and discuss detection of entanglement induced by the
light-matter coupling. We compute light-dressed mat-

ter response functions by including, in the linear re-
sponse, the dynamics of the self-sourced electromagnetic
fields [59, 60]. To this extent, we set a finite d = 0.2 µm
and split the site index i = (n, z) into in-plane, n, and
layer, z = 1, . . . , Nz, indices. We update the defini-
tion of the EPR-sets using Oq=0 := 1√

Nz

∑
z Oq∥=0,z

and Oq=π = 1√
Nz

∑
z(−1)zOq∥=π,z, for O = X,P, and

O = X,P with Oq∥=0,z the partial Fourier transform
in the x − y plane. Here, we fix the lattice spacing
a = 0.5 nm, leading to Nz = 400 layers, and we set
the cavity length to L = 300 µm in order to have the
fundamental cavity mode in the THz range. Different
choices of parameters do not change the qualitative pic-
ture discussed below.
In Fig. 3(a) we report the light-dressed response func-
tions for Xq=0 and Pq=0 at T = 0, compared to the ones
for Z = 0. The finite Z ̸= 0 splits the bare resonance
into two polariton peaks separated by a gap. Due to
the polariton formation, the homogeneous q = 0 fluctu-
ations, panel (b), get suppressed for the position channel
and enhanced for the momentum one. This behaviour
can be understood by using a toy model of two coupled
oscillators with a minimal coupling-like interaction; see
App. B 3 for details. On the contrary, the staggered fluc-
tuations Xq=π and Pq=π are not affected at all by the
light-matter coupling. This follows from energetic argu-
ments: the frequencies of the dipoles and that of the elec-
tromagnetic waves with |q| ∼ π

a are orders of magnitudes
out of resonance. Therefore, light dressing is negligible
for these modes.
In Fig. 3(c), where we report the witnesses for the two
EPR-sets (Xq=π,Pq=0) and (Xq=0,Pq=π), as a function
of Z and fixed J . By increasing Z, the set (Xq=π,Pq=0),
used to detect entanglement at the ferroelectric QCP, be-
comes entanglement-blind for Z > Z1. The opposite hap-
pens for the (Xq=0,Pq=π) set which, being entanglement-
blind at Z = 0, starts to detect entanglement for Z >
Z2. Upon inverting the roles of the (Xq=0,Pq=π) and
(Xq=π,Pq=0) sets, the analogous behaviour is observed
by increasing J at fixed Z, see Fig. 3(d).
Discussion.— We summarize the entanglement detection
in the phase diagram of Fig. 1. Remarkably, the detection
region of the (Xq=0,Pq=π) set extends down to J → 0,
showing that the light-matter coupling act as an inde-
pendent source of entanglement which is not related to
the ferroelectric one. By increasing J , the light-induced
entanglement detection region is pushed to higher val-
ues of Z whereas the presence of the QCP protects the
ferroelectric entanglement. From a physical perspective,
we can understand these results by noticing that photons
act as a thermal bath on the dipoles [61], possibly caus-
ing a degradation of the entanglement in the system. At
the same time, however, due to the strong light-matter
coupling, entanglement gets transferred from the photon
bath to the system leading to an entanglement of a dif-
ferent origin. Indeed, it is known that the vacuum of a
quantum field is an entangled state [62, 63] and such en-
tanglement can be transferred, through the mechanism
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of entanglement harvesting [63–65], to probe two-level
detectors as well as more complex physical systems, such
as ions in a trap and cold atoms [66, 67]. In this respect,
our results show a concrete example of entanglement har-
vesting occurring in the equilibrium state of a quantum
material.
The starkly different behaviour of the witnesses associ-
ated with the detected entanglement highlights the com-
peting nature of the two types of emergent behaviours.
This can be understood by considering the different sym-
metry breaking triggered by large position and momen-
tum fluctuations. As seen before, position fluctuations
diverge at the ferroelectric QCP. On the contrary, the di-
vergence of momentum fluctuations would indicate the
breaking of time-reversal symmetry rather than ferro-
electricity [68, 69]. Even though this symmetry breaking
never happens in our model, the large momentum fluctu-
ations in the light-induced detection region indicate that
such a competing order is able to sensibly modify the
nature of the detected entanglement around the ferro-
electric QCP. In all these considerations, however, one
should keep in mind that the failure to fulfill Eq. (7)
does not necessarily mean that the state is separable.
In summary, we investigated entanglement detection in a
model of a interacting dipoles in the presence of compet-
ing orders, linked, respectively, to the ferroelectric QCP
and to the collective light-matter coupling. We used cri-
teria based on the simultaneous suppression of collective

fluctuations in position and momentum. Collective fluc-
tuations can be extracted from dynamical susceptibilities
or directly assessed through the measurement of the cor-
responding collective variables [70, 71]. Entanglement is
witnessed when the combined value of the fluctuations
falls below a threshold, determined by canonical commu-
tation relations.

Our findings directly point to the investigation of entan-
glement in quantum paraelectrics exhibiting significant
polariton splitting. The detection scheme in combina-
tion with the possibility of tuning polaritons [72, 73] rep-
resent a powerful tool for the control of the collective
entanglement in these systems. The construction of dif-
ferent witnesses with different variables and wave vec-
tors can reveal entanglement of different origin, which is
not necessarily tied to spontaneous symmetry breaking,
potentially unlocking the detection in a broad range of
quantum materials.
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Appendix A: Entanglement criteria

To make our discussion about entanglement self-contained, we provide all the details of the derivation of the entan-
glement criteria presented in the main text, together with the original references.
Given an operator A, its fluctuation on a quantum state ρ is defined as

∆A2
ρ := ⟨(A† − ⟨A†⟩ρ)(A− ⟨A⟩ρ)⟩ρ = ⟨A†A⟩ρ − ⟨A†⟩ρ⟨A⟩ρ. (A1)

Notice that, since the operator A is, in general, not Hermitian, we explicitly avoid calling this object a variance. We

also define the symbol ∆Aρ :=
√

∆A2
ρ. Notice that, even if A is not an Hermitian operator, as long as it is normal,

i.e., [A†, A] = 0, the interpretation of ⟨A⟩ as an expectation value still holds. In fact, for normal operators the spectral
theorem holds: we can still diagonalize it (with complex eigenvalues) and thus make sense of measurements of it. This
is the case we consider here.
One can show that the fluctuation is a concave function of the quantum state, namely, for ρ =

∑
i λiρi, with {ρi}i

quantum states and coefficients λi ≥ 0 and
∑
i λi = 1, we have

∆A2
ρ ≥

∑
i

λi∆A
2
ρi . (A2)

This can be easily shown, with a slight modification of the argument in [74], as follows

∆A2
ρ = tr[(A† − ⟨A†⟩ρ)(A− ⟨A⟩ρ)ρ] =

∑
i

λi tr[(A
† − ⟨A†⟩ρ)(A− ⟨A⟩ρ)ρi]

=
∑
i

λi
(
tr[(A† − ⟨A†⟩ρ)(A− ⟨A⟩ρ)ρi] + ⟨A†⟩ρi⟨A⟩ρi − ⟨A†⟩ρi⟨A⟩ρi

)
=

∑
i

λi
(
tr[(A†A− ⟨A†⟩ρi⟨A⟩ρi)ρi] + ⟨A†⟩ρi⟨A⟩ρi − ⟨A†⟩ρ⟨A⟩ρi − ⟨A†⟩ρi⟨A⟩ρ + ⟨A†⟩ρ⟨A⟩ρ

)
=

∑
i

λi
(
∆A2

ρi + |⟨A⟩ρ − ⟨A⟩ρi |2
)

≥
∑
i

λi∆A
2
ρi .

(A3)

The concavity property implies that the minimum is achieved on extreme states, i.e., pure. Now consider an operator
A on a tensor product H =

⊗
iHi defined as a sum of local operators A =

∑
i ãi, where ãi is an operator acting

on the Hilbert space Hi and identity everywhere else, e.g., ã1 = a1 ⊗ 11⊗ . . .⊗ 11. Its fluctuation on a product state
ρ =

⊗
i ρi is given by

∆A2
ρ =

∑
ij

tr[ã†i ãj
⊗
k

ρk]−
∑
i,j

tr[a†iρi] tr[ajρj ]

=
∑
i ̸=j

(
tr[a†iρi] tr[ajρj ]− tr[a†iρi] tr[ajρj ]

)
+

∑
i

(
tr[a†iaiρi]− tr[a†iρi] tr[aiρi]

)
=

∑
i

(∆a2i )ρi .

(A4)

Finally, combining Eq. (A2), the fact that all separable states can be written as a convex mixture of pure product
states, and Eq. (A4), we have that for any collective variable A =

∑
i ãi defined as above

min
ρ∈SEP

∆A2
ρ = min

ψ∈PPROD
∆A2

ψ = min
{ψi}i

∑
i

(∆a2i )ψi
, (A5)

where SEP denotes the set of separable states, i.e., states of the form ρ =
∑
i λiσ

(i)
1 ⊗ . . .⊗σ

(i)
n , for λi ≥ 0,

∑
i λi = 1,

PPROD the set of pure product states, i.e., |ψ⟩ = ⊗
i |ψi⟩, ∆A2

ψ denotes the fluctuation of A on a global pure state

|ψ⟩, and (∆a2i )ψi
the fluctuation of the local observable ai on a local pure state |ψi⟩.

We recall the uncertainty relation [56]

∆X∆Y ≥ 1

2
|⟨[X,Y ]⟩| (A6)
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which combined with the inequality (a− b)2 = a2 + b2 − 2ab ≥ 0, for a, b ∈ R, gives

∆X2 +∆Y 2 ≥ 2∆X∆Y ≥ |⟨[X,Y ]⟩|. (A7)

Now, applying Eq. (A5) together with Eq. (A7) for the sum of two collective variables, i.e., A =
∑
i ãi and B =

∑
i b̃i,

we have

min
ρ∈SEP

(∆A2
ρ +∆B2

ρ) = min
{ψi}i

∑
i

[
(∆a2i )ψi

+ (∆b2i )ψi

]
≥

∑
i

|⟨[ai, bi]⟩ψi
|. (A8)

This equation gives Eq. (6) for the choice aj = eiϕjxj and bj = eiθjpj .

Appendix B: Model of interacting dipoles

1. Linear response dynamics

In this section we detail the calculation of the response functions using the time-dependent Gutzwiller ansatz. Our
goal is to computed the response functions at wave-vector q, defined as

χOq (t) = −iθ(t)⟨
[
Oq,O†

q

]
⟩ = −iθ(t)⟨[Oq,O−q]⟩ (B1)

for O = X,P, where O†
q = O−q. By linear response theory, the response functions can be extracted from the unitary

dynamics with a time-dependent Hamiltonian supplemented by a small perturbation field λ(t). By defining the
Hermitean operators

Oq+ := Oq +O†
q Oq− := −i

(
Oq −O†

q

)
, (B2)

we introduce the q- and time-dependent Hamiltonians

Hq±(t) = H + λ(t)Oq±, (B3)

the corresponding time-evolved states

ρq,±(t) := ei
∫ t
0
dt′Hq±(t′)ρ0e

−i
∫ t
0
dt′Hq±(t′). (B4)

We therefore define the four expectation values with functional dependence on the perturbation λ(t),

O±±
q (t) = O±±

q [λ(t)] = Tr [ρq,±(t)Oq±] . (B5)

The response functions encode the functional dependence at linear order in the perturbation λ(t) as

O±±
q (t) =

∫ +∞

−∞
dt′χ±±

q (t− t′)λ(t′) (B6)

with

χ±±
q (t− t′) = −iθ(t− t′)⟨[Oq±(t),Oq,±(t

′)]⟩. (B7)

The knowledge of the time-dependent expectation values O±±
q (t) allows the determination of the response functions,

Eq. (B7), by Fourier transform

O±±
q (ω) = χ±±

q (ω)λ(ω). (B8)

The response function, Eq. (B1), is therefore obtained as

χOq (ω) =
1

4

[
χ++
q (ω) + χ−−

q (ω)− i(χ+−
q (ω)− χ−+

q (ω))
]

(B9)
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FIG. 4. Left panels: Linear response dynamics of the position operator for q == 0 (top) and q = π (bottom) and increasing
value of J . Right panels: Position response functions obtained by Fourier transform of the time signals.

2. Gutzwiller dynamics

To study the dynamics of the interacting model of dipoles we use a Gutzwiller single-site ansatz

ρ(t) =
⊗
i

ρi(t)

where ρi(t) is a state defined on the Hilbert space of the dipole at site i, which evolves with an effective single-site
Hamiltonian

Hi(t) = H0,i(t)− xiJeff,i(t) (B10)

with Jeff,i(t) = Jmω2
0

∑
⟨j⟩ Tr (ρj(t)xj) where the sum over j is restricted to the nearest neighbour sites of i. In the

static limit, this procedure corresponds to the static mean-field ansatz which describes the spontaneous symmetry
breaking at mean-field level. In the time-dependent case, the method is able to capture quantum fluctuations on
top of the static mean-field. It can be shown that the dynamics is exact in the two limits k

J → 0 (harmonic limit)

and k
J → ∞ (atomic limit), where k and J are, respectively, the on-site and nearest-neighbor coupling constants in

Eq. (1).
In order to study the dynamics, we represent the states ρi(t) a local local basis sets containing Ni = 10 eigenstates

and checked convergence with respect to Ni. We used a gaussian perturbation λ(t) = λ0e
− t2

τ2 with λ0 = 10−3ℏω0

and τ = 10−5 ps. In Fig. 4 we show examples of linear response dynamics for the position operator with q = 0 and
the q = π wavevectors. We extract the response functions by evaluating the Fourier transform over a time window
of 500 ps. In the dynamics, we included a small damping which ensures convergence of the Fourier integrals in the
considered time window.

3. Light-dressed response functions

In this section we show details of the calculation of the light-dressed response functions. We first write the full
Hamiltonian of the dipoles interacting with the photon degrees of freedom.

H =
∑
µ

ℏΩµa†µaµ +
∑
i

1

2m

(
pi + ZeÂx(xi)

)2

+ Vi(xi)− Jmω2
0x

2

(
1

2
+ k2

mω0

ℏ
x2

)
(B11)

Here, Âx(xi) is the x−component of the vector potential operator computed at the position of the point-like dipole.
Specifically, starting from the full vector potential operator defined in all the points of the three-dimensional space,

Â(x) = Â(x, y, z) = xÂx(x, y, z) + yÂy(x, y, z) + zÂz(x, y, z), (B12)
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the operator Âx(xi) is defined as

Âx(xi) :=

∫
dxdydzAx(x, y, z)δ(x− xi)δ(y −Ryi )δ(z −Rzi ). (B13)

Notice that the y− and z− components of the vector potential do not enter the Hamiltonian as the dipoles oscillates
only along the x−direction. The full vector potential quantized in the volume of the cavity reads

Â(x) =
∑
µ

Aµ
(
uµ(x)aµ + u∗

µ(x)a
†
µ

)
Aµ =

√
ℏ2

2ϵ0ΩµV
Ωµ = ℏc|qµ| (B14)

where the mode functions form a complete set of functions which satisfy the wave equation and the divergence-less
condition

∇⃗2uµ + q2
µuµ = 0 ∇ · uµ = 0

1

V

∫
dx u∗

µ · uµ′ = δµµ′ , (B15)

with boundary conditions set by perfectly reflecting mirrors.
We supplement the Hamiltonian with the linear response perturbation, as in Eq. (B3)

Hq±(t) =
∑
µ

ℏΩµa†µaµ +
∑
i

1

2m

(
pi + ZeÂx(xi)

)2

+ Vi(xi)− Jmω2
0x

2

(
1

2
+ k2

mω0

ℏ
x2

)
+ λ(t)Oq±. (B16)

We therefore follow Ref. [59] and write the dynamics as the coupled dynamics of dipoles in the presence of fields whose
evolution is governed by the Maxwell equations with the dipoles acting as sources of currents. Specifically, density
matrix of the dipoles evolves with the Hamiltonian

Hq± [A, t] =
∑
i

1

2m
(pi + ZeAx(xi))

2
+ Vi(xi)− Jmω2

0x
2

(
1

2
+ k2

mω0

ℏ
x2

)
+ λ(t)Oq±. (B17)

iℏ∂tρq± = [Hq±(t), ρq±] . (B18)

where the field entering Eq. (B17) satisfy

−∇2Ax(x)−
1

c2
∂2Ax(x)

∂t2
= µ0Jx(x). (B19)

In Eq. (B19), the current density reads

Jx(x) =
∑
i

Tr
(
ρq±(t)Ĵx,i(x)

)
,

being Ĵx,i(x) the current density operator associated with the i-th dipole

Ĵx,i(x) = Ĵx,i(x, y, z) =
Ze

m

(
pi + ZeÂx(xi)

)
δ(x− xi)δ(y −Ryi )δ(z −Rzi ), (B20)

Eventually, the computation of the light-dressed response functions reduces to the coupled dynamics of dipoles in
the presence of self-sourced fields, Eqs. (B18)-(B19). The dynamics of the dipoles is solved using the same method
described above. We solve the wave-equation of the field, Eq. (B19), by expanding the field on the quantized mode
in the cavity, Eq. (B15). In practice, we average the point-like current density over a volume a3 around each lattice
site and assume the vector potential constant within each volume a3.

Jx(x) =
∑
i

1

a3
Tr

(
ρ(t)Ĵxi

)
θ
(
|x−Rxi | −

a

2

)
θ
(
|y −Ryi | −

a

2

)
θ
(
|z −Rzi | −

a

2

)
(B21)

with

Ĵxi =
Ze

m
[pi + ZeAx(R

x
i , R

y
i , R

z
i )] (B22)

In all the calculations, we considered an high energy cutoff of 0.5 eV on the photon modes and checked convergence
with the cutoff. In Fig. 5, we show an example of light-dressed linear response dynamics for the homogeneous position
and momentum perturbations.
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FIG. 5. Left panels: Linear response dynamics for the homogeneous q = 0 position (top) and momentum (bottom) for
increasing values of the effective charge. Right panels: Light-dressed position and momentum response function obtained by
Fourier transform of the time signals.

a. Fluctuation in a toy model of two minimally coupled quantum oscillators

In order to understand the behaviour of the position and momentum fluctuations as a function of the light-matter
coupling, we build a toy-model of two minimally coupled quantum oscillators. We introduce two sets of conjugate
variables, (X1, P1) and (X2, P2), representing, respectively, the dipoles and the electromagnetic field. Here, X2 plays
the role of the vector potential operator, and P2 the electric field operator. We therefore write a minimally coupled
Hamiltonian akin to the full Hamiltonian in Eq. (B11)

H =
1

2
(P1 + ZX2)

2 +
1

2
X2

1 +
P 2
2

2
+
X2

2

2
. (B23)

We diagonalize the Hamiltonian in Eq. (B23) and compute the position and momentum fluctuations of the dipole
operators. In Fig. 6 we show that the toy model reproduces the enhancement/suppression of the momentum/position
fluctuations discussed in the main text.
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FIG. 6. Enhancement/suppression of the momentum/position fluctuations as a function of the coupling parameter, in the toy
model in Eq. (B23).
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